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Abstract We consider the problem of defining the significance of an itemset. We say
that the itemset is significant if we are surprised by its frequency when compared to the
frequencies of its sub-itemsets. In other words, we estimate the frequency of the itemset from
the frequencies of its sub-itemsets and compute the deviation between the real value and
the estimate. For the estimation we use Maximum Entropy and for measuring the deviation
we use Kullback–Leibler divergence. A major advantage compared to the previous methods
is that we are able to use richer models whereas the previous approaches only measure the
deviation from the independence model. We show that our measure of significance goes to
zero for derivable itemsets and that we can use the rank as a statistical test. Our empirical
results demonstrate that for our real datasets the independence assumption is too strong but
applying more flexible models leads to good results.

Keywords Binary data mining · Itemsets · Maximum entropy

1 Introduction

How significant is a given itemset? Itemsets are popular and well-studied patterns in binary
data mining. The major drawback is that, given a dataset, there are exponential number of
itemsets. Hence, we need to rank itemsets in order to prune the uninteresting ones.

Traditionally, the frequency of an itemset is used as a rank measure. The higher the
frequency, the more significant is the itemset. Frequency has many virtues: It is easy to
interpret and because of its property of anti-monotonicity there exist efficient algorithms for
finding all frequent itemsets [2,3]. There are, however, major drawbacks. First, a frequent
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58 N. Tatti

itemset may be insignificant: An itemset AB may be frequent just because itemsets A and
B are frequent. Second, an infrequent itemset may be significant: If itemsets A and B are
frequent, the infrequency of AB is interesting information.

Alternative methods for ranking itemsets are suggested in [1,6,14]. These methods are
discussed in more detail in Sect. 4. A common feature to these methods is that they compare
the frequency of an itemset to an estimate obtained from the independence model. That is,
the more the itemset deviates from the independence model, the more surprising, and thus
the more significant, the itemset is.

Our proposal for ranking itemsets resembles the aforementioned approaches. We esti-
mate the frequency of a given itemset from the frequencies of some selected sub-itemsets.
Namely, we use Maximum Entropy for the estimation. This approach is more flexible than
the independence model, since the independence model uses only the margins (the frequen-
cies of itemsets of size 1) for prediction whereas our approach allows to use the information
available from the itemsets of larger size. While our ranking method is based on well-known
tools, no similar framework has been suggested previously.

Unlike the frequency, our measure is not decreasing with respect to set inclusion. Hence
we cannot mine significant itemsets in a level-wise fashion. However, it turns out that in some
cases we can prune a large set of uninteresting itemsets (w.r.t. the measure). Namely, if the
itemset is derivable [8], then the measure is equal to 0. We also point out that can be used as
a statistical test, thus providing a clear interpretation for the measure.

The rest of the paper is organized as follows: Preliminaries are given in Sect. 2. The
definition and the properties of the measure are given in Sect. 3. We present related work in
Sect. 4. Section 5 is devoted to experiments and finally we provide conclusions in Sect. 6.

2 Preliminaries and notation

In this section we review briefly theory of itemsets and also introduce some notation that will
be used later on.

A binary dataset D is a collection of M binary vectors, transactions, having length K .
Such dataset can be naturally represented as a matrix of size M × K . We denote the number
of transactions by |D| = M . To each column of the matrix we assign an attribute ai . Let
A = {a1, . . . , aK } be the collection of all attributes. An itemset X ⊆ A is a set of attributes.

We say that a transaction (binary vector) ω covers an itemset X if ai ∈ X implies ωi = 1.
Given a dataset D, a frequency of an itemset X is a proportion of the transaction in D covering
X . Note that if an itemset Y is a subset of X , then the frequency of Y is larger than or equal
to the frequency of X . In other words, frequency is decreasing with respect to set inclusion.

A sample space � is the set of all binary vectors of length K . We take a simplistic approach
in defining distributions: A distribution p : � → [0, 1] is a function from a sample space
� to a real number between 0 and 1 such that

∑
ω∈� p(ω) = 1. Given an itemset X , a

frequency of X calculated from a distribution p is the probability of binary vector covering
X . We denote this by

p(X = 1) = p(ω covers X).

A family of itemsets F is called anti-monotonic or downward closed if every subset of
each member of F is also a member of F . Note that a collection of σ -frequent itemsets, that
is, itemsets having frequency larger than some given threshold σ , is downward closed. We
are interested in three particular families:
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Maximum entropy based significance of itemsets 59

– I, the family containing only itemsets of size 1.
– C, the family containing itemsets of size 1 and 2.
– A, the family containing all itemsets.

A negative border negbord(F) of the downward closed family F is the set of itemsets
just above F . In other words, X /∈ F is member of negbord(F) if there is no proper subset
Y ⊂ X such that Y /∈ F .

Given a dataset D, we say that an itemset X is derivable if by knowing the frequencies
(calculated from D) of each proper subset of X we can deduce the frequency of X . For
example, if some subset of X has a frequency 0, then we know that X must also have
frequency 0. Thus, in this case, X is derivable. An itemset that is not derivable is called
non-derivable. A family of all non-derivable itemsets is downward closed [8].

3 Maximum entropy ranking

In this section we introduce our ranking method and discuss its theoretical properties. The
fundamental idea behind our approach is to measure how surprising an itemset is compared
to its subsets. In other words, we estimate the itemset frequency by using the frequencies of
its subsets and compare how close is our estimation to the actual value. The estimation is
done using maximum entropy method and the comparison is done using Kullback–Leibler
divergence.

3.1 Definition

Let D be a binary dataset and let {a1, . . . , aK } be its attributes. The number of columns in D
is K . Assume that we are given G, an itemset we wish to rank. We define a projected dataset
DG by keeping only the attributes included in G.

Let �G = {0, 1}|G| be a space of binary vectors of length |G|. We define an empirical
distribution qG : �G → [0, 1] to be

qG(ω) = Number of samples in DG equal to ω

|DG | .

Our goal is to compare the distribution qG to a distribution obtained by using maximum
entropy [23], a method that we will describe next.

Assume now that we are given a family of itemsets F ⊆ A and let θX be the frequency
of X ∈ F calculated from D. Our next step is to define an approximative distribution using
only the itemsets in F . In defining qG we projected out the attributes outside G. Similarly,
we are only interested in subsets of G. Hence we define a projected family FG to be

FG = {X ∈ F | X ⊂ G, X �= G, X �= ∅} .

Note that FG may contain 2|G| − 2 itemsets, at maximum. This is the case if F = A.
We say that a distribution p : �G → [0, 1] satisfies the itemsets FG if for each itemset

X ∈ FG and its frequency θX we have

p(X = 1) = θX .
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Let P be the set of all distributions satisfying the itemsets FG . This set is not empty since
qG ∈ P. We select the distribution from P maximizing the entropy

H(p) = −
∑

ω∈�G

p(ω) log p(ω).

We denote this distribution by p∗. Note that p∗ depends on G, F , and θ but we have omitted
these variables from the notation for the sake of clarity.

We define the rank measure r(G; F, D) to be the divergence between qG and p∗, that is,

r(G; F, D) =
∑

ω∈�G

qG(ω) log
qG(ω)

p∗(ω)
.

We omit D from the notation when the dataset is clear from the context.

Example 1 Assume the simplest case where G = a is an itemset of size 1. Let θG be the
frequency of G. Note that FG = ∅, hence there are no constraints on selecting p∗. This
means that p∗ is the uniform distribution, that is, p∗(0) = p∗(1) = 1/2. In this case the
measure is

r(a; F) = (1 − θG) log(2(1 − θG)) + θG log(2θG)

obtaining its minimum when θG = 1/2 and is at its maximum when θG = 0 or θG = 1.

We are mainly interested in three kinds of measures: The first is r(G; I) in which I is the
family of itemsets of size 1. In this case the Maximum Entropy distribution is equal to the
independence model.

The second case is r(G; C), where C contains the itemsets of size 1 and 2. We can show
that there exists a matrix B (see [11]) such that for the non-zero entries of p∗ we have

p∗(ω) ∝ exp
(
ωT Bω

)
.

Hence, r(G; C) can be seen as the measure of the deviation from the discrete Gaussian model.
Our third type of measure is r(G; A) in which p∗ is predicted from all the proper sub-

itemsets of G. In this case we can prove that for a certain set of real numbers ri we have for
the non-zero entries of p∗

p∗(ω) ∝
∏

Xi ∈AG

exp(ri I (ω covers Xi )) ,

where I is the indicator function [11]. We discuss the evaluation of our approach in Sect. 3.4.

3.2 Properties

In this section we discuss various properties of r(G). We will first point the connection
between r(G) and derivable itemsets and then discuss the use of r(G) as a statistical test.

Theorem 2 Let G be a derivable itemset. Then

r(G; A) = 0.

Proof We can argue that if we know the frequencies of all sub-itemsets of G, we can derive the
distribution qG and vice versa. This implies that there is one-to-one correspondence between
the distribution p ∈ P satisfying the itemsets AG and the frequency p(G = 1). Since we can
derive the frequency of G from AG , it follows that P = {qG}, and hence p∗ = qG . 	
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Maximum entropy based significance of itemsets 61

We can reformulate the previous theorem in a stronger form by pointing out that we need
to know only non-derivable itemsets.

Theorem 3 Let F be a family of all non-derivable itemsets. Let G be outside of F . Then
r(G; F) = 0.

Proof Since all unknown sub-itemsets of G are derivable from FG , the argument of
Theorem 2 holds. 	


The following theorem provides the interpretation to the value of r(G) and points out that
we can use r(G) as a statistical test.

Theorem 4 Let G be a non-derivable itemset. Under the 0-hypothesis that G is distributed
according to p∗, the quantity 2|D| r(G; A) is distributed asymptotically as χ2 with degree
1 of freedom.

Theorem 4 is a special case of the following more general statement.

Theorem 5 Let G be a non-derivable itemset and let F be an itemset family. Define H to be

H = {X ∈ A | X ⊆ G, X �= ∅, X /∈ FG} ,

that is, H is a family of sub-itemsets of G not belonging to FG. Under the 0-hypothesis that
the itemsets in H are distributed according to p∗, the quantity 2|D| r(G; F) is distributed
asymptotically as χ2 with degree |H| = 2|G| − 1 − |FG | of freedom.

Theorem 5 is stated (but not proven) in a more general form in [23]. A rather technical proof
is provided in Appendix A.

Theorem 5 motivates us to define the normalised rank measure to be the one-sided χ2

test, that is,

nr(G; F, D) = cd f (2 |D| r(G; F, D)) ,

where cd f (a) = P
(
χ2 < a

)
is the cumulative distribution function of χ2 with degree

2|G| − 1 −|FG | of freedom. The number of degrees for different rank measures are provided
in Table 1.

The following well-known result and its corollaries will play an important role in evalua-
ting the measures.

Lemma 6 Let p∗ be the maximum entropy distribution for itemsets F and the corresponding
frequencies θ . Let q be a distribution satisfying the itemsets F . Then we have

−
∑

ω

q(ω) log p∗(ω) = H
(

p∗) .

Corollary 7 Let F be the family of itemsets. We have that

r(G; F) = H
(

p∗) − H(qG) ,

where p∗ is the maximum entropy distribution and qG is the empirical distribution.

Corollary 8 Let F , H be the families of itemsets such that H ⊆ F . Let p∗
1 be the maximum

entropy distribution for F and let p∗
2 be the maximum entropy distribution for H. We have

that

r(G; F) = KL
(
qG‖p∗

2

) − KL
(

p∗
1‖p∗

2

)
,

qG is the empirical distribution.
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Fig. 1 A toy tree model. The
related itemsets
{a, b, c, d, e, ab, ac, ad, de}
correspond to the attributes and
the edges of the tree

b a

c

d

e

Corollary 9 Let F , H be the families of itemsets such that H ⊆ F . We have that

r(G; F) ≤ r(G; H) .

3.3 Flexible models

So far we have considered ranks with fixed families of itemsets. In this section we introduce
two additional models. In these models the itemsets are selected such that they minimise the
rank.

Our first rank measure is the optimal tree model. A tree model can be described as a tree
defined on the attributes of G. The corresponding family T of itemsets contains the attributes
from G and the itemsets of size 2 corresponding to the edges of the tree.

Example 10 Consider G = {a, b, c, d, e} and consider the tree given in Fig. 1. The corre-
sponding family of itemsets is T = {a, b, c, d, e, ab, ac, ad, de}.

We can show that the Maximum Entropy distribution for T has the form

p∗ =
∏

{a,b}∈T
p∗(a, b) /

∏

a∈G

p∗(a) .

This is, of course, Chow-Liu tree model [9]. We define the optimal tree to be the ne that
minimises the rank, that is,

T ∗ = arg min
T is a tree

r(G; T , D) .

To solve this tree let pind be the independence distribution. Corollary 8 allows us to rewrite
the rank measure as

r(G; T ) = KL
(
qD‖p∗) = KL(qD‖pind) − KL

(
p∗‖pind

)
.

Note that the first term KL(qD‖pind) does not depend on T . Hence we need to maximise the
second term KL(p∗‖pind). This is the mutual information of the tree and maximising this
term is equivalent to finding maximum spanning tree in the mutual information graph. This
can be done in polynomial time [9].

There is a deep connection between the rank r(G; T ) and the rank for D-trees suggested
in [19]. We can rewrite, by applying Corollary 7, the rank as

r(G; T ) = KL
(
qD‖p∗) = H

(
p∗) − H(qG) .

The first term H(p∗) is the rank that is used in [19]. The authors in [19] seek patterns
that have small H(p∗), that is, trees that have strong dependencies between the attributes,
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whereas we are interested in patterns that produce large r(G; T ∗), sets of attributes whose
joint distribution cannot be explained even by the best tree model.

Our second model involves in finding a downward closed family F of itemsets that pro-
duces the smallest normalised rank. Note that Corollary 9 implies that the rank decreases
when we increase the number of known itemsets. However, this does not hold for the norma-
lised rank and we will see that, contrary to the expectations, the best model can be different
than AG , the set of all sub-itemsets of G. In other words, knowing all sub-itemsets does not
guarantee the best model but, in fact, itemsets of higher order may mislead the prediction.

Unlike with the tree models, to our knowledge, there is no polynomial algorithm for finding
the optimal downward closed family. Hence, we suggest a simple greedy approach. We start
from the itemsets of size 1 and select the itemset from the negative border that minimises
the rank. The itemset is added into the family and the procedure is repeated until there is
no itemset that can decrease the rank. The algorithm is stated in Algorithm 1. We use F∗ to
denote the resulting family.

Algorithm 1 Greedy algorithm for finding the optimal downward closed family of item sets.
The input is the data set D and the query itemset G. The output is F∗ a family of itemsets
that produces low rank for the itemset

F∗ ⇐ IG . {Initialise F∗ with itemsets of size 1.}
repeat

Y ⇐ arg min
X∈negbord(F∗)

nr
(
G; F∗ ∪ X

)
.

if nr
(
G; F∗ ∪ Y

)
< nr

(
G;F∗)

then
F∗ ⇐ F∗ ∪ Y .

end if
until no more changes in F∗.

3.4 Computing rank

Corollary 7 allows us to rewrite the rank as a difference of two entropies

r(G) = KL
(
qG‖p∗) = H

(
p∗) − H(qG) .

Both distributions have |�G | = 2|G| entries. However, the distribution qG can have only |D|
positive entries at maximum, hence the term H(qG) can be computed efficiently.

The challenge in calculating the measure is to solve the Maximum Entropy distribution
p∗ and calculate its entropy. This can be done in polynomial time for the independence
model and for the tree models. However, in the general case solving p∗ is an NP-complete
problem [10,30]; In such cases the distribution is solved using Iterative Scaling algorithm [12,
21]. The algorithm consists of consecutive steps. One such step requires O(|�G |) = O

(
2|G|)

time. Hence computing the measure requires exponential time but it is doable for itemsets of
reasonable size. The summary for evaluation times is provided in Table 1.

3.5 The effect of pruning itemsets

Note that in defining the measure we only use itemsets that are subsets of the query itemset
G. This pruning guarantees that the number of entries in the distributions is 2|G| and not, at
worst, 2K , where K is the number of columns in the dataset. Pruning attributes is essential
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Table 1 Summary of the rank measure

Measure Description # of degrees Evaluation time

r(G;I) Independence model 2|G| − 1 − |G| O(|G|)
r(G;C) Gaussian model 2|G| − 1 − 1

2 |G| (|G| + 1) O
(

2|G|) per iter.

r(G;A) All subsets model 1 O
(

2|G|) per iter.

r
(
G; T ∗)

Optimal tree model 2|G| − 2|G| O
(
|G|2

)

r
(
G; F∗)

Optimal family model 2|G| − 1 − |F | O
(

8|G|) per iter.

The number of degrees, the third column, is used as a a parameter for χ2 distribution, when computing the
normalised rank. The fourth column represents the evaluation times for the entropy of p∗

since solving p∗ is exponential to the number of attributes. The downside is that pruning may
change the prediction as the following example demonstrates.

Example 11 Assume that we have 3 attributes, a, b, and c. Our known itemsets are F =
{a, b, c, ac, bc} and their frequencies are θa = θb = θc = θac = θbc = 1/2. In other words,
the attributes are identical and correspond to a fair coin flip. Assume that we are interested in
rank of G = ab. In this case the pruned family of itemsets is FG = {a, b} and the Maximum
Entropy distribution is the uniform distribution. The empirical distribution is

qG(a = 0, b = 0) = qG(a = 1, b = 1) = 1/2

qG(a = 1, b = 0) = qG(a = 0, b = 1) = 0.

The rank is then r(ab; F) = 0.69. However, if we had used the frequencies of ac and bc,
we would have concluded that a = b and that the Maximum Entropy distribution is equal to
the empirical distribution, hence the rank would have been 0.

In [31] we investigate the effect of pruning attributes and conclude that in some cases we
can remove a large portion of attributes outside G. However, in those cases, the family of
known itemsets has many restrictions and, for instance, we cannot remove safely any attribute
from the Gaussian model.

4 Related work

Traditionally, the support (frequency) of the itemset is used for ranking itemsets. Alternative
measures that resemble the support are studied in [26].

Our work resembles approach of [6] in which the authors defined the significance of an
itemset by comparing the distribution qG against the independence model. The authors used
χ2 statistical test as a measure, that is, if p is the distribution related to the independence
model, the rank measure is

rb(G) =
∑

ω∈�G

(qG(ω) − p(ω))2

p(ω)
. (1)

In [14] the authors also compare the frequency of an itemset against the independence model
but in addition they use Bayes screening to smooth the values. Also, in [1] the authors
proposed the collective strength as a measure of significance. To be more specific, we say
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that a transaction ω ∈ �G is good if it contains only 0s or only 1s. Let p be the distribution
related to the independence model. Then the measure is

rcs(G) = qG(ω is good)

p(ω is good)

p(ω is bad)

qG(ω is bad)
. (2)

This measure obtains small values when data obeys the independence model. In a related
work presented in [13] the authors define an itemset to be interesting if its frequency increases
significantly from one dataset to another. In [17] the authors order itemsets based on their
p-values. In [19] the authors used entropy of tree models for ranking itemsets. In addition,
many measures has been suggested for ranking association rules [2,7,20,29].

The authors in [28] showed empirically that Maximum entropy model provides excellent
estimates for itemsets. Rank can be used for pruning a large family of itemsets by picking
the itemsets having the largest rank. Other pruning methods are proposed in [4,8,27]. The
authors in [34] suggest a generic framework for discovering significant rules. In addition,
a relevant framework is described in [24]; the authors define a pattern ordering given an
estimation algorithm and a loss function. In [25] the authors use information component
analysis to find patterns in a drug safety database.

5 Experiments

In this section we present our empirical results. In the first three sections we explain the
datasets and the setup. In our experiments we investigate the significance of itemsets, how
different measures are related to each other, and the monotonicity of the ranks.

5.1 Synthetic datasets

For the testing purposes we created two synthetic datasets. Each dataset contained 100
attributes and 5, 000 rows. The first dataset, gen-ind, was generated such that the attributes
were independent. The margins were sampled uniformly from [0, 1]. In the second dataset,
gen-copy, each column was a copy of the previous column corrupted by the symmetric white
noise. The amount of noise, that is the probability

p(ai = 1 | ai−1 = 0) = p(ai = 0 | ai−1 = 1) ,

was selected uniformly from [0, 1] for each column ai , individually. The first column was
generated by a coin flip. Our expectations are that in gen-ind the itemsets of size 1 are
significant and that in gen-copy the itemsets of size 2 are significant.

5.2 Real datasets

In our experiments we used the following real-world datasets. Data in Accidents1 were
obtained from the Belgian “Analysis Form for Traffic Accidents” forms that is filled out
by a police officer for each traffic accident that occurs with injured or deadly wounded
casualties on a public road in Belgium. In total, 340,183 traffic accident records are included
in the dataset [18]. The datasets POS2, WebView-13 and WebView-24 were contributed by

1 http://fimi.cs.helsinki.fi/data/accidents.dat.gz
2 http://www.ecn.purdue.edu/KDDCUP/data/BMS-POS.dat.gz
3 http://www.ecn.purdue.edu/KDDCUP/data/BMS-WebView-1.dat.gz
4 http://www.ecn.purdue.edu/KDDCUP/data/BMS-WebView-2.dat.gz
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Blue Martini Software as the KDD Cup 2000 data [22]. POS contains several years worth of
point-of-sale data from a large electronics retailer. WebView-1 and WebView-2 contain several
months worth of click-stream data from two e-commerce web sites. Kosarak5 consists of
(anonymised) click-stream data of a Hungarian on-line news portal. Retail6 is a retail market
basket data supplied by an anonymous Belgian retail supermarket store [5]. The dataset Paleo7

contains information of species fossils found in specific paleontological sites in Europe [15],
preprocessed as in [16].

5.3 Setup for the experiments

In this section we will describe how we conducted our experiments. We reduced the largest
datasets by selecting the first 10, 000 rows and 200 most frequent attributes. From each
dataset we computed all almost non-derivable itemsets. By almost non-derivable we mean
that the difference between the upper bound and the lower bound of a given itemset, say
G, is at least n transactions. In other words, if we know the frequencies of all sub-itemsets
of G, then we cannot predict the frequency of G within n transactions. If n = 0, then an
itemset is non-derivable. It is known that the family of almost non-derivable itemsets is anti-
monotonic [8, Lemma 3.1]. A reason to use almost non-derivable itemsets instead of frequent
itemsets is the statement of Theorem 3, that is, r(G; A) = 0 if the itemset is derivable. The
other reason is that we want to study how the measure behaves for infrequent itemsets.

To keep the sizes of the obtained families within reasonable bounds we used different
thresholds for different datasets: For gen-ind, Retail and WebView-2 we set n = 5. For POS
the threshold n was set to 10 and for gen-copy and Accidents n was set to 100. For the rest of
the datasets we set n = 0, that is, we mined all non-derivable itemsets from these datasets.

For each itemset from the obtained itemsets we queried the following measures:

– Frequency.
– Normalised rank measures nr(G; I), nr(G; C), nr(G; A), nr(G; T ∗), nr(G; F∗).
– Measures discussed in Sect. 4: A χ2 test rb(G) defined in Eq. 1 and a collective strength

rcs(G) defined in Eq. 2.

The evaluation times and the sizes of the query families are given in Table 2.

5.4 Significant itemsets

Our first experiment is to study how many of the itemsets are significant. We did this by
comparing our rank measures with risk level 0.05. The results are given in Tables 3, 4 and 5.
We also provide a typical example of box plots in Fig. 2.

Let us first study gen-ind, a synthetic dataset with independent columns. We see from
Table 3 that according to nr(G; I) a large portion of itemsets of size 1 are significant but
only a small portion of itemsets having size larger than 1 is significant. This is an expected
result since the frequencies obey the independence model. In Tables 4 we have similar results
for nr(G; C) and for nr(G; A). However, the values of nr(G; C) and for nr(G; A) tend to
be larger than the values of nr(G; I). The reason for this is a type of overlearning: Since
the frequencies of itemsets are calculated from the datasets, they are imprecise. Hence, the
itemsets of larger size mislead us during prediction, because the resulting Maximum Entropy
distribution is not an independent model (although close to one).

5 http://fimi.cs.helsinki.fi/data/kosarak.dat.gz
6 http://fimi.cs.helsinki.fi/data/retail.dat.gz
7 NOW public release 030717 available from [15].
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Table 2 The evaluation times and the sizes of the query families

Data n # of G max|G| Evaluation times

nr(G; I) (s) nr(G; C) nr(G;A) nr
(
G; T ∗)

(s) nr
(
G; F∗)

gen-ind 5 156,699 6 2 52 s 29 min 2 11 min

gen-copy 100 111,487 4 0 12 s 57 s 0 1 min

Accidents 100 354,399 6 2 1 min 19 min 3 108 min

Kosarak 5 223,734 5 1 4 s 9 s 0 47 s

Paleo 0 166,903 5 0 8 s 35 s 0 2 min

POS 10 246,640 6 1 8 s 27 s 1 5 min

Retail 0 818,813 6 3 19 s 49 s 4 4 min

WebView-1 5 226,313 5 1 5 s 8 s 1 39 s

WebView-2 0 715,398 6 3 27 s 2 min 4 11 min

The second column is the threshold used in mining almost non-derivable itemsets. The fourth column is the
maximal size of a query itemset. The evaluation time does not include the time spent mining the itemsets

Table 3 The percentages of significant itemsets according to nr(G; I)

Data itemset size

1 2 3 4 5 6 All

gen-ind 0.92 0.05 0.04 0.03 0.02 0.01 0.03

gen-copy 0.08 0.14 0.24 0.03 – – 0.07

Accidents 0.99 0.60 0.95 1 1 1 0.97

Kosarak 1 0.62 0.99 1 1 – 0.96

Paleo 1 0.30 0.81 0.99 1 – 0.88

POS 1 0.45 0.99 1 1 1 0.95

Retail 1 0.14 0.30 0.93 1 1 0.45

WebView-1 1 0.70 1 1 1 – 0.97

WebView-2 1 0.20 0.69 1 1 1 0.85

Each entry is a fraction of itemsets of specific size calculated from a specific dataset. Significance is measured
using χ2 distribution with 0.05 risk level
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.95
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Fig. 2 Box plots of the rank measures computed from Paleo

Let us continue by studying gen-copy, a synthetic data in which an attribute is a noisy copy
of the previous attribute. We see that nr(G; T ∗) tends to have smaller ranks than nr(G; I)

when G has size 3. The reason for this is that, unlike with gen-ind, the independence model
cannot explain the dataset. However, when we predict using also the itemsets of size 2, the
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Table 4 The percentages of significant itemsets according to nr(G; C) and nr(G; A)

Data nr(G; C), itemset size nr(G;A), itemset size

1 2 3 4 5 6 All 1 2 3 4 5 6 All

gen-ind 0.92 0.05 0.06 0.05 0.04 0.03 0.05 0.92 0.05 0.06 0.06 0.06 0.06 0.06

gen-copy 0.08 0.14 0.06 0.03 – – 0.03 0.08 0.14 0.06 0.05 – – 0.05

Accidents 0.99 0.60 0.21 0.45 0.62 0.60 0.45 0.99 0.60 0.21 0.07 0.05 0.06 0.11

Kosarak 1 0.62 0.32 0.50 0.38 – 0.37 1 0.62 0.32 0.10 0.04 – 0.33

Paleo 1 0.30 0.12 0.15 0.21 – 0.15 1 0.30 0.12 0.21 0.64 – 0.18

POS 1 0.45 0.09 0.21 0.43 0.66 0.17 1 0.45 0.09 0.06 0.07 0.05 0.11

Retail 1 0.14 0.04 0.08 0.12 0.38 0.05 1 0.14 0.04 0.15 0.27 0.25 0.07

WebView-1 1 0.70 0.48 0.32 0.52 – 0.48 1 0.70 0.48 0.09 0.07 – 0.45

WebView-2 1 0.20 0.11 0.20 0.88 1 0.17 1 0.20 0.11 0.16 0.36 0.48 0.15

Each entry is a fraction of itemsets of specific size calculated from a specific dataset. Significance is measured
using χ2 distribution with 0.05 risk level

Table 5 The percentages of significant itemsets according to nr
(
G;T ∗)

and nr
(
G;F∗)

Data nr
(
G; T ∗)

, itemset size nr
(
G; F∗)

, itemset size

1 2 3 4 5 6 All 1 2 3 4 5 6 All

gen-ind 0.92 0.05 0.02 0.01 0.01 0 0.01 0.92 0.05 0.01 0.01 0 0 0.01

gen-copy 0.08 0.14 0.02 0 – – 0.01 0.08 0.14 0.01 0 – – 0.01

Accidents 0.99 0.60 0.40 0.80 0.95 0.97 0.75 0.99 0.60 0.18 0.12 0.13 0.02 0.15

Kosarak 1 0.62 0.80 0.94 1 – 0.80 1 0.62 0.32 0.05 0.03 – 0.32

Paleo 1 0.30 0.10 0.35 0.81 – 0.24 1 0.30 0.06 0.05 0.04 – 0.07

POS 1 0.45 0.47 0.99 1 1 0.65 1 0.45 0.08 0.02 0.02 0 0.09

Retail 1 0.14 0.03 0.18 0.78 1 0.07 1 0.14 0.01 0.02 0.02 0.13 0.02

WebView-1 1 0.70 0.83 1 1 – 0.84 1 0.70 0.46 0.07 0.30 – 0.43

WebView-2 1 0.20 0.11 0.57 1 1 0.37 1 0.20 0.06 0.03 0.14 0.44 0.05

Each entry is a fraction of itemsets of specific size calculated from a specific dataset. Significance is measured
using χ2 distribution with 0.05 risk level

prediction becomes more accurate. The measures nr(G; C) and nr(G; A) also produce small
ranks, however, these ranks tend to be slightly larger than the ranks of nr(G; T ∗).

We turn our attention to real datasets. We see that for these datasets the independence
model is too strict: According to nr(G; I) almost all itemsets are significant: The results
change drastically, when we use richer models. According to nr(G; A) only about 5–50%
of the itemsets are significant, depending on the dataset. Similar overfitting that occurred
with gen-ind also occurs in some but not all real datasets (see Fig. 2). For instance, in Retail
nr(G; A) tends to produce higher values than nr(G; C) but not in POS.

5.5 The effect of the known itemsets

We continued our experiments by comparing the measures nr(G; I), nr(G; C), nr(G; A),
nr(G; T ∗), and nr(G; F∗) against each other. This was done by calculating the correlations
between the rank measures. The results are given in Tables 6 and 7.
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Table 6 Correlations between the measures nr(G;I), nr(G; C), and nr(G; A)

Data nr(G;I) vs. nr(G; C) nr(G; I) vs. nr(G; A) nr(G; C) vs. nr(G; A)

gen-ind 0.74 0.26 0.39

gen-copy 0.52 0.28 0.53

Accidents 0.17 0.07 0.37

Kosarak 0.14 0.13 0.90

Paleo 0.16 0.22 0.67

POS 0.12 0.10 0.77

Retail 0.62 0.67 0.88

WebView-1 0.14 0.12 0.88

WebView-2 0.43 0.51 0.68

Table 7 Correlations between the flexible measures nr
(
G; T ∗)

and nr
(
G;F∗)

and the measures nr(G; I),
nr(G; C), and nr(G; A)

Data nr
(
G; T ∗)

vs. nr
(
G;F∗)

vs.

nr(G;I) nr(G;C) nr(G;A) nr(G; I) nr(G; C) nr(G; A) nr
(
G; T ∗)

gen-ind 0.81 0.94 0.37 0.81 0.91 0.36 0.98

gen-copy 0.62 0.92 0.49 0.64 0.89 0.49 0.97

Accidents 0.34 0.57 0.20 0.07 0.58 0.54 0.29

Kosarak 0.41 0.41 0.36 0.13 0.85 0.93 0.46

Paleo 0.35 0.64 0.47 0.16 0.84 0.67 0.62

POS 0.42 0.34 0.28 0.05 0.72 0.84 0.21

Retail 0.66 0.82 0.82 0.59 0.92 0.84 0.86

WebView-1 0.56 0.29 0.24 0.12 0.86 0.93 0.28

WebView-2 0.59 0.62 0.65 0.34 0.77 0.72 0.54

From the results we see that all correlations are positive. For the real datasets the
correlations between nr(G; C) and nr(G; A) are systematically higher than the correlati-
ons between nr(G; I) and nr(G; A) or between nr(G; C) and nr(G; A). This implies that
nr(G; I) produces different ranks whereas nr(G; C) and nr(G; A) are more similar. This
supports the behaviour we have seen in Sect. 5.4.

The measure nr(G; F∗) correlate more with nr(G; A) and nr(G; C) than with nr(G; I).
The correlation between nr(G; F∗) and nr(G; T ∗) is somewhat weaker but it is stronger
than the correlation between nr(G; F∗) and nr(G; I).

5.6 Flexible models

Our next goal is to compare the flexible measures nr(G; T ∗) and nr(G; F∗) against the rest
of the measures. From Table 5 we see that nr(G; F∗) tend to produce the smallest amount
of significant itemsets whereas the nr(G; T ∗) produces large ranks, especially for queries
with many attributes.

We calculated the number of queries in which nr(G; T ∗) and nr(G; F∗) produce smaller
rank than the rest of the measures. Since the measures are equivalent for the queries of size 1
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Table 8 Percentages of queries in which the flexible measures nr
(
G; T ∗)

and nr
(
G; F∗)

outperform the
other rank measures

Data nr
(
G; T ∗) ≤ nr

(
G;F∗) ≤

nr(G;I) nr(G;C) nr(G;A) nr(G; I) nr(G; C) nr(G; A) nr
(
G; T ∗)

gen-ind 0.84 0.97 0.78 1 0.99 0.81 0.95

gen-copy 0.79 0.96 0.82 1 0.99 0.86 0.99

Accidents 1 0.16 0.13 1 0.94 0.66 0.95

Kosarak 1 0.08 0.08 1 0.38 0.36 0.96

Paleo 0.99 0.47 0.58 1 0.91 0.85 0.86

POS 1 0.12 0.12 1 0.65 0.62 0.90

Retail 0.92 0.77 0.80 1 0.94 0.92 0.62

WebView-1 1 0.19 0.19 1 0.52 0.49 0.93

WebView-2 0.99 0.37 0.46 1 0.89 0.87 0.79

Queries only of size 3 or larger were considered

Table 9 Number of itemsets
occurring in F∗, the family of
known itemsets in r

(
G;F∗)

,
normalised by the maximum
number of possible occurrences

Each column represent itemsets
of specific size

Data Ratio of used itemsets

2 3 4 5

gen-ind 0.35 0.01 0 0

gen-copy 0.36 0.01 – –

Accidents 0.87 0.36 0.02 0

Kosarak 0.95 0.49 0.01 –

Paleo 0.74 0.16 0 –

POS 0.96 0.47 0.01 0

Retail 0.62 0.13 0 0

WebView-1 0.93 0.44 0 –

WebView-2 0.81 0.26 0.07 0

and 2, these queries were ignored. From the results given in Table 8 we see that the flexible
models outperform nr(G; I), however, the performance against other measure depends on the
data set. For instance, nr(G; F∗) outperform nr(G; C) and nr(G; A) in Retail but produces
larger ranks in Kosarak. This suggests that the greedy algorithm sometimes fails to find the
optimal family F∗.

We studied the sizes of itemsets occurring in F∗, the family of known itemsets in
nr(G; F∗). To be more precise, let F∗

G be the family of known itemsets for the query G. Let
L be the size of itemsets we are interested in. We define the ratio rL to be

rL =
∑

G

∣
∣
{

X ∈ F∗
G; |X | = L

}∣
∣

∑
G

(|G|
L

) ,

that is, the number of itemset of size L occurring in F∗ divided by the maximum number of
occurrences. The ratios rL are given in Table 9. We see that the itemsets of size 2 and 3 are
frequently used, however, the itemsets of larger size are rarely used.
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Table 10 Correlations between the rank measures nr(G; I), nr(G; C), and nr(G;A) and the base measures:
the frequency of G, rb(G), the χ2 test for independency, and rcs (G), the collective strength of the itemset G

Data nr(G; I) vs. nr(G;C) vs. nr(G;A) vs.

Freq. rb(G) rcs (G) Freq. rb(G) rcs (G) Freq. rb(G) rcs (G)

gen-ind 0.06 0.99 −0.01 0.03 0.72 −0.01 0 0.25 0

gen-copy 0.15 1 0.02 0.07 0.52 0.02 0.01 0.27 0.01

Accidents 0.01 1 0.02 −0.01 0.17 0.05 0.03 0.07 0.01

Kosarak 0.01 0.98 0.20 0.01 0.14 0.27 0 0.13 0.21

Paleo 0.18 0.95 0.39 0.01 0.15 0.10 −0.03 0.20 0.03

POS 0.05 0.99 0.22 0.09 0.12 0.20 0.07 0.10 0

Retail 0.04 0.97 0.31 0.05 0.57 0.17 0.05 0.61 0.25

WebView-1 0.06 0.98 0.19 0.07 0.15 −0.29 0.05 0.13 −0.32

WebView-2 0.12 0.96 0.33 0.17 0.36 0.39 0.12 0.43 0.25

Table 11 Correlations between the rank measures nr
(
G; T ∗)

and nr
(
G; F∗)

and the base measures: the

frequency of G, rb(G), the χ2 test for independency, and rcs (G), the collective strength of the itemset G

Data nr
(
G; T ∗)

vs. nr
(
G;F∗)

vs.

Freq. rb(G) rcs (G) Freq. rb(G) rcs (G)

gen-ind 0.07 0.79 −0.01 0.06 0.79 −0.01

gen-copy 0.16 0.62 0.03 0.16 0.64 0.03

Accidents −0.02 0.33 0.04 0.04 0.07 0.01

Kosarak 0.01 0.39 0.32 0 0.13 0.25

Paleo 0.24 0.28 0.44 0.09 0.12 0.03

POS 0.12 0.41 0.37 0.07 0.05 −0.23

Retail 0.06 0.58 0.31 0.06 0.53 0.14

WebView-1 0.11 0.55 0.16 0.04 0.13 −0.35

WebView-2 0.20 0.49 0.46 0.16 0.28 0.14

5.7 Rank versus other methods

We compared our measures against the other ranking methods described in Sect. 5.3. Namely,
we calculated the correlations of nr(G; I), nr(G; C), nr(G; A), nr(G; T ∗), and nr(G; F∗)
against the frequency of G, rb(G), the χ2 test for independency, and rcs(G), the collective
strength of the itemset G. The results are presented in Tables 10 and 11. We also studied the
relationships by plotting our measures as functions of the aforementioned approaches and
such examples are given in Fig. 3.

Our first observation is that nr(G; I) correlates strongly with rb(G). This is an expected
result since both test the independency of attributes inside the itemsets and also because
nr(G; I) is asymptotically a χ2 test (see Theorem 5). There is some correlation between
rb(G) and the rest of the measures although this correlation is much weaker compared to
nr(G; I).

Apart from WebView-2, there is little correlation between the measures and the frequency.
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Fig. 3 Ranks as functions of the base measures. The plots are calculated from Paleo dataset

The correlation between the measures and the collective strength rcs(G) exists but varies
depending on the method and the dataset. The strongest correlations are obtained when rcs(G)

is compared against nr(G; I) or nr(G; T ∗). The dependency between nr(G; I) and rcs(G)

is a natural result since rcs(G) produces small values when attributes are independent.

5.8 Monotonicity of rank

In this section we investigate the relationship between the rank of an itemset and the ranks
of its sub-itemsets. Namely, we tested whether the measures are monotonic, that is, whether
nr(G; F) ≥ nr(H ; F) for all H ⊂ G. We deliberately ignored sub-itemsets having size 1
since they all have very high rank. We also tested whether the measures are anti-monotonic,
that is, decreasing w.r.t. set inclusion.

From the results given in Tables 12, 13, 14 and 15 our first observation is that nr(G; I)

are increasing for real datasets but not for the synthetic datasets. The raw values of nr(G; I)

are indeed increasing but this does not hold for the P-values since the number of degrees
varies. The measure nr(G; T ∗) tends also be monotonic but not as much as nr(G; I). On
the contrary, nr(G; C), nr(G; A), and nr(G; F∗) are increasing for extremely few itemsets.

Table 14 suggests that nr(G; C), nr(G; A), and nr(G; F∗) satisfies the anti-monotonicity
to some degree. Measures nr(G; C) and nr(G; A) are anti-monotonic for relatively high
percentage of itemsets of size 3. Among itemsets of size 4, nr(G; F∗) satisfies the property
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Table 12 Percentages of itemsets satisfying the property of monotonicity

Data nr(G; I) nr(G; C) nr(G;A)

3 4 5 6 All 3 4 5 6 All 3 4 5 6 All

gen-ind 0.09 0.02 0.01 0 0.03 0.27 0.03 0.01 0 0.05 0.27 0.11 0.06 0.03 0.11

gen-copy 0.15 0.01 – – 0.04 0.20 0.02 – – 0.05 0.20 0.10 – – 0.12

Accidents 0.78 0.92 0.97 0.99 0.90 0.01 0.02 0.02 0 0.02 0.01 0 0 0 0

Kosarak 0.93 0.98 1 – 0.93 0 0 0 – 0 0 0 0 – 0

Paleo 0.40 0.61 0.84 – 0.51 0.04 0 0 – 0.02 0.04 0 0 – 0.02

POS 0.87 1 1 1 0.92 0 0 0.01 0 0 0 0 0 0 0

Retail 0.11 0.42 0.92 1 0.19 0.04 0 0 0 0.03 0.04 0.02 0 0 0.04

WebView-1 0.98 1 1 – 0.98 0.04 0 0 – 0.04 0.04 0 0 – 0.04

WebView-2 0.39 0.88 1 1 0.67 0.04 0 0.08 1 0.02 0.04 0 0 0 0.02

The itemset G satisfies the property if nr(G; F) ≥ nr(H ; F) for all H ⊂ G such that |H | ≥ 2

Table 13 Percentages of itemsets satisfying the property of monotonicity

Data nr
(
G; T ∗)

nr
(
G;F∗)

3 4 5 6 All 3 4 5 6 All

gen-ind 0.13 0.01 0 0 0.02 0.07 0.01 0 0 0.02

gen-copy 0.10 0.01 – – 0.02 0.05 0.01 – – 0.02

Accidents 0.02 0.13 0.35 0.47 0.17 0.01 0 0 0 0

Kosarak 0 0.26 0.32 – 0.03 0 0 0 – 0

Paleo 0.02 0 0 – 0.01 0.02 0 0 – 0.01

POS 0 0.23 0.97 1 0.11 0 0 0 0 0

Retail 0.03 0 0.14 1 0.02 0.02 0 0 0 0.02

WebView-1 0.04 0.07 0.89 – 0.05 0.03 0 0 – 0.03

WebView-2 0.03 0.02 0.72 1 0.04 0.03 0 0 0 0.01

The itemset G satisfies the property if nr(G; F) ≥ nr(H ; F) for all H ⊂ G such that |H | ≥ 2

Table 14 Percentages of itemsets satisfying the property of anti-monotonicity

Data nr(G;I) nr(G;C) nr(G; A)

3 4 5 6 All 3 4 5 6 All 3 4 5 6 All

gen-ind 0.21 0.07 0.03 0.02 0.07 0.25 0.07 0.03 0.01 0.07 0.25 0.08 0.02 0.01 0.07

gen-copy 0.15 0.06 – – 0.08 0.25 0.08 – – 0.11 0.25 0.07 – – 0.10

Accidents 0.03 0 0 0 0.01 0.62 0.04 0 0 0.16 0.62 0.21 0.05 0.02 0.26

Kosarak 0.02 0.06 0 – 0.02 0.93 0.03 0.01 – 0.83 0.93 0.33 0.08 – 0.86

Paleo 0.02 0 0 – 0.01 0.43 0.04 0 – 0.22 0.43 0.07 0 – 0.23

POS 0.01 0.01 0.04 0.23 0.01 0.87 0.07 0 0 0.57 0.87 0.18 0.06 0.09 0.61

Retail 0.17 0 0 0 0.13 0.38 0.05 0.01 0 0.30 0.38 0.03 0.01 0 0.29

WebView-1 0 0 0 – 0 0.69 0.11 0 – 0.62 0.69 0.39 0.15 – 0.66

WebView-2 0.07 0.01 0.14 0.96 0.04 0.48 0.06 0 0 0.24 0.48 0.06 0.07 0.04 0.25

The itemset G satisfies the property if nr(G; F) ≤ nr(H ; F) for all H ⊂ G such that |H | ≥ 2
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Table 15 Percentages of itemsets satisfying the property of anti-monotonicity

Data nr
(
G;T ∗)

nr
(
G;F∗)

3 4 5 6 All 3 4 5 6 All

gen-ind 0.45 0.16 0.06 0.02 0.15 0.53 0.16 0.05 0.01 0.15

gen-copy 0.43 0.18 – – 0.22 0.51 0.17 – – 0.23

Accidents 0.58 0.01 0 0 0.13 0.69 0.29 0.07 0.02 0.32

Kosarak 0.91 0 0 – 0.81 0.95 0.50 0.07 – 0.90

Paleo 0.52 0.02 0 – 0.25 0.56 0.15 0.01 – 0.34

POS 0.88 0 0 0 0.56 0.90 0.47 0.13 0 0.73

Retail 0.72 0.02 0 0 0.55 0.75 0.13 0.03 0 0.60

WebView-1 0.62 0 0 – 0.55 0.70 0.56 0.22 – 0.68

WebView-2 0.69 0.01 0 0 0.31 0.71 0.23 0.06 0 0.44

The itemset G satisfies the property if nr(G; F) ≤ nr(H ; F) for all H ⊂ G such that |H | ≥ 2

of anti-monotonicity for a slightly larger portion of itemsets than nr(G; A) that, in turn, is
anti-monotonic in more queries than nr(G; C).

6 Conclusions

We have given a definition of a measure for ranking itemsets. The idea is to predict the
frequency of an itemset from the frequencies of its sub-itemsets and measure the deviation
between the actual frequency and the prediction. The more the itemset deviates from the
prediction, the more it is significant. We estimated the frequencies using Maximum entropy
and we used Kullback–Leibler divergence to measure the deviation. In the general case, the
measure can be computed in O(2|G|) time, where |G| is the size of the itemset needed to be
ranked, however, the measures r(G; T ∗) and r(G; I) can be computed in polynomial time.

We introduced two flexible rank measures r(G; T ∗) and r(G; F∗). The measure r(G; T ∗)
can be solved by finding the optimal spanning tree in the mutual information matrix. For
solving r(G; F∗) we proposed a simple greedy approach.

A clear advantage of our approach to the previous methods is that the previous soluti-
ons calculate the deviation from the independence model whereas we are able to use the
information available from the itemsets of larger size, and thus use more flexible models.

Our empirical results for real data show that the independence is too strict assumption:
Almost all itemsets were significant according to r(G; I). The results changed when we
applied the more flexible models, r(G; C) and r(G; A). We also observed an interesting type
of overfitting: In some cases we obtain a better prediction if we do not use all the available
information.

We showed that there is a little correlation between our measures and the other approaches.
For instance, infrequent itemset may be significant and frequent itemset may be insignificant.
We also observed that r(G; I) is monotonic for a large portion of itemsets, whereas r(G; C)

and r(G; A) are anti-monotonic for a significant portion of itemsets.
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Appendix A. Asymptotic behaviour of the divergence

By asymptotic behaviour we mean the following: We assume that we have an ensemble of
datasets Di such that |Di | → ∞. We assume that G is non-derivable in each Di and that the
frequencies of FG are all equal.

Define N = |D| and M = |H|. Let P be the set of distributions satisfying the itemsets
FG . It is easy to see that we can parameterize P with frequencies of H. In other words, let
H = {H1, . . . , HM }. Then for each p ∈ P, there is a unique frequency vector θ ∈ R

M such
that θi = p(Hi = 1). Let � be the set of all possible frequency vectors. The set � is a
closed polytope—the vectors located on the boundary of � corresponds to the distributions
in which at least one entry is 0.

Let θ∗ be a frequency vector corresponding to the Maximum Entropy distribution p∗.
We need to show that θ∗ is not a boundary vector. Assume the converse, then p∗ must have
p∗(ω)=0 for someω. We know that this implies that p(ω)=0 for all p ∈ P [11, Theorem 3.1].
Let Y be the itemset containing the elements for which ω has positive entries. This in turns
(see [8]) implies that for each p ∈ P

p(G = 1) =
∑

Y⊆Z⊆G

(−1)|G|−|Z | p(Z = 1),

making G derivable and contradicting the statement.
Since θ∗ is an inner point of �, let B ⊂ � be an open ball around θ∗. Assume that θ ∈ B.

By taking the expectation of the second-degree Taylor expansion of log p(ω;θ∗)
p(ω;θ)

around θ we
arrive to

−KL
(
θ‖θ∗) = 1

2
�θT Eθ [H(ω; η)] �θ,

where �θ = θ∗ − θ and η is a vector lying between θ and θ∗, and H is the Hessian matrix
of log p(ω; η).

Let θN be the frequencies of H obtained from a dataset containing N points. According
to 0-hypothesis we have θN � θ∗ and

√
N (θN − θ∗) � N (0, 	), where 	 is a covariance

matrix,

	i j = p∗(Hi = 1, Hj = 1) − p∗(Hi = 1)p∗(Hj = 1).

If θN ∈ B, we let ηN correspond to η in the Taylor expansion, otherwise we set ηN = 0. We
can show that ηN � θ∗ [33, Theorem 2.7]. Consider a function

g(a, b, c, d) =
{

−aT Ec[H(ω; b)] a c ∈ B

(2/d) KL(c‖θ∗) c /∈ B
.

This function is continuous in
(
R

M , θ∗, θ∗, 0
)
. Hence, we can apply continuous map theory

[33, Theorem 2.3] to obtain that

2NKL
(
θN ‖θ∗) = g

(√
N

(
θN − θ∗) , ηN , θN ,

1

N

)

� −X T Eθ∗
[
H

(
ω; θ∗)] X,

where X is a random variable distributed as N (0, 	). We know that Eθ∗
[
H(ω; θ∗)

] =
−	−1 [23, Lemma 4.11]. Theorem follows since X T 	−1 X is distributed as χ2 with M
degrees of freedom [33, Lemma 17.1].
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