
Knowl Inf Syst (2008) 17:121–133
DOI 10.1007/s10115-008-0124-8

REGULAR PAPER

Adaptive learning of dynamic Bayesian networks
with changing structures by detecting geometric
structures of time series

Kaijun Wang · Junying Zhang · Fengshan Shen ·
Lingfeng Shi

Received: 1 January 2007 / Revised: 9 January 2008 / Accepted: 19 January 2008 /
Published online: 26 February 2008
© Springer-Verlag London Limited 2008

Abstract A dynamic Bayesian network (DBN) is one of popular approaches for relational
knowledge discovery such as modeling relations or dependencies, which change over time,
between variables of a dynamic system. In this paper, we propose an adaptive learning method
(autoDBN) to learn DBNs with changing structures from multivariate time series. In auto-
DBN, segmentation of time series is achieved first through detecting geometric structures
transformed from time series, and then model regions are found from the segmentation by
designed finding strategies; in each found model region, a DBN model is established by
existing structure learning methods; finally, model revisiting is developed to refine model
regions and improve DBN models. These techniques provide a special mechanism to find
accurate model regions and discover a sequence of DBNs with changing structures, which
are adaptive to changing relations between multivariate time series. Experimental results on
simulated and real time series show that autoDBN is very effective in finding accurate/reason-
able model regions and gives lower error rates, outperforming the switching linear dynamic
system method and moving window method.

Keywords Dynamic Bayesian network · Adaptive learning · Geometric structures of time
series · Changing structures · Unsupervised structure learning

1 Introduction

Relational knowledge discovery about relationships among objects is important and useful in
many applications [1–4]. Bayesian network (BN) [5–7] is one of the popular tools that exploit

K. Wang (B) · J. Zhang · F. Shen
School of Computer Science and Technology, Xidian University,
Xian 710071, People’s Republic of China
e-mail: sunice9@yahoo.com

L. Shi
School of Electronical and Mechanical Engineering, Xidian University,
Xian 710071, People’s Republic of China

123

122 K. Wang et al.

relational structures or statistical patterns in real-world applications. A Bayesian network is
a directed acyclic graph whose nodes represent variables and directed arcs denote statistical
dependence relations between variables, and a probability distribution is specified over these
variables. For exploiting relational models from time-series data (called discovery task), it is
natural to use a dynamic Bayesian network (DBN) [1,8,9], a directed graphical model whose
nodes are across different time slices, to learn and reason about dynamic systems. DBNs
model a temporal process by using a conditional probability distribution for each node and
a probabilistic transition between time slices.

It is normally assumed for a DBN that its model structure and parameters do not change
over time, i.e., the model is time-invariant [1,2]. However, high-fidelity dynamic equations
(or models) representing complex real-world systems tend to be nonlinear and time-varying
[10], or dependencies and relations between variables change over time. For constructing
autonomous DBNs with time-varying structures (but time-invariant within a certain period
of time) to follow a complex dynamic system, the key work is to find changing time points
between neighbor DBN models with changing structures. Thus, a DBN model will be con-
structed with the time-series data in a time region between two changing time points (called
model region).

This unsupervised discovery task is very difficult, since finding of changing points (or
model regions) depends on known model structures, but construction of correct model struc-
tures depends on known model regions. The accurate model regions and model structures
are dependent on each other, unfortunately, either of them is unknown beforehand. Hence,
even a rough approximation of such DBNs with changing structures is not an easy work.

There have been some papers devoted to this topic. A valuable method [11] has been
developed for multivariate time series, where dependencies between variables change over
time, and it uses a window moving over time slices to search dependency changes of variables
and has a good effect. Nevertheless, it has an unsolved problem: how to choose a window
size and a moving step that influence model structures and quality much. Another good
method—switching linear dynamic system model (SLDS) [12–14] is put forth for dynamic
systems, and may be applied to find DBNs with changing structures. SLDS finds switching
DBN models by approximate inference, maximum likelihood learning, filtering and smooth-
ing techniques. However, SLDS employs same working procedures at every time point and
does not distinguish different model regions, resulting in that many models are constructed
with the data across different model regions and tend to be inaccurate.

We propose an adaptive learning method for learning DBNs with changing structures
(autoDBN) from time series, focusing on mining geometric structures of time series (heuris-
tic information) to find accurate model regions and their boundaries to overcome the limi-
tations mentioned above. The autoDBN consists of four parts: segmentation of time series
by detecting geometric structures of time series, finding reasonable model regions from the
found segmentation, DBN learning in found model regions, and model revisiting to refine
model regions and rectify possible errors. Our contributions include the above parts except
DBN learning in model regions, which is summarized from related literature.

In order to divide time series, we resort to manifold theory [15] to transform time series
to curve manifolds, and then detect/find geometric structures of curve manifolds as segmen-
tation of time series. To find reasonable model regions from these segments, three finding
strategies are designed for different application cases. In found model regions DBNs are
constructed. Finally, model revisiting based on competition F-test is developed to refine
model regions and improve models. With these techniques, autoDBN will learn a sequence
of DBNs with changing structures adaptive to changing relations between multivariate time
series.

123

Adaptive Learning of DBN 123

The geometric structures and segmentation of time series are proposed in Sect. 2, and
how to learn DBNs with changing structures is presented in Sect. 3. Experimental results are
shown in Sect. 4. Finally, Sects. 5 and 6 give the discussion and conclusion, respectively.

2 Geometric structures and segmentation of time series

To establish DBN models, it needs to divide time series into segments as potential model
regions, comprising two parts: making many piecewise curves fitting local time series and
connecting them into one geometric curve (called curve manifold M) along time axis; and
cutting M to segments to give segmentation of time series. In addition, different variables
might have different behaviors and varying periods, so we deal with time series of each
variable separately.

2.1 Projection of one time-series to one curve manifold

Usually, we like to use one polynomial curve to represent complex time series of a variable.
However, the polynomial curve found under minimal fitting errors is usually a higher degree
polynomial curve, which easily leads to oscillation and over-fitting phenomena [16] when
it fits complex time series. Is there any good way to avoid this bad case? Alternatively, we
will describe complex time series with many piecewise curves that fit local time series, and
low degree polynomials are preferred as piecewise curves. This method is very flexible to
employ short curves to fit local time series well without oscillation and over-fitting.

Let a one-dimensional variable such as Y have n time series data, y j ∈ R(j = 1, 2, . . ., n),
and {y j } be divided equally into k groups along time axis t , and there be m data points y j (j =
(i−1)m+1, (i−1)m+2, . . . , (i−1)m+m) in the i th group of data (called local data). Among
low degree (two and three) polynomials, which have similar geometric property when they fit
fewer data, quadratic polynomial has fewer parameters and easier computation. Hence, the
quadratic polynomial is selected as fi (t) for the piecewise curve y = fi (t), y = at2 +bt +c,
which can be solved with m local data under least square errors [16].

The construction of piecewise/local curves (that fit data groups) and their connections
into curve manifold M along time axis t will be discussed within the framework of manifold
theory [15]. A local quadratic polynomial curve Ci : y = fi (u) (u ∈ [1, m]) is first made
with the i th group of data (or Ci fitting m local data) under a new Cartesian coordinate system
yOu. Then, geometric properties of Ci are taken as geometric properties of local region Ui of
M , which is called to be local homeomorphism projection [15]. Thus, all the k local regions
and their geometric properties corresponding to k data groups are ready.

Finally, the curve manifold M is constructed when all the local regions of M are connected
along axis t , i.e., the n data of Y are projected to M :

P : {y j } j=1∼n → M : M = ∪Ui .

It is very hard to realize smooth transition connections between regions of M , while our
purpose is to find out scopes of geometric structures of M (but not to make a beautiful geo-
metric curve). For forming good continuity between neighbor local regions, approximate
connections are workable and achieved by improving above designs of local curves and
regions: using more local data (3 m data points) to make local curve Ci , i.e., for each data
group we merge its two neighbor data groups to make Ci ; and adopting central part of Ci to
form Ui . For example, data groups 1, 2 and 3 are merged to make C2, and only the part of C2

corresponding to data group 2 is used to form U2. This approximate connection (no smooth

123

124 K. Wang et al.

connection at joints) has little influence on signs of tangent vectors (differential features of
M).

In addition, it is important to emphasize that the length of every local curve is crucial for
quality of M , and this length is related with the above k and m. Hence, a parameter v, the
unified length of every local region, is defined to describe them. Thus, parameter v determines
the length of every local curve (or 3v), number of local curves (or k = n/v) and number of
data (or m = v) in each group.

2.2 Division of a curve manifold to give segmentation of a time series

To divide M to segments, we need define waves and steady regions (called geometric struc-
tures of M) to describe the M , detect geometric structures and their scopes with tangent
vectors on M , and cut out detected geometric structures to give corresponding segments of
a time series.

When we use parameter curves in Definition 2.1, local region Ui is described by r(u) =
(fi (u), u), and then any tangent vector on Ui is (f ′

i (u), 1). We use f ′
i (u) instead of (f ′

i (u), 1)

for convenience.

Definition 2.1 (Tangent vector) [17]. Let (a, b) be a domain of R, the Ck mapping (or it
has successive partial differential with order k≥ 3) from (a, b) to Rm be r : (a, b) → Rm ,
namely r(u) = (x1(u), x2(u), . . . , xm(u)), then r(u) is called a parameter curve in Rm and
u is the parameter. And r ′(u0) = dr

du (u0) is called a tangent vector of r(u) at r(u0).

Definition 2.2 (Ascending/descending wave). Let U be a region of curve manifold M , and
U1 and U2 be small proximate regions in both sides of U , and let U be a positive or neg-
ative domain when tangent vectors on U are all positive or negative. If U is a positive or
negative domain but U1 and U2 are different domains, then U is called an ascending wave
or descending wave of M .

Definition 2.3 (Wave). Let U be a domain of curve manifold M . If U contains both ascend-
ing waves and descending waves, and all the ascending waves are in front of descending
waves under time direction, then U is called a wave of M .

It may be seen that ascending/descending waves are components of waves in Definition 2.3,
and are used independently only in special cases (e.g., when they appear in terminals of M).
In practice, we detect a wave and find its scope with continuous positive or negative signs of
tangent vectors on M (at every time point) according to Definitions 2.2 and 2.3; and a small
proximate region in Definition 2.2 is set to contain 2 time points at least.

Based on above definitions, a steady region is defined as a region between two neighbor
waves. The steady regions are easily found after all the waves of M are detected. Now, it is
straightforward to cut out every wave and steady region from M according to their scopes,
and the time series of variable Y is divided into some segments, each of which corresponds
to a wave or steady region of M .

3 Adaptive learning of DBNs with changing structures

In this section we will discuss three issues: finding strategies of model regions from segmen-
tation of time series, DBN learning in given model regions, and model revisiting to refine
model regions and rectify possible errors derived from incorrect model regions.

123

Adaptive Learning of DBN 125

3.1 Finding strategies of model regions

A segment of time series obtained in last section is regarded as a potential model region
for establishing a DBN model, and time points between model regions are potential chang-
ing points of DBN structures. The reason is that a geometric structure naturally represents
a varying period of behaviors of a variable, and dependencies between this variable and
related variables within such a model region may be described by a fixed DBN model. This
is reasonable under the basic assumption: behavior/state changes of a variable are caused
by a stationary dependency relation within a model region, which is consistent with the
basic assumption of the DBN theory—a process of change is governed by laws that do not
themselves change over time [2].

Under this assumption there are four applicable cases: (1) behaviors of all the vari-
ables have consistent varying periods or changing points; (2) majority of variables have
consistent varying periods or changing points (the following simulated example is this
case); (3) one variable (or several variables with consistent varying periods) and its depen-
dency relations are the focus (the following real examples are this case); (4) several vari-
ables with inconsistent/interlaced varying periods are the focus. These different cases are
from that segmentations of different variables might be consistent or inconsistent in time
axis.

For these cases, we design three strategies to find reasonable model regions: the first strat-
egy [for cases (3) and (4)] is to choose one focus variable according to our purpose and prior
knowledge, and adopt segments of time series of this variable as model regions; the second
strategy [for cases (1) and (2)] is to select a representative variable that has the most changing
points consistent with all the changing points occurring twice and more, and use segments of
time series of the representative variable as model regions; the third strategy [for case (2)] is
to find out those potential changing points occurring frequently, and then take time regions
between frequent changing points as model regions. In addition, one series of model regions
and models for one focus variable are recommended for case (4), since it is impossible for
any model region to both contain and differentiate two different types of varying periods in
most cases.

3.2 Structure learning of DBN in model regions

A DBN model is learned from the data within each model region (or structure learning of
DBNs). The learning process includes specifying DBN structure space, choosing a scoring
criterion, and employing a searching procedure [1].

A DBN is a pair (B0, B), where B0 is a prior BN and B is a two-slice temporal BN (2TBN),
which defines P(Xt |Xt−1) by means of a directed acyclic graph (DAG) as follows [1]:

P(Xt |Xt−1) =
q∏

i=1

P(Xi
t |Pa(Xi

t)),

where Xi
t is the i th node at time t and Pa(Xi

t) are the parents of Xi
t in the DAG.

When learning a DBN from given data, we indicate learning 2TBN. The 2TBN is a
first-order Markov DBN, where a conditional probability distribution P(Xi

t |Pa(Xi
t)) is spec-

ified only for each node Xi
t in the second slice t . The structure learning task aims to find the

optimal DBN structure in the structure space, which contains all possible DAG structures. A
scoring criterion such as Bayesian information criterion (BIC) is adopted to evaluate which

123

126 K. Wang et al.

candidate model is optimal, and a procedure is employed to search the structure space for an
optimal DBN structure with the highest score.

The structure learning method based on a local or global search algorithm that searches
through structure space (called space-search learning) is applicable to the case that all the
variables are observable, while the structure learning method based on the expectation max-
imization (EM) algorithm and searching of structure space (called EM-search learning) is
applicable to the case that some variables are observable and some are unobservable/hidden.
Which learning method should be adopted depends on a special application. If we judge that
the adding of hidden variables to a DBN model is more reasonable to solve a problem, we
invent hidden nodes in the model and adopt the EM-search learning method.

3.3 Model revisiting

The model revisiting is necessary to refine model regions and rectify possible errors derived
from incorrect model regions, including: check whether there are inappropriate model regions
and rectify them if any, and detect whether neighbor DBNs are the same and merge them if
yes.

The revisiting of every found DBN model and its model region is carried out by a compe-
tition process, and starts from boundaries between neighbor model regions. Let “governing”
model G be in its model region R (covering time region [t1, tn]), and Lm be a shortest region
size for model revisiting. The model revisiting procedure is designed in the following:

(1) cutting R to k = (tn − t1)/Lm sub-regions (no cutting if tn − t1 < 2Lm) starting
from its left boundary: R1 = [t1, t2], R2 = [t2 + 1, t3], . . ., Rc = [tc + 1, tc+1], where
tc + 1 < tn/2, tc+1 >= tn/2 and the length of each Ri is Lm , and the left k/2 sub-
regions are used; Similarly, cutting R to k sub-regions starting from right boundary and
the right k/2 sub-regions are ready. This design indicates left and right revisiting;

(2) in the k sub-regions, k DBN models {Gi } are established respectively, and Gi is a
competitor of G if it is different with G;

(3) running a competition F-test process in every sub-region, where each competitor Gi

competes for replacing G in Ri . If Gi wins, there is a new model region Ri , otherwise
no adjustment of R;

(4) if some new model regions emerge, updating model regions, and reconstructing a series
of (improved) DBN models in refined model regions. Otherwise, go to step (5);

(5) detecting if structures of neighbor DBNs are identical, and merging their model regions
if yes.

The next work is to design the hypothesis-test on quality of models (or prediction accuracy
of a model) to realize the competition process. For the rectification task, model G takes prior-
ity in the competition, and its rival Gi can win only when the quality of Gi is obviously better
than that of G. For prediction accuracy of a model, it is usual to calculate error sum of squares
(SSE) between observations and predictions by a model. The errors between observations
and predictions by a good model vary around zero, and may be regarded from a Gaussian
distribution with zero mean. Hence, we compare quality between two models by variances of
their prediction errors (Var), which are as same as prediction SSEs. Thus, the competition rule
is: a competitor (Gi) wins only when its error variance Var(Gi , Ri) is significantly smaller
than Var(G, Ri) of G in sub-region Ri . Whether Var(Gi , Ri) is significantly smaller than
Var(G, Ri) will be judged by the hypothesis-test method—F-test on two variances from two
independent distributions at the commonly-used level of significance α = 0.05 [18].

123

Adaptive Learning of DBN 127

The competition F-test process is designed in the following:

(1) for each variable, calculate the prediction errors {e j } and error variance var({e j }) by
model G and data in Ri ; and then sum var({e j }) of all the variables (except the notice
below) to give Var(G, Ri). Similarly, Var(Gi , Ri) by Gi and data in Ri is ready. It is
noticed that this sum excludes the variables with same parent nodes in both G and Gi ,
focusing on differences of two models;

(2) in sub-region Ri , null hypothesis H0 is set for G, and alternative hypothesis H1 is
set for its rival Gi , i.e., H0 : Var(Gi , Ri) >= Var(G, Ri), and H1 : Var(Gi , Ri) <

Var(G, Ri);
(3) compute ratio F = Var(Gi , Ri)/Var(G, Ri), a value of F-distribution with n1 − 1 and

n2 − 1 degree of freedom (here n1 = n2 is the sample size in sub-region Ri);
(4) let critical value F1−α(n1 −1, n2 −1) of F-distribution be ready. If F >= F1−α(n1−1,

n2 − 1), reject H0 and competitor Gi wins; otherwise, do not reject H0 and competitor
Gi fails.

4 Experimental results

In this section, we test the autoDBN about its performance of finding DBNs with changing
structures. For comparison, the window method and DBN-based SLDS are also used in the
experiments. For learning DBN structures in a given model region, all three methods use the
same learning procedure. In addition, every method employs a hidden state variable to record
which of the candidate models it yields at each time point. We implement the autoDBN (with
Matlab) except the construction of DBN models, which is completed by Bayes net toolbox
[19] and the structure learning package [20] that provide necessary functions for building
DBNs.

The artificial time-series data added with Gaussian noise of variance 0.1 for three variables
are generated from four different models in corresponding time periods: Z(t) = 4Y (t) − 20
where Y (t) = 9.5+5 sin(0.031t) for t = 1−100; Z(t) = 2X (t)−9.5 where X (t) = 14.5+
5 sin(0.065t−0.5) for t = 201−250; Z(t) = 2X (t)−9.5 where X (t) = 12+6 sin(0.028t−
0.4) for t = 260−330; Z(t) = X (t)+Y (t)−4.5 where X (t) = 19.5+5 sin(0.065t +3.6)

and Y (t) = 0.12t − 39 for t=401-600; and others are from constant values (or none model)
where X (t) = 15, Y (t) = 10 and Z(t) = 20 for other t . The knowledge discovery task is to
find changing linear relations (or models) between the three variables from the time series.

The first real data set is about the interest rates of Australia, France, UK and US in
240 months from July 1980 to June 2000 [21], where the interest-rate correlations or depen-
dencies between the four countries change over time. The knowledge discovery task is to
discover changing interest-rate correlations between US and other countries.

Another real data set is about daily stock prices of ten aerospace companies from January
1988 to October 1991 [22], where stock-price correlations between ten companies change
over time. The knowledge discovery task is to discover which stocks in which time periods
have price-varying correlations with that of the fifth company. As some stocks have similar
price behaviors, we adopt K -means clustering method [23] to cluster ten stocks into six
clusters, and then choose a representative stock for each cluster. Thus, we can achieve the
knowledge discovery task about ten stocks by six representative variables.

In the experiments, different window sizes and minimal sizes of model regions are used
to test all three methods, and once moving step of a window is set to be half of a window
size. The minimal region sizes for model revisiting are set to be around half the median of

123

128 K. Wang et al.

all the model region sizes (or 45, 20 and 23 for the artificial, interest-rate and stock datasets
respectively), and is determined finally based on application backgrounds: 18 or 12 (1.5 or
1 year) for the interest-rate data and 20 (1 month) for the stock data. Moreover, the second
finding strategy is used for the artificial data, while the first finding strategy is adopted for
the interest-rate and stock data sets. In addition, considering that the discovery tasks in the
real-dataset experiments are to discover simple correlations between a pre-specified variable
and other variables, we preset the maximum parent-set size of 1 for every node.

The initialization of SLDS includes: the prior probability of every switch state (corre-
sponds to a possible BN structure) is set to meet the uniform distribution; the preset minimal
sizes of model regions are listed in the following tables, and the preset maximal one equals
the double minimal size. For searching a DBN model with the highest probability at each
t , the size scope of possible model regions around t is limited by the preset minimal and
maximal sizes.

The error rates for all three methods in the following tables are the percentage of wrong
models among all the found models at every time point. It is noted that transformable linear
relations (e.g., Z(t) = 4Y (t) − 20 and Y (t) = 0.25Z(t) + 5) are regarded as a same model,
thus an involvement criterion is adopted in experiments: a model is correct if it belongs to
any form of transformable relations.

Table 1 gives error rates of the three methods under different window/region sizes for the
simulated data. One can see that autoDBN is the best (note that a same solution is gained at
sizes from 30 to 50 but not listed), while SLDS has error rates of 27.3–56.0% and window
method 20.0–55.0%. Table 2 lists the outcome for the interest-rate data and shows: autoDBN
has the best solutions with error rates of 7.1 and 9.6% at its optimal sizes; while SLDS has
error rates of 11.7–19.6% and window method 10.8–17.9%. Table 3 displays the result for
the stock data, where we can find: autoDBN has the best solutions with error rates of 8.8%
at its optimal size of 20; while SLDS has error rates of 23.3–46.3% and window method
23.7–43.5%. Figure 1 is an illustration of model regions found by the autoDBN and window
method for the simulated data.

Table 1 Error rates (%), number of found model regions (R), and number of found models (M) by three
methods under different region/window size (Size) for simulated data

Size 20 40 60 80 100 120

autoDBN / 2.0%, 5R / / / /

SLDS 56.0%, 16M 37.8%, 21M 28.3%, 15M 27.3%, 13M 38.3%, 10M 42.2%, 10M

Window 55.0%, 36R 31.7%, 16R 21.7%, 12R 21.7%, 8R 20.0%, 5R 33.3%, 6R

Table 2 Error rates (%), number of found model regions (R), and number of found models (M) by three
methods under different region/window size (Size) for interest-rate data

Size 12 18 24 30 36

autoDBN 7.1%, 7R 9.6%, 6R / / /

SLDS 17.1%, 44M 11.7%, 30M 14.6%, 10M 15.4%, 9M 19.6%, 8M

Window 17.9%, 30R 14.6%, 21R 14.6%, 14R 10.8%, 12R 16.3%, 11R

123

Adaptive Learning of DBN 129

Table 3 Error rates (%), number of found model regions (R), and number of found models (M) by three
methods under different region/window size (Size) for stock data

Size 20 50 100 150 200 300

autoDBN 8.8%, 19R / / / / /

SLDS 46.3%, 62M 42.5%, 48M 23.3%, 26M 31.9%, 25M 35.1%, 21M 39.7%, 14M

Window 43.5%, 79R 27.7%, 33R 32.1%, 15R 26.8%, 11R 23.7%, 9R 34.8%, 6R

0 100 200 300 400 500 600
5

10

15

20

25

30

35

40

45

TTime (t)

V
a

lu
e

s

Region 1 Region 3 Region 5

X(t)
Y(t)
Z(t)

0 100 200 300 400 500 600
5

10

15

20

25

30

35

40

45

Time (t)

V
a

lu
e

s

Region 6

X(t)
Y(t)
Z(t)

Fig. 1 Model regions divided by dash-dot lines are found for simulated time series. Left: 5 model regions of
autoDBN; Right: 16 model regions of window method under window size of 40

5 Discussion

It is seen that the performance of window method (error rates and number of found model
regions) depends greatly on preset window sizes, but the optimal sizes are unknown for an
unsupervised discovery task. Thus, the window method works under blind search so that it
is hard to display its best performance. Furthermore, the window method can not distinguish
boundaries of model regions well, since good discrimination of boundaries requires small
window sizes, but models established in small window sizes tend to overfit to few local data
and give worse performance. For SLDS, it is also seen that its performance (error rates and
number of switch models) depends much on preset minimal sizes of model regions. How-
ever, it is hard to known an optimal size beforehand so that SLDS can not exhibit its best
performance generally. Moreover, as forward and backward learning (or filtering and smooth-
ing) processes of SLDS work samely at every time point and model regions are unknown,
switching models in and nearby true boundaries of model regions are probably constructed
with the data crossing two or more model regions, resulting in inaccuracy of models and
poor discrimination of boundaries. In brief, the two methods have no special mechanism
of detecting boundaries of model regions, and this limitation deteriorates quality of models
nearby boundaries so that they can not achieve low error rates for unsupervised discovery
tasks, which has been shown in the experiments.

In contrast, autoDBN focuses on finding reasonable model regions and their boundaries
based on detecting geometric structures of curve manifolds. It is a heuristic method to find
potential model regions from curve manifolds, since a curve manifold (and its geometric
structures) outlines both varying tendencies of behaviors of a variable and their changing
points. Furthermore, the model revisiting is designed to refine found model regions and
rectify possible errors derived from incorrect model regions. Therefore, with these good
mechanisms of finding reasonable model regions, autoDBN can outperform two comparison

123

130 K. Wang et al.

methods, which has been demonstrated in the experiments (lower error rates of autoDBN in
the experiments).

Now we discuss parameters in autoDBN. The scope of v is set from 2 to 7 (7 is enough
for forming obvious geometric structures as per our experiences), and the optimal v is found
at the v where the number of waves nw is the minimum for v = 2 ∼ 5 or at the first v where
nw is stable with rise of v (“stable” means that the increase of nw is less than 10% when
v = v + 1 after the first v). This design indicates that parameter v is determined adaptively.

Another discrimination parameter w, a ratio of variance of a wave to variance median
of all the waves, is used to identify relatively large varying behaviors (while weak varying
behaviors fall in steady regions). The default w = 0.1 need not be adjusted in general, since
0.1 is such a small percentage that does not influence the discovery of large varying behav-
iors, which are our focus. It is worth notice that concept “weak” itself is vague and depends
on a special application and our purpose. If one focuses on weak varying behaviors, he may
lower the w to such as w/2 and w/4, and then shorter model regions containing weak varying
behaviors will appear if any.

For the third finding strategy, parameter pw is designed to group two time points with a
distance less than pw to one unified changing point, and default pw = 10 is workable in most
cases. However, how close changing points should be distinguished or merged depends on a
special application and our purpose. To contain farther time points as a same changing point
when one pays more attention to wider varying of a system, increase pw; inversely, decrease
pw to only include closer time points as a same changing point if one cares about fine varying
of a system, but to decrease pw is not recommended due to its tendency of overfitting to few
data.

Minimal region size Lm for model revisiting needs to be preset. In order to avoid visiting
short regions where constructed models tend to overfit to local data, a good choice is to set
Lm equal to or around Lh (half the median of all the model region sizes) based on applica-
tion background. In addition, small variation of Lm around Lh influences performance less,
e.g., error rate E = 9.6% at Lm = 18 and E = 13.7% at Lm = 22 when Lh = 20 with
E = 10.4% in the interest-rate experiment.

In a word, all the parameters need not be set by users generally, except that it is better
to choose parameter Lm around Lh based on application background. In a special case, one
may adjust parameters w and pw as per the guidance in above discussion.

The three finding strategies can work well for the four applicable cases mentioned in
Sect. 3. However, for the most complex case where many variables are the focus and have
inconsistent and interlaced varying periods, it is hard to satisfy all the focus variables with
one unified DBN model, where (large) information loss for some variables is unavoidable,
in any model region. Hence, one series of model regions and models for one focus variable
is an accurate modeling way for this case. For example, that a series of DBNs is constructed
for Au (the variable of interest rates of Australia) and another series of DBNs for Fr (the
variable of interest rates of France) is an accurate modeling way in the interest-rate example
when both the Au and Fr are our focus.

As expected, in the experiments autoDBN gives better results, indicating its success in
finding reasonable model regions and learning a series of DBNs with changing structures.

6 Conclusion

A DBN has been used to exploit relational models from multivariate time-series data, but the
adaptive learning of DBNs with changing structures is still a challenging task. For this task,

123

Adaptive Learning of DBN 131

we propose autoDBN method. By means of detecting geometric structures of time series for
accurate model regions, autoDBN can find a sequence of DBNs with changing structures
adaptive to changing dependencies between multivariate time series. The working assump-
tion of autoDBN is that state changes of a variable are caused by a stationary dependency
relation within a model region, which is consistent with the basic assumption of the DBN
theory.

The autoDBN utilizes heuristic information from varying behaviors of variables, and pro-
vides a special mechanism to pursue accurate model regions: segmentation of time series
through detecting geometric structures of time series, finding model regions from found seg-
ments, and model revisiting to refine model regions. This mechanism is critical for quality of
DBN models. In contrast, SLDS does not provide a special technique to detect model regions
and their boundaries, but serves equitably at every time point with same learning procedures;
and the window method finds model regions depending on given window size and moving
step so that it is a blind/gambly search. These limitations will deteriorate quality of models
nearby true boundaries of model regions for the two methods. Therefore, autoDBN is more
accurate and efficient than SLDS and moving window method for unsupervised discovery
task, which is demonstrated in the experiments.

On the other hand, autoDBN is inapplicable to frequent changing cases that state changes
within a model region are caused by changing dependency relations, which is out of the basic
assumptions of this paper. In addition, autoDBN is developed only for continuous variables
at present.

Acknowledgments The authors would like to acknowledge Allan Tucker and Chao Wang for their valuable
comments, and especially, appreciate the anonymous reviewers for their helpful suggestions and comments.
This work is supported in part by Natural Science Found of China (No. 60574039 and No. 60371044)

References

1. Murphy KP (2002) Dynamic Bayesian networks: representation, inference and learning. PhD thesis,
University of California Berkeley. http://www.cs.ubc.ca/~murphyk

2. Russell S, Norvig P (2003) Artificial intelligence: a modern approach, 2nd edn. Pearson Education, Inc.,
Upper Saddle River

3. Schuster A, Wolff R, Trock D (2005) A high-performance distributed algorithm for mining association
rules. Knowl Inf Syst 7(4):458–475

4. Berti-Equille L (2007) Data quality awareness: a case study for cost optimal association rule mining.
Knowl Inf Syst 11(2):191–215

5. Pearl J (1988) Probabilistic reasoning in intelligent systems. Morgan Kauffman, San Mateo
6. Neapolitan RE (2003) Learning Bayesian networks. Prentice Hall, Englewood Cliffs
7. Chen R, Sivakumar K, Kargupta H (2004) Collective mining of Bayesian networks from distributed

heterogeneous data. Knowl Inf Syst 6(2):164–187
8. Pena JM, BjÄorkegren J, Tegner J (2005) Learning dynamic Bayesian network models via cross-

validation. Pattern Recognit Lett 26(14):2295–2308
9. Yu J, Smith VA, Wang PP, Hartemink AJ, Jarvis ED (2004) Advances to Bayesian network inference for

generating causal networks from observational biological data. Bioinformatics 20(18):3594–3603
10. Ledin J (2001) Simulation engineering. CMP Books, The Netherlands
11. Tucker A, Liu X (2004) A Bayesian network approach to explaining time series with changing structure.

Intell Data Anal 8(5):469–480
12. Pavlovic V, Rehg JM, Cham TJ, Murphy KP (1999) A dynamic Bayesian network approach to figure

tracking using learned dynamic models. In: ICCV 1999, pp 94–101
13. Pavlovic V, Rehg JM, MacCormick J (2000) Learning switching linear models of human motion. In:

NIPS 2000, pp 981–987
14. Barber D (2006) Expectation correction for smoothed inference in switching linear dynamical systems.

J Mach Learn Res 7:2515–2540

123

http://www.cs.ubc.ca/~murphyk

132 K. Wang et al.

15. Chen W (2001) An introduction to differential manifold. High Education Press, Beijing
16. Mo G, Liu K (2003) Methodology of function approximation. Science Press, Beijing
17. Mei X, Huang M (2003) Differential geometry. Beijing Normal University Press, Beijing
18. Walpole RE, Myers RH, Myers SL, Ye K (2002) Probability and statistics for engineers and scientists,

7th edn. Pearson Education, Inc., Upper Saddle River
19. Murphy KP (2006). Bayes net toolbox for MATLAB. http://bnt.sourceforge.net/.
20. Leray P, Francois O (2004) BNT structure learning package. http://bnt.insa-rouen.fr/ajouts.html
21. Maharaj E (2002) A pattern recognition of time series using wavelets. In: 15th Computational Statistics

Conference of the International Association of Statistical Computing, Berlin
22. StatLib repository: http://lib.stat.cmu.edu/; http://www.liacc.up.pt/~ltorgo/Regression/stock.tgz
23. Jin R, Goswami A, Agrawal G (2007) Fast and exact out-of-core and distributed k-means clustering.

Knowl Inf Syst 10(1):17–40

Author Biographies

Kaijun Wang received his B.S. degree in power mechanical engineer-
ing from Shanghai Jiao Tong University and his M.S. degree in Com-
puter Science from Xidian University, China in 2002. He is currently a
Ph.D. student in the School of Computer Science and Technology, Xid-
ian University, Xian, P. R. China. His research interests include artificial
intelligence, data mining, pattern recognition and bioinformatics.

Junying Zhang received her Ph.D. degree in Signal and Information
Processing from Xidian University, Xi’an, China, in 1998. From 2001 to
2002, she was a visiting scholar at the Department of Electrical Engineer-
ing and Computer Science, Catholic University of America, Washington,
DC, USA, and at the Bradley Department of Electrical and Computer
Engineering, Virginia Polytechnic Institute and State University, USA, in
2007. She is currently a Professor in the School of Computer Science and
Technology, Xidian University. Her research interests cover intelligent
information processing, including machine learning and its application
to cancer related bioinformatics, image processing, radar automatic tar-
get recognition, and pattern recognition.

123

http://bnt.sourceforge.net/.
http://bnt.insa-rouen.fr/ajouts.html
http://lib.stat.cmu.edu/
http://www.liacc.up.pt/~ltorgo/Regression/stock.tgz

Adaptive Learning of DBN 133

Fengshan Shen received a B.S. degree from the Liberation Army
Information Engineering University, Zhengzhou, China in 1993 and an
M.S. degree from Zhengzhou University in 1999. From 2000 to 2005, he
did research work in the College of Information Engineering of Zhengz-
hou University, Zhengzhou, P. R. China. He is currently a Ph.D. student
in the School of Computer Science and Technology, Xidian University,
Xi’an, P. R. China. His research interests include pattern recognition and
computer software.

Lingfeng Shi is currently an associate professor and advisor for master
in the School of Electronical and Mechanical Engineering, Xidian Uni-
versity, P. R. China. He received his B.S. degree from Measured Institute
of China in 1995 and M.S. degree in Electric Engineering from Xidian
University in 2003. His interests include radar imaging, circuit and sys-
tem, ground-penetrating radar, and signal processing. He has authored
over 10 technical papers and owned a patent.

123

	Adaptive learning of dynamic Bayesian networkswith changing structures by detecting geometric structures of time series
	Abstract
	1 Introduction
	2 Geometric structures and segmentation of time series
	2.1 Projection of one time-series to one curve manifold
	2.2 Division of a curve manifold to give segmentation of a time series

	3 Adaptive learning of DBNs with changing structures
	3.1 Finding strategies of model regions
	3.2 Structure learning of DBN in model regions
	3.3 Model revisiting

	4 Experimental results
	5 Discussion
	6 Conclusion
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

