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Abstract Additive randomization has been a primary tool for hiding sensitive private
information. Previous work empirically showed that individual data values can be approxi-
mately reconstructed from the perturbed values, using spectral filtering techniques. This poses
a serious threat of privacy breaches. In this paper we conduct a theoretical study on how the
reconstruction error varies, for different types of additive noise. In particular, we first derive
an upper bound for the reconstruction error using matrix perturbation theory. Attackers who
use spectral filtering techniques to estimate the true data values may leverage this bound to
determine how close their estimates are to the original data. We then derive a lower bound
for the reconstruction error, which can help data owners decide how much noise should be
added to satisfy a given threshold of the tolerated privacy breach.

Keywords Privacy preserving · Spectral filtering · Disclosure analysis ·
Error bound analysis

1 Introduction

Randomization has been a primary tool to hide sensitive private information. The random
perturbation techniques aim to distort the sensitive individual values while allowing estima-
tion of the underlying distribution parameters. For all randomization based approaches, there
are two fundamentally conflicting requirements: privacy for the individual data values and
utility of the perturbed data values.

Consider a data set U with m records of n attributes and a noise data set V with same
dimensions as U . The random value perturbation techniques generate a perturbed data matrix

S. Guo · X. Wu (B)
Department of Software and Information Systems, University of North Carolina at Charlotte,
Charlotte, NC 28223, USA
e-mail: xwu@uncc.edu

Y. Li
School of Information Systems, Singapore Management University,
Singapore 28223, Singapore

123



218 S. Guo et al.

Ũ = U + V . Let Û denote an estimate of the original data which users (or attackers)
can achieve. To preserve utility, certain aggregate characteristics (i.e., mean and covariance
matrices for numerical data, or marginal totals in contingency table for categorical data) of
U should remain basically unchanged in the perturbed data Ũ or can be restored from the
reconstructed data Û . In other words, distributions of U can be approximately reconstructed
from the perturbed data Ũ using distribution reconstruction approaches (e.g., [4,3]) when
some a-priori knowledge (e.g., distribution, statistics etc.) about the noise V is available.

To preserve privacy, not only the difference between Ũ and U but also that between Û
and U should be greater than some tolerated threshold. Here we follow the tradition of using
the difference as a measure to quantify how much privacy is preserved. A key element in
preserving privacy and confidentiality of sensitive data is the ability to evaluate the extent
of all potential disclosures for the released data. In other words, we need to answer to what
extent the confidential information in the perturbed data can be compromised by attackers.
Hence, we should consider not only the perturbed data, Ũ , which is released directly, but
also the reconstructed data, Û , which attackers may exploit various reconstruction methods
to obtain.

The reconstruction methods investigated in Agrawal and Agrawal [3], and Agrawal and
Srikant [4] only focused on how to reconstruct the distribution of the original data from
the perturbed data but did not consider the issue that attackers may reconstruct the indi-
vidual data values through various means. The authors, in [17], argued that randomization
schemes might not be secure as attackers may apply a random matrix based spectral filtering
technique to retrieve original data values from the perturbed data. Recently, Huang et al. in
[15], investigated a similar method based on the principal component analysis (PCA), which
exploits correlations among attributes to reconstruct original data values. Their results show
that accurate individual data values can be estimated from the perturbed data.

The previous work in [15,17,18] exploited spectral properties of the data and showed
that the noise may be separated from the perturbed data and, as a result, privacy could be
seriously compromised. Although they empirically assessed effects of the perturbation on
the accuracy of the reconstructed individual values, one major question is what the explicit
form of the relation between the reconstruction error and the noise may exist. In other words,
what bounds of the reconstruction error can be achieved by attackers using spectral filtering
based techniques.

In this paper we theoretically explore the problem which originates from the usage of
additive noise for privacy preservation. We explicitly assess effects of perturbation on the
accuracy of the reconstructed values and give an explicit relation on how the reconstruction
error Û − U varies with the additive noise V . We bound the reconstruction error and the
perturbations in terms of matrix norms. In particular, we first derive an upper bound for the
reconstruction error using the matrix perturbation theory [21]. Attackers who use spectral fil-
tering techniques to estimate true data values may leverage this bound to determine how close
their estimates are to the original data. We then derive a lower bound for the reconstruction
error, which can help data owners decide how much noise should be added to satisfy a given
threshold of tolerated privacy breach. Since the traditional matrix perturbation theory [21]
mainly focused on how the eigenvalues and the angle between eigenvectors (or invariance
subspaces) of a perturbed matrix Ã are upper bounded by the perturbation, we cannot borrow
their results directly to derive the lower bound. We present a singular value decomposition
(SVD) based reconstruction method and derive a lower bound for the reconstruction error.
Since the spectral filtering based approach is equivalent to the SVD based approach, as a
result the achieved lower bound of SVD based approach can also be considered as the lower
bound of the spectral filtering based approach.
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Determining error bounds for spectral filtering based reconstruction methods 219

Table 1 Summary of symbols Symbol Definition

U The original data set of m records of n variables

V The noise data set of m records of n variables

Ũ The perturbed data set Ũ = U + V

Û The estimated data set from a given Ũ

A A n × n covariance matrix of the original data

E A n × n covariance matrix of perturbation

Ã The perturbed n × n covariance matrix of A

λi The i th eigenvalue

ei The i th eigenvector

The rest of this paper is organized as follows. In Sect. 2 we give definitions of matrix
norms and introduce some preliminary background on matrix perturbation theory which will
be used in our analysis. In Sect. 3 we revisit the spectral filtering reconstruction methods
and present measures used in this paper for both privacy and utility. In Sect. 4 we present
in detail the formal analysis on the upper bound and the lower bound with different types
of additive noise. We present experimental results in Sect. 5. Finally we discuss the related
work in Sect. 6 and offer our concluding remarks in Sect. 7.

2 Preliminaries

We use the tilde conventions to denote perturbations and use the hat conventions to denote
estimations. A symbol with a tilde (or hat) over it always denotes a perturbed (or estimated)
quantity. The original quantity is denoted by the same symbol without a tilde or hat. Specifi-
cally, lower-case variables, e.g., x , represent vectors; italic upper-case alphabets, e.g., A, refer
to matrices. For instance, Ã = A + E denotes a perturbation of A. Let �(A) = {λ1, . . . , λn}
be the eigenvalues of A and let [e1, . . . , en] be their corresponding eigenvectors, where
λ1 ≥ λ2 ≥ · · · ≥ λn . Similarly, let �( Ã) = {λ̃1, . . . , λ̃n} and [ẽ1, . . . , ẽn] be those of Ã,
respectively. Table 1 summarizes our notations used in this paper.

Definition 1 Let A ∈ Rm×n . The Frobenius norm of A is the number

‖A‖F =
√
√
√
√

m
∑

i=1

n
∑

j=1

a2
i j .

The 2-norm of A is

‖A‖2 = max
︸︷︷︸

x �=0

‖Ax‖2

‖x‖2

where ‖x‖2 is for the 2-norm (Euclidean norm) of a vector.

Definition 1 shows the mathematical form of the Frobenius norm and the 2-norm, which
will be used in this paper. We will cast much of our analysis in terms of absolute and relative
errors of the Frobenius norm, instead of point-wise bounds. The use of absolute and relative
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errors in the form of the Frobenius norm gives perturbation bounds a simplicity that makes
them easier to interpret. Basically, the Frobenius norm is used to measure the magnitude of
data values in total while the 2-norm is used to denote the largest singular value of a matrix.

We list some properties of matrix norms which will be used in our proofs as below. Refer
to linear algebra books (e.g., [21]) for more details.

1. ‖AB‖F ≤ ‖A‖F‖B‖F and ‖AB‖2 ≤ ‖A‖2‖B‖2, when A ∈ Rm×n and B ∈ Rn×q .
2. ‖A‖2 ≤ ‖A‖F ≤ √

n‖A‖2.
3. ‖A‖2 = √

λmax(AT A), the square root of the largest eigenvalue of AT A.
4. if A is symmetric, then ‖A‖2 = λmax(A), the largest eigenvalue of A.

3 Spectral analysis of reconstruction methods

3.1 Spectral filtering revisited

Consider a noise matrix V with same dimensions as U . The random value perturbation
techniques generate a perturbed data matrix Ũ = U + V . The objective of the spectral
filtering based approach is to derive the estimation Û of U from the perturbed data Ũ based
on random matrix theory. An explicit filtering procedure is shown below.

1. Calculate the covariance matrix of Ũ by Ã = Ũ T Ũ .
2. Since the covariance matrix is symmetric and positive semi-definite, we apply spectral

decomposition on Ã to get Ã = Q̃�Q̃T, where Q̃ is orthogonal matrix whose column
vectors are eigenvectors of Ã, and �̃ is the diagonal matrix with the corresponding
eigenvalues on its diagonal.

3. Derive information of the eigenvalues from the covariance matrix of the noise V .
4. Extract the first k components of Ã as the principal components by comparing λ̃i with

eigenvalues of the noise. λ̃1 ≥ λ̃2 ≥ · · · ≥ λ̃k are the first k largest eigenvalue of
Ã and ẽ1, ẽ2, . . . , ẽk are the corresponding eigenvectors. These eigenvectors form an
orthonormal basis of a subspace χ̃ . Let X̃ = [ẽ1, ẽ2, . . . , ẽk]. The orthogonal projection
on to χ̃ is Pχ̃ = X̃ X̃T.

5. Obtain the estimated data set using Û = Ũ Pχ̃ .

The authors, in [17], focused on the scenario where only a small number of instances
exists in the data set. Furthermore, the noise matrix V considered in [17] is generated using
one i.i.d. Gaussian distribution with zero mean and known variance. Based on the random
matrix theory, we can derive the theoretical bounds of the eigenvalues corresponding to the
noise matrix V as λVmin = σ 2(1 − 1/

√
Q)2 and λVmax = σ 2(1 + 1/

√
Q)2, where Q is linear

to the ratio between the number of records and the number of attributes. As in most data
mining applications, the number of records far exceeds that of attributes (hence Q is large),
we can see λVmin ≈ λVmax ≈ σ 2 = λV . In this paper, we focus on scenarios with a large
number of instances in data sets.

3.2 Other methods

Several similar reconstruction methods have also been investigated. For example, a PCA
based reconstruction method was investigated in [15] and a SVD based one was investigated
in [14]. Since the SVD based reconstruction method can help to derive the lower bound of
reconstruction error using the well-known Mirsky Theorem [21], we briefly present the SVD
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Determining error bounds for spectral filtering based reconstruction methods 221

method and show the equivalence relationship between the spectral filtering and SVD based
method.

Singular Value Decomposition decomposes a matrix U ∈ Rm×n (say m ≥ n) into the
product of two unitary matrices, L ∈ Rm×m , R ∈ Rn×n , and a pseudo-diagonal matrix
D = diag(d1, . . . , dn) ∈ Rm×n , such that U = L DRT or U = ∑n

i=1 di li rT
i . The diagonal

elements di of D are referred to as singular values, which are, by convention, sorted in
descending order: d1 ≥ d2 ≥ · · · ≥ dn ≥ 0. The columns li and ri of L and R are,
respectively, called the left and right singular vectors of U . Similarly let Ũ = U + V be
a perturbation of U and let Ũ = L̃ D̃ R̃T be a SVD of Ũ . The SVD reconstruction method
simply reconstructs U approximately as Û = Ũk = L̃k D̃k R̃k = ∑k

i=1 d̃i l̃i r̃T
i where D̃k is the

diagonal matrix with k principal singular values of Ũ and L̃k (R̃k) contains the corresponding
left (right) singular vectors.

Result 1 The estimated data from the spectral filtering ÛSF = Ũ Pχ̃ = Ũ Q̃k Q̃T
k is the same

as that from SVD ÛSVD = L̃k D̃k R̃T
k .

Proof We prove these two methods are equivalent. Since R̃k = R

(

Ik

0

)

,

Ũ R̃k = Ũ R̃

(

Ik

0

)

= (L̃ D̃ R̃T)R̃

(

Ik

0

)

= L̃ D̃

(

Ik

0

)

= L̃k D̃k .

Since the columns of right singular vectors (R̃) are the eigenvectors of Ũ TŨ , that is
Q̃ = R̃. Then

ÛSF = Ũ R̃k R̃T
k = L̃k D̃k R̃T

k = ÛSVD.

�	

The non-zero singular values for U are precisely the square roots of the non-zero eigen-
values of the positive semi-definite matrix UU T, and these are precisely the square roots of
the non-zero eigenvalues of U TU . Furthermore, the columns of L are eigenvectors of UU T

and the columns of R are eigenvectors of U TU .
We can observe that all spectral based methods reconstruct the original data by projecting

the perturbed data onto the projection subspaces which are determined by the first k eigen-
vectors for the spectral filtering method or by the first k singular vectors for the SVD method.
In Sect. 4, we shall discuss the strategies of determining k.

3.3 Quantification of privacy and utility

All the above spectral filtering based methods aim to reconstruct individual data directly.
They are different from those distribution reconstruction methods [4,3]. In [4], the authors
use a measure that defines privacy as follows: if the original value can be estimated with c
confidence to lie in the interval [xα, xβ ], then the interval width xβ − xα defines the amount
of privacy at c confidence level. Since spectral based methods can recover individual data,
attackers tend to use the reconstructed data value as an estimate of the original one.

Definition 2 The absolute error of Û , which is regarded as an estimate of U , is defined as

ae(U, Û ) = ‖Û − U‖F .
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If ‖U‖F �= 0, then the relative error of Û is defined as

re(U, Û ) = ‖Û − U‖F

‖U‖F
.

The use of absolute and relative errors in terms of the Frobenius norm gives the evaluation
of the perturbation a simplicity that makes them easier to interpret. In the remainder of this
paper, we shall cast much of our bound analysis in terms of Frobenius norm with measures
defined in Definition 2 and briefly discuss how to derive a probabilistic upper error bound
for a tuple (row) of the data set in Sect. 4.1.

The utility of the data, at the end of the privacy preserving process, is another important
issue. The measure used to evaluate the utility usually depends on the specific data mining
techniques with respect to which a privacy algorithm is performed. For example, for a clas-
sification problem, the authors in [4] measure the inaccuracy in distribution reconstruction
by examining the effects on the misclassification rate. In this paper, we apply the universal
information loss defined in [3] as the metric for utility loss since the specific data mining
task may be unknown. We know the more the noises are made to the data, the less the data
reflects the domain of interest. Therefore, an evaluation parameter for the data utility can be
the amount of information that is lost after the application of privacy preserving process.

Given the perturbed data, it is (in general) not possible to reconstruct the original density
function fU (x) with an arbitrary precision. The greater the variance of the perturbation, the
lower the precision in estimating fU (x). The universal information loss I( fU , f̂U ) denotes
the lack of precision in estimating fU (x) in terms of distribution.

I( fU , f̂U ) = 1

2
E

⎡

⎢
⎣

∫

�X

| fU (x) − f̂U (x)| dx

⎤

⎥
⎦ . (1)

Note that the applied metric is universal in the sense that it can be applied to any re-
construction algorithm since it depends only on the original density fU (x), and its estimate
f̂U (x). The information loss I( fU , f̂U ) lies between zero and one with zero as perfect re-
construction while with one as no overlap between the original density distribution and the
reconstructed one. As spectral based methods have reconstructed individual data, we can
estimate the density distributions fU and f̂U by using multi-dimensional histogram on the
original U and the reconstructed Û .

4 Bound analysis

As the previous work in [15,17] only empirically assesses the effects of perturbation on the
accuracy of the estimated individual value, in this section, we explore the explicit relation
between Û −U and the noise V and give the upper and lower bounds of ‖Û −U‖F in terms
of ‖V ‖F .

4.1 Upper bound analysis

The traditional matrix perturbation theory [21] focuses on how the perturbation E affects the
matrix A. Specifically, it provides precise upper bounds on the eigenvalues, the angle between
eigenvectors, or invariance subspaces of a matrix A and that of its perturbation Ã = A+ E , in
terms of the norms of the perturbation matrix E . In our scenario, A is the derived covariance

123



Determining error bounds for spectral filtering based reconstruction methods 223

matrix of the original data U while E is the derived perturbation on A caused by V . Hence,
it is more significant to consider how the primary perturbation V affects the data matrix U
rather than how the derived perturbation E affects the covariance matrix A.

Since the difference between the estimated data and the original one is determined by
the invariant subspaces Pχ (Pχ̃ ) of A ( Ã), we first need to assess the bias between these
subspaces.

Proposition 1 Let A ∈ Rn×n be a symmetric positive definite matrix, and let λ1 ≥ λ2 ≥
· · · ≥ λn be its eigenvalues and e1, e2, . . . , en be corresponding n eigenvectors. Let the matrix
X ∈ Rn×(n−k) be defined according to X = [e1e2 · · · ek] and Y = [ek+1 · · · en], so that the
matrix [XY ] ∈ Rn×n is orthogonal and unitary. Given a perturbation E, let Ã = A+ E and
ε = ||E ||F . Let χ and χ̃ be the invariant subspace of A and Ã, respectively. χ is spanned by
X. Pχ and Pχ̃ are the corresponding orthogonal projection onto these invariant subspaces.
Define eigengap δ = λk − λk+1. There exists a matrix P satisfying

||P||F ≤
√

2ε

δ − √
2ε

so that the columns of X̃ = (X + Y P) form an orthonormal basis for the subspace spanned
by the first k eigenvectors of Ã

||Pχ̃ − Pχ ||F ≤ 2ε

δ − √
2ε

. (2)

Proof See Appendix. �	
The difference between the invariant subspace of the original data and that of the perturbed

data shown in Eq. 2 depends on the eigengap δ = λk − λk+1 which is determined by the
spectrum of the original data. Note that the spectrum of the original data is unknown to
attackers. In the following, we show how to estimate this eigengap using the spectrums of
the perturbed data and the noise.

Proposition 2 Given a symmetric matrix A ∈ Rn×n and a symmetric perturbation E, let
Ã = A+E. Let the eigenvalues of E be ε1 ≥ ε2 ≥ · · · ≥ εn. Let λk and λ̃k are the eigenvalues
of A and Ã, respectively, where k = 1, . . . , n, and let δ̃ = λ̃k − λ̃k+1, δE = ε1 − εn, then

δ ∈ [δ̃ − δE , δ̃ + δE ]
Proof From Corollary 4.9 in [21], we have:

λk ∈ [λ̃k − ε1, λ̃k − εn] (3)

λk+1 ∈ [λ̃k+1 − ε1, λ̃k+1 − εn].
Since δ = λk − λk+1,

δ ≥ (λ̃k − ε1) − (λ̃k+1 − εn) = (λ̃k − λ̃k+1) − (ε1 − εn) = δ̃ − δE

δ ≤ (λ̃k − εn) − (λ̃k+1 − ε1) = (λ̃k − λ̃k+1) + (ε1 − εn) = δ̃ + δE

�	
Result 2 (Upper bound) Given a data set U ∈ Rm×n and a perturbation noise set V ∈ Rm×n ,
let Ũ = U + V and Û to denote the estimate obtained from the spectral filtering technique.
We have

‖Û − U‖F ≤ ‖Ũ‖F
2||E ||F

(δ̃ − δE ) − √
2||E ||F

+ ‖V Pχ‖F (4)
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where E = V TU +U TV +V TV is the derived perturbation on covariance matrix A = U TU .

Proof Consider the covariance matrix of Ũ :

Ã = Ũ TŨ = (U + V )T(U + V ) = U TU + V TU + U TV + V TV

We denote Ã as A + E where E = V TU + U TV + V TV . Since

Û − U ≈ Ũ Pχ̃ − U Pχ = Ũ Pχ̃ − (Ũ − V )Pχ = Ũ (Pχ̃ − Pχ ) + V Pχ (5)

hence we have,

‖Û − U‖F ≈ ‖Ũ (Pχ̃ − Pχ ) + V Pχ‖F

≤ ‖Ũ (Pχ̃ − Pχ )‖F + ‖V Pχ‖F

≤ ‖Ũ‖F‖(Pχ̃ − Pχ )‖F + ‖V Pχ‖F

≤ ‖Ũ‖F
2ε

δ − √
2ε

+ ‖V Pχ‖F Proposi tion 1

≤ ‖Ũ‖F
2||E ||F

(δ̃ − δE ) − √
2||E ||F

+ ‖V Pχ‖F Proposi tion 2

�	

The upper bound given in Result 2 determines how close the estimated data achieved
by attackers is to the original one when the spectral filtering technique is exploited. This
represents a serious threat of privacy breaches as attackers know exactly how close their
estimates are.

From Eq. 4, we can observe that both the eigen gap δ̃ and the projection space Pχ depend
on the determination of the number of principal components k. The original spectral filtering
algorithm [17] suggested the following strategy to determine the first k eigen components.

Strategy 1 k = max{i |λ̃i ≥ λV } where λV denotes the largest eigenvalue of noise ε1. �	

Strategy 1 aims to include all significant eigen components (with λi > 0) in the projection
space for reconstruction. From Eq. 3, we can derive λ̃i ≤ λi + ε1. So if λ̃i ≤ ε1, λi might
not be considered as a principal component.

The noise considered in the additive perturbation can be either independent or correlated
with the original data. In the following, we show the upper bound of the reconstruction error
for different cases.

Corollary 1 When the noise is completely correlated with the original data, the upper bound
of the reconstruction error can be expressed as

‖Û − U‖F ≤ ‖Ũ‖F
2||E ||F

(δ̃ − δE ) − √
2||E ||F

+ ‖V ‖F . (6)

When the noise is independent with the original data, the upper bound of the reconstruction
error can be expressed as

‖Û − U‖F ≤ ‖Ũ‖F
2||V ||2F

(δ̃ − δE ) − √
2||V ||2F

+ ‖V Pχ‖F . (7)
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Proof When the noise is completely correlated with the original data, we have ‖V Pχ‖F ≈
‖V ‖F as k represents the number of principal components. Then Eq. 4 becomes Eq. 6.

When the data and noise are uncorrelated, we have V TU = U TV = 0. Hence E =
V TU + U TV + V TV can be simplified as E = V TV . In terms of Frobenius norm, we have
‖E‖F = ‖V TV ‖F ≤ ‖V ‖2

F . By replacing ‖E‖F with ‖V ‖2
F in Eq. 4, we have Eq. 7. �	

In [17], the noise is assumed as following one i.i.d. Gaussian distribution N (0, �), where
the covariance matrix � = diag(σ 2, . . . , σ 2). This represents the scenario where the noise
is completely independent with original data. One example of this scenario is the online
collection of customer’s individual data (as other customers’ data is unknown during the data
collection). For i.i.d. noise, we have the following result.

Corollary 2 When the noise is generated by an i.i.d. Gaussian distribution with zero mean
and known variance σ 2, the upper bound of the reconstruction error can be expressed as

‖Û − U‖F ≤ ‖Ũ‖F
2||V ||2F

δ̃ − √
2||V ||2F

+ √

k/n||V ||F (8)

where ||V ||F = √
σ 2mn.

Proof When the noise matrix is generated by an i.i.d. Gaussian distribution with zero mean
and known variance σ 2, the square error of V Pχ is δ2 = σ 2 k

n [15] and ||V ||F is
√

σ 2mn.
We have

‖V Pχ‖F =
√

δ2mn =
√

σ 2 k

n
mn =

√

k

n
||V ||F .

Furthermore, when the noise is generated by an i.i.d. Gaussian distribution, ε1 ≈ εn . In
other words, δE = ε1 − εn is close to zero. By replacing ‖V Pχ‖F and δE , Eq. 7 becomes
Eq. 8. �	

Upper bounds given in Eqs. 4, 7, and 8 interpret privacy loss at the aggregate level.
Attackers may be interested in exploring the error bound for each individual tuple. From
Eq. 5, we can have

ûi − ui ≈ ũi (Pχ̃ − Pχ ) + vi Pχ

where vi denotes the added noise on the ui . By incorporating Eq. 2, we have

||ûi − ui ||F ≤ ũi
2ε

δ − √
2ε

+ ‖vi Pχ‖F . (9)

Similarly we can derive the error bounds at the tuple level for the completely correlated noise
and the i.i.d. Gaussian distributed noise, respectively. However, one problem here is that vi

in Eq. 9 is not available to attackers. The Frobenius norm of this vector, as a function with
n variables, represents the vector length in the Hilbert space. Therefore, the distribution of
such function may be derived or approximated from the distribution of the noise. As a result,
a probabilistic bound of ||vi ||F based on its corresponding distribution can be obtained by
attackers. By replacing the ||vi ||F with the upper probabilistic bound, we can derive the
probabilistic error bound for an individual tuple.

Strategy 1 can be generally used to determine the number of eigen components in the
projection space. However, it cannot guarantee to achieve an optimal result. The reason is
that it aims to include all significant eigen components (with λi > 0) in the projection
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space for reconstruction. However, since the inclusion of one eigen component also brings
additional noise projected on that eigenvector, the benefit due to inclusion of one insignificant
eigen component may be diminished by the side effect due to the additional noise projected
on this eigenvector.

For i.i.d noise, since the effect of the projection on any vector is the same, we can propose
a better strategy (as shown in Strategy 2) which can achieve an optimal estimation. Strategy 2
only includes the i th eigen component when the benefit due to inclusion of the i th component
is greater than the loss due to the noise projected on the i th component, i.e., λi ≥ λV . When
the noise is independent to the data and also has no correlation among the noise, we have
λ̃i = λi + λV ≥ 2λV .

Strategy 2 For i.i.d. noise, the estimated data Û = Ũ Pχ̃ = Ũ Q̃k Q̃T
k is approximately

optimal by using k = max{i |λ̃i ≥ 2λV }.
Proof See Appendix for proof details. �	
4.2 Lower bound analysis

In Sect. 3.2, we have presented the SVD based reconstruction method and shown the equi-
valence between the SVD based method and the spectral filtering method. Hence the derived
lower bound from SVD based method can also be considered as the lower bound of the
spectral filtering method. Recall that the SVD based reconstruction method simply estimates
U as Û = Ũk = L̃k D̃k R̃k = ∑k

i=1 d̃i l̃i r̃T
i where D̃k is the diagonal matrix with k principal

singular values of Ũ and L̃k (R̃k) contains the corresponding left (right) singular vectors.
In this section, we derive a lower bound using the well-known Mirsky Theorem for SVD
decomposition [21].

Result 3 (Lower bound) Consider Û = Ũk = L̃k D̃k R̃T
k as the reconstruction of the original

data set U . The reconstruction error between Û and U has its lower bound:

||Û − U ||F ≥ ||Uk − U ||F

where Uk = Lk Dk Rk .

Proof Ũ and U are matrices of the same dimensions with singular values

d̃1 ≥ d̃2 ≥ · · · ≥ d̃n

d1 ≥ d2 ≥ · · · ≥ dn .

Since Ũk = L̃k D̃k R̃T
k , we set

d̃k+1 = · · · = d̃n = 0.

By Mirsky’s theorem [21]

||Û − U ||2F ≥
n

∑

i=1

|d̃i − di |2 ≥ d2
k+1 + · · · + d2

n = ||Uk − U ||2F .

The relationship between the reconstruction error and perturbation (especially the lower
bound) will, in turn, guide us to add noise into the original data set. The lower bound gives
data owners the worst case security assurance since it is bounded by any matrix B of rank
no greater than k derived by attackers. In order to preserve privacy, data owners need to
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make sure ||Û − U ||F/||U ||F is greater than the privacy threshold τ specified before the
perturbation.

Based on the derived lower bound,

τ ||U ||F ≤ ||Uk − U ||F = d2
k+1 + · · · + d2

n .

Hence k which might be chosen by attackers can be determined by

k = max{i |τ ≤ (d2
i+1 + · · · + d2

n )/||U ||F }. (10)

For i.i.d. noise, based on strategy 2, λi ≥ λV , the data owner should generate V such that
the eigenvalue of (V TV ) satisfies

λk+1 < λV ≤ λk . (11)

Since λV is the eigenvalue of V TV , the variance of the noise can be derived σ 2 = λV /(m−1),
where m is the number of rows in V .

5 Experimental results

5.1 Experiment setting

In our experiment, we use two data sets. The first one is an artificial dataset, as specified
similarly in [17]. We increase the size of instances from 300 to 30,000 since we focus on
the scenario with a large number of instances in data sets. To better compare the difference
of reconstruction error between Strategy 1 and 2, we add two more features which are
independent with the previous four features. Specifically, U is a highly correlated data set
with 35 variables which are generated from 6 independent features. Each feature has a specific
trend like sinusoidal, square, or triangular shape and there is no dependency between any
two features. The second one is the numerical part of the Adult data set [5], with 6 attributes
and 32,561 instances. To better illustrate the performance of the reconstruction method with
different strategies and different types of noises, we normalize each attribute to its 0, 1 domain
range. In this paper, we consider three different types of additive noise.

– Type 1. V is an additive noise following one i.i.d. Gaussian distribution N (0, �), where
the covariance matrix � = diag(σ 2, σ 2, . . . , σ 2) (The same as in [17]).

– Type 2. V is an additive noise following one Gaussian distribution N (0, �), where the
covariance matrix � = c × diag(σ 2

1 , σ 2
2 , . . . , σ 2

n ). Here each feature is applied with a
separate Gaussian distribution with its variance linear with the variance of the original
data.

– Type 3. V is an additive noise following Gaussian distribution N (0, �), where the cova-
riance matrix � = c × A. A is the covariance matrix of the original data set. Here the
covariance matrix of noise is linear with that of the original data.

Type 1 represents the scenario where the noise is completely independent with the original
data. Type 2 represents the scenario where the variance of the original data is a-priori known
while type 3 represents the scenario where the whole covariance matrix of the original data
is used to generate noise. Note that in all the above three scenarios, we assume that the
noise is generated with a Gaussian distribution and its associated mean vector is zero. This
assumption is generally true in privacy preserving data mining applications as the change of
the mean values will significantly affect the accuracy of data mining results.
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In our following experiments, we perturb the original data by different levels of noise,
which are generated by varying the covariance matrix �. For each level, we keep the same
noise-to-signal ratio (‖V ‖F/‖U‖F ). For type 1, based on ||V ||F ≈ √

σ 2mn, we can derive

σ 2 = ‖V ‖F/
√

mn. While for both type 2 and 3, since ||V ||F ≈
√

c(σ 2
1 + σ 2

2 + · · · + σ 2
n )m,

we can derive

c ≈ ||V ||2F
(σ 2

1 + σ 2
2 + · · · + σ 2

n )m
. (12)

For each perturbed data, we use our spectral filtering technique with Strategy 1 and 2 to
reconstruct the point-wise data, respectively. We also show how the reconstruction error is
affected by varying k, the number of eigen components included in the projection space. We

use the relative error re(U, Û ) = ‖Û−U‖F‖U‖F
to measure the privacy loss and use the universal

information difference I( fU , f̂U ) (Eq. 1) to measure the utility loss. Since the artificial
data set is very sparse (35 features), we cannot accurately derive its density distribution by
applying the multi-dimensional histogram technique. Here we only give evaluations on the
utility loss for the Adult data set (6 features).

5.2 Artificial data set

Table 2 shows our experimental results on the relative error re(U, Û ) with three types of
additive noise (type 1, 2, and 3 noises) for the artificial data set.

5.2.1 Effect of varying k

For i.i.d. noise, we have presented two strategies on how to determine k by examining
the eigenvalues of the covariance matrix of the perturbed data and the eigenvalues of the
covariance matrix of the additive noise. It is easy to see that different k values lead to different
reconstruction errors [which are measured by re(U, Û )], as shown in each column of Table 2.
There are two phases of reconstruction error changes when we increase k. We take column V1
(with the variance of the noise as 0.213 and the relative noise strength as 0.628) as an example.
In the first phase (i.e., from k = 1 to k = 6), the reconstruction error re(U, Û ) is decreased
from 0.821 to 0.260 when more principal components are included in reconstruction. This is
because that the gain of inclusion of significant principal components are greater than the loss
due to the inclusion of noise projected on those components. In the second phase (i.e., k ≥ 6),
the reconstruction error re(U, Û ) is increased since the gain of inclusion of any additional
component (component with small eigenvalue or insignificant component) is diminished by
the loss due to the inclusion of noise on that component. When we examine the original data,
there exist 6 principal components as the data is highly correlated among 35 features. Since
the added noise V1 is relatively small, both strategies incur the same reconstruction error by
incorporating all six principal components.

5.2.2 Effect of varying noise

In the next experiment, we vary the variance of the added noise from 0.213 (V1) to 4.814
(V9) as shown in Table 2. We denote the values with ∗ as the results following Strategy 2,
while the values with † as the results following Strategy 1. For each noise data set, we also
show all the relative reconstruction errors by varying k values. In each column, the value in
bold font highlights the best result which could be achieved by comparing k reconstruction
errors.
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Table 2 The relative error re(U, Û ) verses varying V under three three types of additive noise (Type 1, 2,
and 3) for the artificial data set

Noise V1 V2 V3 V4 V5 V6 V7 V8 V9

||V ||F /||U ||F 0.628 0.786 0.954 1.178 1.366 1.677 1.944 2.121 2.985

Variance 0.213 0.333 0.491 0.750 1.007 1.524 2.040 2.430 4.814

k = 1 0.821 0.825 0.830 0.839 0.847 0.863 0.877 0.890 0.960

k = 2 0.649 0.659 0.671 0.692 0.711 0.750 0.783 0.810 ∗0.956

Type 1 k = 3 0.440 0.461 0.488 0.529 0.565 0.636 0.694 ∗0.739 0.964

re(U, Û ) k = 4 0.297 0.337 ∗0.383 ∗0.450 ∗0.506 ∗0.607 ∗0.687 0.748 1.032

k = 5 0.271 ∗0.324 0.383 0.465 0.532 0.651 0.745 0.816 1.141

k = 6 ∗†0.260 †0.325 †0.395 †0.489 †0.567 †0.699 †0.805 †0.883 †1.245

k = 7 0.282 0.353 0.428 0.530 0.614 0.757 0.873 0.956 1.348

c 0.402 0.630 0.927 1.415 1.903 2.864 3.850 4.583 9.080

k = 1 0.826 0.832 0.841 0.854 0.868 0.897 0.926 0.945 †1.072

k = 2 0.654 0.667 0.684 0.709 0.748 0.819 0.876 0.911 1.125

Type 2 k = 3 0.452 0.479 0.513 0.564 0.613 0.697 †0.778 †0.830 1.120

re(U, Û ) k = 4 0.309 0.353 †0.405 †0.479 †0.544 †0.652 0.900 0.967 1.317

k = 5 0.279 †0.345 0.462 0.552 0.631 0.761 1.008 1.085 1.487

k = 6 †0.255 0.391 0.512 0.616 0.706 0.856 1.103 1.190 1.634

k = 7 0.294 0.431 0.558 0.673 0.774 0.939 1.190 1.286 1.777

c 0.402 0.630 0.927 1.415 1.903 2.864 3.850 4.583 9.080

k = 1 0.893 0.935 0.989 1.067 1.140 1.276 †1.398 †1.485 †1.926

k = 2 0.800 0.879 0.977 1.117 †1.240 †1.455 1.644 1.769 2.420

Type 3 k = 3 0.702 †0.824 †0.964 †1.156 1.318 1.593 1.830 1.981 2.779

re(U, Û ) k = 4 †0.650 0.797 0.961 1.177 1.358 1.659 1.918 2.083 2.943

k = 5 0.636 0.788 0.956 1.177 1.361 1.667 1.930 2.097 2.968

k = 6 0.627 0.783 0.955 1.179 1.366 1.675 1.940 2.109 2.987

k = 7 0.627 0.783 0.955 1.179 1.366 1.675 1.940 2.109 2.987

The values with ∗ denote the results following Strategy 2, while the values with † denote the results following
Strategy 1. The bold values indicate those best estimates achieved by the spectral filtering technique

From Table 2, we can see that Strategy 2 can achieve optimal results (least reconstruction
error) for all perturbations from V1 to V9 while Strategy 1 suffers when relative large pertur-
bations are added. The reason is that Strategy 1 always include all six principal components
in the projection space across all nine noise data sets. On the contrary, Strategy 2 compares
the magnitude of the principal components with the magnitude of additive noise to determine
k. For example, the best k value for noise V4 is four as shown in Table 2. We can observe that
the magnitudes of the last two principal components are not as significant as those of noise
projected on the corresponding components. Hence, the gain of inclusion of the last two (not
very significant) principal components is diminished by the loss due to the inclusion of noise
projected on those components.

Quality of the data reconstruction depends upon the relative noise contained in the pertur-
bed data. As the noise added to the actual value increases, the reconstruction error increases.
Figure 1 shows point-wise data distributions of reconstruction for feature two (we get a
sample of 300 data records) when we vary noise levels. We can see when the noise-to-signal
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Fig. 1 Reconstruction error (point-wise data distribution for attribute 2) with best k verses varying noise
magnitude

ratio ‖V ‖F/‖U‖F is 0.628, (the corresponding variance σ 2 = 0.213), the spectral filtering
can achieve relatively accurate estimates because the effects due to the noise projection on
the remaining 29 components are safely filtered. When we increase the noise-to-signal ratio
to 1.366 (the corresponding noise variance is σ 2 = 1.007), the reconstruction error increases
as shown in Fig. 1(b). The reasons are twofold. First, much larger noise exists in the projec-
tion space. Second, information contained in those principal components which are excluded
from the projection space is lost since the large noise tends to affect the determination of k.

5.2.3 Effect of different types of noise

Since Strategy 2 is not designed for scenarios (type 2 and 3 noises) with correlated noises,
we only show the reconstruction errors of Strategy 1 in the second and third blocks of
Table 2. For type 2, the spectral filtering with Strategy 1 can achieve the optimal estimates.
However, it generally cannot achieve good results for type 3 where the covariance matrix
of the noise is linear with the covariance matrix of the signal. As the noise is not randomly
generated, the spectral filtering technique, which is based on random matrix perturbation,
cannot satisfactorily separate noise from data as they share the same distribution pattern.

Figure 2 compares the reconstruction error for one single feature (attribute 2) in three cases.
Each case has different type of the noise, however, with the same magnitude (‖V ‖F/‖U‖F =
0.628). We can see the spectral filtering performs best for the completely random perturbation
(type 1) while performs worst for the completely correlated perturbation (type 3).

5.3 Adult data set

Table 3 shows our experimental results on the relative error re(U, Û ) with three types of
additive noise (type 1, 2, and 3) for the Adult data set. The values with ∗ denote the results
following Strategy 2, while the values with † denote the results following Strategy 1. The
bold values indicate those best estimates achieved by the spectral filtering technique. We
have similar observations as those on the previous artificial data set. For example, Strategy 2
can always achieve optimal estimates for the i.i.d. noise (type 1) while Strategy 1 usually
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Fig. 2 Reconstruction error (data distribution for attribute 2) with ||V ||F /||U ||F = 0.213 under three types

incurs more inaccuracies since it tends to include all principal components (6 in this data set)
without considering the side effect incurred by the inclusion of noise. We can also observe
that the more noise we add, the greater the reconstruction error. This observation is held
across all three types of noises.

To measure the utility, we apply the universal information loss I( fU , f̂U ) as defined in
Eq. 1. Recall that the universal information loss only depends on the original density fU (x),
and its estimate f̂U (x). To derive the density distribution fU (x) of the original data and f̂U (x)

of the corresponding reconstructed data, we equally divide each dimension into 5 bins and
compare the multidimensional histograms based on the frequency information contained in
those 56 six-dimensional bins.

Table 4 shows our results on the utility loss of the reconstructed Adult data with different
levels of type 1 noise (V1–V9). The values with ∗ denote the results following Strategy 2,
while the values with † denote the results following Strategy 1. The bold values indicate those
best estimates achieved by the spectral filtering technique. From Table 4, we can observe
that Strategy 2 always outperforms Strategy 1 in terms of utility preservation. Note that the
information loss I( fU , f̂U ) lies between 0 and 1 with 0 as perfect reconstruction while with
1 as no overlap between the original density distribution and the reconstructed one. Another
observation is that the utility of reconstructed data decreases for both Strategy 1 and Strategy 2
when the magnitude of added noise increases.
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Table 3 The relative error re(U, Û ) verses varying V under three types of noises for the Adult data set

Noise V1 V2 V3 V4 V5 V6 V7 V8 V9

||V ||F /||U ||F 0.172 0.176 0.188 0.218 0.231 0.243 0.266 0.297 0.326

Variance 0.005 0.0052 0.006 0.008 0.009 0.01 0.012 0.015 0.018

k = 1 0.267 0.268 0.269 0.273 0.275 0.276 0.280 0.285 0.290

k = 2 0.212 0.213 0.217 0.226 0.230 0.234 0.243 0.254 ∗0.266

Type 1 k = 3 0.185 0.186 0.192 0.207 ∗0.214 ∗0.221 ∗0.234 ∗0.254 0.269

re(U, Û ) k = 4 0.176 0.178 ∗0.186 ∗0.206 0.216 0.225 0.241 0.265 0.286

k = 5 0.173 ∗0.176 0.186 0.211 0.223 0.233 0.253 0.281 0.306

k = 6 ∗†0.172 †0.176 †0.188 †0.218 †0.231 †0.243 †0.266 †0.297 †0.326

c 0.302 0.312 0.362 0.604 1.200 3.028 6.037 12.15 30.26

k = 1 0.274 0.275 0.276 0.283 0.286 0.289 0.294 0.303 0.312

k = 2 0.231 0.233 0.238 0.254 0.260 0.267 0.281 0.299 †0.317

Type 2 k = 3 0.207 0.210 †0.218 †0.240 †0.249 †0.258 †0.276 †0.300 0.324

re(U, Û ) k = 4 †0.193 †0.196 0.205 0.231 0.241 0.252 0.272 0.299 0.325

k = 5 0.182 0.186 0.196 0.224 0.235 0.246 0.269 0.297 0.325

k = 6 0.172 0.176 0.187 0.218 0.231 0.242 0.266 0.297 0.326

c 0.302 0.312 0.362 0.604 1.200 3.028 6.037 12.15 30.26

k = 1 0.276 0.276 0.279 0.286 0.289 0.292 0.298 0.308 0.317

k = 2 0.233 0.235 0.240 0.256 0.263 0.271 0.284 0.302 †0.321

Type 3 k = 3 0.208 0.210 †0.218 †0.239 †0.249 †0.259 †0.276 †0.300 0.323

re(U, Û ) k = 4 †0.193 †0.196 0.206 0.230 0.242 0.253 0.272 0.298 0.325

k = 5 0.183 0.186 0.196 0.223 0.236 0.248 0.269 0.297 0.325

k = 6 0.172 0.176 0.188 0.217 0.231 0.243 0.266 0.296 0.326

The values with ∗ denote the results following Strategy 2, while the values with † denote the results following
Strategy 1. The bold values indicate those best estimates achieved by the spectral filtering technique

Table 4 Utility of reconstructed Adult data with type 1 noise

Noise V1 V2 V3 V4 V5 V6 V7 V8 V9

||V ||F /||U ||F 0.172 0.176 0.188 0.218 0.231 0.243 0.266 0.297 0.326

k = 1 0.137 0.137 0.152 0.309 0.089 0.137 0.306 0.152 0.088

k = 2 0.292 0.232 0.233 0.078 0.011 0.292 0.152 0.297 ∗0.156

k = 3 0.261 0.270 0.084 0.051 ∗0.221 ∗0.196 ∗0.143 ∗0.289 0.226

Utility loss k = 4 0.259 0.213 ∗0.082 ∗0.050 0.125 0.170 0.141 0.125 0.213

I( fU , f̂U ) k = 5 0.254 ∗0.208 0.077 0.045 0.116 0.164 0.137 0.119 0.086

k = 6 ∗†0.515 †0.501 †0.521 †0.512 †0.499 †0.466 †0.466 †0.462 †0.479

The values with ∗ denote the results following Strategy 2, while the values with † denote the results following
Strategy 1. The bold values indicate those best estimates achieved by the spectral filtering technique

To further evaluate how different types of noise (type 1, 2, and 3) affect the utility of the
reconstructed data. We show one result on the relationship between the utility verses varying
three types of noises in Fig. 3. We can observe that the spectral filtering best preserves
the utility with type 1 noise (i.i.d.) while it incurs the largest utility loss with type 3 noise
(completely correlated). This is because the completely correlated noise cannot be well
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Fig. 3 Utility verses varying magnitudes of three types of additive noise

filtered out by the spectral based reconstruction method although some statistical properties
(e.g., the covariance matrix) can be fully preserved.

6 Related work

The field of statistical databases has developed various perturbation based methods to prevent
the disclosure of confidential individual data while satisfying requests for aggregate infor-
mation. The perturbation family includes swapping values between records, replacing the
original database by a sample from the same distribution, adding noise to the values in the
databases, adding noise to the results of a query and sampling the result of a query [1]. There
are various approaches to assess risk of identity disclosure and most of them relate to the
inadvertent release of small counts in the full k-way table or data cubes [7,22,23]. We should
point out that the privacy consideration in the current literature for statistical database is not
enough for many general environments which contain many numerical attributes. In most
statistical database literatures, the privacy concerned is about the re-identification of some
specific entries in the database.

A considerable amount of work on privacy preserving data mining has been reported in
recent years. The random noise addition methods have been well investigated (e.g., [4,3,
10,15,17,18]). The objective of randomization based privacy-preserving data mining is to
prevent the disclosure of confidential individual values while preserving general patterns
and rules. Agrawal and Srikant [4] proposed the development of data mining techniques that
incorporate privacy concerns and this work has been extended in [3]. In [4], the randomization
schema is to add a random number vi which is drawn from some known distribution, to ui ,
the value of a sensitive attribute. Then, the randomized value ũi = ui + vi is released for
data mining. They also show an approach to recovering the distribution of the original data
given the distribution of random noises and apply this approach for decision tree learning.
Agrawal and Agrawal [3] have provided an expectation-maximization (EM) algorithm for
reconstructing the distribution of the original data from perturbed observations. They provide
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information theoretic measures to quantify the amount of privacy provided by a randomization
approach. Some recent work [3,13,16] has explored whether the reconstructed distribution
or data mining results can be exploited by attackers to breach individual privacy.

The authors in [11,14,15,17,18] have investigated point-wise reconstruction methods
(spectral filtering, PCA based, and SVD based), which may be exploited by attackers to
breach individual privacy. Those techniques investigated how correlations among attributes
affect the privacy of a data set disguised via the additive random perturbation scheme. In
[15], Huang et.al. also introduced a Bayes approach based on maximum a posteriori (MAP)
estimation, which considers both priori and posterior knowledge via Bayes’ theorem to
estimate original data. However, strong assumptions are imposed on this method such as the
original data and the noise are multi-variate normal distributed and both distributions are
available to attackers.

In addition to the previous additive noise perturbation approach, the random rotation
based perturbation approach (Y = R X where R is an orthogonormal random matrix) has
recently been investigated in [6,20]. The idea is to preserve the multidimensional geometric
properties (vector length, inner products and distance between a pair of vectors) by perturbing
the original data set through geometric rotation transformation. Hence, data mining results
on the rotated data can achieve perfect accuracy. However, one important issue is that this
approach is also subject to some specific attacks (e.g., a-priori knowledge PCA based attack
[19] and ICA based attack [12]).

The condensation based perturbation approach [2] aims at preserving the covariance matrix
for multiple columns by partitioning the original data into k-record groups and regenerating a
set of k records to approximately preserve the distribution and covariance. This approach will
not significantly sacrifice the accuracy of data mining results obtained from the perturbed data.
However, since the difference between the regenerated records and their nearest neighbor in
original data are very small, the original data records can be estimated from the perturbed
data with high confidence [6].

There have been active researches on defining the right privacy measure. However, the
problem how to quantify and evaluate the tradeoffs between model accuracy and privacy is still
open [8,9]. Paper [3] suggests to measure privacy using Shannon’s information theory. The
average amount of information in the non-randomized attribute X depends on its distribution
and is measured by its differential entropy. The average amount of information that remains in
X after the randomized attribute Z is disclosed can be measured by the conditional differential
entropy. The average information loss for X that occurs by disclosing Z can be measured in
terms of the difference between the two entropies. The notion of privacy breaches captures
rare disclosures. The problem with the definition of privacy breaches from [10] is that we
have to specify which properties are privacy-sensitive, whose probabilities must be kept
below breach level. In this paper, we use F-norm to quantify the relative amount of noise
added to actual data.

7 Conclusion and future work

Spectral filtering based techniques have recently been investigated as a major means of point-
wise data reconstruction [15,17,18]. It was empirically shown that those techniques may be
exploited by attackers to breach the privacy protection offered by the additive randomization
based privacy preserving data mining methods. This paper presented a theoretical study on
evaluating privacy breaches when the spectral filtering techniques are applied. We gave an
explicit upper bound of the reconstruction error. This upper bound may be exploited by
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attackers to determine how close their estimates are to the original data using the spectral
filtering techniques. We also derived an explicit lower bound of the reconstruction error. This
lower bound can help users determine how much and what kind of noise should be added
when a tolerated privacy breach threshold is given. We empirically evaluated the trade-off
between privacy preservation and utility loss using one artificial data set and one real data
set with three types of additive noise. Our findings showed that the i.i.d. additive noise can
be mostly filtered out by the spectral filtering based techniques when strong correlations
exist in the original data. As a result, individual privacy may be compromised. Another
observation is that using correlated additive noise generally incurs larger utility loss in terms
of the universal information measure although it can better preserve individual privacy. In the
future we will explore how other types of additive noise(e.g., generated from distributions
like uniform, Poisson, etc.) affect the performance of spectral filtering based techniques. We
are also interested in exploring the relationship between the accuracy of data mining results
and the universal information loss.

Acknowledgments This work was supported in part by US National Science Foundation CCR-0310974 and
IIS-0546027. Part of this work has been presented in SAC’06 [11] and PKDD’06 [14]. All opinions, findings,
conclusions and recommendations in this paper are those of the authors and do not necessarily reflect the
views of the funding agencies. We would like to thank the anonymous reviewers for their insightful comments
on our SAC’06 and PKDD’06 submissions and this journal submission, which help to improve the quality of
the paper.

Appendix: Proof

Lemma 1 Let A ∈ Rn×n be a symmetric positive definite matrix, and let λ1 ≥ λ2 ≥ · · ·
≥ λn be its eigenvalues and e1, e2, . . . , en be corresponding eigenvectors. Let X = [e1e2, . . . ,

ek], Y = [ek+1 · · · en] so that the matrix [XY ] ∈ Rn×n is orthogonal and unitary. Given a
perturbation E, let Ã = A + E, ε = ||E ||F > 1/2, and define δ = λk − λk+1.

If δ > 2
√

2ε, then there is a matrix P satisfying ||P||F ≤ 2 ε

δ−√
2ε

so that the columns of

X̃ = X +Y P form an orthonormal basis for the subspace spanned by the first k eigenvectors
of Ã, ẽ1, ẽ2, . . . , ẽk .

Proof Since A is a symmetric positive definite matrix, we can apply spectral decomposition
on A:

[XY ]T A[XY ] =
[

L1 0
0 L2

]

where L1 = diag(λ1, . . . , λk), and L2 = diag(λk+1, . . . , λn). Also, let

Ẽ = [X Y ]T E[X Y ] =
[

F11 F12

F21 F22

]

.

From Theorem V.2.8 of [21], there exists a matrix P satisfying

||P|| ≤ 2
||F21||

δ − ||F11|| − ||F22|| .

Since [X Y] is unitary, ε = ||E ||F , it holds true that

||Ẽ ||F = ||[X Y ]T E[X Y ]||F = ||E ||F = ε.
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Moreover, since ||F11||2F + ||F12||2F + ||F21||2F + ||F22||2F = ||Ẽ ||2F and Ẽ is symmetric, we
have

||F21||2F = ||F12||2F ≤ 1

2
||Ẽ ||F

||F21||F = ||F12||F ≤ 1√
2
ε

(||F11||F + ||F22||F )2 ≤ 2(||F11||2F + ||F22||2F )

≤ 2||Ẽ ||2F
= 2||E ||2F

||F11||F + ||F22||F ≤ √
2||E ||F

δ − ||F11||F − ||F22||F ≥ δ − √
2ε.

Hence,

||P||F ≤ √
2

ε

δ − √
2ε

(13)

so that the columns of X̃ = (X + Y P) form an orthonormal basis for the subspace spanned
by three eigenvectors of Ã. The representation of Ã with respect to X̃ is

L̃1 = L1 + F11 + F12 P.

The eigenvalues associated with these k eigenvectors are the eigenvalues of L̃1, and the
eigenvalues associate with the rest of Ã’s eigenvectors are the eigenvalues of

L̃2 = L2 + F22 − P F12.

Thus, to complete the proof of the Lemma, it suffices to verify that the eigenvalues of L̃1 are
all (strictly) greater than the eigenvalues of L̃2.
Since δ > 2

√
2ε, we have

||P||F ≤ √
2

ε

δ − √
2ε

< 1.

Similarly, we can derive

||F11||F + ||F12||F ≤ √
2||E ||F .

Then we have

||F11 + F12 P||F ≤ ||F11||F + ||E12 P||F

≤ ||F11||F + ||F12||F ||P||F

≤ ||F11||F + ||F12||F

≤ √
2||E ||F

= √
2ε.

By the same argument, we also have

||E22 − P E12||F ≤ √
2ε.

Since the Forbenius norm upper bounds the Spectral norm, this also implies

||F11 + F12 P||2 ≤ √
2ε.

||F22 − P F12||2 ≤ √
2ε.
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Let the eigenvalues of L̃1 are λ̃1, λ̃2, . . . , λ̃k , and those of L̃2 are λ̃k+1, . . . , λ̃n .
The spectral variation of L̃1 with respect to L1 is

svL1(L̃1) = k
max
i=1

k
min
j=1

|λ̃i − λ j |.

The spectral variation of L̃2 with respect to L2 is

svL2(L̃2) = n
max

i=k+1

n
min

j=k+1
|λ̃i − λ j |.

From Corollary IV.3.4 of [21]:

svL1(L̃1) ≤ ||F11 + F12 P||2 ≤ √
2ε

svL2(L̃2) ≤ ||F22 − P F12||2 ≤ √
2ε.

The above conditions ensure that those eigenvalues of L̃1 lie in the interval [λk − √
2ε, λ1 +√

2ε], and those of L̃2 lie in the interval [λn − √
2ε, λk+1 + √

2ε]. As we know

λk − λk+1 = δ > 2
√

2ε

so we have

λk − √
2ε > λk+1 + √

2ε

which implies that all of L̃1’s eigenvalues are strictly greater than all of L̃2’s eigenvalues.
�	

Proof of Proposition 1 We can find an invariant subspace R(X̃) of Ã, and its corresponding
orthogonal projection PX̃ = X̃ X̃T. Our aim is to bound ||X̃ − X ||F , as well as ||PX − PX̃ ||F .

Let M = PT P , then ||M ||F ≤ ||P||2F ≤ 2ε2

δ̃2 < 1, where δ̃ = δ − √
2ε.

||X̃ − X ||F = ||(X + Y P)(I + PT P)−1/2 − X ||F

= ||(X + Y P)(I − I + (I + PT P)−1/2) − X ||F

= ||X + Y P − (X + Y P)(I − (I + M)−1/2) − X ||F

≤ ||Y P||F + ||(X + Y P)(I − (I + M)−1/2)||F

= ||P||F + ||(X + Y P)(I − (I + M)−1/2)||F

≤ ||P||F + (||X ||F + ||Y P||F )||(I − (I + M)−1/2)||F

≤ ||P||F + (||X ||F + ||Y P||F )
2ε2

δ̃2

= ||P||F + (||X ||F + ||P||F )
2ε2

δ̃2

≤
√

2ε

δ̃
+

(√
k +

√
2ε

δ̃

)

2ε2

δ̃2

<

√
2ε

δ̃
+ (

√
k + 1)

√
2ε

δ̃

= (
√

k + 2)

√
2ε

δ̃
.
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According to [21, pp. 232], we can derive:

||PX − PX̃ ||F ≤ 2
√

2
||F12||F

δ − ||F11||F − ||F22||F

≤ 2
√

2

1√
2
ε

δ − √
2ε

= 2ε

δ − √
2ε

. (14)

�	
Proof of Result 3 In the spectral filtering method, when we select the first k components, the
error matrix can be expressed as

f (k) = Û − U

= (U + V )Q̃k Q̃T
k − U

= (U + V )Q̃

(

Ik 0
0 0

)

Q̃T − U

= V Q̃

(

Ik 0
0 0

)

Q̃T − U

[

Q̃ I Q̃T − Q̃

(

Ik 0
0 0

)

Q̃T
]

= V Q̃

(

Ik 0
0 0

)

Q̃T − U Q̃

(

0 0
0 In−k

)

Q̃T. (15)

Similarly, when we select the first k + 1 components, the error matrix becomes

f (k + 1) = V Q̃

(

Ik+1 0
0 0

)

Q̃T − U Q̃

(

0 0
0 In−k−1

)

Q̃T

= V

[

Q̃

(

Ik 0
0 0

)

Q̃T + ẽk+1ẽT
k+1

]

− U

[

Q̃

(

0 0
0 In−k

)

Q̃T − ẽk+1ẽT
k+1

]

=
(

V Q̃

(

Ik 0
0 0

)

Q̃T − U Q̃

(

0 0
0 In−k

)

Q̃T
)

+ V ẽk+1ẽT
k+1 + Uẽk+1ẽT

k+1

= f (k) + V ẽk+1ẽT
k+1 + Uẽk+1ẽT

k+1. (16)

The last two parts in Eq. 16 are the projections of noise and data on the (k+1)th eigenvector.
When the magnitude of the added noise is small compared with that of the original data, we
have ẽi ≈ ei . The strength of the data projection can be approximated as

||Uẽk+1ẽT
k+1||2F ≈ ||Uek+1eT

k+1||2F
= T r [(Uek+1eT

k+1)
T(Uek+1eT

k+1)]
= T r

(

ek+1eT
k+1U TUek+1eT

k+1

)

= T r

[

ek+1eT
k+1

(
n

∑

i=1

λi ei e
T
i

)

ek+1eT
k+1

]

= T r(λk+1ek+1eT
k+1)

= λk+1.

For i.i.d noise, the effect of the projection on any vector should be the same. Thus,

||V ẽk+1ẽT
k+1||2F = λV .
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Hence, we include the i th component only when λi ≥ λV . The benefit due to inclusion
of the i th eigen component is greater than the loss due to the noise projected along the i th
eigen component. Since λ̃i = λi + λV ≥ 2λV , hence

k = max{i |λ̃i ≥ 2λV }.
�	
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