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Abstract Clustering is the problem of identifying the distribution of patterns and intrinsic
correlations in large data sets by partitioning the data points into similarity classes. Recently,
a number of methods have been proposed and demonstrated good performance based on
matrix approximation. Despite significant research on these methods, few attempts have
been made to establish the connections between them while highlighting their differences. In
this paper, we present a unified view of these methods within a general clustering framework
where the problem of clustering is formulated as matrix approximations and the clustering
objective is minimizing the approximation error between the original data matrix and the
reconstructed matrix based on the cluster structures. The general framework provides an
elegant base to compare and understand various clustering methods. We provide character-
izations of different clustering methods within the general framework including traditional
one-side clustering, subspace clustering and two-side clustering. We also establish the con-
nections between our general clustering framework with existing frameworks.

Keywords Clustering · Matrix approximation · Alternating optimization · Subspace

1 Introduction

Clustering is the problem of partitioning a finite set of points in a multi-dimensional space into
classes (called clusters) so that (i) the points belonging to the same class are similar and (ii) the
points belonging to different classes are dissimilar. Generally clustering problems are deter-
mined by four basic components: (a) the (physical) representation of the given data set; (b)
the distance/dissimilarity measures between data points; (c) The criterion/objective function
which the clustering solutions should aim to optimize; (d) The optimization procedure. For a
given data clustering problem, the four components are tightly coupled. Clustering has been
extensively studied in machine learning, databases, and statistics from various perspectives.

T. Li (B)
School of Computer Science, Florida International University, Miami, FL 33199, USA
e-mail: taoli@cs.fiu.edu

123



2 T. Li

Many applications of clustering have been discussed and many clustering techniques have
been developed.

Recently, a number of authors [2,7,8,17,19,20,24–27] have suggested clustering meth-
ods based on matrix computations and have demonstrated good performance on various
datasets. These methods are attractive as they utilize many existing numerical algorithms in
matrix computations. Nevertheless, the use of matrix computations in the context of cluster-
ing needs more studies. In this paper, we present a generalized clustering framework1 where
the problem of clustering is formulated as matrix approximations. The goal of clustering is
then transformed to minimizing the approximation error between the original data matrix
and the reconstructed matrix based on the cluster structures. In the framework, the data are
usually represented as matrices and the distance measures between data points are Euclidean
distances. Hence our discussion in this paper focuses on the criterion/objective function and
the optimization procedure. This framework encompasses many previously known clustering
algorithms including traditional one-side clustering, co-clustering, and subspace clustering
and provides an elegant base to compare and understand various clustering methods. While
seemingly quite different, these different algorithms are closely related, and in fact, different
variations derived from the general framework with different constraints and relaxations. In
other words, the general framework provides a basis to establish the connections between
various methods while highlighting their differences.

We address the following two questions in the paper: (a) What are the different possible
clustering methodologies (or, matrix reconstruction schemes) can be derived from the general
model? (b) What are the relations between the general model with other existing models?
To address the first question, we provide characterizations of different clustering methods
within the general framework. We show the close connections between various clustering
methods and also explain their distinguishing features. To address the second question, we
explore the relationships between our general framework with other existing models. In par-
ticular, we show the connections between our general model with the information-theoretic
co-clustering framework.

The rest of the paper is organized as follows: Sect. 2 introduces the notations and describes
the general clustering model; Sect. 3 provides characterizations of different clustering meth-
ods within the general framework; Sect. 4 explores the connections between our general
model with other models, and finally, our conclusions are presented in Sect. 5.

2 Clustering model

The notations used in the paper are introduced in Table 1. We first present a general model
for clustering problem. The model is formally specified as follows:

W = AX BT + E (1)

where matrix E denotes the error component. The first term AX BT characterizes the informa-
tion of W that can be described by the cluster structures. A and B designate the cluster mem-
berships for data points and features, respectively. X specifies cluster representation. Let Ŵ
denote the approximation AX BT and the goal of clustering is to minimize the approximation

1 In this paper, we use model and framework interchangeably.
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Clustering based on matrix approximation 3

Table 1 Notations used throughout the paper

W = (wi j )n×m The data set

D = (d1, d2, . . . , dn) Set of data points

F = ( f1, f2, . . . , fm ) Set of features

K Number of clusters for data points

C Number of clusters for features

P = {P1, P2, . . . , PK } Partition of D into K clusters

i ∈ Pk , 1 ≤ k ≤ K i-th data point in cluster Pk

p1, p2, . . . , pK Sizes for the K data clusters

Q = {Q1, Q2, . . . , QC } Partition of F into C clusters

q1, q2, . . . , qC Sizes for the C feature clusters

j ∈ Qc, 1 ≤ c ≤ C j th feature in cluster Qc

A = (aik )n×K Matrix designating the data membership

B = (b jc)m×C Matrix designating the feature membership

X = (xkc)K×C Matrix specifies/indicates the association

between data and features or

the cluster representation

Trace(M) Trace of the matrix M

error (or sum-of-squared-error)

O(A, X, B) = ‖W − Ŵ‖2
F

= Trace[(W − Ŵ )(W − Ŵ )T]
=

n∑

i=1

m∑

j=1

(wi j − ŵi j )
2 (2)

=
n∑

i=1

m∑

j=1

(
wi j −

K∑

k=1

C∑

c=1

aikb jcxkc

)2

(3)

Note that the Frobenius norm, ‖M‖F, of a matrix M = (Mi j ) is given by ‖M‖F =√∑
i, j M2

i j .

The general model provides a good basis for characterizing various matrix-based cluster-
ing approaches and it encompasses many previously known clustering algorithms including
traditional one-side clustering, co-clustering, and subspace clustering.

3 Different clustering algorithms

Based on different constraints on the matrices A, B and X , this general model encompasses
different clustering algorithms. In this section, we provide characterizations of different
clustering methods within the general framework. A summary of the derivations is listed in
Table 2.
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Clustering based on matrix approximation 5

3.1 One-side clustering

Consider the case when C = m, then each feature is a cluster by itself and B = Im×m .
The model thus reduces to popular one-side clustering, i.e., grouping the data points into
clusters.2

3.1.1 One-side K-means clustering

Suppose A = (aik), aik ∈ {0, 1},∑K
k=1 aik = 1 (i.e., A denotes the data membership), then

the model reduces to

O(A, X) = ‖W − AX‖2
F

= Trace[(W − AX)(W − AX)T]

=
n∑

i=1

m∑

j=1

(wi j −
K∑

k=1

aik xk j )
2

=
n∑

i=1

K∑

k=1

aik

m∑

j=1

(wi j − xk j )
2

=
n∑

i=1

K∑

k=1

aik

m∑

j=1

(wi j − yk j )
2 +

K∑

k=1

pk

m∑

j=1

(yk j − xk j )
2 (4)

where pk =
n∑

i=1

aik and yk j = 1

pk

n∑

i=1

aikwi j

Given A, the objective criterion O is minimized by setting xk j = yk j = 1
pk

∑n
i=1 aikwi j .

Without loss of generality, we assume that the rows belong to a particular cluster are contig-
uous, so that all data points belonging to the first cluster appear first and the second cluster
next, etc.3 Then A can be represented as

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0
1 0 · · · 0
... 0 · · · 0
0 1 · · · 0
0 1 · · · 0
...

... · · · ...

0 0 · · · 1
...

... · · · ...

0 0 · · · 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

2 Here we only discuss the one-side clustering for data points. It should be note that, similarly, we can derive
one-side feature clustering when K = n, A = I .
3 This can be achieved by multiplying W with a permutation matrix if necessary.
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6 T. Li

Note that

AT A =

⎡

⎢⎢⎣

p1 0 · · · 0
0 p2 · · · 0
· · · · · · · · · · · ·
0 0 · · · pK

⎤

⎥⎥⎦

is a diagonal matrix with the cluster size on the diagonal. The inverse of AT A serves as a
weight matrix to compute the centroids. Thus we have the following equation for representing
centroids:

X = (AT A)−1 ATW. (5)

On the other hand, given X , O(A, X) is minimized by

âik =
⎧
⎨

⎩

1 if
∑m

j=1(wi j − yk j )
2 <

∑m
j=1(wi j − yl j )

2

for l = 1, . . . , K , l �= k
0 Otherwise

(6)

The alternative minimization leads to traditional the K-means clustering procedure [14].

3.1.2 One-side low dimensional clustering

When data are column-centered, the K cluster centroids always define a (K −1) dimensional
subspace [24]. Sometimes, a low-dimensional representation of the cluster structure is very
useful and each cluster is represented by a centroid in a low dimensional space. To achieve
dimensional reduction, we can restrict that the K centroids lie in an t-dimensional subspace
by restricting Rank(X) = t, t <= min(K − 1, m).

Based on Eq. (4), if we treat A as a constant, then minimizing O(A, X) reduces to mini-
mizing the following optimization criterion:

O(X) =
K∑

k=1

pk

m∑

j=1

(yk j − xk j )
2

= ‖E(Y − X)‖2
F (7)

where E = diag(
√

p1, . . . ,
√

pK )

with the rank constraint on X . This can be solved using low-rank approximation. Mathemat-
ically, the optimal rank r approximation of a matrix W , under the Frobenius norm can be
formulated as follows: Find a matrix X̂ with rank(X̂) = r such that X̂ = argminrank(X̂=r)

‖X − X̂‖2
F. The matrix X̂ can be readily obtained by computing the Singular Value Decom-

position (SVD) of X , as stated in the following theorem [11].

Theorem 1 Let the Singular Value Decomposition of X ∈ Rn×m be X = U SV T, where U
and V are orthogonal, S = diag(σ1, . . . , σt , 0, . . . , 0), σ1 ≥ · · · ≥ σt > 0 and t = rank(X).
Then for 1 ≤ r ≤ t,

∑t
i=r+1 σ 2

i = min{‖X − X̂‖2
F|rank(X̂) = r}. The minimum is achieved

with X̂ = Xr , where Xr = Ur diag(σ1, . . . , σr )V T
r , and Ur and Vr are the matrices formed

by the first r columns of U and V , respectively.

Back to Eq. (7), let Ut St V T
t be the rank t truncated singular value decomposition of EY ,

it can be then be shown that X = E−1Ut St V T
t gives the rank t matrix minimizing O(X).
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Clustering based on matrix approximation 7

3.1.3 Spectral relaxation

Based on Eq. (5), we have

O(A, X) = ‖W − AX‖2
F

= ‖W − A(AT A)−1 ATW‖2
F

If we denote

R =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1√
p1

0 · · · 0
1√
p1

0 · · · 0
... 0 · · · 0
0 1√

p2
· · · 0

0 1√
p2

· · · 0
...

... · · · ...

0 0 · · · 1√
pK

...
... · · · ...

0 0 · · · 1√
pK

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

then R RT = A(AT A)−1 AT. Hence

O(A, X) = ‖W − A(AT A)−1 ATW‖2
F

= ‖(I − R RT)W‖2
F

= Trace(W T(I − R RT)(I − R RT)TW )

= Trace(W T(I − R RT)W )

= Trace(W W T) − Trace(RW W T RT)

Since I − R RT is a projection matrix, so (I − R RT)(I − R RT)T = I − R RT.
Here minimizing O(A, X) is reduced to maximizing Trace(RW W T RT). If we ignore

the special structure of R and let it be an arbitrary orthonormal matrix, the clustering prob-
lem then reduced to the trace maximization problem which can be solved by eigenvalue
decomposition of the symmetric matrix W W T [27].

3.1.4 Concept factorization

In K-means clustering described in Sect. 3.1.1, X represents the centroid (i.e., the average
mean) of the data points in the cluster. In general, the cluster centroid can be thought as a
linear combination of the data points in the cluster [7]. In other words, X = SW where S is
a K × n coefficient matrix. Then

O(A, X) = ‖W − AX‖2
F = ‖W − ASW‖2

F

= ‖(I − AS)W‖2
F

= Trace((I − AS)W W T(I − AS)T)

= Trace(W W T − 2ST ATW W T + ASW W T ST AT)

= Trace(W W T) − 2Trace(ST ATW W T)

+ Trace(ASW W T ST AT)
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8 T. Li

If we also treat A as a non-negative coefficient matrix, which denotes the associated degrees
of each data point to the clusters, we can use the multiplicative update algorithm described
in [22,25] to perform the optimization. If we require the entries in both A and X to be
non-negative, the one-side clustering problem is then related to non-negative matrix factor-
ization [16]. The minimization problem is then a constrained optimization problem which
can be solved use the Lagrange multiplier methods [26].

3.2 Subspace clustering

The general model can also be reduced to subspace clustering. Many of the existing clustering
algorithms do not work efficiently in high dimensional spaces (curse of dimensionality). As
demonstrated in [1], the correlations among the dimensions are often specific to data locality,
in the sense that some data points are correlated with a given set of features and others are
correlated with respect to different features. In other words, in high dimensional space, each
cluster usually has its own subspace structure.

To explicitly model the subspace structure for each cluster, let B be a m × K matrix,
whose entries denote the coefficients of each feature associated with each cluster. Note that
W B is the projection of W into the subspace defined by B. Since AX is an approximation
of W , hence AX B gives the approximation of W B. To perform the subspace clustering, we
want the approximation loss in the projected space to be minimized. This can be thought as a
special case of the model described in Eq. (1) where the approximation error in the original
space is minimized.

The approximation error in the projected space is

O(A, X, B) = ‖W B − AX B‖2
F

= ‖W B − A(AT A)−1 ATW B‖2
F (based on Eq. (5))

= ‖[W − A(AT A)−1 ATW ]B‖2
F

The columns of B are the coefficients of the features associated with different clusters.
They are usually orthogonal. So, the objective criterion is minimized by taking the small-
est K eigenvectors of W T(In − A(AT A)−1 AT)W , or equivalently, the first K eigenvectors
of W T(A(AT A)−1 AT − In)W . Given B, matrix A can be obtained using the least square
minimization [19].

3.3 Two-side clustering

Now suppose B is not an identity matrix, then the model leads to many formulations of
two-side clustering, i.e., the problem of simultaneously clustering both data points (rows)
and features (columns) of a data matrix [5,13].

3.3.1 Double K-means approach

Suppose A = (aik), aik ∈ {0, 1},∑K
k=1 aik = 1, B = (b jc), b jc ∈ {0, 1},∑C

c=1 b jc = 1
(i.e., A and B denote the data and feature memberships, respectively). Thus, based on Eq. (3),
we obtain
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Clustering based on matrix approximation 9

O(A, X, B) = ‖W − Ŵ‖2
F

=
n∑

i=1

m∑

j=1

(
wi j −

K∑

k=1

C∑

c=1

aikb jcxkc

)2

=
K∑

k=1

C∑

c=1

∑

i∈Pk

∑

j∈Qc

(wi j − xkc)
2 (8)

For fixed Pk and Qc, it is easy to check that the optimum X is obtained by

xkc = 1

pkqc

∑

i∈Pk

∑

j∈Qc

wi j (9)

In other words, X can be thought as the matrix of centroids for the two-side clustering prob-
lem and it represents the associations between the data clusters and the feature clusters [4].
O(A, X, B) can then be minimized via an iterative procedure of the following steps:

1. Given X and B, then the feature partition Q is fixed, O(A, X, B) is minimized by

âik =
⎧
⎨

⎩

1 if
∑C

c=1
∑

j∈Qc
(wi j − xk j )

2 <
∑C

c=1
∑

j∈Qc
(wi j − xl j )

2

for l = 1, . . . , K , l �= k
0 otherwise

(10)

2. Similarly, Given X and A, then the data partition P is fixed, O(A, X, B) is minimized
by

b̂ jc =
⎧
⎨

⎩

1 if
∑K

k=1
∑

i∈Pk
(wi j − xic)

2 <
∑K

k=1
∑

i∈Pk
(wi j − xil)

2

for l = 1, . . . , C, l �= c
0 otherwise

(11)

3. Given A and B, X can be computed using Eq. (9).

This leads to natural extensions of the K-means type algorithm for two-side case [3,4,21].
In general, if we do not require aik ∈ {0, 1} and b jc ∈ {0, 1}, then

O(A, X, B) =
K∑

k=1

C∑

c=1

n∑

i=1

m∑

j=1

aikb jc(wi j − xkc)
2

For fixed A and B, the optimum X is obtained by

xkc =
∑n

i=1
∑m

j=1 aikb jcwi j∑
i∈n

∑
j∈m aikb jc

(12)

The optimization of A and B can be performed via a penalty clustering which considers
both the objective function’s partial derivatives and the constraints [10].

3.3.2 Iterative feature and data clustering

Consider the case when X is a diagonal matrix. Then in the general model, we have C = K ,
i.e., both data points and features have the same number of clusters. The assumption also
implies that, after appropriate permutation of the rows and columns, the approximation data
take the form of a block diagonal matrix [12].
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10 T. Li

When W is binary data matrix and X is identity matrix, this leads to the cluster model
described in [18]. The objective function can be rewritten as

O(A, X, B) = ‖W − ABT)‖2
F

= Trace((W − ABT)(W − ABT)T)

= Trace(W W T) − 2Trace(W ABT)

+ Trace(ABT ABT))

Note that if we relax A and B and let them be arbitrary matrices, then based on

∂O

∂ A
= −W B + ABT B (13)

∂O

∂ B
= −W T A + B AT A (14)

we would get the optimization rules A = W B(BT B)−1 and B = W T A(AT A)−1. By impos-
ing orthogonal requirements, we could obtain two simplified updating rules which has a
natural interpretation analogous to the HITS ranking algorithm [15].

B = W T A (15)

A = W B (16)

In fact, Eqs. (15) and (16) can be thought of as the use of power iteration method for com-
puting the singular vectors of W W T [11]. Basically, the optimizing rules show a mutually
reinforcing relationship between the data and the features for binary dataset which can be
naturally expressed as follows: if a feature f (or, data point d) is shared by many points (or,
features) that have high weights associated with a cluster c, then feature f (or, data point d)
has a high weight associated with c.

3.3.3 Two-side spectral relaxation

In general, if A and B denote the cluster membership, then AT A = diag(p1, . . . , pK ) and
BT B = diag(q1, . . . , qC ) are two diagonal matrices. If we relax the conditions on A and B,
requiring AT A = IK and BT B = IC , we would obtain a new variation of two-side clustering
algorithm. Note that

O(A, X, B) = ‖W − AX BT‖2
F

= Trace((W − AX BT)(W − AX BT)T)

= Trace(W W T) + Trace(X XT) − 2Trace(AX BTW T)

Since Trace(W W T) is constant, hence minimizing O(A, X, B) is equivalent to minimizing

O ′(A, X, B) = Trace(X XT) − 2Trace(AX BTW T). (17)

The minimum of Eq. (17) is achieved where X = ATW B as ∂O ′
∂ X = X − ATW B.

Plugging X = ATW B into Eq. (17), we have

O ′(A, X, B) = Trace(X XT) − 2Trace(AX BTW T)

= Trace(ATW B BTW T A) − 2Trace(AATW B BTW T)

= Trace(W W T) − 2Trace(ATW B BTW T A)
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Clustering based on matrix approximation 11

Since the first term Trace(W W T) is constant, minimizing O ′(A, X, B) is thus equivalent to
maximizing Trace(ATW B BTW T A).

To maximize Trace(ATW B BTW T A), we perform the following alternating optimiza-
tion procedure. Let G = W B. Given B, A should maximize Trace(ATGGT A). This can
be easily obtained by constructing A with the eigenvectors of GGT corresponding to the
K largest eigenvalues [11]. Note that Trace(ATW B BTW T A) = Trace(BTW T AATW B).
Denote H = W T A. So, given A, B should maximize Trace(BT H HT B). This can be easily
obtained by constructing B with the eigenvectors of H HT corresponding to the C largest
eigenvalues [11]. The above alternative optimization procedure can be thought as a two-side
generalization of spectral relaxation. After obtaining the relaxed A and B, the final cluster
assignments of the data points and features are obtained by applying ordinary K-means clus-
tering in the reduced spaces. A short description of the clustering procedure is presented as
Algorithm 1.

Algorithm 1 Two-side spectral relaxation
Input: (Wn×m , K and C)
Output: P, Q: set of clusters;
begin
1 Initialize A;
2. Iteration: Do while the stop criterion is not met

begin
2.1 Update B to maximize T race(AT W BW T BT A)

2.2 Compute X = AT W B
2.3 Update A to maximize T race(BT W T AAT W B)

end
3. Get the final clusterings P and Q
end

It should be noted that there are some connections between the cluster solutions to itera-
tive feature and data clustering and the two-side spectral relaxation. If we compute the QR
decomposition of A and B for iterative feature and data clustering, we could obtain the cluster
solutions to the two-side spectral relaxation. On the other hand, for two-side spectral relax-
ation, if we compute Singular Value Decomposition(SVD) of X = U SV and set A = AU S
and B = V B, we could derive the cluster solutions to iterative feature and data clustering.

4 Relations with other models

In this section, we show the relations between our general models with the information-
theoretic clustering framework and the error-variance approach.

4.1 Information-theoretic clustering

Recently, an information-theoretic clustering framework applicable to empirical joint prob-
ability distributions was developed for two-dimensional contingency table or co-occurrence
matrix [6]. In this framework, the (scaled) data matrix W is viewed as a joint probability
distribution between row and column random variables taking values over the rows and col-
umns. The clustering objective is to seek a hard-clustering of both dimensions such that
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loss in mutual information I (W ) − I (W̄ ), where W̄ denotes the reduced data matrix, is
minimized [23].

In this section, we explore the relations between our general framework and the
information-theoretic framework. If we view entries of W as values of a joint probability dis-
tribution between row and column random variables, then I (W ) = ∑n

i=1
∑m

j=1 wi j log
wi j

wi.w. j

where wi. = ∑m
j=1 wi j and w. j = ∑n

i=1 wi j .

Once we have a simplified K × C matrix W̄ , we can construct an n × m matrix Ŵ as the
approximation of original matrix W by

Ŵi j = w̄kc

(
wi.

w̄k.

)(
w. j

w̄.c

)
(18)

where i ∈ Pk, j ∈ Qc and w̄k. = ∑C
c=1 w̄kc and w̄.c = ∑K

k=1 w̄kc. As the approximation
preserves marginal probability [6], it can easily check that

w̄kc =
∑

i∈Pk

∑

j∈Qc

ŵi j =
∑

i∈Pk

∑

j∈Qc

wi j (19)

ŵi. = wi. (20)

ŵ. j = w. j (21)

Hence we have

I (Ŵi j ) =
n∑

i=1

m∑

j=1

ŵi j log
ŵi j

wi.w. j
(based on Eqs. (20) and (21))

=
n∑

i=1

m∑

j=1

ŵi j log
ŵi j

w̄kc
w̄kc

w̄k.

(
wi.
w̄k.

)
w̄.c

(
w. j
w̄.c

)

=
n∑

i=1

m∑

j=1

ŵi j log
w̄kc

w̄k.w̄.c
(based on Eq. (18))

=
n∑

i=1

m∑

j=1

wi j log
w̄kc

w̄k.w̄.c
(based on Eq. (19)) (22)

=
K∑

k=1

C∑

c=1

w̄kclog
w̄kc

w̄k.w̄.c
(based on Eq. (19)) (23)

= I (W̄ ) (24)

So

I (W ) − I (W̄ ) = I (W ) − I (Ŵ ) (based on Eq. (24))

=
n∑

i=1

m∑

j=1

wi j log
wi j

wi.w. j
−

n∑

i=1

m∑

j=1

wi j
w̄kc

w̄k.w̄.c

(based on Eq. (22))

=
n∑

i=1

m∑

j=1

wi j log
wi j

wi.w. j
−

n∑

i=1

m∑

j=1

wi j
ŵi j

wi.w. j

(based on Eq. (18))
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=
n∑

i=1

m∑

j=1

wi j log
wi j

ŵi j

≈ 1

2

n∑

i=1

m∑

j=1

(wi j − ŵi j )
2

wi j
(25)

The last step from the above derivation is based on power series approximation of logarithm.
The approximation is valid if the absolute difference |wi j − ŵi j | are not large as compared
with wi j . The right side of Eq. (25) can be thought as a weighted version of the right side of
Eq. (2). Thus minimizing the criterion O(A, X, B) is conceptually consistent with the loss
of mutual information, i.e., I (W ) − I (W̄ ).

4.2 Error-variance approach

It should also note that the criterion in Eq. (2) is related to the fraction of variance defined
in [9]

V = 1 −
∑

i, j (wi j − ŵi j )
2

∑
i, j (wi j − w̄i j )2

where w̄i j = 1
nm

∑
i, j wi j . Minimizing the criterion O(A, X, B) is equivalent to maximizing

the variance V defined above.

5 Conclusion

In this paper, we present a generalized clustering framework by formulating the problem as
matrix approximations. The clustering procedure then aims at minimizing the approximation
error between the original data matrix and the reconstructed matrix induced by the clus-
ter structures. We also provide characterizations of different clustering methods within the
general framework including traditional one-side clustering, subspace clustering and two-
side clustering and establish the connections between our general clustering framework with
existing frameworks.
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