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Abstract Nowadays data mining plays an important role in decision making. Since many
organizations do not possess the in-house expertise of data mining, it is beneficial to outsource
data mining tasks to external service providers. However, most organizations hesitate to do
so due to the concern of loss of business intelligence and customer privacy. In this paper,
we present a Bloom filter based solution to enable organizations to outsource their tasks of
mining association rules, at the same time, protect their business intelligence and customer
privacy. Our approach can achieve high precision in data mining by trading-off the storage
requirement.

1 Introduction

1.1 Background and motivation

The pervasive impact of business computing has made information technology (IT) an indis-
pensable part of daily operations and the key to success for organizations. Many organizations
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have accumulated large amount of data from various channels in today’s digitalized age. It
is important to make these data available for decision making. Data mining, as one of the IT
services needed by organizations, provides such a technique for the exploration and analysis
of these raw data so as to reveal hidden information and knowledge; it has also been realized
as an important way for discovering knowledge from the data and converting “data rich"
to “knowledge rich" so as to assist strategic decision making. The benefits of using data
mining for decision making have been demonstrated in various industries and governmental
sectors [7], e.g., banking, insurance, direct-mail marketing, telecommunications, retails, and
health care [32]. Among all of the available data mining methods, the discovery of associa-
tions between business events or transactions is one of the most commonly used techniques.
Association rule mining has been an important application in decision support and marketing
strategy [25] for an organization.

Let us consider a typical application scenario as follows. In an organization (e.g., an enter-
prise or a governmental sector), there are several divisions including an IT division which
provides IT services for the whole organization. A functional division may have to delegate or
outsource its data mining tasks to the IT division due to the lack of IT expertise and powerful
computing infrastructure which are usually centrally managed by the IT division.

This scenario can be extended to a more general circumstance in which all divisions are
individually independent organizations (or companies). This is because in today’s fast-paced
business environment, it is impossible for any single organization to understand, develop,
and implement every IT needed. By outsourcing, an organization can obtain specific human
resources (e.g., skilled programming personnel) and technological resources (e.g., more pow-
erful computing infrastructure) for its needs of IT services (e.g., data analysis) with lower
costs [12]. It can also be extended to online scenarios, e.g., a distributed computing environ-
ment comprising of a center server and some edge servers.

The practice of outsourcing data mining tasks involves extensive collaboration (e.g.,
exchange or share of data) across different organizations. Either the raw data or the revealed
information after analysis contains the business intelligence (BI) and customer privacy of an
organization. There is a security concern of potential risk of exposing private information
in outsourcing activities [28]. Without proper security policy and technology, these priva-
cies could be very vulnerable to security breaches. Therefore, to protect BI and customer
privacy, it is urgent and critical to provide solutions from the perspectives of both legality or
regulation and technology [27]. In this paper, we focus on the technology-based solutions.
When outsourcing mining tasks,1 we should protect the following three elements which may
expose BI and customer privacy: (1) the source data which contain all transactions and items;
(2) the mining requests which are itemsets of interests; and (3) the mining results which are
frequent itemsets and association rules.

There are various methods proposed to preserve privacy in data mining; but they cannot
protect all three elements simultaneously. This is because with these methods, when a first
party2 outsources its mining tasks to a third party,3 it has to provide the source database
(which might be someway encrypted) together with some additional information (e.g., plain
text of mining requests) without which the mining tasks may not be carried out. Given this
situation, the existing methods are unable to efficiently prevent the exposure of private infor-

1 Without further specification, we always refer to association rule mining tasks.
2 This is the party that outsouces its data mining tasks. It may be a functional division of an organization or
the center server in a distributed environment with client–server architecture.
3 This is the party that is authorized by the first party to undertake the outsourced data mining tasks. It may be
the IT division of an organization or an edge server in a distributed environment with client–server architecture.
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mation to the third party, or unable to prevent the third party from (either intentionally or
unintentionally) deciphering (and possibly spreading) further information from the mining
results (which would be sent back to the first party) with the additional information.

1.2 Overview of our paper

1.2.1 Our solutions

Given the situation discussed in the previous paragraphs, to protect BI and customer privacy
when outsourcing data mining tasks, we should control the direct access to the original data.
In other words, the third party should not be allowed to access the original transactional data
while performing mining tasks, and should not be able to interpret the mining results.

In this paper, we present a Bloom filter based approach which provides an algorithm
for privacy preserving association rule mining with computation efficiency and predictable
(controllable) analysis precision. The Bloom filter [10] is a stream (or a vector) of binary
bits. It is a computationally efficient and irreversible coding scheme that can represent a
set of objects while preserving privacy of the objects. With our approach, firstly the source
data are converted to Bloom filter representation and handed over to a third party together
with mining algorithms. Then the first party sends its mining requests to the third party.
Mining requests are actually candidates of frequent itemsets which are also represented by
Bloom filters. Lastly, the third party runs the mining algorithms with source data and mining
requests, and comes out the mining results which are frequent itemsets or association rules
represented by Bloom filters. In the above mining process, what the first party exposes to the
third party does not violate privacy [22]; that is, the third party would not be able to distill
down private information from Bloom filters. Therefore, all three elements aforementioned
are fully protected by Bloom filters.

The goal of protecting BI and customer privacy during outsoucing can be achieved by
Bloom filter because it satisfies simultaneously the following three conditions. First, transac-
tions containing different numbers of items are mapped to Bloom filters with the same length.
This prevents an adversary from deciphering the compositions of transactions by analyzing
the lengths of transactions. Second, Bloom filters support membership queries. This allows
an authorized third party to carry out data mining tasks with only Bloom filters (i.e., Bloom
filters of either transactions or candidates of frequent itemsets). Third, without knowing all
possible individual items in the transactions, it is difficult to identify what items are included
in the Bloom filter of a transaction by counting the numbers of 1’s and 0’s. This is because
the probability of a bit in a Bloom filter being 1 or 0 is 0.5 given that the parameters of the
Bloom filter are optimally chosen (see Sect. 3 for details).

1.2.2 Main contributions

A condensed (5-page) version of our study has been published in [34]. In this version, we
present in details the mathematical analysis model for problem formulation and error rate
estimation, the analysis of the mining algorithm, and the results and analysis of experiments.

In brief, our main contributions include the following:

• We propose an approach allowing to outsource data mining tasks while protecting BI and
customer privacy. It prevents third parties from interpreting customer privacy from the
source data and from deciphering BI from the mining results.

• We present solid theoretical analysis for our approach. Our analysis shows that a tradeoff
can be made between storage requirement and mining precision.
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• We test the proposed approach rigorously on both real and synthetic datasets. Our exper-
imental results show that our approach is both effective and flexible for practical usage.

1.2.3 Organization of the paper

The remaining sections are organized as follows. We review the related work in Sect. 2.
We revisit the basics of Bloom filters and formulate our data mining problem in Sect. 3. In
Sect. 4, we present theoretical analysis for the formulated problems and estimate the errors
in data mining. We also present a method of using multiple groups of Bloom filters to further
reduce data mining errors. Following that in Sect. 5, we develop a multi-phased algorithm
and conduct a set of empirical simulations to verify our approach. Lastly we conclude our
paper in Sect. 6 with a discussion of contribution, limitation, and future research directions.

2 Literature review

Association rule mining has been an active research area since its introduction [2]. Many
algorithms have been proposed to improve the performance of mining association rules or
frequent itemsets. An interesting direction is the development of techniques that incorporate
privacy concerns.

One type of these techniques is perturbation based, which perturbs the data to a certain
degree before data mining so that the real values of sensitive data are obscured while non-
sensitive statistics on the collection of data are preserved. In an early work [5] a perturbation-
based approach was proposed for decision tree learning. This approach was further studied in
[1,19,23,24]. Some recent work [6,8,9,11,14,15,29–31,36,37,39] investigates the tradeoff
between leakage of private information and accuracy of mining results. In [8,11], the authors
considered the problem of limiting disclosure of sensitive rules, aiming at selectively hiding
some frequent itemsets from large databases with as little impact on other, non-sensitive
frequent itemsets as possible. The idea is to modify a given database so that the support
of a given set of sensitive rules decreases below a predetermined threshold. Similarly, in
[37] a method is presented for selectively replacing individual values with unknowns from a
database to prevent the discovery of a set of rules, while minimizing the side effects on non-
sensitive rules. In [9,31], the authors studied the impact of hiding strategies on an original
data set by quantifying how much information is preserved after sanitizing the data set. In
[6,15,36], researchers also studied the problem of mining association rules from transactions
in which the data has been randomized to preserve the privacy of individual transactions.
One problem of perturbation-based approach is that it may introduce some false association
rules. Another drawback of this approach is that it cannot always fully preserve data privacy
while achieving high mining precision [23,24].

The second type is distributed privacy preserving data mining [13,21,26,33,38] based on
secure multi-party computation [40]. Though this approach can preserve privacy, it works
only in distributed environment (with several parties to collaborate in mining process) and
needs sophisticated protocols (secure multi-party computation based), which makes it infea-
sible for our scenario.

Both types of techniques are designed to protect privacy by masquerading the source data,
and cannot protect privacy distillable from the mining requests and results accessible to data
miners.

Related, but not directly relevant to our work, is the research in outsourced databases
[3,16–18,20] and most recently in data confidentiality [35]. Hacigumus et al. [16–18,20]
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explored a new paradigm for data management in which a third party service provides host
database as a service. They proposed several encryption techniques to process as many que-
ries as possible at the service providers’ site without having to decrypt the data. Agrawal
et al. [3] presented an order-preserving encryption scheme for numeric data that allows com-
parison operations to be directly applied on encrypted data. However, encryption is time
consuming and it may require auxiliary indices. It is only designed for certain type of queries
but may not be suitable for complex tasks such as association rule mining. Most recently Raś
et al. [35] presented a generalized strategy to reduce a disclosure risk of confidential data by
hiding some attributes of the source data. Hiding (or replacing) some attributes may break
the integrity of source data and thus the mining results may not be meaningful if it is applied
to our application scenario.

3 Problem formulation

Our research question is how to outsource the association rule data ming tasks, at the same
time, protect BI and customer privacy. We propose a Bloom filter based approach with which
an authorized third party (e.g., an edge server or an IT division as mentioned earlier) will
perform the association rule mining based on the dataset transformed by Bloom Filters and
report the frequent itemsets with controllable error boundary.

In this section, we first briefly review the basics of Bloom filter, and then present the
mathematic formalization for our problem.

3.1 Bloom filter revisited

A Bloom filter is a simple, space-efficient, randomized data structure for representing a set
of objects so as to support membership queries.

Definition 3.1 Given an n-element set S = {s1, . . . , sn} and k hash functions h1, . . . , hk

of range m, the Bloom filter of S, denoted as B(S), is a binary vector of length m that is
constructed by the following steps: (i) every bit is initially set to 0; (ii) every element s ∈ S is
hashed into the bit vector through the k hash functions, and the corresponding bits hi (s) are
set to 1.4 A Bloom filter function, denoted as B(·), is a mapping from a set (not necessarily
n-element set) to its Bloom filter.

For membership queries, i.e., whether an item x ∈ S, we hash x to the Bloom filter of S
(through those hash functions) and check whether all hi (x) are 1’s. If not, then clearly x is not
a member of S. If yes, we say x is in S although this could be wrong with some probability.

Definition 3.2 For an element s and a set S, define s ∈B S if s hashes to all 1’s in the Bloom
filter of S, and s /∈B S otherwise. The false positive rate of the Bloom filter of S is defined
as the probability of s ∈B S while s /∈ S, or Pr(s ∈B S | s /∈ S).

Assuming that all hash functions are perfectly random, we have the following

Lemma 3.3 Given an n-element set S = {s1, . . . , sn} and its Bloom filter B(S) of length m
constructed from k hash functions, the probability for a specific bit in B(S) being 0 is

p0 =
(

1 − 1

m

)kn

≈ e−kn/m

4 A location can be set to 1 multiple times, but only the first change has an effect.
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and the probability for a specific bit being 1 is

p1 = 1 − p0 ≈ 1 − e−kn/m

Then the false positive rate of B(S) is

f = pk
1 ≈

(
1 − e−kn/m

)k
(1)

Given n and m, f is minimized when p0 = p1 = 0.5 and k = m
n ln 2, in which case

f = 1/2k = (0.6185)m/n.

What’s missing from traditional Bloom filter? Traditional Bloom filters cannot solve the
privacy issue because anybody knowing the hash function can derive the original itemsets
based on Bloom Filters.

To preserve the privacy of Bloom filters, we propose keyed Bloom filter by augmenting
the hash functions hi with a secret key K . To represent set S, an element s ∈ S is inserted
into Bloom filter B by setting the corresponding bits hi (s ◦ K ) in B to 1, where ◦ represents
concatenation. Also, to query whether an item x ∈ S, we check whether all hi (x ◦ K ) bits are
set to 1. Without knowing the secret key, one is unable to derive the original set by examining
a Bloom filter. Without further mention we always assume that Bloom filters in our paper are
constructed with secret keys.

3.2 Our problem

Fundamentally we want to provide a solution for privacy preserving frequent itemsets min-
ing. The frequent itemset mining has been a common task in many data mining projects
for the past decade. From frequent itemsets, one can easily derive all association rules. The
mining of frequent itemsets of association rules has a wide range of applications in many
areas, from the analysis of customer preferences to DNA patterns.

For market basket data, we define each transaction, such as a list of items purchased, as a
subset of all possible items.

Definition 3.4 Let I = {I1, . . . , Id} be a set of d boolean variables called items. Let data-
base D be a set of transactions T1, T2, . . . , TN where each transaction Ti is a set of items
such that Ti ⊆ I. The support of an itemset S over I, denoted support (S), is defined as the
number of the transactions that contain S. The frequency of an itemset S, denoted freq(S),
is defined as support (S)/N .

Problem 1 Traditional problem: frequent itemsets mining. Mathematically, given a trans-
action database D over I and a threshold τ ∈ [0, 1], traditional research focuses on finding
all frequent itemsets F S ∈ 2I such that freq(F S) ≥ τ .

Our idea is to transform transaction database to a collection of Bloom filters to preserve
the privacy in frequent itemset mining. Each transaction Ti ∈ T is transformed to Bloom
filter B(Ti ) of size m using k hashed functions. To preserve the privacy of items Ii , we assume
that the mining process is done on the (keyed) Bloom filters B(Ii ) of the items rather than
on the items themselves.

Problem 2 Our research problem: privacy preserving frequent itemsets mining. Given (i)
a collection of Bloom filters {B(T1), . . . , B(TN )} for transaction database D over I, (ii) a
set of Bloom filters {B(I1), . . . , B(Id)} for items in I, and (iii) a threshold τ ∈ [0, 1], find
all Bloom filters B(F S) of itemsets F S ∈ 2I such that freq(F S) ≥ τ .
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Normally without knowing the secret key, the third party, which may not be fully trusted,
will be unable to interpret sensitive and private information either from the contents of dat-
abases or from mining results. However, we still need to handle some extreme cases for the
protection of BI and customer privacy. Case 1, some transactions may contain only one item.
The number of 1’s in these Bloom filters are no more than but very close to k. Therefore, the
outsourced database may divulge partial individual items. To prevent such divulgence, one
of the solutions is to insert several virtual items as white noise to those transactions in which
item numbers are smaller than a threshold. Case 2, candidates of frequent 1-itemsets are
exactly individual items which may divulge some sensitive information. To prevent this, we
extend the usage of secret key by inserting several virtual items, denoted by k1, k2, . . . , ki ,
into all transactions before outsoucing. At the same time, each candidate of frequent 1-item-
sets is inserted with a virtual item randomly chosen from k1 to ki and is sent to the third
party together with mining requests (see Sect. 5.1 for detailed mining process). Thus the
edge servers cannot easily identify candidates of frequent 1- and 2-itemsets because both
types of candidates look alike. This method can be applied to conceal candidates of frequent
2-, 3-, …, and k-itemsets. Moreover, this operation can be done before or after the mixing of
white noise discussed in case 1.

4 Analysis

In this section, we analyze the possible error rates introduced by mining the frequent itemsets
based on Bloom filters instead of the original dataset. For any given itemset, the frequency
learnt from Bloom filters may be larger than its real frequency learnt from original transac-
tions due to the false positive of Bloom filters. We make this clear in the following analysis. By
default, we assume that for any itemset, there is a Bloom filter function B(·) which produces
binary vector of length m through k hash functions.

4.1 Preliminaries

The false positive of a Bloom filter was defined for checking an element from a Bloom filter.
Now we extend the concept of false positive to checking an itemset from a Bloom filter.

Definition 4.1 Given an itemset S and a transaction Ti , define S ⊆B Ti if for all items s ∈ S,
s ∈B Ti , and define S �B Ti otherwise. The false positive rate for checking S from the
Bloom filter of Ti , denoted as fi , is defined as the probability of S ⊆B Ti while S � Ti , or
Pr(S ⊆B Ti | S � Ti ).

Due to the false positive of checking an itemset from a Bloom filter, the support or fre-
quency learnt from a collection of Bloom filters is different from that learnt from original
transactions. Regarding such support and frequency, we have the following

Definition 4.2 Given a collection of N Bloom filters {B(T1), . . . , B(TN )} for transaction
database D over I, the support of an itemset S ∈ 2I that is learnt from the collection of fil-
ters, denoted as Bsupport (S), is defined as the number of filters B(Ti ) that satisfy S ⊆B Ti .
The frequency of S that is learnt from the collection of filters, denoted as Bfreq(S), is defined
as Bsupport (S)/N .

Lemma 4.3 In the setting of Definition 4.2, the following statements hold: (i) S ⊆B Ti

iff B(S) ∧ B(Ti ) = B(S), where ∧ is bitwise AND. (ii) If S ⊆ Ti , then S ⊆B Ti . (iii)
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If S � Ti , then S ⊆B Ti with probability fi , and S �B Ti with probability 1 − fi . (iv)
Bfreq(S) ≥ freq(S).

Theorem 4.4 Given an itemset S and a transaction Ti , the false positive rate of checking S
from the Bloom filter of Ti is

fi =
(

1 − e−kni /m
)||B(S−Ti )||

where ni = |Ti | is the length of transaction Ti in terms of the number of items, and || · ||
indicates the number of 1’s in a binary vector.

Proof From Eq. (1), one can derive that the false positive rate for checking any single item
s ∈ S − Ti is pk

1, where p1 = (
1 − e−kni /m

)
is the probability that a specific bit is 1 in B(Ti )

and k is the number of bits to which the item is hashed. From Lemma 4.3, we know that
S ∩ Ti ⊆B Ti . Since the items in S − Ti are hashed to ||B(S − Ti )|| bits all together, the false

positive rate fi for checking S from B(Ti ) is p||B(S−Ti )||
1 = (

1 − e−kni /m
)||B(S−Ti )||. �	

Corollary 4.5 Given an itemset S and a transaction Ti , the false positive rate fi of checking
S from the Bloom filter of Ti is bounded:

(
1 − e−kni /m

)||B(S)|| ≤ fi ≤
(

1 − e−kni /m
)k

Proof According to the definition of false positive, we have S � Ti and thus 1 ≤ ||B(S −Ti )

|| ≤ ||B(S)||. Combining this with Theorem 4.4, we have
(
1 − e−kni /m

)||B(S)|| ≤ fi ≤(
1 − e−kni /m

)k
. �	

4.2 False positive and false negative

In our data mining problem, an outsourced server has access to the Bloom filters {B(Ti )} of
all transactions. However, it has no access to the original data. Therefore, given a Bloom filter
B(S), the server cannot compute the frequency freq(S) directly. The approaches to solving
the traditional frequent itemset mining problem cannot be applied directly to solving our data
mining problem.

According to Lemma 4.3 (i), the frequency Bfreq(S) can be derived from those Bloom
filters. Our solution is to find all Bloom filters B(S) such that Bfreq(S) ≥ τ ′ where τ ′ is a
revised threshold. Note that freq(S) ≥ τ is required in our data mining problem; thus, we
must ensure that

{
B(S) : Bfreq(S) ≥ τ ′} � {B(S) : freq(S) ≥ τ }. Because the two sets are

not necessarily the same, we need to define the false positive rate and false negative rate for
checking an itemset from all Bloom filters.

Definition 4.6 Given an itemset S and N Bloom filters B(Ti ), i = 1, . . . , N , the false
positive rate for checking S from all Bloom filters using revised threshold τ ′ ≥ τ , denoted as
f +
τ ′ , is defined as the probability of Bfreq(S) ≥ τ ′ while freq(S) < τ , or Pr

(
Bfreq(S) ≥ τ ′ |

freq(S) < τ). The false negative rate for checking S from all Bloom filters using τ ′, denoted as
f −
τ ′ , is defined as the probability of Bfreq(S) < τ ′ while freq(S) ≥ τ , or Pr

(
Bfreq(S) < τ ′ |

freq(S) ≥ τ).

If the revised threshold τ ′ is the same as the threshold τ , then the false negative rate will
be zero due to the fact Bfreq(S) ≥ freq(S) (Lemma 4.3 (iv)); however, the false positive
rate may be greater than zero in this case. In general, one may use τ ′ ≥ τ so as to balance
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false negative rate and false positive rate. The higher the τ ′, the higher the false negative rate,
and the lower the false positive rate. If the false negative rate is of major concerns, one may
choose τ ′ = τ to zero out false negative rate. Note that choosing τ ′ < τ is meaningless as it
only increases the false positive rate without decreasing the false negative rate which is zero.

To formalize our analysis, we define a random variable for checking an itemset against a
Bloom filter. Then we re-write in terms of the defined variables the frequency of an itemset
learnt from Bloom filters and the false positive/negative rates for checking an itemset from
all Bloom filters.

Definition 4.7 For an itemset S and a transaction Ti such that S � Ti , define a random 0–1
variable ei such that ei = 1 if S ⊆B Ti and ei = 0 if S �B Ti .

The defined variable indicates whether S ⊆B Ti ; that is, ei = 1 with probability fi and
ei = 0 with probability 1 − fi (see Lemma 4.3). In other words, ei represents a Bernoulli
trial with probabilities fi of success and 1 − fi of failure. Without loss of generality, we can
assume that S � Ti for the first N · (1 − freq(S)) transactions Ti . Then we have

Bfreq(S) = freq(S) + 1

N
·

N (1−freq(S))∑
i=1

ei (2)

Lemma 4.8 Let se be the sum of N · (1 − freq(S)) random 0-1 variables ei defined for an
itemset S. The false positive and false negative rates for checking S from all Bloom filters
using a revised threshold τ ′ ≥ τ are

f +
τ ′ = Pr

(
se ≥ N

(
τ ′ − freq(S)

) | freq(S) < τ
)

f −
τ ′ = Pr

(
se < N

(
τ ′ − freq(S)

) | τ ≤ freq(S) < τ ′)
4.3 Estimate of false positive and false negative

We estimate the false positive and false negative rates in the case of ni ∼= n, where ni is the
size of each transaction, and n = 1

N

∑N
i=1 ni is the average size of N transactions. Note that

if ni � n, the transaction data can be clustered into multiple groups such that in each group,
the size of each transaction is equal or close to the average size of the transactions in the
group. The data mining task can be easily extended to each group. For simplicity, we assume
that ni = n in our analysis; we leave the multi-group case in Sect. 4.4.

Let k = m
n ln 2 be the optimal number of hash functions that are used for generating

the Bloom filter of length m for each transaction, which consists of n items. According to
Lemma 3.3 and Corollary 4.5, the false positive rate fi for checking an itemset S from a
Bloom filter has a lower bound and an upper bound:

2−||B(S)|| ≤ fi ≤ 2−k (3)

First consider a special case where fi = f̄ for all i = 1, . . . , N . In this case se is the
sum of N · (1 − freq(S)) independent Bernoulli trials with probabilities f̄ for success and
1− f̄ for failure. Let b(α, β, f̄ ) = β!

α!(β−α)! f̄ α(1− f̄ )β−α be the probability that α Bernoulli

trials with probabilities f̄ for success and (1 − f̄ ) for failure result in β successes and β − α

failures (α ≤ β). Let C(α, β, f̄ ) = ∑β
i=α b(i, β, f̄ ) be the cumulative binomial probability

of having at least α successes in β trials.5 Then the false positive and false negative rates for

5 Function C is a standard function provided in many commercial software packages such as Matlab.
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checking an itemset S from all Bloom filters are

f +
τ ′ ( f̄ ) = C

(
N · (

τ ′ − freq(S)
)
, N · (1 − freq(S)) , f̄

)
, where 0 < freq(S) < τ (4)

f −
τ ′ ( f̄ ) = 1 − C

(
N · (

τ ′ − freq(S)
)
, N · (1 − freq(S)) , f̄

)
, where τ ≤ freq(S) < τ ′

(5)

Since the cumulative binomial probability C(α, β, f̄ ) is monotonic increasing with f̄ ,
from formulae (3) to (5) it is easy to know the lower bounds and upper bounds for the false
positive rate and false negative rate in general case:

f +
τ ′

(
2−||B(S)||) ≤ f +

τ ′ ≤ f +
τ ′

(
2−k

)
, where 0 < freq(S) < τ

f −
τ ′

(
2−k

)
≤ f −

τ ′ ≤ f −
τ ′

(
2−||B(S)||) , where τ ≤ freq(S) < τ ′

In a special case where τ ′ = τ , we have f −
τ = 0 and

C
(

A, B, 2−||B(S)||) ≤ f +
τ ≤ C

(
A, B, 2−k

)
(6)

where A = N · (τ − freq(S)) and B = N · (1 − freq(S)).
Equation (6) indicates that the greater the number k of hash functions, the smaller the false

positive and false negative rates. In other words, the longer the Bloom filters, the smaller the
false positive and false negative rates. To further understand this, we compare Bfreq(S) with
freq(S) in the average case. Let E[·] denote the mean of a random variable. From Eq. (2),
we have

E
[
Bfreq(S)

] = freq(S) + 1

N
· E[se] = freq(S) + 1

N
·

N (1−freq(S))∑
i=1

fi

Recall the bounds for fi (see Eq. 3). In the false positive case (where freq(S) ≤ τ ), we
have

N · (1 − τ) · 2−||B(S)|| ≤ E[se] ≤ N · 2−k

Similarly, in the false negative case (where τ ≤ freq(S) < τ ′), we have

N · (1 − τ ′) · 2−||B(S)|| ≤ E[se] ≤ N · (1 − τ) · 2−k

The above three equations imply that the average value of Bfreq(S) is greater than freq(S),
but the difference is bounded. Note that ||B(S)|| ≥ k. We have

E
[
Bfreq(S)

] − freq(S) ≤ (1 − τ) · 2−k < 2−k (7)

The longer the Bloom filters (i.e., the greater the k), the smaller the difference between
Bfreq(S) and freq(S). If the length of Bloom filters increases linearly, then the difference
of frequencies decreases exponentially. For example, if k ≥ 20, then the difference of fre-
quencies will be less than 10−6. This means that in the average case, the frequency of an
itemset detected from Bloom filters will be greater than that detected from original data by
at most 10−6. Note that the above analysis is conducted for each itemset. The overall false
positive and false negative rates depend on the distribution of itemsets and their frequencies.
Empirical study will be conducted in Sect. 5.
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4.4 Multiple groups of Bloom filters

The estimate of false positive and false negative rates is based on the assumption that the size
of each transaction is equal or close to the average size of all transactions. This might not
be true in many real data sets. A simple solution is to cluster the transactions into multiple
groups such that in each group, the size of each transaction is equal or close to the average
size of the transactions in the group. Across all groups, the same number k of hash functions
are used for generating Bloom filters. In each group, k = m

n ln 2 is optimized for the length
m of Bloom filters and the average size n of the transactions in the group. This means that
for different groups, the length of Bloom filters are different depending on the average size
of transactions in the group. Roughly speaking, long Bloom filters will be used for long
transactions, while short Bloom filters for short transactions.

Using different Bloom filters for different groups of transactions will not only save storage
requirement but also increase the precision of data mining. Note that the bounds presented
in the previous section are based on k. Since the same k is optimized across multiple groups,
the bounds can be used to estimate the false positive and false negative rates in all groups.

In the case of multiple groups, the transactions are represented by the Bloom filters of
different lengths. This requires that each candidate itemset be represented by Bloom filters
of different lengths too. This is because in our data mining problem, the Bloom filter of each
candidate itemset needs to be checked against the Bloom filters of the same length. To avoid
transmitting multiple Bloom filters for each candidate itemset between client and server,
only the longest Bloom filter of each candidate itemset is sent to the server at one time. In
data mining process, the outsourced server needs to transform it into different lengths so as
to check it against different groups of Bloom filters. We provide a simple solution called
δ-folding to transform the Bloom filters.

Definition 4.9 Given an m-bit Bloom filter B, δ-folding of B, denoted as Bδ , is defined as a
δm-bit vector generated from B: for 0< i ≤δm, bit (Bδ, i)=bit(B, i)

∨
0< j≤m

j=i mod δm
bit (B, j),

where bit (B, i) denotes the i th bit of B, ∨ the bitwise OR, and 0 < δ ≤ 1.

Example 1 Let B be a 10-bit Bloom filter. B0.7 is defined as a 7-bit vector B0.7: bit (B0.7, i) =
bit (B, i) ∨ bit (B, i + 7) for i = 1, 2, 3, and bit (B0.7, i) = bit (B, i) for i = 4, 5, 6, 7.

From the definition of Bloom filter, it is clear that vector Bδ is a Bloom filter generated
with the same k hash functions which are used for generating Bloom filter B.

Given a Bloom filter B(S) of longest length m of candidate itemset S, the frequency
Bfreq(S) is computed by checking B(S) against the Bloom filters of transactions in all
groups. For a particular group in which the Bloom filters have length m′ ≤ m (note that
m is the longest length for all groups), the server applies m′

m -folding to B(S) such that the
transformed Bloom filter has the length m′.

5 Experiments

To evaluate the performance of our Bloom filter based method for mining frequent itemsets,
we conduct experiments based on both synthetic data and real data. A framework of our
method is shown in Algorithm 1.
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5.1 Algorithm

Algorithm 1 can be divided into three phases: counting phase (lines 3–5), pruning phase
(lines 6–8), and candidates generating phase (lines 9–10) in each round �, where � indicates
the size of each candidate itemset dealt with. In the counting phase, each candidate filter is
checked against all transaction filters and the candidate’s count is updated. In the pruning
phase, any Bloom filter is eliminated from the candidate set if its count (i.e., Bsupport) is less
than a revised threshold N · τ ′. Finally, in the candidates generating phase, new candidate
Bloom filters are generated from the Bloom filters discovered in the current round. The new
candidates will be used for data mining in the next round.

Algorithm 1 Mining frequent itemsets from Bloom filters

1: C1 = {
B(I1), . . . , B(Id )

}
// B(Ii ) is the Bloom filter of item Ii

2: for (� = 1; C� �= ∅; � ++) do
3: for each B(S) ∈ C� and each transaction filter B(Ti ) do
4: if S ⊆B Ti then Bsupport(S) ++ // S ⊆B Ti iff B(S) ∧ B(Ti ) = B(S)

5: end for
6: for each B(S) ∈ C� do
7: if Bsupport (S) < N · τ ′ then delete B(S) from C� // τ ′ is the revised threshold in data mining
8: end for
9: F� = C� // F� is the collection of Bloom filters of all “frequent" itemsets with length �

10: C�+1 = can_gen(F�) // generate filters of candidate itemsets for the next round
11: end for
12: Answer =

⋃
� F� // all filters of frequent itemsets

5.1.1 Efficient counting

To improve the efficiency in the counting phase, we organize the Bloom filters of the trans-
actions of each group in a tree hierarchy and use every q bits to partition them at different
levels, where q is a parameter. For example, at the root level, the partition leads to 2q child
nodes; the Bloom filters in each node share the same first q bits. A node splits if it contains
more than c Bloom filters, where c is another parameter. At the end of partition, each leaf
node contains limited number of Bloom filters, while each non-leaf node (except the root) is
associated with a q-bit segment with which the node shares.

Because of the randomness of keyed hash functions, the distribution of Bloom filters is
uniform,6 which implies that the tree is well balanced. Therefore, an L-level tree can be used
to index up to c · 2q L Bloom filters. Given q = 5 and c = 20, for example, a 4-level tree can
be used to index 20M Bloom filters.

Heuristic 5.1 Let s be the q-bit segment associated with a non-leaf node and B(S) be a
Bloom filter of candidate itemset S. If any bit in s is 1 while the corresponding bit in B(S) is
0, then no Bloom filter in the subtree rooted at the non-leaf node needs to be checked in the
counting phase.

In the counting phase, we traverse the tree to compare each candidate filter with the trans-
action filters stored in the leaf nodes and update the count of the candidate filter appropriately.
According to the above heuristic, we may skip some subtrees in the counting process.

6 Using the optimal number of hash functions, each bit in a Bloom filter has the equal probability of being 1
and 0.
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An alternative way to do this is to organize candidate filters in a tree structure and update
their counts appropriately while traversing the tree for each transaction filter. In multiple
group case, this solution requires that the tree of candidate filters be built differently for
each group, while in the above method a static tree of transaction filters can be used for any
candidate filters.

5.1.2 Candidates generating

To support interactive data mining and discover all frequent itemsets as required in Problem 2,
a multiple step interaction can be conducted between client and server in candidates gener-
ating phase. The client provides the server with a set of candidate filters C�; after the server
sends back the mining result F�, the client generates another set C�+1 of candidate filters and
sends it to the server for data mining. This process can be done repetitively in each round.
As mentioned in Sect. 3.2, with C1 (i.e., Bloom filters of individual items) an edge server
may decipher partial sensitive data (e.g., the compositions of transactions). Therefore, for
the concern of protecting BI and preserving customer privacy, it is advisory not to outsource
frequent 1-itemset mining tasks, or to use alternative choice of concealing C1 discussed in
Sect. 3.2.

The candidate generation C�+1 = can_gen(F�) in this case is conducted at client side
for privacy reasons. The Bloom filters in F� are transformed back to itemsets with the help
of secret key. From this collection of itemsets, the client generates a new set of candidate
itemsets using the well-known method apriori_gen as proposed in [4]. The basic idea of
apriori_gen is that a candidate itemset of length � + 1 is generated only if all its subsets
of length � appear in the collection of itemsets. The client may also edit the set of candi-
dates according to application requirements and constraints. Finally, the client transforms
the candidate itemsets to Bloom filters and sends them back (in C�+1) to the server. All of
our experiments presented in the next section are based on this scenario.

Another choice to perform candidate generation is at server side. However, the server has
no secret key to perform the hash functions, so it cannot transform back and forth between
Bloom filters and itemsets. A possible solution is to use C�+1 = {B(S1) ∨ B(S2) : B(S1),

B(S2) ∈ F�} as candidate set for the next round. It is easy to verify that B(S1) ∨ B(S2) is
the Bloom filter of itemset S1 ∪ S2; therefore, this solution generates all Bloom filters of the
itemsets that are unions of any two frequent itemsets (clearly, no frequent itemset is missed
in this process). The disadvantage of this solution is that the server cannot exploit Apriori
property using apriori_gen at itemset level.

5.2 Experiment settings

Rigorous experiments are conducted on both real data and synthetic data so as to evaluate the
performance of our Bloom filter method in terms of mining precision, storage requirement,
and computation time. All the experiments are run on a Compaq desktop computer with
Pentium-4 CPU clock rate of 3.00 GHz, 3.25 GB of RAM, and 150 GB harddisk, running
Microsoft Windows XP Professional Version 2002 with SP2.

5.2.1 Real data

The real data sets we adopt for this experiment are BMS-POS, BMS-WebView-1, and BMS-
WebView-2 available at http://www.ecn.purdue.edu/KDDCUP. The dataset BMS-POS con-
tains several years worth of point-of-sale data from a large electronics retailer, whereas the
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Fig. 1 Distribution of
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datasets BMS-WebView-1 and BMS-WebView-2 contain several months worth of click-
stream data from two e-commerce websites.

5.2.2 Synthetic data

We generate synthetic data using the transaction generator designed in IBM Quest project
[4]. A synthetic dataset contains 100–750K transactions; each transaction is generated from
a set of 1,000 frequent itemsets. The size of each frequent itemset is picked from Poisson
distribution with mean 4. There are totally 1,000 distinct items. The size of each transaction
is picked from Poisson distribution with mean 10. We use four sets of synthetic data, namely
Syn1, Syn2, …, and Syn4.

5.2.3 Distributions of real data and synthetic data

The distributions of transaction sizes for both real data and synthetic data are shown in
Fig. 1. According to [41], the exponential-like distributions of transaction sizes are typical in
many real data sets used for mining association rules, while the synthetic data generated by
IBM generator with Poisson distribution have been most widely used for testing the scalabil-
ity of association rule mining algorithms. We use the real data to test the mining precision,
storage requirement, computational time, and the tradeoffs among them. We use the synthetic
data for scalability test. We show that our method works well for both types of data.

5.2.4 Mining precision

For mining precision, we compare the result of our method with the solution to the traditional
problem (see Problem 1). We use the standard association rule mining algorithm Apriori [4]
to discover exactly all frequent itemsets for the traditional problem. Given a revised threshold
τ ′ in our method, the mining precision is measured in terms of overall false positive rate F+

τ ′
and overall false negative rate F−

τ ′ . Let F be the set of Bloom filters of those frequent itemsets
discovered by Apriori, and F ′ be the set of Bloom filters discovered by our algorithm. Then

• Overall false positive rate: F+
τ ′ = |F ′−F |

|F ′| .

• Overall false negative rate: F−
τ ′ = |F−F ′|

|F ′| .

Note that the overall false positive and false negative rates are not exactly the false positive
and false negative rates discussed in Sect. 4.3. Given a data set and a data mining threshold,
the false positive and false negative rates studied in Sect. 4.3 are the theoretical probabilities
particular to each itemset, while the overall false positive and false negative rates are the
experimental results for the whole data set. Statistically, one can expect a positive correlation
between the two measurements.
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Table 1 Experiment parameters and their default values

Parameter Meaning default value

k Number of hash functions used for generating Bloom filters 30

τ Frequency threshold for traditional data mining problem 1%

α Coefficient for revised threshold τ ′ = τ + α · 2−k 0

g Number of groups 4

5.2.5 Storage requirement

The storage requirement is measured in terms of the length of Bloom filters and the num-
ber of transactions that an outsourced server needs to store. If there are multiple groups of
transactions represented by Bloom filters of different lengths, then the storage requirement
is the sum of the product of Bloom filter length and number of transactions in each group.
Let there be g groups. For each group i , let the length of Bloom filters be mi and the number
of transactions Ni . Then

Storage requirement =
g∑

i=1

mi Ni .

5.2.6 Experiment parameters

Table 1 gives the parameters used in our experiments as well as their default values. In our
experiments, unless otherwise indicated, only one parameter is changed at a time while others
are kept at their default values.

The number k of hash functions is the optimal parameter to determine the length mi of
Bloom filters in each group i based on the average length ni of transactions in the group; that
is, k = mi

ni
ln 2. The same k is used across all groups.

Recall that for any itemset, the average difference of the revised frequency and the original
frequency is upper-bounded by 2−k (see Eq. 7). We use the coefficient α (where 0 ≤ α ≤ 1)
to calculate the revised frequency threshold τ ′ = τ + α · 2−k . This coefficient is used to
balance between the overall false positive and false negative rates.

When the transactions are divided into multiple groups, the grouping is based on the dis-
tribution of transaction size. In our experiments, the grouping is carried out by the following
method. Let n1 be the average length of transactions in a dataset. The transactions are firstly
divided into two groups such that Group 1 contains those transactions whose lengths are
not greater than n1 and otherwise for Group 2. Likewise, Group 2 is further divided into
two groups. The grouping operation is continued until the original dataset is divided into g
groups.

5.3 Experimental results

5.3.1 Data mining time versus data conversion time

In the first set of experiments, we study the data mining time versus the data conversion time
by changing the number k of hash functions from 25 to 40.

Figure 2 shows that the time of mining frequent itemsets is much more than the time of
converting raw data to Bloom filter representation, the more transactions, the more mining
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Fig. 2 Data mining time versus
data conversion time
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Fig. 3 Changing mining thresholds where g = 4, k = 30, and α = 0

time. This result reveals that the mining process takes the major part of running time. It veri-
fies the worthiness of pre-processing (i.e., data format conversion before outsourcing mining
tasks).

5.3.2 Change mining thresholds

In the second set of experiments, we study the mining precision and running time by changing
the frequency threshold τ from 0.5 to 2%. Other parameters are kept their default values, i.e.,
g = 4, k = 30, and α = 0.

Figure 3 shows that the false positive rate is less than 6% for datasets BMS-WebView-1
and BMS-WebView-2, and less than 1% for datatset BMS-POS. For all datasets, the running
time is decreasing with mining threshold. The reason is that a larger mining threshold will
cause fewer frequent itemsets to be discovered in a shorter time. In addition, the experiments
on dataset BMS-POS require more time than those on datasets BMS-WebView-1 and BMS-
WebView-2 because dataset BMS-POS contains approximately 6–8 times more transactions
than other two datasets.

The false negative rates are 0 for all datasets when α = 0. We also run experiments for
the revised frequency threshold τ ′ = τ + α · 2−k when α varies from 0.2 to 1.0 with an
increment of 0.2. Since our experimental results are the same as compared with the cases for
which α = 0, the mining precision is not sensitive to the change of frequency threshold in
our experiments. Therefore, in the following, we use τ = 1% and α = 0 and only consider
the false positive in our analysis.

123



Outsourcing data mining tasks 115

0

40

80

120

160

200

20 25 30 35 40

S
to

ra
ge

 (
M

eg
a-

bi
t)

BM S-WebView-1

BM S-WebView-2

BM S-POS

0

2

4

6

8

20 25 30 35 40

R
un

ni
ng

 T
im

e 
(m

in
)

BM S-WebView-1

BM S-WebView-2

BM S-POS

0

10

20

30

40

20 25 30 35 40

Number of Hash Functions Number of Hash Functions

Number of Hash Functions

F
al

se
 P

os
iti

ve
 R

at
e 

(%
)

BM S-WebView-1

BM S-WebView-2

BM S-POS

Fig. 4 Changing number of hash functions where g = 4, τ = 1%, and α = 0

5.3.3 Change number of hash functions

In the third set of experiments, we study the mining precision, computation cost, and storage
requirement with the change of the number k of hash functions. We change k = from 20 to
40 and keep the other parameters at their default values, i.e., g = 4, τ = 1%, and α = 0.

Figure 4 shows the mining precision with the change of k. There is a globally decreasing
trend of false positive rate for each real dataset. For dataset BMS-POS, the false positive rate
is nearly 5% for k = 20, and is less than 1% for k ≥ 25. For datasets BMS-WebView-1 and
BMS-WebView-2, the false positive rates are below 5% for k ≥ 30. It also shows that the
running time changes slightly with k. The running time is around 8 min for dataset BMS-POS
and within 1 min for datasets BMS-WebView-1 and BMS-WebView-2. The storage require-
ment is linearly increasing with k for all datasets based on the figure. The reason is that
the larger the k, the longer the Bloom filters, and the more storage is required to store the
Bloom filters. The experimental results show that high mining precision can be achieved by
increasing the number of hash functions. Consequently, the storage requirement increases
linearly due to the use of longer Bloom filters.

5.3.4 Change number of groups

In the fourth set of experiments, we study the mining precision, computation cost, and storage
requirement by changing the number g of groups from g = 2 to 5. The other parameters are
kept at their default values, i.e., k = 30, τ = 1%, and α = 0.

Figure 5 shows that the false positive rate decreases with the number of groups. For data-
sets BMS-WebView-1 and BMS-WebView-2, the false positive rate can be as low as 5% for
g ≥ 3; whereas for dataset BMS-POS, the false positive rate is less than 2.5% for g ≥ 2.
It also shows that running time and storage requirement change little with parameter g. The
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results of this set of experiments reveal that high mining precision can be achieved with larger
number of groups without increasing much the storage requirement and the running time.

5.3.5 Scalability

In the last set of experiments, we use synthetic datasets Syn1, Syn2, …, and Syn4 to test the
scalability of our algorithm with respect to the running time, mining precision, and storage
requirement. We let k = 20 and keep other parameters at their default values, i.e., g = 4,
τ = 1%, and α = 0.

Figure 6 shows that the false positive rate for all synthetic datasets is no more than 1%,
and that the running time and the storage requirement increase linearly with the number of
transactions which is scaled up from 100 K in dataset Syn1 to 750 K in dataset Syn4. The
scalability is also verified by experiments for k > 20 (e.g., k = 25 and 30) with zero false
positive rate.

From the experimental results, we can conclude that the running time and storage require-
ment are scalable with the number of transactions while the mining precision is reasonably
high.

5.4 Summary of experiments

One can draw the following conclusions from out experiments: (1) in the various cases of
our experiments, zero false negative rate can be achieved. This result is not sensitive to the
change of mining threshold; (2) by increasing the number of hash functions in formulating
Bloom filters, the false positive rate decreases at the price of higher storage requirement; (3)
by increasing the number of groups in data mining, the false positive rate decreases without
increasing the running time or the storage requirement; and (4) the running time and the
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storage requirement are scalable with the number of transactions that are processed in data
mining.

6 Conclusions

The contribution of this paper is threefold. First, we proposed a new approach to outsourc-
ing association rule mining tasks while protecting BI and customer privacy. The proposed
approach is different from previous solutions in that it can protect BI and customer privacy
while outsourcing mining tasks, at the same time, maintain the precision of mining results.
Second, we performed theoretical analysis on the false positive and false negative rates in
data mining. We also estimated the upper and lower bounds for the mining errors. Third,
we investigated the tradeoffs between mining precision and storage requirement. Rigorous
experiments were conducted on typical real and synthetic datasets showing that our approach
can save storage significantly without sacrificing much mining precision, security level, and
running time.

We are planning to investigate how to protect BI and customer privacy while outsourcing
other mining tasks such as decision tree mining. It is also interesting to study privacy pre-
serving techniques for mining specific types of frequent itemsets, such as maximum itemsets
and closed itemsets.
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