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Abstract In recent years the development of computational techniques that build models
to correctly assign chemical compounds to various classes or to retrieve potential drug-like
compounds has been an active area of research. Many of the best-performing techniques for
these tasks utilize a descriptor-based representation of the compound that captures various
aspects of the underlying molecular graph’s topology. In this paper we compare five dif-
ferent set of descriptors that are currently used for chemical compound classification. We
also introduce four different descriptors derived from all connected fragments present in the
molecular graphs primarily for the purpose of comparing them to the currently used des-
criptor spaces and analyzing what properties of descriptor spaces are helpful in providing
effective representation for molecular graphs. In addition, we introduce an extension to exis-
ting vector-based kernel functions to take into account the length of the fragments present
in the descriptors. We experimentally evaluate the performance of the previously introduced
and the new descriptors in the context of SVM-based classification and ranked-retrieval on
28 classification and retrieval problems derived from 18 datasets. Our experiments show that
for both of these tasks, two of the four descriptors introduced in this paper along with the
extended connectivity fingerprint based descriptors consistently and statistically outperform
previously developed schemes based on the widely used fingerprint- and Maccs keys-based
descriptors, as well as recently introduced descriptors obtained by mining and analyzing the
structure of the molecular graphs.
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1 Introduction

Discovery, design and development of new drugs is an expensive and challenging process.
Any new drug should not only produce the desired response to the disease but should do so
with minimal side effects. One of the key steps in the drug design process is the identification
of the chemical compounds (hit compounds or just hits) that display the desired and repro-
ducible behavior against the specific biomolecular target [31]. This represents a significant
hurdle in the early stages of drug discovery. Therefore, computational techniques that build
models to correctly assign chemical compounds to various classes or retrieve compounds of
desired class from a database have become popular in the pharmaceutical industry.

Over the last 20 years extensive research has been carried out to identify representations
of molecular graphs that can build good classification models or retrieve actives from a
database in an effective way. Towards this goal, a number of different approaches have been
developed that represent each compound by a set of descriptors that are based on frequency,
physiochemical properties as well as topological and geometric substructures (fragments)
[3,4,17,23,36,38,44].

Historically, the best performing and most widely used descriptors have been based on
fingerprints, which represent each molecular graph by a fixed length bit-vector derived by
enumerating all bounded length paths in the graph (e.g., [3]), fingerprints that consists of
fragments of increasing size around atoms (Extended connectivity based descriptors [22,36]),
and on sets of fragments that have been identified a priori by domain experts (e.g., Maccs keys
[4,14]). However, in recent years, research in the data mining community has generated new
classes of descriptors based on frequently occurring substructures [17] and selected cycles
and trees [23] that have been shown to achieve promising results.

In this paper, we try to understand which aspects of the molecular graph are important
in providing effective descriptor-based representations in the context of SVM-based chemi-
cal compound classification and ranked-retrieval. We also study the effectiveness of various
descriptor-based similarity measures for both deriving kernel functions for SVM-based clas-
sification and for ranked-retrieval. The five previously developed descriptors that we study
are fingerprints [10], extended connectivity fingerprints [5,36], Maccs keys [4], Cycles and
trees [23] and frequent subgraph-based descriptors [17]. Each of these descriptors represent
certain inherent choices that are made in designing any substructure based descriptor space.
In order to better understand the strengths and weaknesses of the design choices and their
impact on classification and retrieval performance, we also introduce a new set of fragment-
based descriptors. These descriptors are derived from the set of all connected fragments
present in the molecular graphs (graph fragments or GF) and three of its subsets.

We perform a detailed analysis of the design choices of these nine descriptors and also
conduct an experimental study on these descriptors using 28 different classification and
retrieval problems derived from 18 datasets. Our study compares the performance achieved
by the various descriptors and provides key insights on how the topology, discovery method,
exactness and completeness of representation affects the performance. Our experiments also
show that for both the classification and the retrieval tasks the GF descriptors are equivalent
to extended connectivity fingerprints and consistently and statistically outperformed all the
other methods studied in this paper. Moreover, a kernel function introduced in this paper that
takes into account the length (size) of the fragments present in the set of descriptors lead to
better overall results, especially when used with the GF-based descriptors.
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The rest of the paper is organized as follows. Section 2 provides some background on the
molecular graph representation of chemical compounds. Section 3 describes the previously
developed descriptors. Section 4 provides a detailed description of the characteristics of
various descriptor spaces. Section 5 describes the various descriptor spaces introduced in
this paper. Section 6 provides a description of the various kernel functions used. Section 7
contains experimental evaluation techniques and results. Section 8 contains discussion of the
various descriptors in the light of the results and provides concluding remarks on this work.

2 Representation of compounds

In this paper we represent each compound by its corresponding molecular graph [27]. The
vertices of these graphs correspond to the various atoms (e.g., carbon, nitrogen, oxygen,
etc.), and the edges correspond to the bonds between the atoms (e.g., single, double, etc.).
Each of the vertices and edges has a label associated with it. The labels on the vertices
correspond to the type of atoms and the labels on the edges correspond to the type of bonds.
Specifically, we use atomic numbers or a unique identifiers for each atomic number as the
atom typing for vertices. For the edge labels, we use separate integers or identifiers for
single, double and triple bonds. We also apply two commonly used structure normalization
transformations [31]. First, we label all bonds in aromatic rings as aromatic (i.e., a different
edge-label), and second, we remove the hydrogen atoms that are connected to carbon atoms
(i.e., hydrogen-suppressed chemical graphs). To generate fingerprints and Maccs keys we
use the Smiles [3] representation as an input.

3 Overview of existing descriptor spaces

3.1 Fingerprints (fp-n)

Fingerprints are used to encode structural characteristics of a chemical compound into a
fixed bit vector and are used extensively for various tasks in chemical informatics. These
fingerprints are typically generated by enumerating all cycles and linear paths up to a given
number of bonds and hashing each of these cycles and paths into a fixed bit-string [3,10].
The specific bit-string that is generated depends on the number of bonds, the number of
bits that are set, the hashing function, and the length of the bit-string. The key property
of these fingerprint descriptors is that they encode a very large number of sub-structures
into a compact representation. Many variants of these fingerprints exist, some use predefined
structural fragments in conjunction with the fingerprints (Unity fingerprints [6]), others count
the number of times a bit position is set (hologram [7]), etc. In [28], it is shown that the
performance of most of these fingerprints is comparable. We will refer to these descriptors
as fp-n where n is the number of bits that are used.

3.2 Extended connectivity fingerprints (ECFP)

Molecular descriptors and fingerprints based on the extended connectivity concept have been
described by several authors [22,36]. Recently, these fingerprints have been popularized
by their implementation within Pipeline Pilot [5]. These fingerprints are generated by first
assigning some initial label to each atom and then applying a Morgan type algorithm [33]
to generate the fingerprints. Morgan’s algorithm consists of l iterations. In each iteration,
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a new label is generated and assigned to each atom by combining the current labels of the
neighboring atoms (i.e, connected via a bond). The union of the labels assigned to all the
atoms over all the l iterations are used as the descriptors to represent each compound.

The key idea behind this descriptor generation algorithm is to capture the topology around
each atom in the form of shells whose radius ranges from 1 to l. Thus, these descriptors can
capture rather complex topologies. The value for l is a user supplied parameter and typically
ranges from two to five.

To control the length of the labels they are often represented by fixed-width integers (e.g
32 bits), and the new label is generated by applying an arithmetic or logical operation on the
labels of the neighboring atoms. As a result, the same label can potentially be assigned to
multiple atoms, even when the topology of their surrounding shells are different. However,
detailed studies have shown that such “collisions” are usually rare [5,36]. We will refer to
this descriptor as ECFP.

3.3 Maccs keys (MK)

Molecular Design Limited (MDL) created the key based fingerprints (Maccs Keys) [4] based
on pattern matching of a chemical compound structure to a pre-defined set of structural
fragments that have been identified by domain experts [18]. Each such structural fragment
becomes a key and occupies a fixed position in the descriptor space. This approach relies on
pre-defined rules to encapsulate the essential molecular descriptors a-priori and does not learn
them from the chemical dataset. This descriptor space is notably different from fingerprint
based descriptor space. Unlike fingerprints, no folding (hashing) is performed on the sub-
structures. We will use the 166 structural keys by MDL and will refer to this descriptor space
as MK.

3.4 Cyclic patterns and trees (CT)

Horovath et al. [23] developed a method that is based on representing every compound as a
set of cycles and certain kinds of trees. In particular, the idea is to identify all the biconnected
components (blocks) of a chemical graph. Once these blocks are identified, the first set of
features is generated by enumerating up to a certain number of simple cycles (bounded
cyclicity) for the blocks. Once the cycles are identified, all the blocks of the chemical graph
are deleted. The resulting graph is a collection of leftover trees forming a forest. Each such tree
is used as a descriptor. The final descriptor space is the union of the cycles and leftover trees.
The tree patterns used in this representation are of a specific topology and size that depends
on the position of blocks in the chemical graph. We will refer to this descriptor space as CT.

3.5 Frequent sub-structures (FS)

A number of methods have been proposed in recent years to find frequently occurring sub-
structures in a chemical graph database [24,30,34,46]. Frequent sub-structures of a chemical
graph database D are defined as all sub-structures that are present in at least σ (σ ≤ |D|) of
compounds of the database, where σ is the absolute minimum frequency requirement (also
called absolute minimum support constraint). These frequent sub-structures can be used as
descriptors for the compounds in that database. One of the important properties of the sub-
structures generated, like Maccs Keys, is that they can have arbitrary topology. Moreover,
every sub-structure generated is connected and frequent (as determined by the minimum
support constraint σ ).
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Descriptor space formed out of frequently occurring sub-structures depends on the value
of σ . Therefore, unlike the Maccs keys, the descriptor space can change for a particular
problem instance if the value of σ is changed. Moreover, unlike fingerprints, all frequent
subgraphs irrespective of their size (number of bonds) form the descriptor space. A potential
disadvantage of this method is that it is unclear how to select a suitable value of σ for a
given problem. A very high value will fail to discover important sub-structures whereas a
very low value will result in combinatorial explosion of frequent subgraphs. We will refer to
this descriptor space as FS.

4 Characteristics of descriptor spaces

A careful analysis of the five descriptor spaces described in Sect. 3 illustrate four dimensions
along which these schemes compare with each other and represent some of the choices that
have been explored in designing fragment-based (or fragment-derived) descriptors for che-
mical compounds. Table 1 summarizes the characteristics of these descriptor spaces along the
four dimensions. The first dimension is associated with whether the fragments are determined
directly from the dataset at hand or they have been pre-identified by domain experts. Maccs
keys is an example of a descriptor space whose fragments have been determined a priori
whereas in all other schemes used in this study, the fragments are determined directly from
the dataset. The advantage of an a priori approach is that sub-structures of arbitrary topology
can form a part of the descriptor space. Moreover, the sub-structures selected encode domain
knowledge in a compact descriptor space. But it also has a disadvantage of potentially not
being able to adapt to the characteristics for a particular dataset and classification problem.

The second dimension is associated with the topological complexity of the actual frag-
ments. On one end of the spectrum, schemes like fingerprints use rather simple topologies
consisting of paths and cycles, whereas on the other end, frequent sub-structure-based des-
criptors allow topologies with arbitrary complexity. Topologically complex fragments along
with simple ones might enrich the descriptor space.

The third dimension is associated with whether or not the fragments are being precisely
represented in the descriptor space. For example, most schemes generate descriptors that

Table 1 Design choices made by the descriptor spaces

Topological complexity Generation Precise Complete
coverage

Previously developed descriptors

MK Low to high Static Yes Maybe

fp Low Dynamic No Yes

CT Medium Dynamic Yes Yes

FS Low to high Dynamic Yes Maybe

ECFP Low to high Dynamic Maybe Yes

GF-based descriptors

PF Low Dynamic Yes Yes

TF Medium Dynamic Yes Maybe

AF Medium Dynamic Yes Yes

GF Low to high Dynamic Yes Yes
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are precise in the sense that there is a one-to-one mapping between the fragments and the
dimensions of the descriptor space. In contrast, due to the hashing approach that they use
or the fixed-length of their representation, descriptors such as fingerprints and extended
connectivity fingerprints lead to imprecise representations (i.e., many fragments can map to
the same dimension of the descriptor space). Depending on the number of these many-to-one
mappings, these descriptors can lead to representations with varying degree of information
loss.

Finally, the fourth dimension is associated with the ability of the descriptor space to
cover all (or nearly all) of the dataset. Descriptor spaces created from fingerprints, extended
connectivity fingerprints, and cycles & trees are guaranteed to contain fragments or hashed
fragments from each one of the compounds. On the other hand, descriptor spaces correspon-
ding to Maccs keys and frequent sub-structures may lead to a descriptor-based representation
of the dataset in which some of the compounds have no (or a very small number) of des-
criptors. A descriptor space that covers all the compounds of a dataset has the advantage of
encoding some amount of information for every compound.

From the above discussion it seems that descriptor spaces that are determined dynamically
from the dataset, use fragments with simple and complex topologies, lead to precise represen-
tations, and have a high degree of coverage may be expected to perform better in the context
of chemical compound classification and retrieval as they allow for a better representation of
the underlying compounds. The descriptors that come closest to satisfying all the desirable
properties are ECFP, CT and FS. ECFP virtually satisfies all of the properties except precise
representation since there is the possibility of collisions [5,36]. On the other hand, CT does
not attempt to enumerate trees (only cycles are enumerated). Furthermore, the tree topologies
depend on the location of blocks in the molecular graph. Lastly, FS suffers from potential
incomplete coverage depending on the support threshold.

5 Graph fragment based descriptor spaces

To better study the impact of the above design choices, we introduce a new descriptor space
that we believe better captures the desired characteristics along the above four dimensions.
Like FS, this descriptor space is determined dynamically from the dataset, the topology of
the fragments that it consists of are arbitrary connected fragments and leads to a precise
representation. However, unlike FS, which may suffer from partial coverage, the new des-
criptor is ensured to have 100% coverage by eliminating the minimum support criterion and
generating all fragments. In order to control the exponential number of fragments generated
we replace the minimum support criterion in FS with an upper bound. Thus, this descriptor
space consists of all connected fragments up to a given length l (i.e., number of bonds) that
exist in the dataset at hand. We will refer to this descriptor space as Graph Fragments (GF).
The algorithm to efficiently generate this descriptor space is described in Appendix A.

In addition, we also derive three other sets of fragments from the set of all graph fragments.
The first, termed as Tree Fragments (TF), is the collection of all fragments that have at least
one node of degree greater than two and contains no cycles. This set forms all the tree
fragments. The second set, called Path Fragments (PF), is just the set of linear paths where
the degree of every node in every fragment is less than or equal to two. The third set of
fragments, called Acyclic Fragments (AF) are derived such that AF = TF ∪ PF. Table 1 also
provides a description of their properties in terms of design choices. It should be pointed out
that TF descriptors may lead to incomplete coverage when a compound is itself a linear path
of atoms.
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Note that Path Fragments are exactly the same patterns as the linear paths in finger-
prints [10] and the path-based generalized fingerprints in [38]. But ChemAxon Inc. [10] and
Swamidass et al. [38] also use cycles along with the linear paths. Also note that acyclic
fragments (AF) are also referred to as free trees. Another important observation is that any
frequent sub-structure based descriptor space is a superset of Graph-Fragments when the
minimum support threshold (σ ) is one.

6 Descriptor-based kernel functions

Given the descriptor space, each chemical compound can be represented by a vector X
whose i th dimension will have a non-zero value if the compound contains that descriptor
and will have a value of zero otherwise. The value for each descriptor that is present can be
either one, leading to a vector representation that captures presence or absence of the various
descriptors (referred to as binary vectors) or the number of times (number of embeddings)
that each descriptor occurs in the compound, leading to a representation that also captures
the frequency information (referred to as frequency vectors).

Given the above vector representation of the chemical compounds, the classification al-
gorithms that we develop in this paper use support vector machines (SVM) [39] as the
underlying learning methodology, as they have been shown to be highly effective, especially
in high dimensional spaces. One of the key parameters that affects the performance of SVM
is the choice of the kernel function (K), that measures the similarity between pairs of com-
pounds. Any function can be used as a kernel as long as, for any number n and any possible
set of distinct compounds {X1, . . . , Xn}, the n×n Gram matrix defined by Ki, j = K(Xi , X j )

is symmetric positive semidefinite. These functions are said to satisfy Mercer’s conditions
and are called Mercer kernels, or simply valid kernels.

In this paper we use the Min–Max kernel [38] as our choice of the kernel function. This
kernel was selected because it has been shown to be an effective way to measure the similarity
between chemical compound pairs and outperform Tanimoto coefficient [38] (which is the
most widely used kernel function in cheminformatics) in empirical evaluations. Given the
vector representation of two compounds X and Y , the Min–Max kernel function is given by

KM M (X, Y ) =
∑M

i=1 min(xi , yi )
∑M

i=1 max(xi , yi )
, (1)

where the terms xi and yi are the values along the i th dimension of the X and Y vectors,
respectively. Note that in the case of binary vectors, these will be either zero or one, whereas
in the case of frequency vectors these will be equal to the number of times the i th descriptor
exists in the two compounds. Moreover, note that the Min–Max kernel is a valid kernel as
it has been shown to satisfy Mercer’s conditions [38] and reduces to Tanimoto kernel in the
case of binary vectors.

One of the potential problems in using the above kernel with descriptor spaces that contain
fragments of different lengths is that they contain no mechanism to ensure that descriptors of
various lengths contribute in a non-trivial way to the computed kernel function values. This
is especially true for the GF descriptor space and its subsets in which each compound tends
to have a much larger number of longer length fragments (e.g., length six and seven) than
shorter length (e.g., length two and three). To overcome this problem we modified the above
kernel function to give equal weight to the fragments of each length. Particularly, for the
Min–Max kernel function, this is obtained as follows. Let Xl and Y l be the feature vectors
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of X and Y with respect to only the features of length l, and let L be the length of the largest
feature. Then, the length-differentiated Min–Max kernel function K∗

M M (X, Y ) is given by

K∗
M M (X, Y ) = 1

L

L∑

l=1

KM M (Xl , Y l). (2)

We will refer to this as the length-differentiated kernel function, and we will refer to the
one that do not differentiate between different length fragments as pooled kernel function.

In summary, we studied four different flavors for the Min–Max kernel function, one that is
binary and pooled, frequency and pooled, binary and length-differentiated and frequency and
length-differentiated. We also studied these four flavors of RBF kernel, but the results were
worse than Min–Max [41] so we are not including them here. We will follow the convention
of using the symbols Kb, K f , K∗

b , and K∗
f to refer to binary and pooled, frequency and

pooled, binary and length-differentiated and frequency and length-differentiated Min–Max
kernel functions, respectively.

7 Results

7.1 Datasets

The performance of the different descriptors and kernel functions was assessed on 28 dif-
ferent classification problems from 18 different datasets. The size, distribution and compound
characteristics of the 28 classification problems are shown in Table 2. Each of the 28 clas-
sification problems is unique in that it has different distribution of positive class (ranging
from 1% in H2 to 50% in C1), different number of compounds (ranging from the smallest
with 559 compounds to largest with 78,995 compounds) and compounds of different average
sizes (ranging from the 14 atoms per compound to 37 atoms per compound on an average in
C1 and H3 respectively).

The first data set that was used is a part of the Predictive Toxicology Evaluation Challenge
[11,37]. It contains data published by the US National Institute for Environmental Health
Sciences and consists of bio-assays of different chemical compounds on rodents to study
the carcinogenicity properties of the compounds. Each compound is evaluated on male rats,
female rats, male mice, and female mice, and is assigned class labels indicating the toxicity
or non-toxicity of the compound for that animal. We derive four problem sets out of this
dataset, one corresponding to each of the rodents mentioned above. These will be referred to
as P1, P2, P3, and P4.

The second dataset used in this paper is mutagenicity data from [11,21]. The muta-
genicity data set was extracted from the carcinogenic potency database (CPDB) [19] and
provides mutagenicity classes (mutagens and nonmutagens) as determined by the Salmo-
nella/microsome assay (Ames test [13]). The problem for this dataset is to distinguish between
these two classes. We will refer this dataset as C1.

The third data set is obtained from the National Cancer Institutes DTP AIDS Antiviral
Screen program [1,29]. Each compound in the data set is evaluated for evidence of anti-
HIV activity. Compounds that provided at least 50% protection were listed as confirmed
moderately active (CM). Compounds that reproducibly provided 100% protection were listed
as confirmed active (CA). Compounds neither active nor moderately active were listed as
confirmed inactive (CI). We formulated three problems out of this dataset. The first problem
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Table 2 Properties of classification problems and datasets

D N N+ NA NA+ NA− NB NB+ NB−

NCI1 38, 311 1, 805 26 34 25 28 37 27

NCI109 37, 085 1, 613 26 34 25 28 37 27

NCI123 36, 477 2, 552 26 32 25 28 34 27

NCI145 36, 594 1, 512 26 34 25 28 37 27

NCI167 73, 464 8, 648 21 24 21 22 25 22

NCI220 723 232 24 24 25 26 25 26

NCI33 36, 617 1, 239 26 35 25 28 38 27

NCI330 37, 877 1, 913 22 28 21 23 30 23

NCI41 25, 049 1, 165 26 35 26 28 38 28

NCI47 36, 857 1, 561 26 34 25 28 37 27

NCI81 37, 124 1, 881 26 33 25 28 36 27

NCI83 25, 240 1, 805 26 33 25 28 35 28

H1 37, 913 1, 157 27 37 26 29 39 28

H2 37, 061 294 27 43 26 29 45 28

A1 34, 827 12, 374 25 25 25 25 25 25

H3 1, 158 293 37 43 34 39 45 37

D1 988 82 24 27 23 25 28 25

D2 990 84 24 25 23 25 27 25

D3 1, 101 191 26 36 23 28 38 25

D4 1, 264 360 26 32 23 28 34 25

P1 407 138 18 17 19 19 18 20

P2 415 110 19 17 19 19 18 20

P3 393 103 18 16 19 19 17 20

P4 410 119 18 17 19 19 17 20

C1 604 301 14 13 15 14 14 15

M1 1, 458 268 16 14 16 16 15 17

M2 1, 458 163 16 13 16 16 14 17

M3 1, 458 85 16 13 16 16 13 17

N is the total number of compounds in the dataset. N+ is the number of positives in the dataset. NA and
NB are the average number of atoms and bonds in each compound. NA+ is the average number of atoms in
each compound belonging to the positive class and NA− is the average number of atoms in each compound
belonging to the negative class. Similarly NB+ and NB− are the corresponding numbers for bonds. The
numbers are rounded off to the nearest integer

is designed to distinguish between CM+CA and CI; the second between CA and CI, and the
third between CA and CM. We will refer to these problems as H1, H2, and H3, respectively.

The fourth data set was obtained from the Center of Computational Drug Discoverys
anthrax project at the University of Oxford [35]. The goal of this project was to discover
small molecules that would bind with the heptameric protective antigen component of the
anthrax toxin, and prevent it from spreading its toxic effects. The screen identified a set
of 12,376 compounds that could potentially bind to the anthrax toxin and a set of 22,460
compounds that were unlikely to bind to the toxin. The task for this data set was to identify
if a given a chemical compound will bind the anthrax toxin (active) or not (inactive). This
dataset problem is referred as A1.
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A fifth dataset used in this paper consists of 1,728 currently marketed drugs and each
drug compound in this dataset is marked either as Oral (O), Topical (T), Absorbent (A)
or Injectable (I) depending on the mode of administration of that drug. This dataset was
compiled mostly from the FDA’s Orange book [12] and the MDL database [8]. A detailed
description of this dataset can be found in [40]. Four tasks are defined from this dataset: to
distinguish between Oral and Absorbent D1, between Oral and Topical D2, between Oral
and Injectable D3 and between Oral and everything else (Topical + Absorbent + Injectable)
as D3.

Another dataset used in this study is the MAO (Monoamine Oxidase) dataset [16]. Mono-
amine Oxidase are enzymes that catalyze the oxidation of neurotransmitters and neuromodu-
lator called monoamines. This dataset consists of compounds that are Mono amine Oxidase
inhibitors. The compounds of this dataset have been categorized into four different classes
(0, 1, 2 and 3) based on the levels of activity, with the lowest labeled as 0 (inactive) and the
highest labeled as 3 (highest potency), all based on the IC50 values of each compound in a
MAO assay. We derive three problems from this dataset: M1 with positive class compounds
as labels 1, 2 and 3 and negative class as compounds with label 0, M2 with positive class as
labels 2 and 3 and negative class compounds as labels 0 and 1, and finally the last problem
M3 with positive class compounds as label 3 and rest of the compounds in negative class.

The rest of the datasets are derived from the PubChem website that pertain to cancer cell
lines [9]. Twelve datasets are selected from the bioassay records for twelve different types
of cancer cell lines. Each of the NCI anti-cancer screens forms a classification problem.
Since there is more than one screen available for any particular type of cancer (for example
colon cancer, breast cancer etc.), we decided to use the screen that had the most number
of compounds tested on it. Each of these bioassay records have information on the assay
type, compound identifier, activity score, outcome etc. as submitted by the depositor of the
bioassay screen. The class labels on these datasets is decided by the “outcome” field of the
bioassay which is either active or inactive. We used the original class labels associated with
each compound for this study. Table 3 proves details of the 12 different bioassays used for
this study.

All the datasets required some data cleaning. For some of the compounds we were unable
to generate the fingerprints due to the use of third party software for fingerprint generation
and impossible kekule forms and serious valence errors in raw data. Furthermore, many
compounds in these datasets were non drug-like, in that, they contained elements such as
arsenic, lead etc. All such compounds were removed from their respective datasets. The
dataset cleaning made the sets of compounds used for different descriptors exactly the same
and allowed objective comparison of the descriptor spaces. Another important observation
is that the active compounds in almost all the datasets used in this study do not fall into a
particular target activity class. In most assays, the target is either unknown (for example NCI
cancer and HIV assays, anthrax and toxicity datasets etc.) or the classification and retrieval
problems are defined to be target non-specific (for example Drug dataset). The only exception
to this is the MAO dataset that consists of Monoamine Oxidase inhibitors.

7.2 Experimental methodology

7.2.1 Classification task

The classification results were obtained by performing a 5-way cross validation on the dataset,
ensuring that the class distribution in each fold is identical to the original dataset. In each one of
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Table 3 Description of NCI
cancer screen datasets

Name (Bioassay-ID or AID) Description

NCI-H23 (NCI1) Human tumor (Non-small cell lung)

cell line growth inhibition assay

OVCAR-8 (NCI109) Human tumor (ovarian) cell line

growth inhibition assay

MOLT-4 (NCI123) Human tumor (leukemia) cell line

growth inhibition assay

SN12C (NCI145) SN12C Renal cell line

Yeast anti-cancer (NCI167) Yeast anti-cancer screen bub3 strain

CD8F1 (NCI220) In vivo anticancer screen tumor model

Mammary adenocarcinoma

UACC257 (NCI33) Human tumor (melanoma) cell line

growth inhibition assay

P388 in CD2F1 (NCI330) In vivo anticancer screen tumor model

P388 Leukemia (intraperitoneal)

PC-3 (NCI41) Human tumor (prostate) cell line growth

inhibition assay

SF-295 (NCI47) Human tumor (central nervous system)

cell line growth inhibition assay

SW-620 (NCI81) Human tumor (colon) cell line growth

inhibition assay

MCF-7 (NCI83) Human tumor (breast) cell line growth

inhibition assay

the cross validation experiments, the test-set was never considered and the algorithm used only
the training-set to generate the descriptor space representation and to build the classification
model. The exact same training and test sets were used in descriptor generation and cross
validation experiments for all the different schemes. The SVM classifier experiments were
run on Dual Core AMD Opterons with 4 GB of memory. For the SVM classifier we used the
SVMLight library [25] with all the default parameter settings except the kernel.

7.2.2 Retrieval task

We also compare the effectiveness of the different descriptor spaces for the task that is
commonly referred to as a ranked-retrieval or database screening [43]. The goal of this
task is, given a compound that has been experimentally determined to be active, to find other
compounds from a database that are active as well. Since the activity of a chemical compound
depends on its molecular structure, and compounds with similar molecular structure tend to
have similar chemical function, this task essentially maps to ranking the compounds in the
database based on how similar they are to the query compound. In our experiments, for each
dataset we used each of its active compounds as a query and evaluated the extent to which
the various descriptor spaces along with the kernel functions studied in this paper lead to
similarity measures that can successfully retrieve the other active compounds. Notice that all
the kernel functions described in Sect. 6 are valid similarity measures.
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Table 4 Support values for FS Datasets σ−% σ+% Datasets σ−% σ+%

NCI1 5.0 7.0 A1 5.0 3.0

NCI109 4.0 4.0 H3 8.0 8.0

NCI123 4.0 5.0 D1 5.0 10.0

NCI145 4.0 6.0 D2 5.0 32.0

NCI167 2.0 2.0 D3 5.0 10.0

NCI220 5.0 8.0 D4 5.0 12.0

NCI33 4.0 4.0 P1 3.0 3.0

NCI330 4.0 8.0 P2 3.0 3.0

NCI41 4.0 6.0 P3 3.0 3.0

NCI47 4.0 5.0 P4 3.0 3.0

NCI81 5.0 6.0 C1 2.0 2.0

NCI83 4.0 4.0 M1 1.5 1.75

H1 8.0 5.0 M2 1.45 1.5

H2 8.0 8.0 M3 1.25 3.0

7.2.3 Descriptor generation

All descriptors were generated on a Pentium 2.6 GHz machine with 1 GB memory. For
fingerprints, we used Chemaxon’s fingerprint program called Screen [10]. We experimented
using 256-, 512-, 1,024-, 2,048-, 4,196- and 8,192-bit length fingerprints. We used default
settings of the two parameters: number of bonds or maximum length of the pattern generated
(up to seven) and number of bits set by a pattern (three). We found that 8,192-bits produ-
ced better results (even though their performance advantage was not statistically significant
compared to 2,048- and 4,196-bit fingerprints). For this reason, we use 8,192-bit fingerprints
(fp-n where n = 8,192) in all the comparisons against other descriptors.

ECFP’s were generated using a multiplicative form of Morgan’s algorithm. The type of
descriptor space generated by this algorithm is calibrated by two variables: (i) the initial atom
label used to describe each atom and (ii) the maximum shell radius (i.e, the farthest atom
considered in terms of bond distance). For our study we used the atomic number as the initial
label for each atom and a maximum shell radius of three. Thus the fragments that form the
ECFP descriptor space are a union of all the fragments formed by taking all atoms one, two
and three bond distance away from every atom.

To generate MDL Maccs keys (166 keys) we use the MOE suite by Chemical Computing
Group [2]. For Cyclic patterns and Trees, we use 1,000 as the upper bound on the number
of cycles to be enumerated as described in [23] in our own implementation of the algorithm.
To generate frequent sub-structures, we use the FSG algorithm described in [30], although
any other frequent subgraph discovery algorithm could be used. Table 4 contains the values
of σ used for positive and negative classes in each dataset. Most of the support values are
the same or lower than in [17] for the common datasets and are derived in the same fashion
as described in [17]. The lowest support value was selected that could allow FSG to use a
reasonable amount of time and memory.

7.2.4 Kernel functions

In the context of fp-n the only kernel applicable is the binary and pooled (Kb) kernel. This
is because these hashed fingerprints are inherently binary and do not provide frequency
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information. In the context of ECFP and MK, only two kernels (Kb and K f ) are applied
as the length information for ECFP and Maccs keys were not available. For the rest of the
descriptor spaces (GF, AF, TF, PF, CT and FSG), we applied all the four kernels described
in Sect. 6.

7.3 Performance assessment measures

The classification performance was assessed by computing the ROC50 values [20], which
is the area under the ROC curve up to the first 50 false positives. This is a much more
appropriate performance assessment measure than traditional ROC value for datasets with
very small positive classes. This is because for such problem settings, a user will most likely
stop examining the highest scoring predictions as soon as he/she starts encountering a certain
number of false positives [20].

We assess the ability of a particular descriptor set to identify positive compounds in the
context of ranked-retrieval task by looking at the fraction of positive compounds that were
recovered in the top k retrieved compounds. Specifically, we report the fraction of positives
recovered in the top k retrieved compounds in a ranked-retrieval task in which every positive
compound is used as query. We call this metric normalized hit rate (NHR) and it is computed
as follows. Suppose N is the number of compounds in a dataset, N+ is the number of positive
(active) compounds in that dataset and hitsk is the number of positives found in the top k
retrieved compounds over all queries. Then, the normalized hit rate is given by

NHR = hitsk

(k N+)
· (3)

To compare the performance of a set of schemes across the different datasets, we compute
a summary statistic that we refer to as the Average Relative Quality to the Best (ARQB) as
follows: Let ri, j be the ROC50 (NHR) value achieved by the scheme j on the dataset i , and
let r∗

i be the maximum (i.e., the best) ROC50 (NHR) value achieved for this dataset over
all the schemes. Then the ARQB for scheme j is equal to (1/T )

(∑
i (ri, j/r∗

i )
)
, where T is

the number of datasets. An ARQB value of one indicates that the scheme achieved the best
results for all the datasets compared to the other schemes, and a low ARQB value indicates
a poorly performing scheme.

We used the Wilcoxon’s paired signed-rank test [15] to compare the statistical significance
of any two descriptors based on the performance measures described above. A p-value of
0.01 is used as threshold for all comparisons.

7.4 Evaluation of GF descriptors

7.4.1 Complexity of GF descriptors generation

Table 5 shows the number of graph fragments (GF) of various lengths that were generated
for each dataset as well as the time required to generate the fragments of length seven. These
results show that the number of fragments does increase considerably with l, which essentially
puts a practical upper bound on the length of the fragments that can be used for classification.
In fact, for l = 8 (not shown here), the number of fragments were about three to five times
more than that for l = 7, which made it impractical to build SVM-based classifier for many
of the datasets. However, on the positive side, the amount of time required to generate these
fragments is reasonable, and is significantly lower than that required for learning the SVM
models.
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Table 5 Numbers of GF for different lengths l

D # of fragments Runtime (in sec)

l = 3 l = 5 l = 7 for l = 7

NCI1 6,277 97,040 1,068,091 1,181

NCI109 6,305 97,322 1,069,998 1,183

NCI123 6,196 95,886 1,055,260 1,173

NCI145 6,277 96,600 1,061,262 1,173

NCI167 8,564 12,472 1,292,111 1,567

NCI220 1,575 13,272 86,000 27

NCI33 6,222 96,280 1,060,702 1,180

NCI330 7,400 10,252 98,7743 891

NCI41 5,329 81,112 862,559 830

NCI47 6,255 96,725 1,064,385 1,190

NCI81 6,297 97,095 1,070,018 1,201

NCI83 5,367 81,632 867,034 823

H1 14,387 17,143 1,420,543 1,529

H2 14,266 16,968 1,402,533 1,494

A1 3,233 66,639 733,125 504

H3 2,760 23,781 140,901 74

D1 2,129 19,068 105,886 31

D2 2,120 18,719 103,495 32

D3 2,246 20,780 120,560 42

D4 2,339 21,849 127,194 48

P1 1,220 8,017 37,973 10

P2 1,241 8,146 38,742 10

P3 1,242 8,053 38,051 10

P4 1,242 8,009 37,586 9

C1 1,137 6,575 30,081 7

M1 1,306 9,661 40,186 11

M2 1,306 9,661 40,186 11

M3 1,306 9,661 40,186 11

We have omitted the results for l equal to 2, 4 and 6 as they fit into a similar trend

7.4.2 Sensitivity on the length of GF descriptors

To evaluate the impact of the fragment length on the performance achieved by the GF
descriptors for classification and retrieval, we performed a study in which we varied the
maximum fragment length l from two to seven bonds. The results of this study are shown
in Tables 6 and 7. These results were obtained using the K∗

f kernel, which as will be shown
later, is one of the best performing kernels for GF descriptors.

From the results in Table 6 we can see that the classification performance tends to improve
as l increases, and the scheme that use up to length seven fragments achieve the best overall
performance (in terms of ARQB). Moreover, all of these differences are statistically signifi-
cant. On the other hand the retrieval performance in terms of ARQB, as shown in Table 7,
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Table 6 ROC50 results for the
K∗

f kernel for different lengths
using GF descriptors

D Up to Up to Up to Up to Up to Up to
l = 2 l = 3 l = 4 l = 5 l = 6 l = 7

NCI1 0.294 0.298 0.306 0.313 0.321 0.329

NCI109 0.255 0.277 0.292 0.305 0.312 0.317

NCI123 0.230 0.245 0.247 0.253 0.262 0.269

NCI145 0.302 0.316 0.332 0.346 0.358 0.369

NCI167 0.047 0.056 0.058 0.061 0.064 0.065

NCI220 0.295 0.288 0.286 0.291 0.288 0.287

NCI33 0.254 0.274 0.293 0.310 0.320 0.328

NCI330 0.311 0.339 0.351 0.358 0.361 0.363

NCI41 0.286 0.312 0.329 0.339 0.348 0.358

NCI47 0.249 0.270 0.283 0.296 0.307 0.314

NCI81 0.237 0.256 0.265 0.270 0.272 0.276

NCI83 0.255 0.280 0.293 0.300 0.302 0.311

H1 0.236 0.246 0.250 0.253 0.255 0.259

H2 0.561 0.572 0.584 0.592 0.601 0.609

A1 0.138 0.138 0.154 0.170 0.200 0.207

H3 0.630 0.638 0.646 0.651 0.657 0.660

D1 0.252 0.247 0.239 0.253 0.263 0.278

D2 0.575 0.584 0.595 0.600 0.605 0.601

D3 0.485 0.489 0.493 0.492 0.498 0.501

D4 0.446 0.463 0.477 0.481 0.484 0.487

P1 0.676 0.687 0.694 0.693 0.687 0.686

P2 0.634 0.646 0.651 0.651 0.656 0.659

P3 0.632 0.643 0.642 0.644 0.643 0.648

P4 0.654 0.660 0.666 0.668 0.667 0.669

C1 0.780 0.789 0.802 0.811 0.823 0.830

M1 0.484 0.490 0.487 0.476 0.472 0.472

M2 0.635 0.654 0.658 0.659 0.659 0.663

M3 0.777 0.784 0.784 0.781 0.784 0.787

ARQB 0.891 0.925 0.946 0.965 0.983 0.997

saturates as l increases from six to seven. Also, results with l equal to five, six and seven
are not statistically different from each other for ranked-retrieval. This indicates that, for
ranked-retrieval task, larger fragments do not improve performance in the context of GF
fragments.

7.4.3 Effectiveness of different kernels for GF descriptor

Tables 8 and 9 shows the classification and ranked-retrieval performance of the different
kernel functions described in Sect. 6 for the GF descriptors. These results were obtained for
GF descriptors containing fragments of length up to seven.

These results show that the best performing kernel function is the K∗
f (length-differentiated

frequency vectors). Thus, giving equal weights to the fragments of various lengths leads to
better results. Note that for classification results in Table 8, based on the Wilcoxon statistical
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Table 7 NHR (k = 50) results
for the K∗

f kernel for different
lengths using GF descriptors

D Up to Up to Up to Up to Up to Up to
l = 2 l = 3 l = 4 l = 5 l = 6 l = 7

NCI1 0.313 0.327 0.335 0.340 0.341 0.342

NCI109 0.280 0.296 0.306 0.309 0.309 0.310

NCI123 0.295 0.308 0.314 0.315 0.315 0.315

NCI145 0.295 0.314 0.324 0.327 0.328 0.329

NCI167 0.216 0.221 0.223 0.224 0.225 0.225

NCI220 0.303 0.305 0.303 0.303 0.302 0.304

NCI33 0.243 0.252 0.257 0.259 0.259 0.260

NCI330 0.334 0.345 0.351 0.356 0.360 0.363

NCI41 0.263 0.279 0.289 0.293 0.295 0.296

NCI47 0.291 0.307 0.316 0.319 0.320 0.321

NCI81 0.288 0.304 0.312 0.314 0.315 0.314

NCI83 0.285 0.297 0.304 0.309 0.312 0.313

H1 0.201 0.205 0.209 0.213 0.214 0.215

H2 0.265 0.278 0.290 0.296 0.299 0.298

A1 0.568 0.580 0.588 0.592 0.593 0.593

H3 0.524 0.533 0.535 0.540 0.541 0.541

D1 0.109 0.110 0.113 0.115 0.118 0.119

D2 0.243 0.249 0.251 0.250 0.252 0.251

D3 0.224 0.228 0.232 0.236 0.237 0.237

D4 0.355 0.360 0.366 0.369 0.370 0.371

P1 0.381 0.387 0.390 0.391 0.389 0.389

P2 0.297 0.301 0.303 0.302 0.302 0.300

P3 0.312 0.313 0.314 0.317 0.315 0.313

P4 0.318 0.326 0.328 0.327 0.327 0.327

C1 0.517 0.519 0.520 0.522 0.525 0.531

M1 0.333 0.332 0.329 0.335 0.331 0.327

M2 0.312 0.326 0.319 0.310 0.319 0.310

M3 0.339 0.337 0.340 0.340 0.337 0.337

ARQB 0.944 0.971 0.985 0.992 0.996 0.996

test of p = 0.01, the differences between K∗
b and K∗

f are not significant, but K∗
f is statistically

better than Kb. Also, K∗
f is statistically better than K f at p = 0.05. Moreover, the table shows

that including frequency information leads to better results. For ranked-retrieval results in
Table 9, K∗

f is statistically better than Kb at p = 0.05. But all the other pairwise comparisons
of the different kernels show statistically equivalent performance to each other.

7.5 Comparison of descriptor spaces

7.5.1 Classification performance

To compare the classification performance of the various descriptor spaces we performed
a series of experiments in which all the kernels described in Sect. 6 that can be used in
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Table 8 ROC50 values for the
GF descriptors using the different
kernel functions

Datasets (Kb) (K f ) (K∗
b) (K∗

f )

NCI1 0.326 0.326 0.321 0.329

NCI109 0.313 0.310 0.305 0.317

NCI123 0.255 0.263 0.258 0.269

NCI145 0.362 0.365 0.363 0.369

NCI167 0.059 0.061 0.060 0.065

NCI220 0.259 0.279 0.286 0.287

NCI33 0.317 0.335 0.313 0.328

NCI330 0.352 0.353 0.356 0.363

NCI41 0.356 0.372 0.348 0.358

NCI47 0.308 0.322 0.306 0.314

NCI81 0.267 0.274 0.266 0.276

NCI83 0.293 0.308 0.297 0.311

H1 0.247 0.258 0.249 0.259

H2 0.607 0.616 0.602 0.609

A1 0.194 0.202 0.198 0.207

H3 0.670 0.666 0.659 0.660

D1 0.330 0.293 0.299 0.278

D2 0.577 0.580 0.591 0.601

D3 0.472 0.486 0.482 0.501

D4 0.492 0.485 0.497 0.487

P1 0.698 0.681 0.703 0.686

P2 0.644 0.662 0.645 0.659

P3 0.671 0.648 0.675 0.648

P4 0.651 0.656 0.656 0.669

C1 0.811 0.823 0.815 0.830

M1 0.458 0.465 0.469 0.472

M2 0.634 0.641 0.654 0.663

M3 0.791 0.785 0.788 0.787

ARQB 0.966 0.978 0.971 0.987

conjunction with the nine descriptor spaces (fp-n, MK, CT, FS, ECFP, GF, AF, TF, and
PF) are employed to classify the various datasets. In order to objectively compare these nine
schemes, in Table 10 we only compare the ROC50 results achieved by the two kernels (binary
and pooled Kb and frequency and pooled K f ) that are applicable to most of the descriptor
spaces. In addition, Table 11 shows whether or not these schemes in combination with the
kernels used achieve ROC50 results that are statistically different from each other. The results
for GF, AF, TF, and PF were obtained for fragments up to length seven.

Comparing between the different descriptors, these results show that the GF, AF and ECFP
descriptors lead to ROC50 results that are statistically better than that achieved by all other
previously developed schemes. From a statistical point, GF, AF and ECFP descriptors is
equivalent to each other for the same kernel function. In addition, the performance achieved
by both TF and PF is also good and in general better than that achieved by the earlier
approaches.
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Table 9 NHR (k = 50) values
for the GF descriptors using the
different kernel functions

Datasets (Kb) (K f ) (K∗
b) (K∗

f )

NCI1 0.334 0.333 0.333 0.342

NCI109 0.304 0.306 0.305 0.310

NCI123 0.306 0.309 0.311 0.315

NCI145 0.323 0.324 0.323 0.329

NCI167 0.222 0.214 0.215 0.225

NCI220 0.314 0.315 0.314 0.304

NCI33 0.252 0.251 0.251 0.260

NCI330 0.358 0.349 0.346 0.363

NCI41 0.291 0.290 0.289 0.296

NCI47 0.314 0.313 0.310 0.321

NCI81 0.306 0.307 0.307 0.314

NCI83 0.308 0.308 0.309 0.313

H1 0.217 0.226 0.222 0.215

H2 0.292 0.304 0.309 0.298

A1 0.592 0.584 0.586 0.593

H3 0.546 0.536 0.538 0.541

D1 0.117 0.124 0.130 0.119

D2 0.250 0.237 0.243 0.251

D3 0.242 0.251 0.250 0.237

D4 0.376 0.374 0.372 0.371

P1 0.385 0.384 0.383 0.389

P2 0.286 0.288 0.293 0.300

P3 0.311 0.302 0.302 0.313

P4 0.326 0.327 0.330 0.327

C1 0.540 0.531 0.532 0.531

M1 0.329 0.331 0.328 0.327

M2 0.310 0.323 0.326 0.310

M3 0.336 0.368 0.380 0.337

ARQB 0.974 0.979 0.982 0.983

Comparing between fp-n, CT, MK, and FS, we can see that the fingerprint descriptors
achieve the best overall results, whereas MK tend to perform the worst. However, from a
statistical significance standpoint CT, MK, and FS are equivalent.

Another interesting observation is that the PF scheme (Kb) achieves better results than
fp-n (the difference is significant at p = 0.05). Since the fp-n descriptors were also generated
by enumerating paths of length up to seven (and also cycles), the performance difference
suggests that the folding that takes place due to the fingerprint’s hashing approach negatively
impacts the classification performance. This result is in agreement with [38] albeit we perform
this comparison on a much higher number of datasets.

Comparing the performance between the two kernels (Kb and K f ) for different descrip-
tors it can be observed that K f generally performs better than Kb in terms of ARQB. The
differences between the two kernels is generally statistically significant at p = 0.05 for most
descriptors, although it is not significant p = 0.01. Thus, adding frequency information helps
in improving classification performance.
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7.5.2 Retrieval performance

For the task of ranked-retrieval we experimented using all possible combinations of the
nine descriptor spaces and four kernel functions. Again, due to the reason mentioned in the
Sect. 7.5.1, in Table 12 we only show the NHR results for (Kb and K f ) for each descriptor
space. Table 13 shows the extent to which the relative performance of various schemes are
statistically significant.

Comparing these results with those for the classification task shows similar trends with
respect to the relative performance of the various descriptor spaces. In the case of ranked-
retrieval, the ECFP descriptor with K f is the best scheme in terms of ARQB outperforming
most of the other schemes. Also, GF-based descriptors (GF, AF and TF) and ECFP are statis-
tically equivalent and outperform other descriptors. Moreover, using frequency information
in the kernel function (K f ) leads to better results than just the binary presence/absence. An
interesting observation is that although CT, FS and MK form the set of schemes that perform
the worst among all the nine descriptors, fp-n is only slightly better than CT, MK or FS in
terms of ARQB and statistically all the four are equivalent. This is not the case in classifica-
tion where fp-n does significantly better than CT, MK and FS. Also the average performance
of the AF, TF, and PF descriptors (as measured by AQRB) is higher than fp-n, CT, MK and
FS as well.

7.6 Comparison with published results

In recent years many new descriptors and graph kernels have been introduced in the data-
mining literature and their classification performance has been successfully assessed. The
performance assessment measure used in those studies is primarily area under the ROC curve.
In Table 14 we compare the ROC results of GF, AF, TF, and PF with the results of recently
introduced Cycles and Trees (CT) [23] , random-walk based graph kernels (RWK) [26],
weighted decomposition kernels (WDK) [32] and Frequent subgraph based descriptors [17].
We use the length-differentiated Min–Max kernel (K∗

f ) for GF-based descriptors and its sub-
sets. The results could only be compared for the common datasets with those used in these
studies. We use the default misclassification cost factor (1.0) and do not optimize for regula-
rization parameter in GF-based descriptors and its subsets. We compare our results with the
best results (Gaussian version of intersection kernel described in [23]) of Cycles and Trees
using misclassification cost of 1.0. In the case of WDK, the authors only report numbers
with misclassification cost set to match the positive to negative compound ratio. They also
optimize the regularization parameter. Hence we had to use best results from those numbers.
For RWK, the code was provided to us by Mr. Kashima. We report RWK numbers for PTC
dataset only as it was not possible to generate results for RWK for large aids dataset owing
to the high computational complexity of the scheme. It can be observed from Table 14 that
the GF descriptor outperforms CT, RWK, WDK and FSG for the majority of the datasets.
Moreover, the best performing method consistently fall into one of the GF, AF, TF, or PF
descriptors (except CA vs. CM) despite the fact that no optimization performed on the SVM
parameters. The average improvement of GF over the ROC values of WDK, CT, RWK, and
FSG for the common datasets is 1.5, 1.66, 6 and 6.4%, respectively.

8 Discussion and conclusion

The work in this paper was primarily motivated by our desire to understand which aspects
of the molecular graph are important in providing effective descriptor-based representations

123



368 N. Wale et al.

Ta
bl

e
12

N
H

R
(k

=
50

)
fo

r
ni

ne
de

sc
ri

pt
or

s
us

in
g

K b
an

d
K

f
ke

rn
el

s

D
at

as
et

s
G

F
G

F
A

F
A

F
T

F
T

F
PF

PF
fp

-n
E

C
FP

E
C

FP
C

T
C

T
M

K
M

K
FS

FS
(K

b
)

(K
f
)

(K
b

)
(K

f
)

(K
b

)
(K

f
)

(K
b

)
(K

f
)

(K
b

)
(K

b
)

(K
f
)

(K
b

)
(K

f
)

(K
b

)
(K

f
)

(K
b

)
(K

f
)

N
C

I1
0.

33
3

0.
34

4
0.

32
9

0.
34

4
0.

32
8

0.
34

0
0.

31
2

0.
33

7
0.

32
4

0.
33

9
0.

34
7

0.
24

5
0.

28
8

0.
31

2
0.

31
4

0.
31

0
0.

32
4

N
C

I1
09

0.
29

8
0.

31
1

0.
29

8
0.

31
1

0.
29

8
0.

30
8

0.
28

0
0.

30
5

0.
29

7
0.

30
1

0.
31

9
0.

21
3

0.
24

1
0.

27
6

0.
27

9
0.

28
5

0.
30

0

N
C

I1
23

0.
30

5
0.

31
4

0.
30

6
0.

31
4

0.
30

1
0.

31
0

0.
29

0
0.

30
9

0.
30

5
0.

31
0

0.
32

4
0.

25
3

0.
25

9
0.

29
9

0.
29

9
0.

29
9

0.
28

5

N
C

I1
45

0.
32

3
0.

33
5

0.
32

3
0.

33
5

0.
32

0
0.

33
2

0.
30

1
0.

32
7

0.
31

2
0.

32
0

0.
33

9
0.

32
2

0.
31

6
0.

29
7

0.
29

9
0.

30
6

0.
30

8

N
C

I1
67

0.
21

2
0.

22
0

0.
20

7
0.

21
2

0.
21

8
0.

21
3

0.
22

2
0.

21
4

0.
20

9
0.

20
7

0.
22

6
0.

21
5

0.
22

4
0.

20
7

0.
20

8
0.

21
1

0.
20

4

N
C

I2
20

0.
31

7
0.

31
8

0.
31

5
0.

31
8

0.
32

2
0.

31
2

0.
31

6
0.

31
0

0.
31

5
0.

32
3

0.
30

6
0.

32
2

0.
32

9
0.

30
6

0.
31

0
0.

31
2

0.
30

8

N
C

I3
3

0.
24

9
0.

25
7

0.
24

6
0.

25
8

0.
24

9
0.

25
3

0.
23

1
0.

25
6

0.
25

3
0.

25
0

0.
26

6
0.

19
6

0.
23

0
0.

24
0

0.
23

7
0.

24
8

0.
25

2

N
C

I3
30

0.
35

4
0.

36
9

0.
35

1
0.

36
8

0.
34

6
0.

36
2

0.
33

1
0.

35
7

0.
35

1
0.

37
7

0.
39

9
0.

30
3

0.
30

1
0.

33
6

0.
33

9
0.

34
2

0.
35

2

N
C

I4
1

0.
28

5
0.

29
7

0.
28

4
0.

30
0

0.
28

3
0.

29
5

0.
26

6
0.

28
8

0.
27

3
0.

28
7

0.
30

9
0.

21
8

0.
21

6
0.

26
0

0.
26

3
0.

24
7

0.
27

8

N
C

I4
7

0.
30

4
0.

31
8

0.
30

2
0.

31
8

0.
31

0
0.

31
7

0.
28

5
0.

30
9

0.
29

2
0.

30
8

0.
32

7
0.

22
5

0.
24

1
0.

28
4

0.
28

6
0.

26
8

0.
29

9

N
C

I8
1

0.
30

1
0.

31
6

0.
30

1
0.

31
6

0.
30

1
0.

31
2

0.
28

4
0.

31
0

0.
30

1
0.

30
4

0.
32

3
0.

22
7

0.
25

1
0.

29
2

0.
29

3
0.

30
9

0.
31

2

N
C

I8
3

0.
30

7
0.

31
6

0.
30

8
0.

31
6

0.
30

1
0.

31
3

0.
28

5
0.

30
8

0.
30

0
0.

30
3

0.
32

2
0.

23
8

0.
24

8
0.

29
3

0.
29

2
0.

29
7

0.
28

9

H
1

0.
22

7
0.

22
2

0.
22

7
0.

22
2

0.
23

0
0.

22
2

0.
21

1
0.

21
6

0.
20

3
0.

20
9

0.
21

2
0.

19
3

0.
20

4
0.

19
4

0.
19

6
0.

20
2

0.
20

6

H
2

0.
30

8
0.

29
1

0.
30

8
0.

29
1

0.
30

9
0.

29
5

0.
30

5
0.

28
7

0.
30

1
0.

31
4

0.
31

1
0.

25
3

0.
24

1
0.

27
4

0.
27

9
0.

24
9

0.
25

4

A
1

0.
59

9
0.

60
0

0.
60

1
0.

59
9

0.
59

3
0.

59
9

0.
58

3
0.

59
3

0.
58

4
0.

57
5

0.
58

4
0.

64
6

0.
65

3
0.

57
6

0.
57

8
0.

58
5

0.
59

6

H
3

0.
54

0
0.

54
0

0.
54

0
0.

54
0

0.
54

6
0.

54
5

0.
53

7
0.

54
9

0.
51

7
0.

50
0

0.
49

6
0.

52
5

0.
50

9
0.

48
9

0.
48

4
0.

48
6

0.
49

5

D
1

0.
12

0
0.

10
4

0.
11

9
0.

10
5

0.
11

0
0.

10
4

0.
11

2
0.

09
8

0.
11

4
0.

12
7

0.
10

7
0.

15
1

0.
14

7
0.

11
2

0.
11

5
0.

12
2

0.
10

4

D
2

0.
23

6
0.

23
8

0.
23

6
0.

23
8

0.
24

3
0.

23
8

0.
24

5
0.

23
7

0.
23

6
0.

22
6

0.
22

6
0.

28
8

0.
24

5
0.

24
6

0.
25

2
0.

26
8

0.
23

9

D
3

0.
24

3
0.

23
1

0.
24

1
0.

23
0

0.
25

8
0.

24
3

0.
23

4
0.

22
4

0.
24

0
0.

22
4

0.
24

1
0.

35
7

0.
33

4
0.

22
2

0.
21

8
0.

21
0

0.
22

3

D
4

0.
36

1
0.

35
8

0.
36

1
0.

35
8

0.
36

6
0.

36
1

0.
36

7
0.

35
3

0.
36

4
0.

35
6

0.
35

3
0.

43
5

0.
41

7
0.

36
7

0.
36

6
0.

34
8

0.
37

0

P1
0.

36
1

0.
37

5
0.

36
1

0.
37

4
0.

38
9

0.
39

0
0.

36
8

0.
36

3
0.

33
9

0.
34

7
0.

34
1

0.
40

2
0.

39
2

0.
37

8
0.

36
9

0.
37

3
0.

37
2

P2
0.

28
9

0.
28

7
0.

28
8

0.
28

7
0.

31
0

0.
29

6
0.

28
9

0.
28

0
0.

26
9

0.
29

3
0.

27
8

0.
31

1
0.

29
7

0.
30

6
0.

30
0

0.
28

5
0.

29
1

P3
0.

28
7

0.
29

1
0.

28
9

0.
29

2
0.

31
1

0.
30

3
0.

29
5

0.
29

0
0.

27
9

0.
27

6
0.

27
9

0.
28

2
0.

27
7

0.
31

8
0.

31
1

0.
29

9
0.

30
6

P4
0.

30
5

0.
30

4
0.

30
5

0.
30

4
0.

33
3

0.
32

2
0.

31
6

0.
30

6
0.

30
1

0.
28

5
0.

28
8

0.
35

1
0.

32
2

0.
34

4
0.

35
7

0.
34

6
0.

37
1

C
1

0.
54

1
0.

53
9

0.
54

1
0.

53
9

0.
60

5
0.

60
6

0.
54

2
0.

53
5

0.
51

0
0.

50
5

0.
50

0
0.

67
1

0.
66

2
0.

49
4

0.
48

9
0.

49
6

0.
48

9

M
1

0.
32

0
0.

33
2

0.
31

9
0.

33
2

0.
31

4
0.

32
6

0.
32

5
0.

32
9

0.
31

9
0.

34
1

0.
35

6
0.

26
1

0.
24

9
0.

29
7

0.
30

1
0.

27
4

0.
30

0

M
2

0.
31

0
0.

30
5

0.
30

8
0.

30
5

0.
29

0
0.

30
2

0.
31

4
0.

30
9

0.
28

6
0.

34
8

0.
37

1
0.

30
9

0.
32

3
0.

30
8

0.
31

4
0.

31
0

0.
29

1

M
3

0.
33

0
0.

32
3

0.
32

8
0.

32
2

0.
30

0
0.

31
4

0.
34

9
0.

33
1

0.
34

1
0.

40
1

0.
41

9
0.

27
7

0.
26

8
0.

31
4

0.
32

4
0.

32
5

0.
32

0

A
R

Q
B

0.
89

7
0.

90
5

0.
89

4
0.

90
4

0.
90

6
0.

90
9

0.
87

8
0.

89
1

0.
87

4
0.

89
9

0.
92

0
0.

85
8

0.
86

0
0.

86
5

0.
86

9
0.

86
4

0.
87

4

123



Comparison of descriptor spaces for chemical compound retrieval and classification 369

Ta
bl

e
13

W
ilc

ox
on

st
at

is
tic

al
te

st
fo

r
th

e
sc

he
m

es
in

Ta
bl

e
12

M
in

–M
ax

G
F

G
F

A
F

A
F

T
F

T
F

PF
PF

fp
-n

E
C

FP
E

C
FP

C
T

C
T

M
K

M
K

FS
FS

W
/E

/L
(K

b
)

(K
f
)

(K
b

)
(K

f
)

(K
b

)
(K

f
)

(K
b

)
(K

f
)

(K
b

)
(K

b
)

(K
f
)

(K
b

)
(K

f
)

(K
b

)
(K

f
)

(K
b

)
(K

f
)

G
F

(K
b

)
=

=
=

=
=

=
=

>
=

=
=

=
>

>
>

=
4/

12
/0

G
F

(K
f
)

=
=

=
=

=
=

>
>

=
=

=
=

>
>

>
>

6/
10

/0

A
F

(K
b

)
=

=
=

=
=

=
=

>
=

=
=

=
=

=
=

=
1/

15
/0

A
F

(K
f
)

=
=

=
=

=
=

>
>

=
=

=
=

>
>

>
>

6/
10

/0

T
F

(K
b

)
=

=
=

=
=

>
=

>
=

=
=

=
>

>
>

>
6/

10
/0

T
F

(K
f
)

=
=

=
=

=
>

>
>

=
=

=
=

>
>

>
>

7/
9/

0

PF
(K

b
)

=
=

=
=

<
<

=
=

=
=

=
=

=
=

=
=

0/
14

/2

PF
(K

f
)

=
<

=
<

=
<

=
=

=
=

=
=

=
=

=
=

0/
13

/3

fp
-n

(K
b

)
<

<
<

<
<

<
=

=
=

<
=

=
=

=
=

=
0/

9/
7

E
C

FP
(K

b
)

=
=

=
=

=
=

=
=

=
<

=
=

=
=

=
=

0/
15

/1

E
C

FP
(K

f
)

=
=

=
=

=
=

=
=

>
>

=
=

=
>

>
=

4/
12

/0

C
T

(K
b

)
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
0/

16
/0

C
T

(K
f
)

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

0/
16

/0

M
K

(K
b

)
<

<
=

<
<

<
=

=
=

=
=

=
=

=
=

=
0/

11
/5

M
K

(K
f
)

<
<

=
<

<
<

=
=

=
=

<
=

=
=

=
=

0/
10

/6

FS
(K

b
)

<
<

=
<

<
<

=
=

=
=

<
=

=
=

=
=

0/
10

/6

FS
(K

f
)

=
<

=
<

<
<

=
=

=
=

=
=

=
=

=
=

0/
12

/4

T
he

si
gn

‘>
’d

en
ot

es
th

at
ro

w
ou

tp
er

fo
rm

s
co

lu
m

n
de

sc
ri

pt
or

,‘
<

’d
en

ot
es

th
at

co
lu

m
n

ou
tp

er
fo

rm
s

ro
w

de
sc

ri
pt

or
an

d
‘=

’d
en

ot
es

th
at

ro
w

an
d

co
lu

m
n

de
sc

ri
pt

or
s

ar
e

st
at

is
tic

al
ly

in
di

st
in

gu
is

ha
bl

e.
W

/E
/L

is
W

in
s,

E
qu

al
,a

nd
L

os
se

s
fo

r
ea

ch
sc

he
m

e

123



370 N. Wale et al.

Table 14 ROC values for the nine methods for chemical compound classification

Datasets GF AF TF PF CT RWK WDK FSG

CA+CM vs CI 0.828 0.822 0.815 0.803 0.809 0.817 0.765

CA vs CI 0.949 0.950 0.943 0.934 0.925 0.940 0.839

CA vs CM 0.834 0.833 0.830 0.822 0.826 0.842 0.810

MaleRats 0.709 0.708 0.705 0.708 0.632 0.697 0.626

FemaleRats 0.675 0.670 0.674 0.688 0.664 0.649 0.634

MaleMice 0.698 0.695 0.685 0.716 0.656 0.705 0.655

FemaleMice 0.756 0.753 0.736 0.733 0.645 0.691 0.673

Best performing scheme(s) for each classification problem is shown in bold

for the classification and retrieval tasks given the four design choices described in Sect. 4
(dataset specificity, fragment complexity, preciseness, and coverage) and the fact that no
scheme leads to a descriptor space that is strictly superior (in terms of what it captures) to the
rest of the schemes. Most of the descriptor spaces make some compromises along at least one
of these dimensions. We believe that the experimental results presented in Sect. 7.5 provide
some answers on the relative importance and impact of these design choices.

Specifically, the results comparing PF and fp-n, suggest that a precise representation is a
key property and helps PF outperform fp-n even though the former utilizes only path-based
fragments, whereas fp-n also uses fragments corresponding to cycles. Similarly, the results
comparing GF against FS suggest that the 100% coverage of GF is a critical property as it
helps outperform the FS approach. To ascertain this fact we decided to eliminate infrequent
fragments of GF by applying support threshold similar to FS scheme on all datasets (data
not shown). We found that the performance of the resulting classifier degrades as compared
to GF. Thus, arbitrary support thresholds used to limit the number of fragments generated in
graph mining deteriorates classification performance. Generating all fragments with support
greater than or equal to one but having an upper limit on the size of fragments (GF) is
a much better approach to classify chemical compounds. Also, the results comparing the
schemes that utilize dataset specific fragment discovery approaches against the MK scheme
show that relying on pre-identified fragments will lead to lower performance. Finally, the
results comparing GF against AF, TF and PF show that everything else being the same, more
complex fragments do lead to better results; however, these gains are not substantial.

Our results show that the GF and ECFP descriptor spaces that (nearly) satisfy all four of
the desirable design choices, achieve the best results for both the classification and retrieval
tasks. Moreover, these two descriptor-based representations are generally better than the
state-of-the-art graph kernel approaches (RWK and WDK in Sect. 7.6) that operate directly
on the compound’s molecular graph. Furthermore, the advantage of the descriptor-based
representation over the graph kernel approach is that the process of determining the similarity
between two compounds is decoupled from the actual descriptor space generation. To a large
extent, this make the process of designing better descriptor spaces and similarity (kernel)
functions independent of each other and thus much easier. However, a potential drawback is
that it requires careful selection of the descriptor-based representation as well as the similarity
function for the particular dataset and descriptor space, respectively.

In analyzing the compounds that were predicted to be positive or ranked higher in the
classification or retrieval tasks, we found that there are considerable differences as to the true
positives or hits that were identified by the GF and ECFP descriptor spaces. For example, Fig. 1
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Fig. 1 Overlap between sets of active compounds retrieved using GF descriptor (K f kernel) and ECFP
descriptor (K f kernel) for classification

Fig. 2 Overlap between sets of active compounds retrieved using GF descriptor (K f kernel) and ECFP
descriptor (K f kernel) for ranked-retrieval

shows how the true positives overlap 1 between the two schemes on three different subsets:
(i) top 50 predictions, (ii) top 100 predictions, and (iii) all compounds until encountering
the first 50 false positives. In the first subset, the overlap is only 62%, whereas for the third
subset (which is usually contains more compounds than the other two), the overlap increases
to 80%. A similar analysis is shown in Fig. 2 for the retrieval task, and this time the overlap
percentages are somewhat smaller, ranging from 39 to 61%. These overlap results show that
there are considerable differences between the predictions and rankings produced by the two
descriptor spaces. Thus, even though the overall performance of the GF and ECFP descriptors
(as measured by ARQB) is quite similar, they tend to produce qualitative different results.
This suggests that applying Fusion based techniques (that combine rankings obtained from
different descriptor spaces) [43] to the rankings produced by GF and ECFP might lead to
improvement in the performance over just the GF or ECFP ranked-retrieval results.

Acknowledgments This work was supported by NSF EIA-9986042, IIS-0431135, NIH RLM008713A, ACI
0133464, the Army High Performance Computing Research Center contract number DAAD19-01-2-0014,
and by the Digital Technology Center at the University of Minnesota.

Appendix A: Generation of GF descriptors

Any frequent subgraph mining algorithm with a support threshold of one can be used to derive
a set of bounded size GF descriptors. We tried to generate bounded size GF using existing
frequent subgraph mining algorithms like FSG [30], Gaston [34] and gSpan [46]. But we
faced considerable runtime and memory problems in the case of FSG and Gaston for large
datasets with support threshold of one. Also, the current implementation of gSpan that we
downloaded does not support an upper bound on the length of fragments. Moreover, frequent
subgraph mining algorithms are not designed for this particular task at hand. Specifically,

1 These overlap percentages correspond to the averages over the 28 problems.
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these algorithms spend a significant amount of time in support computation or calculation
of embedding lists to speed up support computation [45]. But since all the possible bounded
size subgraphs are generated in GF, every subgraph discovered is frequent and hence there
is no need for support computations. For these reasons, in order to generate all connected
graph fragments, we developed an algorithm that was inspired by the recursive technique for
generating all the spanning trees of a graph G [42].

Consider an arbitrary edge e of G, and let Se(G) be the set of spanning trees of G that
contain e and S¬e(G) be the set of all spanning trees of G that do not contain e. It is easy to
see that (i) Se(G) ∩ S¬e(G) = ∅ and (ii) Se(G) ∪ S¬e(G) is equal to the set of all spanning
trees of G, denoted by S(G). Now, if S(G/e) denotes an edge contraction operation (i.e.,
the vertices incident on e are collapsed together) then Se(G) can be obtained from S(G/e)
by adding e. If G\e denotes an edge deletion operation, then S¬e(G) is nothing more than
S(G\e). From the above observations we can come up with the following recurrence relation
for generating S(G)

S(G) =
{

∅, if G does not have any edge

eS(G/e) ∪ S(G\e), otherwise,
(4)

where e is an arbitrary edge of G, and eS(G/e) denotes the set of all spanning trees obtained
by adding e to each spanning tree in S(G/e).

The recurrence relation of Eq. 4 can be used to generate all the connected graph fragments
of a certain length l by modifying it in three different ways. These modifications are needed
to ensure that (i) arbitrary graph fragments and cyclic fragments are generated (ii) the graph
fragments that are returned are connected, and (iii) only all the fragments of length l are retur-
ned. The first objective can be achieved by simply changing the edge contraction operation
to an edge deletion operation. The second can be achieved by imposing the constraint that
the edge e must be incident on a vertex of G that was obtained via an edge deletion operation,
if such a vertex exist. If G does not have any such vertex (i.e., it corresponds to the original
graph), then e is selected in an arbitrary fashion. The length requirement can be ensured by
terminating the recurrence relation when exactly l edges have been selected. In light of these
modifications, the new recurrence relation that generates all the connected graph fragments
of length l, denoted by F(G, l) is given by

F(G, l) =
{

∅, if G has fewer than l edges or l = 0

eF(G\e, l − 1) ∪ F(G\e, l), otherwise,
(5)

where e is satisfies the above constraints.
In order to identify isomorphic fragments in the same graph, we use canonical labelling

[30] for every fragment generated from a molecular graph. The canonical labelling of every
fragment can also be used to count the number of embeddings of a fragment in a molecular
graph. Note that the recurrence relation above generates each fragment only once. Thus two
isomorphic fragments in the same molecular graph differ by at least one edge. Also note
that since the primary goal of this paper is compare different descriptor spaces, we did not
compare the performance of our algorithm to the various frequent mining algorithms.
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