
Knowl Inf Syst (2008) 15:259–283
DOI 10.1007/s10115-007-0091-5

REGULAR PAPER

Optimal segmentation using tree models

Robert Gwadera · Aristides Gionis · Heikki Mannila

Received: 28 March 2007 / Accepted: 28 April 2007 / Published online: 28 July 2007
© Springer-Verlag London Limited 2007

Abstract Sequence data are abundant in application areas such as computational biology,
environmental sciences, and telecommunications. Many real-life sequences have a strong
segmental structure, with segments of different complexities. In this paper we study the
description of sequence segments using variable length Markov chains (VLMCs), also known
as tree models. We discover the segment boundaries of a sequence and at the same time we
compute a VLMC for each segment. We use the Bayesian information criterion (BIC) and
a variant of the minimum description length (MDL) principle that uses the Krichevsky-
Trofimov (KT) code length to select the number of segments of a sequence. On DNA data
the method selects segments that closely correspond to the annotated regions of the genes.

Keywords Sequence segmentation · MDL · DNA segmentation · Sequence data mining

1 Introduction

We consider the problem of segmenting a sequence of symbols into contiguous homoge-
neous segments. The segmentation problem has many applications in areas such as computa-
tional biology, environmental sciences, and context recognition in mobile devices, see, e.g.,
[4,13,12]. The problem has been widely studied in different fields, for instance, in statistics
it is known under the name change-point detection.

Many segmentation algorithms have been proposed in the data mining community, ranging
from on-line to offline, from heuristic to optimal (typically involving a dynamic programming
approach), and from combinatorial to probabilistic, see, e.g., [14,12,23].

We consider the sequence segmentation problem as a model selection process where we
fit a variable-length Markov chain (VLMC) [5] to segments of the input sequence. We use the
Bayesian information criteria (BIC) and a variant of the minimum description length (MDL)

R. Gwadera (B) · A. Gionis · H. Mannila
HIIT, Basic Research Unit, Helsinki University of Technology and University of Helsinki,
Helsinki, Finland
e-mail: gwadera@cis.hut.fi

123

260 R. Gwadera et al.

principle that uses the Krichevsky-Trofimov (KT) code length [7] for: (i) fitting an optimal
VLMC for each segment; and (i i) determining the optimal number of segments to partition
the sequence.

A d-order VLMC is a Markov chain (MC) whose contexts (memory) are allowed to be
of variable length. Such reduced models are also called tree models, since they can be con-
veniently represented by a context tree. The tree can range from a full tree in the case of an
ordinary d-order full MC to an empty tree in the case of a 0-MC. The variable length memory
of VLMCs has the potential of capturing complex phenomena that are present in real-life
sequences. VLMCs provide a sparse representation of a sequence by reducing the number of
parameters to be estimated. This flexibility of VLMCs is useful for the segmentation task: we
can fit high order models to segments to maximize the likelihood, without being penalized
for an exponential increase in the number of parameters (as in the case of ordinary MCs).

The fundamental question is whether the increased modeling power of VLMCs with
respect to MCs really translates into a better segmentation performance. As it turns out
VLMCs can provide more accurate segmentations than MCs and are also capable of recog-
nizing partition points in cases where MCs fail.

We fit an optimal VLMC for each segment of the sequence in order to discover segments of
differing contextual regularities corresponding to different tree structures, where an optimal
tree is a trade-off between maximizing the maximum likelihood of the segment and the tree
complexity.

The challenges in our approach are the following: (i) fitting an optimal VLMC to data is
a non-trivial task because it involves selecting among an exponential number of trees; (i i)
many real sources have short segments and the algorithm has to fit VLMCs from sparse data;
and (i i i) the standard dynamic programming algorithm has a quadratic time complexity.

We solve task (i) by adapting known pruning algorithms of VLMC to be used with the
BIC and KT criteria. We address (i i) by using VLMCs of variable order (maximum depth of
the tree) with respect to segment length such that we fit taller trees to longer segments and
shorter trees to shorter segments. Finally, we solve (i i i) by applying numerous optimization
techniques.

We conducted experiments on synthetic data, on a variety of DNA sequences and on
natural-language text sources. The results show that the method selects gene segments that
closely correspond to the currently known (annotated) gene regions. Our segmentation sys-
tem, called TreeSegment, and the data sources used in experiments are available at the authors’
web pages.

The rest of this paper is organized as follows. In Sect. 2 we introduce the notion of tree
models. Section 3 presents the details of the algorithm. In Sect. 4 we present our experimental
results. Section 5 reviews related work and Sect. 6 is a short conclusion.

2 Tree models

2.1 Basic definitions

Let A = {a1, a2, . . . , am} be an alphabet of cardinality m = |A|. Let sn
1 = s1s2 . . . sn be a

string over A and let s j
i = si si+1 . . . s j . A concatenation of strings u and v is denoted by uv.

A string v is a suffix of s if there exists w such that s = wv.
Let Sn

1 = [S1, S2, . . . , Sn] be a stationary ergodic stochastic process over alphabet A,
where sn

1 = [s1, s2, . . . , sn] is its realization and P(sn
1) = P(Sn

1 = sn
1).

123

Optimal segmentation using tree models 261

A context tree T is a set of strings such that no string c ∈ T is a suffix of another string
c′ ∈ T . Each string c = cd

1 ∈ T can be visualized as a path from the root to a leaf consisting
of d edges labeled by symbols cdcd−1 · · · c1. We use λ to denote the empty context that
corresponds to the root of the context tree.

Given a context tree T , a parameter assignment θ(T) assigns to each suffix c′ of a context
c ∈ T (including to c itself) a vector of conditional probabilities θ(c′) = [P(a1|c′), P(a2|c′),
. . . , P(am |c′)], where

∑
a∈A P(a|c′) = 1.

We assign a probability P(s|T , θ(T)) for the input sequence s = sn
1 given the context

tree T and the probability assignments θ(T) by

P(s|T , θ(T)) =
n−1∏

i=0

P(si+1|ci), (1)

where ci is the longest suffix of si
1 that belongs to T .

A pair (T , θ(T)) is called a tree model or a d-VLMC if the longest string in T has length d .
In the case that all strings c ∈ T are of length d and |T | = md the tree model is called d-MC
(full d-order Markov chain model). Given a tree model (T , θ(T)) and an input sequence sn

1 ,
we can compute the probability of observing the sequence sn

1 given the model using (1).

Example Consider a binary context tree T = {1, 00, 10} and let θ(0) = [0.6, 0.4], θ(1) =
[0.1, 0.9], θ(00) = [0.5, 0.5], θ(10) = [0.3, 0.7] and θ(λ) = [0.9, 0.1]. Then from (1) for
a sequence s = 101000 we obtain P(s) = P(1|λ) · P(0|1) · P(1|10) · P(0|1) · P(0|10) ·
P(0|00) = 0.1 · 0.1 · 0.7 · 0.1 · 0.1 · 0.3 · 0.5 = 105

10000000 .

In the case that the tree T is known, but the parameter vector θ(T) is unknown, one can
compute the maximum likelihood estimator (MLE) of the parameter vector denoted θ̂ (T). In
particular, the MLE for a conditional probability P(a|c) is:

P̂(a|c) = Nn(c, a)

Nn(c)
,

where Nn(c, a) and Nn(c) = ∑
a∈A Nn(c, a) are the number of occurrences of strings ca

and c in sn
1 , respectively. For a given input sequence sn

1 we also use M L = P(sn
1 |θ̂ (T)) to

denote the maximum likelihood of sn
1 .

For a tree T we define d(T) to be the length of the longest context. If the tree T is under-
stood then we use d instead. We also use T |d to denote the tree that is a truncation of T to
depth d .

In practice, given an input sequence s, a d-VLMC is built using a two-stage process.
First a context tree of depth d is built from the sequence. Then the tree is pruned to obtain a
variable-depth context tree that corresponds to contextual regularities in the input sequence.
Figure 1 shows an example of a 2-MC (top) and a 2-VLMC (bottom) for an alphabet of size
four. In the 2-VLMC case, the leaves {C, G}A and {C, G, T }C , that are connected using a
dashed edge to their parents, represent virtual nodes. A virtual node is created when a parent
node loses between 2 and m − 1 children nodes as a result of pruning. The idea of virtual
nodes is that they represent the context of the pruned children by merging the pruned children
contexts together. Thus, the node {C, G}A represents contexts C A and G A. Clearly, we do
not create a virtual node if there is only one pruned child, as this would not change the total
number of children.

We use MT = {M(T , θ(T)) : θ(T) ∈ �(T)} to denote a set of all models sharing
the same tree T ; here �(T) is the set of all valid parameter assignments to T . If the input

123

262 R. Gwadera et al.

A

TGCA A C G T A C G T A C G T

C G T

A

T

C G T

A{C, G} {C, G, T }

Fig. 1 An example of a 2-MC (top) and a 2-VLMC (bottom)

sequence has been generated by a VLMC, we denote by T0 the generating tree. Accordingly,
θ0 is the generating parameter vector and d0 is the depth of the generating tree.

A k-segmentation of a sequence is a partition of the sequence in k consecutive segments.
A d-VLMC k-segmentation is a segmentation by fitting a d-VLMC and having k segments.
We also use the term d-VLMC segmentation to mean a segmentation that selects an optimal
number of segments given a bound on the number of segments. We use the term BIC- or
KT-segmentation with any of the above to specify the scoring function.

As an information criterion for model selection, we use a variant of the MDL principle
that uses the KT code length. The MDL principle says that the best model of the process
given the observed sequence is the one that gives the shortest description of the sequence,
where the model itself is also a part of the description. For VLMCs, MDL has the following
general form

MDLT (sn
1) = LC (sn

1 |M(T , θ(T))) + LC (T),

where LC (·) is a real valued binary code length function of uniquely decodable binary code.
Thus, LC (sn

1 |M(T , θ(T))) is the code length of the data given the model and LC (T) is the
code length of the tree.

2.2 The Bayesian information criterion (BIC) and the Krichevski-Trofimov
probability (KT)

In this section we review the known criteria for selecting an optimal context tree, where
an optimal context tree is a trade-off between maximizing the maximum likelihood of the
segment and the tree complexity.

BIC

For a d-MC the BIC has the following form [7]

BICd(sn
1) = − log2(M Ld(sn

1)) + (m − 1)md

2
log2(n). (2)

For a d-VLMC the BIC has the following form [7]

BICT (sn
1) = − log2(M LT (sn

1)) + (m − 1)|T |
2

log2(n), (3)

123

Optimal segmentation using tree models 263

where

M LT (sn
1) = P(sd

1)
∑

c∈T ,a∈A
Nn(c, a)

(
Nn(c, a)

Nn(c)

)

. (4)

Thus, an optimal context tree of depth up to D, with respect to BIC, is defined as follows:

T̂BIC(sn
1) = min

T ,d(T)≤D

(
BICT (sn

1)
)
. (5)

In coding terms BIC corresponds to the two-stage coding [10,8]. The likelihood terms M Ld

and M LT correspond to the code length of the data given the model while the additional

terms (m−1)md

2 log2(n) and (m−1)|T |
2 log2(n) correspond to the length of encoding of the

parameters. In statistical terms, BIC has an interpretation as a maximum likelihood method.
The first term measures the goodness of fit of the tree T to sn

1 , and the second term is the
penalty term equal to the number of free parameters, which prevents BIC from overfitting.

KT

The KT probability [15] for a 0-MC binary sequence sn
1 is defined as the average probability

of sn
1 over all possible parameter assignments p = θ ∈ [0, 1] weighted by the Dirichlet

distribution D(u) with parameters u = [1
2 , 1

2] (Jeffrey’s prior) and it can be expressed as

KT0(s
n
1) =

1∫

0

pNn(0)(1 − p)n−Nn(0)D(p|u)d p, (6)

where Nn(0) is the number of zeros in sn
1 . In terms of Bayesian statistics, KT0 corresponds

to the marginal likelihood [17] of sn
1 . Equation (6) can be generalized to a multi-alphabet

case (m > 2) by using the multinomial distribution in place of the binomial. It can be shown
[15] that the integral has an exact solution

KT0(s
n
1) =

∏
a∈A[�(Nn(a) + 1

2)]
�

(
n + |A|

2

) . (7)

The choice of prior parameter u in (6) is dictated by asymptotic properties [1] and has an
effect as pseudo-counts in (7).

For VLMCs, KT can be expressed using the fact that all symbols corresponding to the same
context c ∈ T form a memoryless subsequence of sn

1 , i.e, P(sn
1) = ∏

c∈T KT0(sn
1 |c), where

sn
1 |c denotes a subsequence of sn

1 corresponding to context c. This leads to the following
expression:

KTT (sn
1) = 1

|A|k
∏

c∈T ,Nn(c)≥1

KT0(s
n
1 |c). (8)

KT is a minimizer of the worst case average redundancy Rn(T) for the model class deter-

mined by context tree T , where Rn(T) = �
(|T |(m−1)

2 log (n)
)

[15].

In coding terms, KT corresponds to the mixture coding which consists of the encoding of
sn

1 and the encoding of the tree [10,8]. Thus, the KT MDL estimator of an optimal context
tree of depth up to D is defined as follows [28]:

T̂KT(sn
1) = min

T ,d(T)≤D

(− log2(KTT (sn
1)) + LC (T)

)
. (9)

123

264 R. Gwadera et al.

In statistical terms, KT is a mixture distribution that measures the goodness of fit of the tree
T to sn

1 in terms of the average probability in the model class MT . In [27] a simple code is

given that describes a context tree T using LC (T) = m|T |−1
m−1 bits.

We now are ready to define the problem of optimal sequence segmentation using tree
models.

2.3 Definition of the problem of optimal sequence segmentation using tree models

The problem of optimal sequence segmentation using tree models can be stated as follows.
Given:

• s = [s1, s2, . . . , sn]: a finite sequence of categorical data over an alphabet A, where
s j

i = si si+1 . . . s j over A.
• K : the maximal number of segments.
• D: the maximal depth of the VLMC.

• cost
(

s j
i

)
: a cost function for segment s j

i .

find a vector of partition points I = [i1, i2, . . . , ik], 1 ≤ k ≤ K − 1 such that

I = arg min[i1,i2,...,ik]

⎧
⎨

⎩

k∑

j=0

cost
(

s
j j+1−1

i j

)
+ k · B

⎫
⎬

⎭
,

where 1 ≤ k ≤ K − 1, i0 = 1, ik+1 = n and B is a border insertion penalty.
The cost function is either

cost
(

s j
i

)
= BICT̂BIC

(s j
i) (10)

or
cost

(
s j

i

)
= − log2

(
KTT̂KT

(s j
i)

)
+ LC (T̂KT) (11)

depending on the corresponding tree model selection method used. In experiments we used
the size of the tree as the code length of the tree, i.e., we used LC (T̂KT) = |T̂KT|.
2.4 Pruning the tree

Because it is infeasible in practice to enumerate all possible trees of a given maximum depth
local search methods such as the Context algorithm [21] and the context tree maximization
(CTM) algorithm [28] have to be used. The algorithms Context and CTM work in two stages.
They first build a context tree of depth d and then they recursively prune the tree starting
from the leaves and proceeding bottom-up.

Algorithm Context

Algorithm Context prunes a context tree as follows [5].
For every parent node w the algorithm considers every child node uw and marks it for

pruning if Nn(uw) < m or �uw < K (n), where

�uw =
∑

a∈A
Nn(a, uw) log2

(
P̂(a|uw)

P̂(a|w)

)

(12)

and K (n) is a user defined threshold. If all children of w were marked for pruning then they
are pruned and w becomes terminal. If at least two children were marked for pruning but there

123

Optimal segmentation using tree models 265

is at least one non-marked child then the marked nodes are merged to create a virtual node,
which represents the needed pruned contexts. In [21,22] the minimization of the stochastic
complexity is used in place of (12) as a pruning criterion.

The context tree maximization (CTM)

We now present the original version of the CTM algorithm [28]. CTM finds a tree maxi-
mizing (8) by a local optimization in a recursive bottom-up way. For each node v in the tree
CTM assigns two values: the maximum KT contribution to (8) of the contexts in the subtree
rooted at v called KTmax(v); and an indicator Imax(v) that marks nodes to be included in the
maximizing tree. The algorithm proceeds bottom-up as follows:

1. if v is a leaf node then KTmax(v) = KT0(sn
1 |v)

2. if v is an internal node then

KTmax(v) = max

{

KT0(s
n
1 |v),

∏

a∈A
KTmax(av)

}

(13)

3. If KT0(sn
1 |v) <

∏
a∈A KTmax(av) then Imax(v) = 1 else Imax(v) = 0.

After having visited all nodes, KTmax(root) contains the maximized probability KTT̂0
and

T̂0 has been marked by the indicators. To reconstruct T̂0 one has to recursively read them off
top-down starting from the root. In terms of pruning the value of Imax(v) has the following
meaning: if Imax(v) = 0 then all children are pruned at once (they are not part of T̂0); while
if Imax(v) = 1 then the children are not pruned (they are a part of T̂0). Comparing to Context,
CTM has to visit all nodes in the tree.

3 TreeSegment: segmentation using tree models

In this section we present the TreeSegment algorithm that solves the problem of optimal
segmentation using tree models as defined in Sect. 2.3. We start with discussing our pruning
criteria.

3.1 Pruning according to Context algorithm to minimize the BIC of the tree

In this section we give a precise derivation for the threshold K (n) of the Context algorithm
that locally minimizes (3). There is a consensus in the literature [26,5] that K (n) should be
of the form C log(n); here we give a derivation for the value of C in detail.

We start with an example, illustrated in Fig. 2, which shows a tree rooted at a node w for
alphabet A = {A, C, G, T }. The tree undergoes a pruning scenario according to the Context
algorithm. For simplicity we assume in this example that the virtual node is created after the

A C G T C G T G T

w w w

{A} {A, C} {A, C, G}

w

(4)(2)(1)

w

T

(5)(3)

Fig. 2 VLMC pruning

123

266 R. Gwadera et al.

first node is pruned. We number the trees (1)–(5) from the left to the right. Tree (1) shows the
situation before the pruning algorithm starts. Tree (2) shows the situation after pruning node
Aw to w, which results in creating a virtual node {A}w. Tree (3) shows the situation after
pruning Cw to w, which results in updating the virtual node to represent context {A, C}w.
Tree (4) shows the situation after pruning node Gw to w, which results in updating the virtual
node to represent context {A, C, G}w. Finally, tree (5) shows the situation after the last node
T w has been pruned to w and w becomes terminal. Thus, in the presented scenario, the size
of the tree |T | changes from m to 1 even though it does not decrease strictly monotonically
after every pruning operation because of the need to create the virtual node. For simplicity
we assume that every pruning operation decreases |T | by one. Let Tu be the tree T after the
terminal node u has been pruned including a possible creation of a new virtual node.

Thus, we want to prune uw to w if and only if BICTu (s
n
1) < BICT (sn

1), where |T |−|Tu | =
1, which leads to

log2

(
M LT (sn

1)

M LTu (s
n
1)

)

<
(m − 1)

2
log2(n)

and from (12) we have

∑

a∈A
Nn(a, uw) log2

(
P̂(a|uw)

P̂(a|w)

)

<
(m − 1)

2
log2(n)

which finally gives us

K (n) = (m − 1)

2
log2(n).

3.2 Pruning according to CTM algorithm to minimize KT MDL of the tree

We modify the CTM algorithm (13) to locally minimize the KT MDL score (9) as follows:

MDL(KTmax(v)) = min

{

− log2
(
KT0(s

n
1 |v)

) + 1,

∑

a∈A

(
− log2 (KTmax(av)) + |T̂0(av)|

) }

, (14)

where |T̂0(av)| is the size (number of contexts) of the optimal subtree rooted at node av.
Thus, while (13) searches for a tree that maximizes the KT probability (14) searches for a tree
that minimizes the corresponding KT MDL score. As in (13) (14) considers a local pairwise
decision: parent versus children, i.e, whether the children should be part of the optimal tree or
not that corresponds to pruning them off. Comparing to (13), (14) favors pruning the children
by containing the term corresponding to the code length of the subtree rooted at v that is 1 bit
if the children are pruned versus

∑
a∈A |T̂0(av)| bits if the children are part of the optimal

tree. As a result of it (14) produces a sparser tree than (13).
We also implemented a refinement of criterion (14) that considers all valid subsets of

children for pruning instead of the two subsets consisting of all children (the parent node)

123

Optimal segmentation using tree models 267

versus none of the children. The criterion is as follows:

MDL(KTmax(v)) = min
X

{

− log2
(
KT0(s

n
1 |v)

) + 1,

∑

a∈A−X

(
− log2 (KTmax(av)) + |T̂0(av)|

)

− log2
(
KT0(s

n
1 |{X }v)

) + 1

}

, (15)

where: X is a subset of children, where |X | = 0, 2, . . . , |A| − 1; v is the parent node; {X }v
is the virtual node; and av is a child node.

Because of the need to consider all subsets of children criterion (15) is efficient only for
small alphabet sizes and we found it useful for DNA in order to obtain a finer fitting of trees
to sn

1 than by using criterion (14).

3.3 The segmentation algorithm

In this section we present the details of the algorithm TreeSegment. The standard optimal
segmentation algorithm can be expressed by the following dynamic programming equation,
due to Bellman [2]:

C[k, i] = min
k−1≤ j≤i

{C[k − 1, j − 1] + W [j, i]}.

In the above equation, C[k, i] is the optimal k-segmentation cost of the prefix si
1 and W [j, i]

is the cost function (score) of the segment si
j , that is either the BIC (10) or the KT MDL (11)

score as defined in Sect. 2.3. Computing W [j, i] in time proportional to the length of the
segment si

j leads to overall O(n3) running time, which is impractical for real-life sequences.
However, Algorithm 1 achieves a linear speedup by computing W [j, i] in constant time

(for a fixed alphabet size and depth of the tree). The main idea of the speedup is that for a
fixed ending position i , a fixed-depth tree T1 is being built (inductively) starting at position
i and proceeding backward for j = i, i − 1, . . . , 0. Thus, for every pair (j, i) T1 contains
counts of all context strings that occur in segment si

j and for the next starting position j − 1
T1 can be updated in constant time, since only one new context has to be added to it. After
each updating of T1 it is copied to T2, which is pruned to obtain the score for si

j . Clearly,
the cost of copying T1 to T2 and pruning of T2 is proportional to the size |T1|, which is also
constant for fixed values of the parameters D and m. Since the computation of W [j, i] can be
done in a constant time for all pairs (j, i), the overall running time of algorithm TreeSegment
is �(n2). The space complexity of the algorithm is �(K n).

We also find it very effective to compute the score C[k, i] for values of i that are a multiple
of a parameter �. Using this modification, we obtain a suboptimal solution, but the running
time of the Algorithm is �((n

�
)2).

3.4 The maximum depth of the tree

Since we need to fit optimal trees to segments of varying length bounding the maximum
depth of the tree is of a particular importance in TreeSegment for the following reasons: (i) it
decreases the probability of overfitting while estimating the tree from a short sequence; and
(i i) it reduces the unnecessary computational complexity of estimating a deeper tree. The
only problem with the bound is that it may increases the probability of underestimation by
restricting the context length. We use Dmax(n) ≤ logm(n) as a bound, which follows from

123

268 R. Gwadera et al.

Algorithm 1: Algorithm TreeSegment
Input: A, n, K , sn

1 , D, �

Output: I = [i1, i2, . . . , ik′]
begin

for i = 1; i ≤ n/�; i = i + � do1

T1.ini t ()2
for j = i ; j ≥ 0; j = j − � do3

T1.add(si
j−�+1);4

N = i − (j − � + 1) + 1;5
if N < m then6

W [j] = ∞;7

else

Dmax(N) = max0≤d≤D
(
d ≤ logm (N)

)
;8

T2 = T1|Dmax(N);9

T2.prune() ;10
W [j] = score(T2);11

end
end
for k = 2; k ≤ K ; k = k + 1 do12

C[k, i] = mink−1≤ j<i C[k − 1, j] + W [j + 1]};13

end
end
BackT rack();14

end

the fact that the if we assume that an occurrence of every context in a given position in the
sequence is equally likely with probability 1

md then the length of the sequence has to be at

least md to guarantee that on-average every context occurs at least once.

3.5 Border insertion penalties

The border insertion penalty can be understood in terms of the Hidden Markov model (HMM)
as a transition probability between hidden states of the generating source, where segments
correspond to the hidden states. Also, in MDL terms each partition point should be treated as
an additional parameter and penalized appropriately. Based on our extensive experiments we
selected the following penalties for the BIC and the KT scoring methods: BBIC = (K − 1)
log2(n)

2 and BKT = ∑K
k=2 log2

(
n

k−1

)
, where K is the total number of segments. Clearly,

BBIC follows from the BIC as a parameter penalty. BKT follows from MDL by observing
that to encode the following partition points we need proportionally fewer bits, i.e, we need
roughly log2(n) bits for the first point, log2(

n
2) for the second and so on.

4 Experiments

To evaluate results of segmentations obtained by TreeSegment we used the following distance
measure Dseg(A, B):

Dseg(A, B) = max{D(A, B), D(B, A)}, (16)

123

Optimal segmentation using tree models 269

where

D(A, B) = 1

m

∑

a∈A

min
b∈B

{
d(a, b)

n

}

,

and A and B represent the sets of partition points of two segmentations. The measure D(A, B)

captures the distance of each segmentation point in A to the closest segmentation point in B
on average. The distance is measured as a fraction of the total length of the sequence. So,
the measure D(A, B) takes values between 0 and 1, where the value 0 means that the two
segmentations A and B are identical, while the value 1 can be obtained only for segmen-
tations with one segmentation points (and being at opposite ends). Thus, we compute the
measures Dseg(BIC, SOURCE) and Dseg(KT, SOURCE), where SOURCE, BIC, and KT
are the sets of partition points corresponding to a known segmentation of the source, the BIC
segmentation, and the KT segmentation, respectively.

We conducted our experiments using the following sources: synthetic data in Sect. 4.1,
DNA in Sect. 4.2 and text data in Sect. 4.3.

4.1 Generated data

In this section we use a synthetic sequence to show the advantage of VLMCs over MCs in
segmentation. In short, VLMCs are advantages over MCs because if segments were gener-
ated using VLMCs then MCs may miss the partition points. This follows from the fact that
by using tree models we can fit high order models to segments to maximize the likelihood,
without being penalized for an exponential increase in the number of parameters (as in the
case of ordinary MCs).

As an illustration of such a case consider the following example synthetic sequence S12

of length 2n over the alphabet A = {A, C, G, T } that was composed of two segments S1 and
S2 of length n each generated as follows:

• S2 was generated from a 2-VLMC model M2(T2, θ(T2)), where tree T2 has only 5 nodes
at depth 2; and

• S1 was generated from a 1-MC M1(T1, θ(T1)), where T1 = T2|1 and θ(T1) = θ(T2|1)),
where T2|1 is a truncation of tree T2 upto depth 1. Thus, M1 and M2 are identical in terms
of 1-MC and 0-MC.

The models generating S are presented in Fig. 3. Thus, since M1 and M2 are identical in
terms of 1-MC and 0-MC MC segmentation methods will select M1 as the underlying model
for the whole sequence S to avoid being penalized for a full 2-MC for S2, i.e., for useless

A C G T

A C { G, T } { A, G, T }Cθ1 = θ2(T1)

M2(T2,θ 2)M1(T1 , θ1)

T1 = T2 | 1

A TGC

n1 2n

S2S1

Fig. 3 An example sequence S12 that requires VLMC segmentation to discover the partition point. Segment
S1 was generated from model M1(T1, θ(T1)) that is a truncation upto depth 1 of model M2(T2, θ(T2)) that
generated segment S2

123

270 R. Gwadera et al.

2−MC BIC−penalty

200 400 600 800 1000 1200 1400 1600 1800
0

200

400

2−MC ML

200 400 600 800 1000 1200 1400 1600 1800
2900

3000

3100

3200

2−MC BIC

Partition point for K=2

200 400 600 800 1000 1200 1400 1600 1800
3200

3220

3240

3260

Fig. 4 BIC 2-MC method and the corresponding optimal segmentation cost for the 2-segmentation of the
synthetic sequence S12 as a function of the partition point. Top: the BIC penalty. Middle: the minus maximum
likelihood. Bottom: the BIC score

parameters corresponding to the non-existent contexts in the generating tree T2. But a VLMC
segmentation method will properly select T2 for S2 without paying for the the non-existent
contexts and therefore it will properly select two segments with the partition point in the
middle of S.

We now present figures that show the behavior of the optimal segmentation cost (3.3) for
the 2-segmentation (k = 2) of S12 as a function of the partition point j for the BIC 2-MC,
BIC 2-VLMC and KT 2-VLMC segmentation methods. Each figure in this section consists
of 3 subplots, where each subplot presents a quantity of interest plotted as a function of the
partition point in the 2-segmentation of S12. Also, the upper two subplots depict quantities
that when added up are equal to the quantity in the third subplot.

Figure 4 presents the BIC 2-MC case. We present this 2-segmentation case for comparison
with the VLMC methods since we know that the algorithm selected 1-segmentation using
1-MC instead of the 2-segmentation. The plots of the BIC-penalty and ML are “choppy”
because the model selection machinery is very poor in this case since there are only 3 trees
(2-MC, 1-MC and 0-MC) available to fit to both segments. Also, this figure reveals the fun-
damental fact of the BIC segmentation namely the contribution of the penalty is not uniform
with respect to the partition point placement. The reason is that the total BIC-penalty for the

whole sequence is equal to mk1 (m−1)
2 log2(x)+ mk2 (m−1)

2 log2(n − x) where x is the partition
point. Then clearly if k1 = k2 then the factor log2 (x(n − x)) is the source of problem since
x(n − x) is a square function of x with the maximum at x = n

2 .
Figure 5 presents the BIC 2-VLMC method. The area under the BIC-penalty curve is

smaller for the 2-VLMC comparing to the 2-MC since here the BIC charges for only the
relevant contexts. This example clearly shows the superiority of VLMCs over MCs in seg-
mentation.

123

Optimal segmentation using tree models 271

2−VLMC BIC−penalty

200 400 600 800 1000 1200 1400 1600 1800
50

100

150

200

2−VLMC ML

200 400 600 800 1000 1200 1400 1600 1800
3000

3050

3100

3150

2−VLMC BIC

Partition point for K=2

200 400 600 800 1000 1200 1400 1600 1800
3150

3200

3250

Fig. 5 BIC 2-VLMC method and the corresponding optimal segmentation cost for the 2-segmentation of the
synthetic sequence S12 as a function of the partition point. Top: the BIC penalty. Middle: the minus maximum
likelihood. Bottom: the BIC score

Figure 6 show the results for the KT 2-VLMC method and in particular it compares the
MDL KT score (11) with the ML. A comparison of Figs. 5 and 6 reveals that KT gives a
more uniform penalty then BIC but at the expense of a flatter score characteristic.

4.2 DNA sequences

In this section we present the results of experiments on DNA sequences. In particular, we
consider DNA sequences containing genes and their flanking regions.

We distinguish the following structural regions in DNA [6,29]:

• 5′ UTR and 3′ UTR (untranslated regions)
• CDS (coding region) on the directed and complementary strand
• intron
• 5′ flanking and 3′ flanking regions,

where CDSs and UTRs are part of an exon. Thus, we consider a total of seven functional
regions to be segmented by TreeSegment.

In our experiments, we start with studying viral genomes in Sect. 4.2.1, and then we con-
sider eukaryotic genes in Sect. 4.2.2. We obtained our viral gene sequences from http://www.
ncbi.nlm.nih.gov and the eukaryotic gene sequences from http://www.ensembl.org.

4.2.1 Viral genomes

The first experiment tests whether TreeSegment discovers any tree structure variation in the
genomes with the simplest possible structure. For this purpose we selected complete viral
genomes from a subset of ssRNA positive-strand viruses that contain exactly three segments:
UTR5′, CDS and UTR3′ and segmented them. Our results revealed the following facts: (i)

123

http://www. ncbi.nlm.nih.gov
http://www. ncbi.nlm.nih.gov
http://www.ensembl.org

272 R. Gwadera et al.

2−VLMC MDL(KT)−ML

200 400 600 800 1000 1200 1400 1600 1800
60

80

100

120

2−VLMC ML

200 400 600 800 1000 1200 1400 1600 1800
3000

3050

3100

3150

2−VLMC MDL(KT)

Partition point for K=2

200 400 600 800 1000 1200 1400 1600 1800
3100

3150

3200

Fig. 6 KT 2-VLMC method and the corresponding optimal segmentation cost for the 2-segmentation of the
synthetic sequence S12 as a function of the partition point. Top: the KT MDL score minus the maximum
likelihood. Middle: the minus maximum likelihood. Bottom: the KT MDL score

for every genome TreeSegment delineates at most three segments, where for most of the
genes it delineates exactly three segments; (i i) every CDS segment corresponds to a tree of
depth 1 ≤ D ≤ 2; (i i i) the UTR segments correspond to trees of depth D = 0; and (iv) all
the CDS segments have a common subtree of depth D = 1 consisting of contexts C and T .

We now show detailed results for Wisteria vein mosaic virus genome (accession point
NC_007216) that is a member of the family of ssRNA positive-strand viruses. Figure 7
shows segmentation results and Fig. 8 shows a tree built from the CDS region.

In the following experiment we segmented Bacteriophage lambda virus genome that has a
long history of being used as a test sequence for demonstrating new segmentation techniques
[4,16]. The sequence mostly contains overlapping CDS segments from both DNA strands.
Figure 9 shows results for Bacteriophage lambda that are consistent with [4,16].

4.2.2 Eukaryotic genes

We now consider a more difficult task of segmenting eukaryotic genes for which the Tree-
Segment needs to be capable of discovering differences in tree structures between introns and
exons. Therefore, we first investigate those differences. For this purpose, we repeated the fol-
lowing experiment for many eukaryotic organisms. We first scanned the respective genomes
and then extracted the corresponding exons and introns to separate sequences. Then we fitted
context trees for those two kinds of sequences using algorithm Context. As an example we
present results for Caenorhabditis elegans genome in Table 1.

The results show that there is a structural difference between the intron and exon trees,
where the intron tree is bigger (|T | = 23 versus |T | = 3) and (D = 3 versus D = 2).
Also the exon sequence has a higher CG content while the intron sequence has a higher AT
content [9].

123

Optimal segmentation using tree models 273

Fig. 7 Segmentations obtained for Wisteria vein mosaic virus genome. Top: annotated sequence. Middle:
segmentation obtained by BIC–VLMC method. Bottom: segmentation obtained by KT–VLMC method. The
numbers above each segment denote the depths of the corresponding trees

Fig. 8 CDS region of Wisteria
vein mosaic virus NC_007216

A C TG

T{A, C, G}

Fig. 9 Segmentations obtained for Bacteriophage lambda genome. Top: annotated sequence. Middle: segmen-
tation obtained by BIC–VLMC method. Bottom: segmentation obtained by KT–VLMC method. The numbers
above each segment denote the depths of the corresponding trees

123

274 R. Gwadera et al.

Table 1 Comparison of intron
and exon trees for C. elegans

Tree properties Base content

Tree |T | D C G A T

Intron 23 3 0.168 0.164 0.337 0.327

Exon 8 2 0.232 0.239 0.286 0.242

Table 2 Summary of
segmentation results for DNA
using BIC and KT segmentation
methods, where Dseg is the
distance measure and k is the
number of segments

Gene BIC KT

Name k Dseg k Dseg k

Wisteria vein 3 0.0005 3 0.0065 2

Bacteriophage lambda 8 0.0149 5 0.0150 5

Drosophila melanogaster

CG10045-RA 4 0.0144 3 0.0114 3

CG10045-RA+flanking 6 0.0309 6 0.0291 5

CG5407-RA 6 0.0383 7 0.0341 10

Caenorhabditis elegans

F33E11.3 9 0.0243 8 0.0034 10

Y50D4C.3 9 0.0874 4 0.0336 12

Tetraodon nigroviridis

GSTENT00014173001 7 0.0316 13 0.0567 8

Homo Sapiens

ENST00000246662 14 0.0348 10 0.0590 8

Pan troglodytes

Intron7 6 0.0944 4 0.0946 4

Given the discovered differences in tree structures, we segmented 10 example genes. The
results are presented in Table 2. By comparing the Dseg distance measure for BIC and KT
we can conclude that both methods perform comparably.

Below we present details of segmentations form Table 2. To check whether TreeSeg-
ment recognizes partition points between flanking regions and exons we segmented first
Drosophila melanogaster gene CG10045-RA, and then we segmented a sequence composed
of that gene and flanking regions of length 1,000. The results are shown in Fig. 10, where
GENE=[UTR5′, Intron12, CDS2, UTR3′] and in Fig. 11, where GENE=[Flanking5′, UTR5′,
Intron12, CDS2, UTR3′, Flnaking3′]. Clearly, after adding the flanking regions the origins
of the first exon and the second exon have been properly recognized by the BIC and KT
methods. Figure 12 shows segmentation of Drosophila melanogaster gene CG5407-RA.

Figure 13 shows segmentation of Caenorhabditis elegans gene F33E11.3. The gene
structure is as follows: GENE=[CDS1, Intron12, CDS2, Intron23, CDS3, Intron34, CDS4,
Intron45 and CDS5]. The BIC method merged two regions: Intron23, CDS3 into one region
while the KT method recognized all gene regions.

Figure 14 shows segmentation of Caenorhabditis elegans gene Y50D4C.3. The gene
structure is as follows: GENE=[CDS1, Intron12, CDS2, Intron23, CDS3, Intron34, CDS4,
Intron45, CDS5]. The BIC method merged seven consecutive regions starting from CDS2

123

Optimal segmentation using tree models 275

Fig. 10 Segmentations obtained for Drosophila melanogaster gene CG10045-RA. Top: annotated sequence.
Middle: segmentation obtained by BIC–VLMC method. Bottom: segmentation obtained by KT–VLMC
method. The numbers above each segment denote the depths of the corresponding trees

Fig. 11 Segmentations obtained for Drosophila melanogaster gene CG10045-RA + flanking regions. Top:
annotated sequence. Middle: segmentation obtained by BIC–VLMC method. Bottom: segmentation obtained
by KT–VLMC method. The numbers above each segment denote the depths of the corresponding trees

while the KT method merged only four regions from CDS2 to Intron34. Also the KT method
produced more segments than the annotated segmentation, while the BIC method produced
fewer segments.

Figure 15 shows segmentation of Tetraodon nigroviridis gene GSTENT00014173001 for
which the BIC method seems to have recognized all gene segments while the KT method

123

276 R. Gwadera et al.

Fig. 12 Segmentations obtained for Drosophila melanogaster gene CG5407-RA. Top: annotated sequence.
Middle: segmentation obtained by BIC–VLMC method. Bottom: segmentation obtained by KT–VLMC
method. The it numbers above each segment denote the depths of the corresponding trees

Fig. 13 Segmentations obtained for Caenorhabditis elegans gene F33E11.3. Top: annotated sequence. Mid-
dle: segmentation obtained by BIC–VLMC method. Bottom: segmentation obtained by KT–VLMC method.
The numbers above each segment denote the depths of the corresponding trees

merged three gene regions. Also unlike in the case of gene Y50D4C.3 here the BIC method
produced more segments than the KT method.

Figure 16 shows segmentation of Homo Sapiens gene ENST00000246662.
Figure 17 presents segmentation of intron7 of Pan troglodytes (chimpanzee) alpha-

fetoprotein precursor (AFP) gene, where intron7 is know to contain distinct homogeneous
segments [20]. The results are consistent with [20].

123

Optimal segmentation using tree models 277

Fig. 14 Segmentations obtained for Caenorhabditis elegans gene Y50D4C.3. Top: annotated sequence. Mid-
dle: segmentation obtained by BIC–VLMC method. Bottom: segmentation obtained by KT–VLMC method.
The numbers above each segment denote the depths of the corresponding trees

Fig. 15 Segmentations obtained for Tetraodon nigroviridis gene GSTENT00014173001. Top: annotated
sequence. Middle: segmentation obtained by BIC–VLMC method. Bottom: segmentation obtained by KT–
VLMC method. The numbers above each segment denote the depths of the corresponding trees

Concluding, the presented experiments on DNA sequences reveal two main properties
of TreeSegment: (i) it tends to recognize boundaries exon–intron in cases where the cor-
responding segments are appropriately long; and (i i) it tends to merge consecutive smaller
heterogeneous segments into one larger segment. Property (i) follows from the fact that long
segments enable building appropriately large trees that may better fit to the segments in order
to discover a finer difference between them. Property (i i) follows from the fact that the MDL

123

278 R. Gwadera et al.

Fig. 16 Segmentations obtained for Homo Sapiens gene ENST00000246662. Top: annotated sequence. Mid-
dle: segmentation obtained by BIC–VLMC method. Bottom: segmentation obtained by KT–VLMC method.
The numbers above each segment denote the depths of the corresponding trees

Fig. 17 Intron7 from Pan troglodytes alpha-fetoprotein precursor (AFP) gene (accession U21916). Top:
known regions. Middle: segmentation obtained by BIC–VLMC method. Bottom: segmentation obtained by
KT–VLMC method. The numbers above each segment denote the depths of the corresponding trees

criteria employed in TreeSegment favor a simpler model that spans a larger region instead
of creating smaller segments to represent local fluctuations of the probabilistic behavior of
the sequence.

123

Optimal segmentation using tree models 279

Fig. 18 Multilingual text separation: German, English and French. Top: segments corresponding to the three
languages. Middle: segmentation obtained by BIC–VLMC method. Bottom: segmentation obtained by KT–
VLMC method. The numbers above each segment denote the depths of the corresponding trees

4.3 Text

In this section we experiment with natural language text corpus. In Sect. 4.3.1 we segment
a multilingual text and in Sect. 4.3.2 we experiment with corrupted context separation. We
converted the original texts to an alphabet of cardinality 27, which is a set consisting of
the English alphabet and the space character. Every space character in the converted text
corresponds to a sequence of white spaces between normal characters in the original text.

4.3.1 Multilingual text separation

In this experiment we constructed a text sequence composed from three segments: German,
English and French translations of Chapter 11 of Robur the Conqueror by Jules Verne. We
obtained the text data from http://www.gutenberg.org. In order to convert the German and
the French texts to the English alphabet we performed the following conversions. In the case
of the German text we converted the sharp s to “ss” and the umlauts to “ae”, “oe” and “ue”,
respectively. In the case of the French text we stripped off all accents. Figure 18 presents
results of the segmentation that show a very accurate separation between the languages. As
the figure shows both the BIC and the KT methods selected 1-VLMCs for each segment. As
it turns out 0-MC can also separate the texts however not as accurately as 1-VLMC.

4.3.2 Corrupted context separation

In this experiment we constructed a text sequence composed from three segments: a scientific
text segment of length 5,000, a reversed version of the first segment and a copy of the first
segment. The purpose of this experiment was to test whether the algorithm was able to dis-
cover the corrupted context segment. This experiment presents the following two challenges

123

http://www.gutenberg.org

280 R. Gwadera et al.

Fig. 19 Corrupted context separation. Top: original segment. Middle: segmentation obtained by BIC–VLMC
method. Bottom: segmentation obtained by KT–VLMC method. The numbers above each segment denote the
depths of the corresponding trees

for the algorithm: (i) all three segments have the same symbol composition such that the
whole sequence is homogeneous in terms of 0-MC; and (i i) since the outer two segments are
identical they correspond the same context tree making the tree prevalent across the sequence.
As it turns out 1-MC is enough to separate the segments. Figure 19 presents results that show
an almost perfect separation.

5 Related work

Tree models and the algorithm Context were introduced by Rissanen in [21]. Consistency
results for tree models were provided by Weinberger et al. in [26] and by Bühlmann and
Wyner in [5] who also defined the term VLMC. The CTM was introduced by Wilems et al.
in [27,28]. In [15] Krichevsky and Trofimov introduced KT and derived its asymptotic prop-
erties. In [1], Barron et al. presented a comprehensive review of theoretical results on MDL
in the context of coding and modeling. The Bayesian information criterion (BIC) was intro-
duced by Schwarz in [24]. In [7], Ciszar and Talata proved consistency results for BIC and
KT as estimators of the optimal context tree.

Segmentation algorithms have been central in the analysis of genomic sequences. In [17],
Liu and Lawrence presented a Bayesian approach to DNA segmentation by assuming a 0-MC
model and using the KT probability. The optimal number of segments was selected using
Bayesian inference. Makeev et al. [18] studied a Bayesian approach to DNA segmentation
by extending the idea from [17] by using heuristic border insertion penalties and filtration of
boundaries.

Orlov et al. [19] presented a method for recognizing functional DNA sites and segment-
ing genomes. They developed a program “Complexity” for computing a context tree of a
DNA sequence using the stochastic complexity [21,22] as a pruning criterion. Using their

123

Optimal segmentation using tree models 281

program they analyzed DNA sequences of various functional classes (coding, non-coding
and regulatory) and discovered that the DNA structure can be represented by trees.

The problem of DNA segmentation by model selection was posed by Li [16], where he
considered a greedy top-down divide-and-conquer 0-MC segmentation approach to segment
DNA by using the BIC and the Akaike information criterion but he did not consider gene
segmentation. Also in [25], Szpankowski used 0-MC and the Shanon-Jensen distance to
segment DNA.

As far as gene segmentation the distinctive statistical properties of gene functional regions
are well documented in the literature, e.g., see [9,29,11]. In particular the detection of genes
has been based on the non-uniform codon usage in protein coding segments and has been
modeled by non-uniform Markov models and HMMs [6]. Bernaola et al. [3] proposed using
entropic segmentation for finding borders between coding and non-coding DNA regions.

6 Conclusions

We presented a segmentation method that uses tree models to partition the input sequence
into segments of differing contextual regularities that correspond to differnt tree structures.
The MDL principle is used to guide the segmentation process by deciding the optimal tree
model in each segment and by deciding the overall number of segments. In our experiments
we demonstrated that VLMCs can provide more accurate segmentations than MCs and are
also capable of recognizing partition points in cases where MCs fail. In the experiments on
DNA we showed usefulness of our method for gene segmentation.

References

1. Barron A, Rissanen J, Yu B (1998) The minimum desiption length principle in coding and modeling.
IEEE Trans Inf Theory 44(6):2743–2760

2. Bellman R (1961) On the approximation of curves by line segments using dynamic programming. Com-
mun ACM 4(6):284

3. Bernaola-Galvan P, Grosse I, Carpena P, Oliver J, Roman-Roland R, Stanley H (2000) Finding bor-
ders between coding and noncoding dna regions by an entropic segmentation method. Phys Rev Lett
85(6):1342–1345

4. Braun J, Muller H (1998) Statistical methods for dna sequence segmentation. Statist Sci 13(2):142–162
5. Bühlmann P, Wyner A (1999) Variable length Markov chains. Ann Statist 27:480–513
6. Burge Ch, Karlin S (1997) Prediction of complete gene structures in human genomic dna. J Mol Biol

268:78–94
7. Csiszar I, Talata Z (2006) Context tree estimation for not necessarily finite memory processes, via bic

and mdl. IEEE Trans Inf Theory 52(3):1007–1016
8. Grünwald P (2005) A tutorial introduction to the minimum description length principle. In: Advances in

minimum description length: theory and applications. MIT Press
9. Guigo R, Fickett J (1995) Distinctive sequence features in protein coding genic non-coding, and intergenic

human dna. J Mol Biol 253:51–60
10. Hansen M, Yu B (2001) Model selection and the principle of minimum description length. J Am Statist

Assoc 96(454):746–774
11. Herzel H, Grosse I (1997) Correlations in dna sequences: the role of protein coding segments. Phys Rev

Lett 55(1):800–810
12. Mannila H, Tikanmki J, Himberg J, Korpiaho K, Toivonen H (2001) Time series segmentation for context

recognition in mobile devices. In: First IEEE international conference on data mining, pp 203–210
13. Kehagias Ath (2004) A hidden markov model segmentation procedure for hydrological and environmen-

tal time series. Stoch Environ Res Risk Assess (SERRA) 18(2):117–130
14. Keogh EJ, Chu S, Hart D, Pazzani MJ (2001) An online algorithm for segmenting time series. In: ICDM,

pp 289–296

123

282 R. Gwadera et al.

15. Krichevsky R, Trofimov V (1981) The performance of universal encoding. IEEE Trans Inf Theory
IT-27(2):199–207

16. Li W (2001) DNA segmentation as a model selection process. In: International conference on research
in computational molecular biology, pp 204–210

17. Liu S, Lawrence C (1999) Bayesian inference of biopolymer models. Bioinformatic 15:38–52
18. Makeev V, Ramensky V, Gelfand M, Roytberg M, Tumanyan V (2000) Bayesian approach to dna segmen-

tation into regions with different average nucleotide composition. Lecture Notes in Computer Science,
2066:54–73, Computational Biology

19. Orlov Y, Potapov V, Filipov V (2002) Recognizing functional dna sites and segmenting genomes using
the program “complexity”. In: Proceedings of BGRS 2002, vol 3. Novosibirsk Insititute of Cytology and
Genetics Press, pp 244–247

20. Henderson D, Boys R, Wilkinson D (2000) Detecting homogeneous segments in dna sequences by using
hidden markov models. Appl Statist 49(2):269–285

21. Rissanen J (1983) A universal data compression system. IEEE Trans Inf Theory IT-29(5):656–664
22. Rissanen J (1999) Fast universal coding with context models. IEEE Trans Inf Theory 45(4):1065–1071
23. Salmenkivi M, Mannila H (2005) Using markov chain monte carlo and dynamic programming for event

sequence data. Knowl Inf Systems 7(3):267–288
24. Schwarz G (1978) Estimating the dimension of a model. Ann Statist 7(2):461–464
25. Szpankowski W, Ren W, Szpankowski L (2003) An optimal DNA segmentation based on the MDL

principle. In: IEEE computer society bioinformatics conference, pp 541–546
26. Weinberger M, Rissanen J, Feder M (1995) A universal finite memory source. IEEE Trans Inf Theory

41(3):643–652
27. Willems F, Shtarkov Y, Tjalkens T (1995) The context-tree weighting method: basic properties. IEEE

Trans Inf Theory IT-41:653–664
28. Willems F, Shtarkov Y, Tjalkens T (2000) Context tree maximizing. In: Conference on information sci-

ences and systems, pp 7–12
29. Zhang M (1998) Statistical features of human exons and their flanking regions. Hum Mol Genet 7(5):

919–932

Authors biography

Robert Gwadera received the M.S. degree in Electrical and Computer
Engineering from Technical University of Gdansk, Poland in 1995. In
2003 he received the M.S. in Computer Sciences from Purdue Univer-
sity. He received his Ph.D. in Computer Science from Purdue University
in 2005. He is currently a postdoctoral researcher in the Laboratory of
Computer and Information Sciences, Helsinki University of Technology.
His research interests are data mining, machine learning and databases.

123

Optimal segmentation using tree models 283

Aristides Gionis received his Ph.D. from Stanford University in 2003,
and he is currently a senior researcher at Yahoo! Research, Barce-
lona. His previous positions include being a senior researcher in the
Helsinki Institute for Information Technology in Finland (2003-2006), as
well as working for internships at Bell Labs, AT&T Labs, and Microsoft
Research. His research areas are data mining, algorithms, and databases.

Heikki Mannila received his Ph.D. in Computer Science in 1985 from the University of Helsinki. After
some time at the University of Tampere and various researcher positions, in 1989 he was appointed a professor
of Computer Science at the University of Helsinki. He was a visiting professor in the Technical University
of Vienna in 1993 and a visiting researcher at Max Planck Institute for Computer Science in Saarbruecken in
1995–1996. He moved to Microsoft Research in Redmond in 1998, came back to Finland to Nokia Research
in 1999, where he stayed until the end of 2001. After that, Heikki Mannila was the research director of the
basic research unit of Helsinki Institute for Information Technology in 2002–2004. Since 1999 he has been a
professor of Computer Science at Helsinki University of Technology. Currently he is an academy professor
(2004–2009). His research group is located partly in Helsinki University of Technology and partly in Univer-
sity of Helsinki. He received the ACM SIGKDD Innovation award in 2003. Heikki Mannila is the author of
two books and over 150 refereed articles in Computer Science and related areas. The book Principles of Data
Mining, with David Hand and Padhraic Smyth, is available also in Chinese and in Polish.

123

	Optimal segmentation using tree models
	Abstract
	Introduction
	Tree models
	Basic definitions
	The Bayesian information criterion (BIC) and the Krichevski-Trofimovprobability (KT)
	Definition of the problem of optimal sequence segmentation using tree models
	Pruning the tree
	TreeSegment: segmentation using tree models
	Pruning according to Context algorithm to minimize the BIC of the tree
	Pruning according to CTM algorithm to minimize KT MDL of the tree
	The segmentation algorithm
	The maximum depth of the tree
	Border insertion penalties
	Experiments
	Generated data
	DNA sequences
	Viral genomes
	Eukaryotic genes
	Text
	Multilingual text separation
	Corrupted context separation
	Related work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

