
Knowl Inf Syst (2008) 14:233–247
DOI 10.1007/s10115-007-0082-6

R E G U L A R PA P E R

Parallel randomized sampling for support vector
machine (SVM) and support vector regression (SVR)

Yumao Lu · Vwani Roychowdhury

Received: 12 April 2006 / Revised: 14 November 2006 / Accepted: 26 January 2007 /
Published online: 30 June 2007
© Springer-Verlag London Limited 2007

Abstract A parallel randomized support vector machine (PRSVM) and a parallel
randomized support vector regression (PRSVR) algorithm based on a randomized
sampling technique are proposed in this paper. The proposed PRSVM and PRSVR
have four major advantages over previous methods. (1) We prove that the proposed
algorithms achieve an average convergence rate that is so far the fastest bounded
convergence rate, among all SVM decomposition training algorithms to the best of
our knowledge. The fast average convergence bound is achieved by a unique priority
based sampling mechanism. (2) Unlike previous work (Provably fast training algori-
thm for support vector machines, 2001) the proposed algorithms work for general
linear-nonseparable SVM and general non-linear SVR problems. This improvement
is achieved by modeling new LP-type problems based on Karush–Kuhn–Tucker opti-
mality conditions. (3) The proposed algorithms are the first parallel version of ran-
domized sampling algorithms for SVM and SVR. Both the analytical convergence
bound and the numerical results in a real application show that the proposed algo-
rithm has good scalability. (4) We present demonstrations of the algorithms based
on both synthetic data and data obtained from a real word application. Performance
comparisons with SVMlight show that the proposed algorithms may be efficiently
implemented.

Keywords Randomized sampling · Support vector machine · Support vector
regression · Parallel algorithm

Y. Lu (B)
Yahoo! Inc., Applied Research, Sunnyvale, CA 94089, USA
e-mail: yumaol@yahoo-inc.com

V. Roychowdhury
Department of Electrical Engineering, University of California,
Los Angeles, CA, USA

234 Y. Lu, V. Roychowdhury

1 Introduction

The support vector machine (SVM) has recently become one of the most popular
methods for classification and regression in machine learning. The underlying train-
ing problem can be formulated as a quadratic programming (QP) problem that can
be solved by standard optimization algorithms [12,27,28]. These algorithms, however,
are only able to solve some small and medium size problems since they require the
loading of the whole Gram matrix.

The first decomposition algorithm, that works on a small subset of training vectors in
each iteration was first proposed by Osuna [24]. Several improved versions of decom-
position algorithms, including the Chunking algorithm [23], sequential minimization
optimization (SMO) algorithm [25], successive over-relaxation (SOR) algorithm [22]
and their variations [11,14,20], have made it feasible to apply SVM for large scale
training problems. The lack of a theoretical convergence bound of the decomposition
algorithms for general SVM training problems, however, compromises the potential
applicability of such a powerful tool set, especially for many real-time and on-line
applications, where a convergence bound becomes critical [7]. This paper proposes
a randomized sampling algorithm that has a provably fast convergence bound for
general SVM and SVR training problems.

Sampling theory has a long successful history in optimization [1,9]. The applica-
tion to the SVM training problem was first proposed by Balcazar et al. [2]. However,
Balcazar assumed that the SVM training problem is a separable problem or a problem
that can be transformed to an equivalent separable problem by assuming an arbitrarily
small regularization factor γ (D and 1/k in Balcazar et al. [2] and Balcazar et al. [3]).
They also stated that there were number of implementation difficulties so that no
relevant experimental results could be provided [3].

We model new LP-type problems for SVM and SVR, respectively, such that the
general linear nonseparable problem can be covered by our randomized support vec-
tor machine (RSVM) algorithm and the general nonlinear regression problem can
be covered by our randomized support vector regression (RSVR) algorithm. In the
LP-type problems, Karush–Kuhn–Tucker (KKT) optimality conditions are used as
criteria to identify violators and extremes. The advantage of using KKT conditions
over using classification errors proposed by Balcazar et al. [2] lies in the fact that the
KKT conditions will be always satisfied when a global optimum is achieved, while
classification errors may not vanish in linear nonseparable problems, even when a
global optimum has been achieved.

Parallel learning is necessary if a centralized system is infeasible because of geo-
graphical, physical and computational reasons. It has been noted that scalable parallel
algorithms are important for a machine learning algorithm to be successfully applied
in large scale industrial applications [4,8,19,21,26]. In order to take advantage of
distributed computing facilities, we proposed a novel parallel randomized SVM/SVR,
in which multiple working sets can be worked on simultaneously. To the best of our
knowledge, it is the very first attempt in extending randomized sampling technique to
a parallel algorithm for SVM/SVR training problems.

The basic idea of the algorithm is to randomly shuffle the training vectors among a
network based on a carefully designed priority and weighting mechanism, and to solve
the multiple local problems simultaneously. Unlike the previous works on parallel
SVM [11,18] that lacks a convergence bound, our algorithms on average, converges to
the global optimum classifier/regressor in less than (6δ ln(N+6r(C−1)δ)/C iterations,

Parallel randomized sampling for SVM and SVR 235

where δ denotes the underlying combinatorial dimension, N denotes the total num-
ber of training vector, C denotes the number of working sites, and r denotes the size
of each working set. Since the RSVM/RSVR is a special case of PRSVM/PRSVR,
our proof naturally works for the RSVM/RSVR. Note that, when C = 1, our result
reduces to Balcazar’s bound [3].

This paper is organized as follows. The support vector machine and support vector
regression problems are introduced and formulated in Sect. 2, followed by our LP-type
modeling in Sect. 3. We present the parallel randomized support vector machine and
support vector regression (PRSVM/PRSVR) algorithms in Sect. 4. The theoretical
global convergence bound is given in Sect. 5, followed by a presentation of demon-
strations on synthetic data and data from a geographic information system application
in Sect. 6. We discuss some interesting issues in Sect. 7 and conclude this paper in
Sect. 8.

2 Support vector machine and support vector regression

We introduce fundamentals and basic notations on SVM and SVR in this section.

2.1 Support vector machine

Let us first consider a simple linear separation problem. We are seeking a hyperplane
to separate a set of positively and negatively labeled training data. The hyperplane is
defined by wTxi −b = 0 with parameter w ∈ Rm and b ∈ R such that yi(wTxi −b) > 1
for i = 1, . . . , N where xi ∈ Rm is a training data point and yi ∈ {+1, −1} denotes
the class of the vector xi. The margin is defined by the distance of the two parallel
hyperplanes wTx − b = 1 and wTx − b = −1, i.e., 2/||w||2. The margin is related to
the generalization of the classifier [28]. The support vector machine (SVM) training
problem is in fact a quadratic programming problem, which maximizes the margin
over the parameters of the linear classifier. For general nonseparable problems, a set
of slack variables µi, i = 1, . . . , N are introduced. The SVM training problem problem
is defined as follows:

minimize (1/2)wTw + γ 1Tµ

subject to yi(wTxi − b) ≥ 1 − µi, i = 1, . . . , N
µ ≥ 0

(1)

where the scalar γ is usually empirically selected to reduce the testing error rate. To
simplify notations, we define vi = (xi, −1), θ = (w, b), and a matrix Z as

Z = [(y1v1) (y2v2) . . . (yNvN)]T .

The dual of problem (1) is shown as follows:

maximize −(1/2)αTZZTα + 1Tα

subject to 0 ≤ α ≤ γ 1.
(2)

A nonlinear kernel function can be used for nonlinear separation of the training
data. In that case, the gram matrix ZZT is replaced by a kernel matrix K ∈ RN×N .
Our PRSVM that is described in the Sect. 4 can be kernelized and therefore is able
to keep the full advantages of the SVM.

236 Y. Lu, V. Roychowdhury

2.2 Support vector regression

Support vector regression is a robust function estimation method. The basic idea is to
minimize a pre-defined risk function over the parameters of the regressor.

We, again, start from the estimation of a linear function

f (x) = wTx + b, (3)

based on independent and identically distributed (IID) training samples

(x1, y1), . . . , (xN , yN)

where xi ∈ Rm, yi ∈ R, w ∈ Rm, b ∈ R and f : Rm → R.
To preserve the sparse property of the solution, Vapnik used the ε-insensitive loss

function

c(x, y, f (x)) = |yi − f (xi)|ε ≡ max{0, |y − f (x)| − ε},
which does not penalize errors below the tolerance ε [28].

To minimize a regularized ε-insensitive loss function, we have

minimize 1
2 wTw + γ 1T(ξ + ξ̃)

subject to wTx + b − y ≤ ε + ξ

y − wTx − b ≤ ε + ξ̃

ξ , ξ̃ ≥ 0,

(4)

where ξ ∈ RN and ξ̃ ∈ RN are the allowed error “above” and “below” the margin
boundary, ||w||2 is the regularization term and γ is an empirically selected scalar used
to balance these two terms.

Recall that vi = (xi, −1), θ = (w, b), and a matrix Z as

Z = [(y1v1) (y2v2) . . . (yNvN)]T .

The corresponding dual formulation has the form

minimize 1
2 (α̃ − α)TZZT(α̃ − α) − yT(α̃ − α) + ε1T(α̃ + α)

subject to 1T(α̃ − α) = 0
0 ≤ α̃, α ≤ γ .

(5)

where the dual variable α̃, α ∈ RN . A support vector for SVR is defined as the training
vectors xi such that the corresponding optimal dual variable

α̃i − αi �= 0.

For convenience, we define vector υ ∈ RN such that

υ = α̃ − α.

Similarly, a nonlinear kernel function can also be used for general nonlinear regres-
sion. In that case, the gram matrix ZZT is replaced by a kernel matrix K ∈ RN×N . Our
PRSVR (a unified algorithm for regression problems with PRSVM) that is described
in the Sect. 4 works for general kernelized nonlinear support vector regression prob-
lems.

Parallel randomized sampling for SVM and SVR 237

3 Randomized sampling

We model two LP-type problems for support vector machines and support regression
respectively in this section. The modeling procedure helps in understanding the main
algorithm proposed in the following section.

3.1 The sampling lemma and LP-type problem

Before presenting our LP-type models, we introduce the fundamentals and notations
in randomized sampling theory.

Let X be the set of training vectors. That is, each element of X is a row vector of the
matrix X. Throughout this paper, we use CALLIGRAPHIC style letters to denote
sets of the row vectors of a matrix, which itself is denoted by the same letter in italics.
An abstract problem is denoted by (X , φ). Here, φ is a mapping from a given subset
XR of X to the solution of problem (1) with constraints corresponding to XR and X is
of size N. Such a problem, where the constraints correspond to only a subset of all the
training vectors will be referred to as a local problem from now on. In our approach,
we will divide the training vectors into multiple subsets (with repetitions, if needed)
or working sets, and SVM/SVR solutions will be found for each local problem. Define

V(X) := {x ∈ X\XR|φ(XR ∪ {x}) �= φ(XR)},
E(X) := {x ∈ XR|φ(XR\{x}) �= φ(XR)}.

The elements of V(XR) are called violators of XR and the elements of E(XR) are
called extremes in XR. By definition, we have

x violates XR ⇔ x is extreme in XR ∪ {x}.
For a random sample XR of size r, we consider the expected values

vr := E|XR|=r(|VR|)
er := E|XR|=r(|ER|)

Gartner proved the following sampling lemma [17]:

Lemma 3.1 (Sampling Lemma). For 0 ≤ r < N,

vr

N − r
= er+1

r + 1
.

Proof By definitions, we have(
N
r

)
vr = ∑

XR
∑

x∈X\X [x violates XR]
= ∑

XR
∑

x∈X\XR [x is extreme in XR ∪ {x}]
= ∑

Q
∑

x∈Q[x is extreme in Q]

=
(

N
r + 1

)
er+1,

where [.] is the indicator variable for the event in brackets and the last row follows
the fact that the set Q has r + 1 elements. The Lemma immediately follows.

The problem (X , φ) is said to be a LP-type problem if φ is monotone and local (see
Definition 3.1 in [17]). Balcazar et al. [2] proved that the problem (1) is a LP-type

238 Y. Lu, V. Roychowdhury

problem . So is the problem (2). Similarly, problems (4) and (5) are also LP-type prob-
lems. We use the same definitions given by [17] to define the basis and combinatorial
dimension as follows. For any XR ⊆ X , a basis of XR is an inclusion-minimal subset
B ⊆ XR with φ(B) = φ(XR). The combinatorial dimension of (X ,φ), denoted by δ,
is the size of a largest basis of X . For a LP-type problem (X ,φ) with combinatorial
dimension δ, the sampling lemma yields

vr ≤ δ
N − r
r + 1

. (6)

This follows from the fact that |E(XR)| ≤ δ.

3.2 LP-type problem modeling for SVM

Now, we are ready to relate the definitions of the extremes, violators and the basis
to our general SVM training problem (1) or (2). For any local solution θp or αp of
problem (Xp, φ), the basis is the support vector set, SVp. The violators of the local
solutions will be the vectors that violate the Karush–Kuhn–Tucker (KKT) necessary
and sufficient optimality conditions. The KKT conditions for the problem (1) and (2)
are listed as follows:

Zθ	 ≥ 1 − µ	, µ	 ≥ 0, 0 ≤ α	 ≤ γ 1,

θ	 = ZTα	, (γ − α	
i)µ

	
i = 0, i = 1, . . . , N.

Since the µi and αi for the training vector xi is always 0 for xi ∈ X\Xp, the only
condition needed to be tested is

θpT
zi ≥ 1

or

αpT
Zpzi ≥ 1.

Any training vector that violates the above condition is called a violator to (Xp, φ).
The size of the largest basis, δ is naturally the largest number of support vectors for
all subproblems (Xp, φ), Xp ⊆ X . For separable problems, δ is bounded by one plus
the lifted dimension, i.e., δ ≤ n + 1. For general nonseparable problems, we do not
know the bound for δ before we actually solve the problem. What we can do is to set
a sufficiently large number to bound δ from above.

3.3 LP-type problem modeling for SVR

The similar technique can be applied to SVR training problems. For any local solution
θp or υp of problem (Xp, φ), the basis is the support vector set, SVp. The violators of
the local solutions will be the vectors that violate the KKT necessary and sufficient
optimality conditions. The KKT conditions for the problem (4) and (5) are listed as
follows:

|Zθ	 − y| ≤ ε	 + max{µ̃	, µ	}, µ̃	, µ	 ≥ 0, 1υ	 = 0, θ	 = ZTυ	,

max{0, |(ZZTυ)i − yi| − ε}υ	
i = 0, i = 1, . . . , N,

where (.)i denotes the i-th component of the vector in bracket.

Parallel randomized sampling for SVM and SVR 239

Since the µi, µ̃i and υi for the training vector xi is always 0 for xi ∈ X\Xp, the only
condition needed to be tested is

|(Zθ)i − yi| ≤ ε

or

|(ZZTυ)i − yi| ≤ ε.

Any training vector that violates the above condition is called a violator to (Xp, φ).
The size of the largest basis, δ is naturally the largest number of support vectors for
all subproblems (Xp, φ), Xp ⊆ X .

4 Algorithm

We consider the following problem: the training data are distributed in C + 1 sites,
where there are C working sets and 1 nonworking set. Each working site is assigned
a priority number p = 1, 2, . . . , C. We also assume that each working site contains
r training vectors, where r ≥ 6δ2 and δ denotes the combinatorial dimension of the
underlying SVM/SVR problem.

Define a function u(.) to record the number of copies of elements of a training set.
For training set X , we define a set W such that W contains the virtually duplicated
copies of the training vectors. We have |W| = u(X). We also define the virtual set Wp
corresponding to training set Xp at site p.

Our parallel randomized support vector machine/regression (PRSVM/PRSVR)
algorithm works as follows.

Initialization

Training vectors X are randomly distributed to C + 1 sites. Assign priorities to all
sites such that each site gets a unique priority number. Set u({xi}) = 1, ∀i. Hence,
u(X) = N. We have |Xp| = |Wp| for all p. Set t = 0.

Iteration

Each iteration consists of the following steps.
Repeat for t = 1, 2, . . .

1. Randomly distribute the training vectors over the working sites according to
u(X) as follows. Let S1 = W .
For p = 1 : C
Choose r training vectors, Wp from Sp uniformly (and make sure r ≥ 6δ2);
Sp+1 := Sp\Wp;
End For

2. Each site with priority p, p ≤ C solves the local partial problem and record the
solution θp. Send this solution to all other sites q, q �= p.

3. Each site with priority q, q = 1, . . . , C + 1, checks the solution θp from site with
higher priority p, p < q. Define Vq,p to be the training vectors in the site with pri-
ority q that violate the KKT condition corresponding to solution (wp, bp), q �= p.

240 Y. Lu, V. Roychowdhury

That is,

Vq,p := {xi|θpT
([xi; 1])yi < 1, xi ∈ Xq, xi /∈ Xp}

for classification problems or

Vq,p := {xi||θpT
([xi; 1] − yi| > ε, xi ∈ Xq, xi /∈ Xp}

for regression problems.
4. If

∑C+1
q=p+1 u(Vq,p) ≤ |Sp|/(3δ) then u({xi}) = 2u({xi}), for all xi ∈ Vq,p, ∀q �= p,

∀p;

until ∪q�=pVq,p = ∅ for some p.
Return the solution θp.
The priority setting of working sets actually defines the order of sampling. The

highest priority server gets the first batch of sampled data, lower one gets the second
batch and so on. This kind of sequential behavior is designed to help defining violators
and extremes clearly under a multiple working site configuration.

Step 2 involves a merging procedure. If u({xi}) copies of vector xi are sampled to a
working set Wp, only one copy of xi is included in the optimization problem (Xp, φ)
that we are solving, while we record this number of copies as a weight of this training
vector.

The merging procedure has two properties:

Property 4.1 A training vector that is not in working set Xp must not be a violator of
the problem (Xp, φ) if one or more copies of this vector are included in the working set
Xp. That is, xi /∈ V(Xp), if xi ∈ Xp.

Property 4.2 If multiple copies of a vector xi are sampled to a working set Xp, none
of those of vectors can be the extreme of the problem (Xp, φ). That is, xi /∈ E(Xp) if
u({xi}) > 1 at site p.

The above two properties follow immediately by definitions of violators and ex-
tremes.

One may note that the merging procedure actually constructs an abstract problem
(Wp, φ′) such that φ′(Wp) = φ(Xp). By definition, (Wp, φ′) is a LP-type problem and
has the same combinatorial dimension, δ, as the problem (Xp, φ). If the set of violators
of (Xp, φ) is Vp, the number of violators of (Wp, φ′) is u(Vp).

Step 4 plays the key role in this algorithm. It says that if the number of violators of
the LP-type problem (Wp, φ′) is not too large, we double the weights of the violators
of (Wp, φ′) in all sites. Otherwise, we keep the weights untouched since the violators
already have enough weights to be sampled to a working site.

One may note when C = 1, the PRSVM/PRSVR is reduced to the RSVM. How-
ever, our RSVM is different from the randomized support vector machine training
algorithm in [2] in several ways. First, our RSVM is capable of solving general non-
separable problems, while Balcazar’s method has to transfer a nonseparable problem
to an equivalent separable problem by assuming an arbitrarily small γ . Second, our
RSVM merges examples after sampling them. Duplicated examples are not allowed in
the optimization steps. Third, we test the KKT conditions to identify a violator instead
of identifying a misclassified point. In our RSVM, a correctly classified example may
also be a violator if this example violates the KKT condition.

Parallel randomized sampling for SVM and SVR 241

5 Proof of the average convergence rate

We prove the average number of iterations executed in our algorithm, PRSVM/
PRSVR, is bounded by (6δ/C) ln(N +6r(C−1)δ) in this section. This proof is a gener-
alization of the one given in [2]. The result of the traditional RSVM becomes a special
case of our PRSVM.

Theorem 5.1 For general SVM training problem the average number of iterations exe-
cuted in the PRSVM/PRSVR algorithm is bounded by (6δ/C) ln(N + 6r(C − 1)δ).

Proof We consider an update to be successful if the if-condition in the step 4 holds in
an iteration. One iteration has C updates, successful or not.

We first show a bound on the number of successful updates. Let Vp denote the set
of violators from site with priority q ≥ p for the solution θp. By this definition, we
have

u(Vp) =
C+1∑

q=p+1

u(Vq,p)

Since the if-condition holds, we have

C+1∑
q=p+1

u(Vq,p) ≤ u(Sp)/(3δ) ≤ u(X)/(3δ).

By noting that the total number of training vectors including duplicated ones in each
working sites is always r for any iterations, we have

p−1∑
q=1

u(Vq,p) ≤ r(p − 1) ≤ r(C − 1)

and

∑
q�=p

u(Vq,p) =
C+1∑

q=p+1

u(Vq,p) +
p−1∑
q=1

u(Vq,p)

= u(Vp) +
p−1∑
q=1

u(Vq,p)

Therefore, at each successful update, we have

uk(X) ≤ uk−1(X)(1 + 1
3δ

) + 2r(C − 1).

where k denotes the number of successful updates. Since u0(X) = N, after k successful
updates, we have

uk(X) ≤ N(1 + 1
3δ

)k + 2r(C − 1)3δ[(1 + 1
3δ

)k − 1]
< (N + 6r(C − 1)δ)(1 + 1

3δ
)k

Let X0 be the set of support vectors of the original problem (1) or (2). At each
successful iterations, some xi of X0 must not be in Xp. Hence, u({xi}) gets doubled.

242 Y. Lu, V. Roychowdhury

Since, |X0| ≤ δ, there is some xi in X0 that gets doubled at least once every δ successful
updates. That is, after k successful updates, u({xi}) ≥ 2k/δ .

Therefore, we have

2
k
δ ≤ u(X) ≤ (N + 6r(C − 1)δ)

(
1 + 1

3δ

)k

.

By simple algebra, we have

k ≤ 3δ ln(N + 6r(C − 1)δ).

That is, the algorithm terminates within less than 3δ ln(N + 6r(C − 1)δ) successful
updates.

The rest is to prove that the probability of a successful update is higher than one
half. By sampling lemma, the bound (6), we have

Exp(u(Vp)) ≤ (u(Sp) − r)δ
r + 1

<
u(Sp)

6δ

By Markov equality, we have

Pro{u(Vp) ≤ u(Sp)
3δ

}
≥ Pro{u(Vp) ≤ 2Exp(u(Vp))}
≥ 1

2 .

This implies that the expected number of updates is at most twice as large as the
number of successful updates, i.e., K ≤ 6δ ln(N + 6r(C − 1)δ), where K denotes the
total number of updates. Note that, at the end of each iteration, we have

K = Ct.

Therefore, the PRSVM/PRSVR algorithm guarantees, on average, within
(6δ/C) ln(N + 6r(C − 1)δ) steps, that all the support vectors are contained by one
of the C working sites. For separable problems, we have δ ≤ n + 1. For general
nonseparable problems, we have δ is bounded by the number of support vectors. �

The bound of average convergence rate (6δ/C) ln(N + 6r(C − 1)δ) clearly shows
the linear scalability if N >> δ. This can be true if the number of support vector is
very limited.

6 Simulations and applications

We analyze our PRSVM and PRSVR by using synthetic data and a real-world geo-
graphic information system (GIS) database.

Throughout this section, the machine we used has a Pentium IV 2.26G CPU and
512M RAM. The operating system is Windows XP. The SVMlight [20] version 6.01
was used as the local SVM solver. Parallel computing is virtually simulated in a single
machine. Therefore, we ignore any communication overhead.

Parallel randomized sampling for SVM and SVR 243

6.1 Demonstrations using synthetic data

We demonstrate our RSVM and RSVR (reduced PRSVM and PRSVR when C = 1)
in two experiments with synthesized training data.

In one experiment, a total number of 1,000 two-dimensional training vectors are
generated. This data set consists of 500 positive and 500 negative labeled vectors. Each
class is generated from an independent Gaussian distribution with added random
Gaussian noise.

We set the sample size r to be 100 and the regularization factor γ to be 0.2. The
RSVM converges in 13 iterations. In order to demonstrate the weighting procedure,
we choose three iterations (iteration 0 (initial state), iteration 6 and iteration 13) and
plot the weights of the training vectors in Fig. 1. The darker a point appears, the higher
weight the training sample has.

The RSVR (reduced PRSVR when C = 1) training procedure is demonstrated by
using a synthesized one-dimensional training data set. This data set consists of 5,000
data points generated by a sigmoid function with 20% additive Gaussian noise.

In this experiment, we choose the sample size r to be 2,000, the tube width ε to
be 0.2 and the regularization factor γ to be 0.2. A unit-variance Gaussian kernel is
selected for fitting the sigmoid curve. The RSVR algorithm converges in 11 iterations.
To demonstrate the weighting procedure, we choose three iterations (iteration 0, iter-
ation 5 and iteration 11) and plot the weights of the training vectors in Fig. 2. In this
figure, vectors with higher weights are plotted with darker and larger markers.

−6 −4 −2 0 2 4 6 8
−6

−4

−2

0

2

4

6

8

10

12
SVM training Problem

Iteration 0
−6 −4 −2 0 2 4 6 8

−6

−4

−2

0

2

4

6

8

10

12
SVM training Problem

Iteration 6
−6 −4 −2 0 2 4 6 8

−6

−4

−2

0

2

4

6

8

10

12
SVM training Problem

Iteration 13

(a) (b) (c)

Fig. 1 Weights of training vectors in iterations. Darker points denote higher weights

0 1 2 3 4 5 6 7
−1

−0.5

0

0.5

1

1.5
SVR training Problem

Iteration 0
0 1 2 3 4 5 6 7

−1

−0.5

0

0.5

1

1.5
SVR training Problem

Iteration 5
0 1 2 3 4 5 6 7

−1

−0.5

0

0.5

1

1.5
SVR training Problem

Iteration 11

(a) (b) (c)

Fig. 2 Weights of training vectors in iterations. Vectors with higher weights are plotted with darker
and larger markers

244 Y. Lu, V. Roychowdhury

Table 1 Algorithm
performance comparison of
SVMlight, RSVM and PRSVM

Algorithm C Number of Iterations Learning time
(CPU Seconds)

SVMlight 1 – 11.7
RSVM 1 27 47.32
PRSVM 2 10 20.81

4 7 15.52

Figs. 1 and 2 show how those “important” points stand out and get higher and
higher probability to be sampled in the training process of randomized support vector
machine and randomized support vector regression respectively.

6.2 Application on a geographic information system database

We select covtype, a geographic information system database, from the UCI Repos-
itory of machine learning databases as our PRSVM applications [6]. The covtype
database consists of 5,81,012 instances. There are 12 measures but 54 columns of data:
10 quantitative variables, 4 binary wilderness areas and 40 binary soil type variables
[5]. There are totally seven classes. We scale all quantitative variables to [0,1] and keep
binary variable unchanged. We select 2,87,831 training vectors and use our PRSVM
to classify class 4 against the rest.

We set the size of working size r to be 60,000, the regularization factor γ to be
0.2. Since classification performance is not our major concern, we do not fine turn
the parameter. A linear kernel is used so that the number of support vector can be
limited. This application turns out to be a very suitable case for testing PRSVM since
the database has huge number of training data and the number of SVs is relatively
small.

We try three cases with C = 1, C = 2 and C = 4 and compare the learning time
with the SVMlight in Table 1. The results show that our implementation of RSVM and
PRSVM achieves comparable result with the reported fastest algorithm SVMlight,
though they cannot beat SVMlight in terms of computing speed for now. However, the
lack of a theoretical convergence bound makes SVMlight not always preferable.

We plot the number of violators and support vectors (extremes) in each iterations
in Fig. 3 to compare the performance of different number of working sites. The results
show the scalability of our method. The numerical results match the theoretical result
very well.

7 Discussion

In modem learning theory, a robust classifier or regressor usually comes from a sparse
solution [13]. The beauty of support vector machine lies in its strength of optimally
determining a subset of training vectors, the support vectors, that define the classi-
fier/regressor. Since the complete problem, involving all the data points, are often
too big to handle, iterative decomposition methods, where only a subset of the data
points are handled at any one iteration, have been proposed. However, mathemat-
ical programming sometimes lacks simplicity, and no convergence bound has been
proved for such standard decomposition algorithms. On the other hand, boosting
[15] and stochastic boosting [16] algorithms also seek to determine those critical

Parallel randomized sampling for SVM and SVR 245

0 5 10 15 20 25 30
0

50

100

150

200

250

number of iterations

C=1
C=2
C=4

nu
m

be
r

of
 V

io
la

to
rs

Number of Violators

0 5 10 15 20 25 3030

40

50

60

70

80

90

100

110

number of iterations

C=1
C=2
C=4

nu
m

be
r

of
 S

V
s

Number of SVs

(a) (b)

Fig. 3 Number of violators and SVs found in each iterations of PRSVM. This figure shows the effect
of adding more servers. The system with more servers find the support vectors much faster than that
with less servers

training samples iteratively. These algorithms are simple, but only locally optimal.
The parallel randomized support vector machine is an algorithm that combines sim-
ple sampling/resampling techniques and mathematical programming together such
that a global optimal solution is achieved with a simple convergence bound.

The proposed PRSVM/PRSVR algorithm takes advantage of the sparse solution
of support vector machine. That is, the algorithm is suitable for applications with rela-
tively limited numbers of support vectors. A well-defined problem, in which a robust
solution exists, satisfies this condition. In Fig. 2, one may observe that the number of
support vectors are limited even if a Gaussian kernel is used, which is able to lift the
dimension of feature vectors to infinity.

We cannot deny, however, that the condition r ≥ 6δ2 may be too restrictive and
may cause some inefficiency in the actual performance. In some of our experiments
(not presented in this paper), the actual size of a working set r can be substantially
smaller than the bound of 6δ2 and yet the algorithm converges much faster in terms of
cpu seconds. But we have not found theoretical evidence to guarantee a convergence
if the condition r ≥ 6δ2 does not hold.

8 Conclusions

We have made four contributions in this paper. First, we propose a parallel randomized
sampling algorithm that is able to solve general nonseparable SVM training problems.
This is achieved by using KKT conditions as the criteria of identifying violators and
extremes. Second, our algorithm supports multiple working sets that may work in
parallel to take advantage of multiple computing facilities. Third, we prove that the
PRSVM and PRSVR have a fast average convergence rate. Last, our numerical results
show that multiple working sets have a scalable computing advantage. The provable
convergence bound and scalable results hold the potential to make our algorithm the
preferred on in many applications.

Further research is going to be conducted to improve the performance of the
PRSVM/PRSVR. If we could relax the condition r ≥ 6δ2, each working set then may
contain less number of training samples so that the algorithm may become more effi-
cient and suitable for additional applications that have insufficient training samples.

246 Y. Lu, V. Roychowdhury

References

1. Adler I, Shamir R (1993) A randomized scheme for speeding up algorithms for linear and convex
programming with high constraints-to-variable ratio. Math Program 61(1–3): 39–52

2. Balcazar J, Dai Y, Tanaka J, Watanabe O (2001) Provably fast training algorithm for support
vector machines. In: The 1st IEEE International Conference on Data Mining (ICDM01)

3. Balcazar J, Dai Y, Tanaka J, Watanabe O (2002) Provably fast training algorithm for support
vector machines. Technical Reports on Mathematical and Computing Sciences TR-C160, Tokyo
Institute of Technology, Tokyo

4. Bastiere A (1998) Methods for multisensor classification of aiborne targets integrating evidence
theory. Aerospace Sci Technol 2: 401–411

5. Blackard JA, Dean DJ (1999) Comparative accuracies of artificial neural networks and discri-
minant analysis in predicting forest cover type from cartographic variables. Comput Electronics
Agric 24: 131–151

6. Blake CL, Merz C (1998) UCI repository of machine learning databases http://www.ics.uci.edu/∼
mlearn/MLRepository.html

7. Cesa-Bianchi N (2004) Applications of regularized least squares to classification problems. In:
Lecture Notes in Artificial Intelligence. Springer, Berlin, pp 14–18

8. Chellappa R, Zheng Q, Burlina P, Shekhar C, Eom KB (1997) On the positioning of multisensor
imagery for exploitation and target recognition. In: Proceedings of the IEEE, vol 85, pp 120–138

9. Clarkson KL (1988) Las vegas algorithms for linear and integer programming when the dimension
is small. In: The 29th IEEE symposium on foundations of computer science (FOCS’88)

10. Collobert R, Bengio S (2001) Svmtorch: Support vector machines for large-scale regress prob-
lems. J Mach Lear Res 1: 276–285

11. Collobert R, Bengio S, Bengio Y (2001) A parallel mixture of svms for very large scale problems.
In:Neural Information Processing Systems, pp 633–640

12. Cortes C, Vapnik V (1995) Support-vector networks. Machine Learning 20: 273–297
13. Duda RO, Hart PE, Stork DG (2000) Pattern Classification. Wiley
14. Flake GW, Lawrence S (2002) Efficient svm regression training with smo. Mach Learn 46(1–3):

271–290
15. Freund Y, Schapire RE (1995) A decision-theoretic generalization of on-line learning and appli-

cation to boosting. J Comput Syst Sci 55(1): 119–139
16. Friedman JH (2002) Stochastic gradient boosting. Comput Stat Data Anal 38(4): 367–378
17. Gartner B, Welzl E (2000) A simple sampling lemma: Analysis and applications in geometric

optimization. In: Proceeding of the 16th annual ACM symposium on computational geometry
(SCG)

18. Graf HP, Cosatto E, Bottou L, Dourdanovic I, Vapnik V (2005) Parallel support vector machine:
The cascade svm. In: Advances in neural information processing systems

19. Jeon B, Landgrebe DA (1999) Decision fusion approach for multitemporal classification. IEEE
Trans Geosci Remote Sens 37: 1227–1233

20. Joachims T (1998) Making large-scale svm learning practical. In: Advances in Kernel Methods -
Support Vector Learning. MIT Press, Cambridge, pp 169–184

21. Li S, Kwok JT-Y, Tsang IW-H, Wang Y (1998) Fusion images with different focuses using support
vector machines. IEEE Trans Neural Netw 15: 1555–1560

22. Mangasarian O, Musicant D (1999) Successive overrelaxation for support vector machines. IEEE
Trans Neural Netw 10(5): 1032–1037

23. Osuna E, Freund R, Girosi F (1997) An improved training algorithm for support vector machines.
In: IEEE workshop on neural networks for signal processing. pp 276–285

24. Osuna E, Freund R, Girosi F (1997) Support vector machine: training and applications, Artificial
Intelligence Laboratory Memo No. 1602, Massachusetts Institute of Technology Massachusetts

25. Platt JC (1998) Sequenctial minimal optimization: a fast algorithm for training support vector
machines, Technical Report MSR-TR-98-14, Microsof Research

26. Pohl C, Genderen JLV (1998) Mutisensor image fusion in remote sensing: Concepts, methods
and applications. Int J Remote Sens 19: 823–854

27. Schmidt MS (1996) Identity speaks with support vector networks. In: The 28th symposium on the
interface (INTERFACE-96), Sydney

28. Vapnik V (1995) The Nature of Statistical Learning Theory. Springer, New York

Parallel randomized sampling for SVM and SVR 247

Authors Biography

Yumao Lu is currently a research scientist at Yahoo! Inc., Ap-
plied Research, Sunnyvale, California. He received a Ph. D. de-
gree in Electrical Engineering at the University of California,
Los Angeles in 2005, an M. Phil. degree in Industrial Engineer-
ing at the Hong Kong University of Science and Technology in
2001 and a B. Eng. degree in Automatic Control at the Huaz-
hong University of Science and Technology, Wuhan, China in
1999. Dr. Lu’s Research interests span the fields of machine
learning, information retrieval, convex and non-convex optimi-
zation, data mining, bio-informatics and medical imaging.

Vwani Roychowdhury received the Ph.D. in electrical engi-
neering from Stanford University in 1989. From 1991 to 1996,
he was a faculty member with the School of electrical and Com-
puter Engineering, Purdue University, where he was promoted
to Associate Professor in 1995. In 1996, he joined the Univer-
sity of California, Los Angeles, where he has been a Professor
of electrical engineering since 1998. Professor Roychowdhu-
ry’s research interests span a wide range of topics that deal
with information science, including advanced statistical process-
ing and learning theory, models of computation, quantum and
nanoelectronic computation, quantum information process-
ing, fault-tolerant computation, combinatorics and information
theory.

	Parallel randomized sampling for support vector machine (SVM) and support vector regression (SVR)
	Abstract
	Introduction
	Support vector machine and support vector regression
	Support vector machine
	Support vector regression
	Randomized sampling
	The sampling lemma and LP-type problem
	LP-type problem modeling for SVM
	LP-type problem modeling for SVR
	Algorithm
	Proof of the average convergence rate
	Simulations and applications
	Demonstrations using synthetic data
	Application on a geographic information system database
	Discussion
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

