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Abstract Mining data streams poses great challenges due to the limited mem-
ory availability and real-time query response requirement. Clustering an evolving
data stream is especially interesting because it captures not only the changing dis-
tribution of clusters but also the evolving behaviors of individual clusters. In this
paper, we present a novel method for tracking the evolution of clusters over sliding
windows. In our SWClustering algorithm, we combine the exponential histogram
with the temporal cluster features, propose a novel data structure, the Exponen-
tial Histogram of Cluster Features (EHCF). The exponential histogram is used
to handle the in-cluster evolution, and the temporal cluster features represent the
change of the cluster distribution. Our approach has several advantages over exist-
ing methods: (1) the quality of the clusters is improved because the EHCF captures
the distribution of recent records precisely; (2) compared with previous methods,
the mechanism employed to adaptively maintain the in-cluster synopsis can track
the cluster evolution better, while consuming much less memory; (3) the EHCF
provides a flexible framework for analyzing the cluster evolution and tracking a
specific cluster efficiently without interfering with other clusters, thus reducing
the consumption of computing resources for data stream clustering. Both the the-
oretical analysis and extensive experiments show the effectiveness and efficiency
of the proposed method.
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1 Introduction

Recently, substantial amount of researches are devoted to mining continuous data
streams [6, 18, 23, 33]. The typical applications include network traffic moni-
toring, credit card fraud detection, and sensor network data processing, etc. As
a common data mining task, clustering is widely studied to reveal similar fea-
tures among data records. In data stream scenario, the clustering techniques are
applied to group multidimensional records such that the intracluster similarity is
maximized, and the intercluster similarity is minimized. Due to the restriction of
the computing resources, clustering data stream has to be performed online with
limited memory requirement and one-pass data scan.

Clustering evolving data streams has been an interesting research topic be-
cause of its wide and potential applications. Generally speaking, clustering over an
entire data stream is dominated by the outdated historic information of the stream.
The resulting clusters are of less use from an application point of view. Therefore,
clustering evolving data streams over sliding windows becomes a natural choice,
since the most recent N records are considered to be more critical and preferable
in many applications [5, 12, 17]. However, since data stream clustering is applied
with limited memory availability (relative to the size of the sliding window), it is
impossible to load the entire data set into memory. Thus, approaches to approxi-
mate the clustering results are necessary. Fortunately, a small deviation from the
exact value in a sliding window is acceptable in most practical applications. For
example, in network traffic monitoring the administrator may often query: “What
is the distribution of the most recent 10,000,000 network connections with the
tolerance of 10,000 connections?”

Furthermore, the formation of current clusters can help users better understand
the evolving behavior of the clusters. Previous clustering methods often adopt
a global uniform strategy to maintain the synopses. However, it is preferable to
adaptively maintain separate information for each cluster. Since every cluster has
its own evolving behavior, the uniform strategy may lose a lot of valuable infor-
mation. Characteristics of a cluster (e.g., the number of objects, the center and
radius of the cluster) often change as data streams proceed. Within a certain pe-
riod of time, the evolving behaviors of different clusters are usually different. For
instance, in Fig. 1, there exist three clusters C1, C2, and C3 in the data stream at
time t1. At time t2, the numbers of records in clusters C1, C2, and C3 increase by
3, 2, and 1, respectively. At time t3, the numbers of newly arrived records in those
clusters change to 1, 2, and 3, respectively. Conceivably, the evolving behavior of
each cluster may also change significantly as new records arrive continuously.

C 1

C 2

C 3

C 1

C 2

C 3

C 1

C 2

C 3

Fig. 1 The evolving clusters in a data stream
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(c) The formation of microclusters in
our sliding-window-based method
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(d) The micro clusters formed by re-
cent records in our sliding-window-
based method

Fig. 2 The forming of microclusters

Motivated by this observation, we propose an in-cluster maintenance strategy
to track the clusters in evolving data streams over sliding windows. Sliding win-
dows conveniently eliminate the outdated records. Previously proposed clustering
algorithms cannot be easily extended to this scenario. For example, a direct exten-
sion of CluStream [1] to sliding windows requires that the intermediate clustering
results (i.e., current set of microclusters, called a snapshot in CluStream) be main-
tained simultaneously whenever a new record arrives. Such an expensive operation
will result in large overhead for online processing even if all the snapshots can be
maintained in memory.

Designed for a long-term clustering analysis, CluStream fails to capture the
precise distribution of recent records. The old records have great influence on the
formation of the microcluster, which is illustrated in Fig. 2a. In CluStream, old
records arriving before t3 are not eliminated. To answer a clustering request for
recent records (i.e., the records arriving within (t3, t4), CluStream subtracts the
microcluster at t4 from that at t3, resulting in only one microcluster for recent
records, as shown in Fig. 2b.

In general, when the center of a microcluster shifts gradually, CluStream al-
ways maintains the microcluster with growing radius, instead of splitting it into
multiple microclusters. Since it introduces more memory consumption, splitting
operation is not implemented in CluStream. CluStream creates a new microcluster
if and only if arriving records cannot be incorporated into existing microclusters.
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When a record is within the maximum boundary of a microcluster (e.g., a factor
of the Root Mean Square (RMS) deviation of the records from the microcluster
centroid), it will be absorbed by the microcluster, which may result in a larger
boundary of the microcluster. A microcluster with large boundary will absorb
more records, which leads to further increase on the boundary of microclusters, as
shown in Fig. 2b.

If we promptly eliminate the influence of the old records in the microcluster
when new records arrive, a new microcluster can be created in the interval (t3, t4].
The formation of the two microclusters is shown in Fig. 2c. Taking the history
into account, it is natural to put the newly arriving records into one microcluster
as shown in Fig. 2a. However, the final resulting clusters with two microclusters in
Fig. 2d better capture the distribution of recent records. Our experimental results
(refer to Figs. 7 and 9) support this claim.

In a sliding window, the old records expire while the new records arrive con-
tinuously. It is very important to provide an efficient mechanism to eliminate the
effect of the expired records and incorporate new records into the synopses. How-
ever, this is not a trivial task. Once two synopses have been merged, there is no
way to split them, but the splitting is required when old records expire from the
sliding window.

The contributions of this paper are summarized as follows:

– We propose a novel synopsis called Exponential Histogram of Cluster Fea-
ture (EHCF). EHCFs maintain the cluster features over a sliding window and
bound the number of expired records within εN , where N is the length of
the sliding window. This in-cluster structure adaptively updates the Tempo-
ral Cluster Feature based on the new records of each cluster. It is suitable for
capturing the distribution of recent records as well as the evolving behavior of
each cluster.

– Based on EHCFs, we present a new clustering algorithm, SWClustering, for
data streams over sliding windows. SWClustering is capable of analyzing not
only the clusters but also the evolution of the individual clusters. It effectively
eliminates the influence of old records while incorporating new records. This
mechanism leads to better clustering quality than previous ones.

– The memory consumption of SWClustering is bounded. The optimization
techniques for further reducing the consumption of computing resource are
discussed as well. Comprehensive empirical study shows that SWClustering
can achieve high quality clustering with low overhead, illustrating the effec-
tiveness and efficiency of the proposed algorithm.

The remainder of this paper is organized as follows. Section 2 surveys related
work. Section 3 presents the synopsis EHCF along with the technique for merging
two EHCFs. SWClustering algorithm is described in Section 4. The experiment
setting and the analysis of experimental results are presented in Section 5. Section
6 concludes this paper.

2 Related work

Previous algorithms on clustering data streams can be classified into two cate-
gories: one-pass approach and evolving approach.
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2.1 One-pass approach

The one-pass approach clusters data stream by scanning the data stream only once.
Traditional clustering methods such as the k-means were extended to their data
stream versions under the assumption that the data objects arrived in chunks [11,
23, 24].

Guha et al. [23, 24] proposed a k-means based algorithm which requires
O(k N ) time and O(N ε) space, where k is the number of centers, N is the
stream length, and ε < 1. It is proved that the lower bound of the run time
is O(k N ) for any k-median algorithm achieving constant factor approximation.
The algorithm starts with clustering the first O(M/k) points into 2k, where
M/k is the sample size determined by the available memory size, then a local
search algorithm is used to cluster O(M) medians of level i to 2k medians of
level i + 1. This process is repeated until the O(k) medians is clustered into k
groups.

Charikar et al. [11] proposed another k-median based algorithm which re-
quires O(kpoly log n) space. They theoretically addressed the problem of in-
creasing approximation factors in algorithm [23] where the increase in the
number of levels leads to the increasing approximation factors in the final
results.

Chalaghan et al. [10] proposed the STREAM algorithm to cluster data streams.
STREAM first determines the size of sample. If the size of data chunk exceeds the
sample size, a LOCALSEARCH procedure is invoked to obtain the clusters of the
chunk. Finally, the LOCALSEARCH is applied to all the cluster centers generated
in the previous iterations.

Domingos et al. [19] extended the k-means algorithm and proposed the VFKM
algorithm. It is guaranteed that the model produced does not differ significantly
from the one that would be obtained with infinite data. The Hoeffding bound is
adopted to determine the number of examples needed in each step of k-means
algorithm.

Ordonez [37] addressed the problem of clustering binary data streams. A
variant of the k-means algorithm, incremental k-means, was proposed to ob-
tain high quality solutions. Incremental k-means requires O(k N T ), where T
is the average size of the records, N is the number of records, and k is the
number of clusters. Sparse matrix operations and simple sufficient statistics
were designed for speedup. He et al. [25] proposed another method for clus-
tering the categorical data streams based on the squeeze algorithm [26]. A
Lossy Counting [33] procedure is adopted to maintain the histogram. Aggar-
wal et al. [4] presented an online approach for clustering massive text and
categorical data streams with the use of a cluster feature [40] summarization
methodology.

The empirical study in Keogh et al. [30, 31] shows that many time series data
streams clustering algorithms come up with meaningless results in subsequence
clustering, so a solution using k-motif to choose the subsequences was proposed
in their paper. Rodrigues et al. [38] proposed a time-series clustering system which
incrementally constructed a hierarchy of clusters. The correlation between time-
series is used as similarity measure. Cluster splitting or aggregation is carried out
at each time step.
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2.2 Evolving approach

The evolving approach [1, 16] views the behavior of streams as an evolving pro-
cess over time. For this approach, there are three kinds of window models [42], i.e.,
landmark window, sliding window, and fading window. Among them, the sliding
window model is widely adopted in stream mining [5, 12, 13, 17, 32].

Cao et al. [9] proposed a density-based method for discovering arbitrary-
shape clusters in an evolving data stream with noise. A core-microcluster struc-
ture is introduced to summarize the clusters with arbitrary shape, while the
potential core-microcluster and outlier microcluster structures are proposed to
maintain and distinguish the potential clusters from outliers. A novel pruning
strategy is designed based on these concepts, and the precision of the weights
of the microclusters is guaranteed with limited memory. TECNO-STREAMS,
an artificial immune system (AIS) based clustering approach, was proposed by
Nasraoui [35]. The system is based on a dynamic weighted B-cell model to
improve the learning ability and scalability of traditional AIS learning meth-
ods. Its sample usage includes mining user profiles in noisy Web click stream
data [36]. Different from these approaches aiming at discovering arbitrary-
shape clusters, our method focuses on the clustering problem over sliding
windows.

Aggarwal et al. [2, 3] developed a projected data stream clustering method,
HPStream. The main contributions are the fading cluster structure and the method-
ology of projection-based clustering. HPStream is effective in finding clustering
in subspace.

Babcock et al. [7] theoretically studied the problem of clustering data in sliding
windows based on the previous work [23]. They focused on the theoretical bound
of the performance. In contrast, our work is devoted to the problem of analyzing
the evolution of clusters in sliding windows.

The work most similar to our SWClustering algorithm is CluStream [1]
which is designed to cluster data streams over different time horizons in
an evolving environment. Since the snapshots of clustering results over the
landmark window have to be stored, CluStream consumes more space, thus
not suitable for the clustering problem over sliding windows. In addition,
the influence of expired records cannot be promptly eliminated during on-
line clustering, while such a prompt elimination is required in sliding window
clustering.

There are some other related work on clustering multiple data streams.
Beringer et al. [8] developed an online version of k-means algorithm for clus-
tering multiple data streams based on scalable online transformation of the
raw data. The transformation allows a fast computation of approximate dis-
tances between streams. COD, a general framework of clustering multiple data
streams, was introduced by Dai et al. [15]. COD dynamically clusters multi-
ple data streams and offers support to meet flexible mining requirements. The
problem of clustering data streams with increasing dimensionality over time
is addressed in Yang [39], where a weighted distance metric between two
streams is used, and an incremental algorithm is proposed to produce stream
clusters.
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3 Exponential histogram of cluster feature

3.1 EHCF synopsis

Assume that a data stream consists of a set of multidimensional records
x1, . . . , xi , . . . arriving at time stamps t1, . . . , ti , . . . , xi = (x1

i . . . xd
i ). In sliding

window model, only the most recent N records are considered at any time. The
most recent N records are called active records, and the rest are called expired
records which no longer contribute to the clustering.

To construct cluster features based on the most recent N records, we propose
a novel synopsis data structure, called Exponential Histogram of Cluster Feature
(EHCF). Every bucket in an EHCF is a Temporal Cluster Feature (TCF) for a set
of records.

Definition 1 (Temporal Cluster Feature (TCF)) A Temporal Cluster Feature
(TCF) for a set of d-dimensional records x1 . . . xn with time stamps t1 . . . tn is

defined as a (2·d+2)-dimension vector (
−−−→
CF2x ,

−−−→
CF1x , t, n), where n is the number

of records;
−−−→
CF2x is the squared sum of the n records, i.e.,

−−−→
CF2x = ∑n

i=1 x2
i ;

−−−→
CF1x

is the linear sum of the n records, i.e.,
−−−→
CF1x = ∑n

i=1 xi ; and t is the time stamp
of the most recent record, i.e., t = ti .

Note that a TCF is a temporal extension of the cluster feature vector in Zhang
et al. [40]. Aggarwal et al. [1] extends the cluster feature vector by summing up
the time stamps in CluStream algorithm. However, with the time stamp of the most
recent record in a TCF, it is possible to determine the time span of records rather
than approximating it as CluStream does.

The Temporal Cluster Feature for a set of records C is represented as
−−→
TCF(C).

Let V (C) be the number of records in C , a TCF is called an l-level TCF iff
V (C) = 2l . TCFs can be formed in an additive way, as shown later.

Property 1
−−→
TCF(C1∪C2) can be constructed from

−−→
TCF(C1) and

−−→
TCF(C2), where

C1 and C2 are two sets of records.
By Definition 1, fields

−−−→
CF1x ,

−−−→
CF2x and n of

−−→
TCF(C1 ∪ C2) are just the sum

of the corresponding fields in
−−→
TCF(C1) and

−−→
TCF(C2). Note that the most recent

record in C1 ∪ C2 must be one of the most recent record in C1 or C2, i.e., the field
t of

−−→
TCF(C1 ∪ C2) is max(

−−→
TCF(C1).t,

−−→
TCF(C2).t).

Definition 2 (Exponential Histogram of Cluster Feature (EHCF)) Given a
user-defined parameter ε (0 < ε < 1), an EHCF is defined as a collection of
TCFs on a set of records Ci with the following constrains. (1) All records in Ci
arrive earlier than records in C j for i < j . (2) C1, the first set, contains only one
record, while any other set Ci (i > 1) contains either the same or as twice much
number of records as its prior set, i.e., V (Ci ) = V (Ci−1) or V (Ci ) = 2 · V (Ci−1).
(3) 1

ε
or 1

ε
+ 1 l-level TCFs can be found for each l (0 ≤ l < L) except for the

L-level, where L is the highest level of TCFs in the EHCF.
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Notice that ε limits the number of expired records in an EHCF within [0, εn],
where n is number of records in the EHCF. This is because only the last TCF in
the EHCF may contain the expired records, it contains at most εn records.1

Exponential Histogram technology is a widely adopted approximate structure
[17, 22]. Datar et al. [17] proposed an EH-based method to maintain aggregates
over sliding windows. In our EHCF structure, we adopt the Exponential Histogram
technique to maintain the TCFs.

Definition 3 (Center of EHCF) The center c of an EHCF H with m TCFs is

defined as the mean of the
−−−→
CF1x of all the TCFs in H , i.e., c =

∑m
i=1

−−−→
CF1x

i∑m
i=1 ni

, where

TCFi = (
−−−→
CF2x

i ,
−−−→
CF1x

i , ti , ni ), 1 ≤ i ≤ m.

The center of an EHCF is used to determine the distance between the EHCF and
a newly arrived record.

3.2 Updating an EHCF

When a record x p arrives, an EHCF synopsis can be updated incrementally as
follows:

1. Generate
−−→
TCF(C) according to Definition 1, where C is a data set containing

only x p.

2. Append
−−→
TCF(C) to the EHCF synopsis. If there are � 1

ε
� + 2 0-level TCFs,

merge two oldest 0-level TCFs into a new 1-level TCF. The number of 0-level
TCFs is reduced to � 1

ε
�. The merge operation will cascade to level l = 1, 2, . . .

if the number of TCFs in level l becomes � 1
ε
� + 2. The Steps 1 and 2 form the

merging process.
3. Check the field t of the last TCF in the EHCF. If the time stamp t is not one of

the most recent N time stamps any more, the TCF is dropped, and the occupied
memory is reclaimed.

Example 1 (Merging Process of an EHCF) Figure 3 illustrates the merging pro-
cess of an EHCF synopsis for 10 records, x1, . . . , x10, arriving at time stamps
1, . . . , 10. The user-defined parameter ε is set to be 0.5. In real applications, the
ε should be far less than 1. At time stamp 4, a new TCF for record x4 is gener-
ated, which results in 4 (= 1

ε
+ 2) 0-level TCFs in the EHCF. A new synopsis−−→

TCF({x1, x2}) is generated by merging
−−→
TCF({x1}) and

−−→
TCF({x2}). Similar merge

operations occur at time stamps 6 and 8. At time stamp 10, the arrival of record x10

triggers the merge of
−−→
TCF({x7}) and

−−→
TCF({x8}), which further triggers the merge

of
−−→
TCF({x1, x2}) and

−−→
TCF({x3, x4}).

EHCF bounds the number of expired records within [0, εn] with limited mem-
ory consumption ( 1

ε
+ 1)(log(εn + 1) + 1). Following theorems give the memory

usage of EHCF synopsis.

1 For the EHCF contains n records, the last TCF contains s records, and 1
ε
(1+2+4+· · ·+s) ≤

n. Therefore, s ≤ εn holds.

188



Tracking clusters in evolving data streams over sliding windows

x1 ...

a data stream

x1 x2
x6

x1 x2 x3

x4x3 x5

0-levelTCF

x1 x2 x3 x4 x7x6x5

x1 x2 x3 x4 x5 x6 x7 x8 x9

x
5
x
6

x
1
x
2
x
3
x
4

x
7
x
8
x
9
x
10

2-levelTCF

1-levelTCF Merging

x4
Merging

x8
Merging

x
10

Merging

x10x9x8x7x6x5x4x3x2

Fig. 3 Merging processes of an EHCF: ε = 0.5

Theorem 1 (Datar et al. [17]) Exponential Histogram (EH) Structure computes
an ε-deficient synopsis using at most ( 1

ε
+ 1)(log(εN + 1) + 1) buckets, where N

denotes the size of the sliding window.

Theorem 2 Given an EHCF synopsis of n records, there are at most ( 1
ε

+ 1)
(log(εn + 1) + 1) TCF synopses in the EHCF.

Proof Given any EHCF of n records and a user-defined parameter ε, we can con-
struct an EH structure with window size n and parameter ε. As each TCF in
the EHCF can be mapped to a bucket in the EH structure and vice versa, from
Theorem 1, there are at most ( 1

ε
+ 1)(log(εn + 1) + 1) TCF synopses in the

EHCF. ��
By observing the process of updating EHCF, we obtain the following theorem:

Theorem 3 Assume that an EHCF synopsis is constructed using n records. For
any TCF Fi in the EHCF, Fi can be constructed from its following 2l records if
there are (� 1

ε
�(2l − 1) records before Fi .

See Appendix A for the proof.

3.3 Merge two EHCFs

Merging two EHCFs is essential to bound the space complexity while keeping
the correctness of newly generated EHCFs. Assuming that H1 and H2 denote two
nearest EHCF synopses containing m1 and m2 records, respectively, two cases
need to be considered when merging H1 and H2.

First consider the case when H1 and H2 are nonoverlapping, i.e., all records
in H1 arrive before all records in H2. Merging H1 and H2 in this case can be
done by simply placing the TCFs in H1 followed by placing the TCFs in H2, then
sweeping from right to left to merge the TCFs.

Theorem 4 Assume that H1 and H2 are two nonoverlapping EHCF synopses
containing m1 and m2 records, respectively. The time complexity of merging
H1 and H2 is O( 1

ε
log(ε(m1 + m2))). The new EHCF synopsis consists of

O( 1
ε

log(ε(m1 + m2))) TCF synopses.
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See Appendix B for the proof.
Second, consider when H1 and H2 are overlapping, i.e., the arrival time of

the records in H1 and H2 are interleaved. Here H1 and H2 cannot be merged in
a straightforward way. Instead, a new EHCF Hnew is created where two pointers
are maintained to point to H1 and H2. Because no record is absorbed at the very
beginning of the merging, Hnew does not contain any TCFs initially. The center of

Hnew is initialized to be the mean of the
−−−→
CF1x ’s of all TCFs in H1 and H2.

In the latter case, Hnew is created conceptually to merge H1 and H2 with H1
and H2 being temporarily kept, while in the first case, a new EHCF is created to
replace H1 and H2 directly .

The EHCF being merged is called a merging-EHCF (e.g., H1 or H2). In order
to keep the EHCF structures of merging-EHCFs, we create new TCFs (called void-
TCFs) conceptually in merging-EHCFs. In fact, the void-TCFs does not need to
be created. Only a counter is maintained instead.

H1, H2, and Hnew form an EHCF-tree which can be used to merge overlapping
EHCFs. Each entry in the tree is an EHCF synopsis. The records in a parent entry
arrive after all the records in child entries. For example, the records in Hnew arrive
after all the records in H1 and H2.

EHCF-trees may merge with another one as well. For example, Hnew may
merge with an overlapping EHCF H3. This merging operation consists of two
steps: (1) Hnew is merged into H1(or H2) directly, because Hnew does not overlap
with H1 or H2. After this step, there is no TCF in Hnew. (2) Hnew is merged with
H3, and a new EHCF H ′

new is created.
When a new record is absorbed by the root, the maintenance of the EHCF-tree

is as follows:

1. The root creates a new TCF and maintains its own structure, as discussed in
Sect. 3.2.

2. One of the child nodes of the root creates a 0-level void-TCF and maintains its
structure as if the new record is absorbed by itself (called virtual absorbing).
The virtual absorbing processes propagate from root to leaves. For the nodes
on the same level, the probability of virtually absorbing a record is equal,
unless it (with its descendant EHCFs) contains only one TCF, in which case
the probability is 0, since the virtual absorbing does not reduce the number of
TCFs in the tree.

3. Assume VHl and VHr denote the number of records contained in the left and
right child, respectively. If a node Hi absorbs � 1

ε
�(2�log(VHl +VHr )�−1) records,

then all the TCFs in its child EHCFs can be merged into a new TCF and ap-
pended to the end of Hi . The child EHCFs are deleted accordingly.

Figure 4 illustrates an EHCF-tree whose root absorbs four new records. If an
EHCF has absorbed 2(� 1

ε
�)(2l −1) records, according to Theorem 3, all the TCFs

in their two child merging-EHCFs can be merged into new TCFs with level ≥ l.
Thus, the number of TCFs in merging-EHCFs is gradually reduced. Furthermore,
when Hnew absorbs � 1

ε
�2�log(VH1+VH2 )� records, H1 and H2 can be merged into one

TCF and appended to Hnew. Since the real merging operation is performed after
the very beginning of merging, such process is called late merging. The following
example demonstrates the late merging.
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Fig. 5 Late merging

Example 2 (Late Merging of EHCFs) Assume that two overlapping EHCFs (H1
and H2) are to be merged. VH1 = 16, VH2 = 8, and Hnew is the newly created
EHCF. The late merging of H1 and H2 is illustrated in Fig. 5. The shadowed boxes
in Fig. 5 represent the void-TCFs. The number in the box indicates the number of
records contained in the TCF. For the sake of simplicity, we assume ε = 1 here.
(ε can be set to a positive value far less than 1 in a real application.) So, there
are at least � 1

ε
� = 1 and at most � 1

ε
� + 1 = 2 i-level TCFs for each i . New

records x1, x2, x3, . . . are continuously absorbed by Hnew after the very beginning
of merging. We do not consider the expiring process here.

Step (1) illustrates the initial state of merging. H1 contains 5 TCFs, while H2
contains 4 TCFs. A new EHCF Hnew is initialized to contain 0 TCF. In Step(2),
x1 and x2 have been absorbed by Hnew, so there are two 0-level TCFs in Hnew,
while one 0-level void-TCF is created in H1 and H2, respectively. Because the
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0-level TCFs is 3 (= 1
ε

+ 2), the two oldest 0-level TCFs are merged into a
new 1-level TCFs, and the numbers of TCFs in H1 and H2 are reduced to 4
and 3, respectively. Step(3) illustrates the state after x6 arrives. Because there are
2(� 1

ε
�)(22 − 1) = 6 records in Hnew, the 1-level TCFs in H1 and H2 become 2-

level TCFs. Step(4) shows the state when H2 becomes a 3-level TCF, since there
are 2(� 1

ε
�)(23 − 1) = 14 records in Hnew. In Step(5), after record x22 arrives, H1

contracts to one TCF. Step(6) represents the final merging. When x31 arrives, there
are � 1

ε
�(2�log(VH1+VH2 )� − 1) = 31 records in Hnew, so H1 and H2 are merged into

one new 5-level TCF which is then appended to Hnew. Notice that the number of
records incorporated in the last TCF of Hnew is 24, slightly smaller than 32. But it
has no impact on the whole EHCF structure.

3.4 Comparing EHCF with pyramidal time frame

The EHCF is originally designed for sliding window applications, while the pyra-
midal time frame and microcluster in CluStream [1] are proposed for landmark
windows. The differences between them are discussed in the following.

3.4.1 Granularity of microclusters

As the clusters in an evolving data stream always change, the synopses used in
clustering methods have to capture the distribution of recent records at any given
time. The EHCF synopsis employs a mechanism for eliminating old records in
online clustering, which prevents the radius of the EHCF from becoming larger
and larger when the center of the cluster shifts. In such sense, an EHCF is a fine
granularity “microcluster”.

In case of cluster drifting, the radius of the microcluster in CluStream mono-
tonically increases. Although subtraction is performed to reduce the influence of
old records when processing a clustering request, the influence is not totally elim-
inated when incorporating new records. As a result, the microcluster becomes
coarse as its radius increases, which may result in undistinguishable clusters.

3.4.2 Maintenance of synopses and the impact of outliers

EHCF synopsis adaptively adjusts the frequency of creating new TCFs. As each
EHCF maintains its own histogram, a rapidly changing cluster will maintain more
TCFs than a slowly changing one. Since the pyramidal time frame is designed for
all possible time horizons, it has to store a snapshot for every microcluster reach-
ing the pyramidal time. However, this strategy ignores the property of individual
clusters. It is also difficult to coordinate the different frequency of storage required
by different clusters.

During processing a data stream, a new synopsis need be created for each
new record if it can not be absorbed by any existing microcluster. Such a record is
probably an outlier. In CluStream, a new microcluster is created for such an outlier,
and the storage of the microcluster is repeatedly allocated until it is eliminated. By
contrast, the new EHCF creates only 1 TCF for the outlier. Therefore, EHCF saves
a lot of memory at the presence of outlier.
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3.4.3 Record-level analysis

Because EHCF synopsis adaptively creates a TCF for every newly arrived record,
it supports record-level clustering analysis. This property is very important for
time-critical applications with rapidly changing streams, such as financial data
analysis and network intrusion detection. A simple extension of CluStream would
require storing a snapshot whenever a new record arrives, which results in heavy
I/O cost and memory consumption.

Figure 6 illustrates the aforementioned differences.

4 Sliding windows clustering

4.1 SWClustering algorithm

In this section, we describe the SWClustering algorithm on a data stream over
a sliding window. SWClustering consists of two parts as shown in Algorithm 1.
The first part maintains a group of EHCF synopses (Lines 1–18). The second part
calculates the clustering result based on the collection of synopses (Lines 19–22).

Algorithm 1 SWClustering(DS, ε, NC) for clustering an evolving data stream
DS in a sliding window with a relative error parameter ε. At most NC EHCFs
can be kept in memory.

Procedure SWClustering(DS, ε, NC)
1: count:= 0;
2: for(each record x in DS)do
3: Get h, the nearest EHCF to record x ;
4: if (x can be absorbed by h)
5: Insert x into h;
6: else
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7: if(count = NC)
8: Merge the two nearest EHCFs;
9: count:= count - 1;
10: end if
11: Generate a EHCF containing only

−−−→
T C F({x});

12: count:= count + 1;
13: end if
14: Update he, the EHCF containing expired records;
15: if (all TCFs of he are expired)
16: Delete he;
17: count:= count - 1;
18: end if
19: if(clustering request arrived)
20: Calculate clusters upon all of EHCFs;
21: end if
22: end for

4.1.1 Maintenance of EHCFs

There are three parameters in the SWClustering Algorithm: DS, the data stream to
be processed; ε(0 < ε < 1), the relative error of windows; and NC , the maximal
number of EHCFs kept in memory. The value of NC is determined by the amount
of memory available. Our experiments show that even if NC is set to be a small
value, the accuracy of the algorithm is still very high.

The distance between a record x and an EHCF synopsis h is defined as the
distance between x and the center of h. For each x , the nearest EHCF synopsis
from x is obtained first.

The algorithm then checks whether the record x can be absorbed by the nearest
h or not. A simple approach is to compare the distance of x and h, dist(x, h), with
the radius R of h. The radius R of h is defined as the radius of the set of the records
absorbed by h. It can be easily calculated by using the cluster feature vector of C
[40]. We can define β (β > 0), a radius threshold, to determine whether to absorb
the record x or not. When dist(x, h) > β · R, x is viewed as far away from h;
otherwise, x is absorbed by h. One problem left is how to determine the value
of β. As well known, if the distance between the data points and the centroid
follows Gaussian distribution, then β = 2 results in that more than 95% of the
data points lie within the corresponding cluster boundary. Therefore, β is set to 2
in our experiments. For an EHCF with only one record, the radius is heuristically
defined as the distance to the nearest EHCF.

If record x can be absorbed by h, it is merged into h. The details are discussed
in Sect. 3.2. Lines 7–12 show the operations in case record x can not be absorbed
by h. If the number of EHCF synopses reaches the maximum value NC , two
nearest EHCFs must be merged to generate a new EHCF synopsis, and the count
is decreased by 1. A new EHCF synopsis is then generated for record x , and the
count is increased by 1.

Line 14 updates the EHCF containing expired records. Because this operation
is invoked repeatedly whenever a new record arrives, at most one EHCF (denoted
as he if existed) contains expired records at any time. Remember that an EHCF
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synopsis is actually a collection of TCF synopses, each of which represents a set
of records. The oldest TCF synopsis in he is removed when its time stamp does
not belong to the most recent N time stamps. If the final TCF in he expires, he
must be removed, and the count is decreased by 1.

4.1.2 Cluster generation

When a clustering request arrives, clusters are calculated from all EHCF synopses
immediately, as shown on Lines 19–22. For each EHCF synopsis hi , all the TCF
synopses in hi are summed up to generate a large TCF synopsis Fi , from which the
number of records in hi and the center of hi can be obtained. Calculating the clus-
ters from cluster feature vectors has been widely studied [1, 40]. The basic idea is
to treat the EHCF hi as a pseudopoint locating at the center of hi with weight mi ,
where mi is the number of records contained in hi . The k-means algorithm [28]
can be employed to produce clusters of all pseudopoints.

4.1.3 Optimization

Algorithm 1 is a space-efficient method, but the processing of each new record is
time consuming. Therefore, some optimization techniques are introduced to speed
up the computation.

On Lines 3 and 20, the algorithm merges all TCF synopses in each EHCF h
to get the center of h. According to Theorem 2, the number of TCF synopses can
reach O( 1

ε
log(εn)). Thus, the cost of a merge operation is O( 1

ε
log(εn)).

It is better to maintain incrementally an additional TCF synopsis (denoted as
F) for each EHCF. This will reduce the cost of the merge operations to O(1).
When a new TCF synopsis (denoted as F ′) is generated and inserted into an EHCF,
F is updated by F + F ′, as shown on Line 5. On Line 14, an EHCF must be
updated when some records expire. F can also be incrementally maintained due
to the following property.

Property 2 Assume that an EHCF h contains m TCF synopses, F1, F2, . . . , Fm ,
and F denotes the TCF synopsis over all records in h. When F1 expires, a new
TCF synopsis F ′ over all active records in h can be incrementally generated.

In fact, the fields
−−−→
CF2x ,

−−−→
CF1x , and n of F ′ are just the subtraction results of

the corresponding fields in F and F1, and field t of F ′ equals to the t of F .

On Line 14, the algorithm searches for an EHCF synopsis containing expired
records. An index can be built on field t of these special synopses Fm , then the
oldest field is checked to see whether it is expired or not.

4.2 Analysis of SWClustering

First, we discuss why late merging operation can efficiently reduce the memory
consumption with guaranteed correctness.

Assume that Hnew is the new EHCF resulting from the late merging of H1 and
H2, and VH1 = m1, VH1 = m2, VHnew = n, where n increases as new records
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are absorbed by Hnew. From Theorem 1, the total number of TCFs in H1 is ( 1
ε

+
1)(log(ε(m1 + n

2 ) + 1) + 1). There are ( 1
ε

+ 1)(log(( εn
2 ) + 1) + 1) void-TCFs in

H1, since H1 has virtually absorbed n
2 records. It follows that the number of TCFs

in H1 is:

BH1 =
(

1

ε
+ 1

)(
log

(
ε
(

m1 + n

2

)
+ 1

)
− log

(εn

2
+ 1

))
. (1)

Similarly, the number of TCFs in H2 is
( 1

ε
+1

)(
log

(
ε
(
m2 + n

2

)+1
)− log

(
εn
2

+ 1
))

, and the number of TCFs in Hnew is
( 1

ε
+ 1

)
(log(εn + 1) + 1). So, the total

number of TCFs in H1, H2, and Hnew is: Bcom = ( 1
ε

+ 1
)(

log
(
ε
(
m1 + n

2

) + 1
) +

log
(
ε
(
m2 + n

2

) + 1
) − 2 log

(
εn
2 + 1

) + log
(
εn + 1

) + 1
)
. As n � 1, we have

Bcom ≈
(

1

ε
+ 1

)(
log

(
ε
(

m1 + n

2

))
+ log

(
ε
(

m2 + n

2

))
− log

(εn

2

)
+ 2

)
.

(2)

Assuming that H0 is another EHCF with VH0 = m1 + m2 + n, according to
Theorem 1, the number of TCFs in H0 is:

BH0 =
(

1

ε
+ 1

)

(log(ε(m1 + m2 + n)) + 1). (3)

The difference between Bcom and BH0 is:

Bcom − BH0 <

(
1

ε
+ 1

)(
log

(
mmax + n

2

)
− log

(n

2

)
+ 1

)

=
(

1

ε
+ 1

)(

log

(

1 + 2mmax

n

)

+ 1

)

. (4)

where mmax = max(m1, m2). As n increases, the difference diminishes gradually.
For example, when n = 2mmax, the difference is only 2( 1

ε
+ 1). When the number

of newly absorbed records exceeds 1
ε
2�log(m1+m2)�, the two merging-EHCF can

be merged into a new EHCF according to Theorem 3, and there is no difference
between the late merging EHCFs and H0.

There exists a reasonable upper bound of memory consumption for the
SWClustering algorithm. Because the impact of late merging on memory dimin-
ishes gradually, it is ignored in the following analysis.

Theorem 5 The SWClustering algorithm uses at most ( 1
ε

+ 1)(log
(∏k

i=1(εNi +
1)) + k) TCFs, where Ni denotes the size of Hi ,

∑k
i=1 Ni = N, and k is the

number of EHCFs.

Proof From Theorem 1, it is known that for each EHCF Hi the space needed is at
most ( 1

ε
+ 1)(log(εNi + 1) + 1). Thus, the memory requirement of the algorithm

is at most
∑k

i=1(
1
ε

+ 1)(log(εNi + 1) + 1) = ( 1
ε

+ 1)
∑k

i=1(log(εNi + 1) + 1) =
( 1
ε

+ 1)(log(
∏k

i=1(εNi + 1)) + k) ��
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According to Theorem 5, the memory requirement of SWClustering depends on ε,
Ni (1 ≤ i ≤ k), and k. The following lemma can be used to reduce the dependent
variables.

Lemma 1 If k natural numbers N1, N2, . . . , Nk satisfy
∑k

i=1 Ni = N, then
∏k

i=1 Ni ≤ � N
k �k .

See Appendix C for the proof.

Theorem 6 The SWClustering algorithm uses O( k
ε

log(ε� N
k �)) TCFs, where N

denotes the window size, and k is current number of EHCFs.

Proof From Lemma 1,
∏k

i=1 Ni ≤ � N
k �k . Thus, O( 1

ε
log(

∏k
i=1 εNi )) =

O( 1
ε

log(εk� N
k �k)) = O( k

ε
log(ε� N

k �)) Therefore, from Theorem 5, the algorithm
uses O( k

ε
log(ε� N

k �)) TCFs. ��

4.3 Evolutionary analysis

With the EHCFs maintained by SWClustering, we are able to track the evolving
behavior of clusters. The evolutionary analysis of data streams has been a hot topic
because of its practical applications. For example, people may concern “how is
(are) current cluster(s) formed” or “what is the special time in the formation of the
cluster(s)” while getting the clustering results. Fortunately, the proposed EHCF
synopsis can provide sufficient information to answer such questions off-line.

To answer the first question, assuming Ci (1 ≤ i ≤ k) is the user-specified
cluster, there are mi EHCFs associated with cluster Ci . In an EHCF, every TCF
contains the number of arrived records during the time interval between itself and
the next TCF. Based on these mi EHCFs, a curve can be drawn to reveal the
relation between the number of records in the cluster and the time interval from
current time Tc to Tc−N intuitively. Such curve can be analyzed further by domain
experts to reveal other characteristics of the cluster.

To answer the second question, we divide the time axis into several equal seg-
ments, and the percentage of the number of arriving records (arriving ratio) in
every segment is then computed. The time when the arriving ratio exceeds some
threshold δhigh always corresponds to the ascending phase, while the time when
the arriving ratio is below some threshold δlow corresponds to the descending
phase.

5 Experimental results

5.1 Experimental setting

All experiments are conducted on a 2.4 GHz PentiumIV PC with 512MB mem-
ory, running Microsoft Windows 2000 Professional. To demonstrate the accuracy
and efficiency of the SWClustering algorithm, the well-known CluStream algo-
rithm [1] is used as the comparing algorithm. Both algorithms are implemented in
Microsoft Visual C++.

To evaluate the clustering quality, scalability, and sensitivity of the SWClus-
tering algorithm, both real and synthetic data sets are used in our experiments.
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5.1.1 Real life data sets

In order to demonstrate the effectiveness of SWClustering, the KDD-CUP’99
Network Intrusion Detection data set is used. It has been used in Aggarwal et
al. [1] to evaluate the accuracy of CluStream with respect to STREAM [24].
The data set consists of raw TCP connection records from a local area network.
Features collected for each connection include the duration of the connection, the
number of bytes transmitted from source to destination, etc. Each record in the
data set corresponds to either a normal connection or one of four attack types:
denial of service, unauthorized access from a remote machine (e.g., guessing
password), unauthorized access to root, and probing (e.g., port scanning). Most of
the connections in this data set are normal, but occasionally there could be a burst
of attacks at certain times. As in Aggarwal et al. [1] and Chalaghan et al. [10], all
34 out of the total 42 continuous attributes available are used for clustering with
one outlier point being removed.

A relatively stable real-life data set KDD-CUP’98 Charitable Donation data set
is also used. It has been used to evaluate several clustering algorithms [1, 21]. This
data set contains 95,412 records about people who made charitable donations in
response to direct mailing requests. Clustering can be used to group donors with
similar donation behaviors. As in Aggarwal et al. [1] and Farnstrom et al. [21],
total 56 out of 481 fields are used, and the data set is converted into a stream by
taking the data input order as the order of streaming.

5.1.2 Synthetic data sets

Synthetic data sets are generated to test the scalability of SWClustering. The data
sets have between 100K and 800K points each and vary in the number of natural
clusters from 5 to 40. The dimensionality ranges from 10 to 80. The points in each
synthetic data set follow a series of Gaussian distributions. As in Aggarwal et al.
[1], the mean and variance of the current Gaussian distribution are changed for
every 10K points during the synthetic data generation. The following notations
are used to characterize the synthetic data sets: “B” indicates the number of data
points in the data set, “C” and “D” indicate the number of natural clusters and
the dimensionality of each point, respectively. For example, B100C20D30 means
the data set contains 100K data points of 30-dimensions, belonging to 20 different
clusters.

The sum of squared distance (SSQ) is widely adopted in stream clustering
[1, 10, 24] to evaluate the accuracy, as defined below. For each point xi in current
window, the nearest centroid Cxi is first obtained for it, then the distance between
xi and Cxi , d(xi , Cxi ), is computed. Finally, current SSQ is calculated as equal to
the sum of d2(xi , Cxi ) for all the points in current window.

We also evaluate the clustering accuracy by purity defined as follows: pur =
∑k

i=1
|Cd

i |
|Ci |

k × 100%, where k denotes the number of clusters. |Cd
i | denotes the num-

ber of points with the dominant class label in cluster i . |Ci | denotes the number of
points in cluster i .

In the experiments, SWClustering maintains the same number of EHCF struc-
tures as that of microclusters used by CluStream. The parameters for CluStream
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are chosen to be the same as those adopted in Aggarwal et al. [1]. If the relative
stamp of a microclusters in CluStream is not one of the most recent N stamps,
then the microcluster is removed. Unless mentioned otherwise, the parameters for
SWClustering are set to ε = 0.1, window size N = 10000, and radius threshold
β = 2.

5.2 Clustering quality evaluation

At first, the clustering quality of SWClustering is compared with that of
CluStream for different window sizes at different time stamps. In order to make
the results more accurate, these two algorithms are executed five times and their
average SSQs are calculated. The results on the Network Intrusion data set show
that SWClustering produces better clustering output than CluStream in the sce-
nario of sliding windows.

Figure 7 gives the results when window size N is set to 10,000. It shows that
SWClustering is usually better than CluStream by several orders of magnitude.
For example, at time stamp 200,000, the average SSQ of SWClustering is about
five orders of magnitude smaller than that of CluStream. The quality of cluster-
ing with the Charitable Donation data set is examined as well. It is assumed that
CluStream should get fairly better results, because the data set is a relatively stable
data stream. Figures 10 and 8 show that the result of SWClustering is still much
better than that of CluStream for such a relatively stable stream.
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Fig. 7 Quality comparison (Network Intrusion data set, window size N = 10, 000). SWClus-
tering is almost always better than CluStream by several orders of magnitude for this rapidly
evolving stream
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Fig. 8 Quality comparison (Charitable Donation data set, window size N = 12, 000). SWClus-
tering is much better than CluStream in a large window for this relatively stable stream

We also evaluate the clustering quality by purity. Figure 9 shows the results
when N = 1000. We test the data set at selected time points when some at-
tacks happen. For example, at time stamp 80,000 there are 752 “satan” attacks, 12
“warezmaster” attacks, 10 “guess-passwd” attacks, and 226 normal connections.
It can be seen that SWClustering clearly outperforms CluStream and the purity of
SWClustering is always above 90%. For example, at time stamp 80,000 the purity
of SWClustering is about 91% and 19% higher than that of CluStream.

The quality clustering of SWClustering originates from EHCF’s ability of pre-
cisely capturing the distribution of current records. The old records in EHCFs
are promptly eliminated in online clustering. This expiring mechanism keeps
the small radius of an EHCF when its cluster center drifts, which leads to finer
granularity than CluStream, as illustrated in Fig. 2. In particular, the clusters in
SWClustering are always formed by the most recent N records with error bound
εN . However, in CluStream the time stamps of the records in a microcluster are
summed up, a microcluster is deleted when its relevance stamp is below the thresh-
old. Such strategy eliminates the microcluster as a whole, not only the individ-
ual records. Furthermore, the radius of a microcluster may continuously increase
when the cluster center drifts, which may mess up different clusters and reduce
the clustering quality. Therefore, SWClustering can separate different attacks into
different clusters, while CluStream may merge different attacks into one attack
(or normal connections).
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Fig. 9 Quality comparison (Network Intrusion data set, window size N = 1, 000). The purity
of SWClustering is always above 90% and clearly outperforms CluStream

Note that the quality difference between the two algorithms is not a constant.
This is because: (1) the underlying distribution of the data stream is always chang-
ing, and the SSQs over sliding windows are different at different time stamps in
the streams. (2) CluStream may occasionally capture the distribution of recent
records, and get a relatively precise result, when a lot of old records in CluStream
happen to be eliminated as a whole. For example, in Figure 7, the difference be-
tween CluStream and SWClustering is relatively small at time stamp 400,000. By
checking the execution of CluStream, it is found that a lot of old microclusters are
eliminated at that time.

5.3 Scalability results

The following experiments are designed to evaluate the scalability of SWCluster-
ing. The first part is used to evaluate the execution time. The second part is used
to study the memory usage.

5.3.1 Execution time

As we know, the CluStream algorithm needs to periodically store the current snap-
shot of microclusters under the Pyramidal Time framework. In the implementation
of the CluStream algorithm, the snapshots of microclusters are stored in memory
to save the execution time.
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Fig. 10 Quality comparison (Charitable Donation data set, window size N = 4, 000). SWClus-
tering is much better than CluStream in a small window for this relatively stable stream

We first compare the efficiency of maintaining EHCFs of SWClustering with
that of the on-line component of CluStream on the real data sets. In CluStream, the
frequency of storing snapshot affects the processing throughput and the precision.
High storing frequency can improve the precision of CluStream at the cost of the
throughput. In order to get the same precision as SWClustering, CluStream has
to store a snapshot whenever a new record arrives. This inevitably leads to large
overhead. To compare these two algorithms, we lower the precision requirement
for CluStream 100 times, and the snapshot storing frequency is set to 1 snapshot
per 100 records. Figures 11 and 12 show the execution time increases linearly
when the data stream proceeds, and the curves are of different slopes. Notice that
the curve with lower slope implies higher processing throughput. Hence, it can be
concluded that SWClustering is much more efficient than CluStream.

Then, the execution time of SWClustering is evaluated on data streams with
various dimensionality and different numbers of natural clusters. Synthetic data
sets are used for these evaluations because any combination of the number of
natural clusters and dimensions can be obtained during the generating of data sets.

The first series of data sets are generated by varying the number of natural
clusters from 10 to 40, while fixing the size and dimensionality of the data streams.
Figure 13 shows that the execution time of SWClustering is linear with respect to
the number of natural clusters. For example, when the number of clusters increases
from 10 to 40 for data set series B400D40, the running time increases from 30 to
54 s with nearly 8 s per 10 clusters.
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Fig. 11 Execution time versus length of stream (Network Intrusion data set). Notice that the
precision requirement for CluStream is lowered 100 times, SWClustering is much faster than
the CluStream in this rapidly evolving stream

The other three series of data sets are generated by varying the dimensionality
from 10 to 80, while fixing the stream size and number of natural clusters. Figure
14 shows that the execution time increases linearly with respect to the dimension-
ality.

5.3.2 Memory usage

One common feature for the algorithms applied to data stream is their limited
upper bounds for the memory usage. Since the memory usage may fluctuate in the
progress of data streams, the maximum memory usage is used as the measurement.
The entity used in CluStream is a microcluster, and in SWClustering it is a TCF.
Since these two kinds of entities require similar memory space, the number of
entities can be used to evaluate the memory usage.

For the comparison of memory usage, the window size is set in the range from
10,000 to 100,000 for the Network Intrusion data set, and from 10,000 to 60,000
for the Charitable Donation data set. As the snapshot storing frequency will affect
the memory usage of CluStream, different frequencies (from 1 snapshot per 1
record to 1 snapshot per 100 records) are set to check the fluctuation of memory
usage. As shown in Figures 15 and 16, the memory usage of SWClustering is
consistently much lower than CluStream as the window size increases. In all cases,
SWClustering outperforms CluStream by a factor of 2–5.

The error parameter ε is an important parameter in SWClustering and has
a significant impact on memory usage. In the experiment with Network Intrusion
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Fig. 12 Execution time versus length of stream (Charitable Donation data set). Notice that the
precision requirement of CluStream is lowered 100 times, SWClustering is also much faster than
CluStream in this relatively stable stream

data set, ε varies from 0.01 to 0.1 (and the number of snapshots in the same level of
pyramidal time frame varies from 100 to 10 accordingly). The goal is to investigate
the fluctuation of memory usage. The storing frequency of CluStream is fixed to be
1 snapshot per 100 records and window size is set to 100,000. Figure 17 illustrates
the results. It can be seen that when the value of ε increases, the memory usage
decreases significantly.

5.4 Sensitivity analysis

In Sect. 4.1, it is known that the number of EHCFs should be larger than the num-
ber of natural clusters in order to perform effective clustering. However, maintain-
ing a large number of EHCFs leads to the increase of memory usage and slow-
down of execution. We define EHCF-ratio as the number of EHCFs divided by
the number of natural clusters.

The real-life data sets are used to evaluate the clustering quality by varying the
EHCF-ratio. The current time stamp Tc is set to be 100,000 for the Network In-
trusion data set and 50,000 for the Charitable Donation data set. Figure 18 shows
that if EHCF-ratio = 1, i.e., the number of EHCFs is exactly the same as the nat-
ural clusters, the clustering quality is quite poor. When the EHCF-ratio increases,
the average SSQ reduces. The average SSQ becomes stable when EHCF-ratio is
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Fig. 13 Execution time versus number of natural clusters

Fig. 14 Execution time versus data dimensionality
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Fig. 15 Memory usage versus window size (Network Intrusion data set). SWClustering con-
stantly costs much fewer than CluStream as the window size increasing

Fig. 16 Memory usage versus window size (Charitable Donation data set). SWClustering con-
stantly costs much fewer than CluStream as the window size increasing
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Fig. 17 Memory usage versus error parameter ε (Network Intrusion data set). When ε increases,
the memory usage decreases significantly

about 10. This implies that to achieve quality clustering, EHCF-ratio needs not to
be too large.

Another important parameter which may affect the clustering quality is the
error parameter ε. ε is used to control the number of expired records in sliding
windows. The SSQ is evaluated by varying the ε. For the Network Intrusion data
set, the window size N is set to 20,000 with current time stamp Tc = 100, 000, and
for the Charitable Donation data set, N is set to 5000 with Tc = 80, 000. Figure 19
shows that if 0.005 ≤ ε ≤ 0.16, the quality is relatively stable. However, when ε
becomes a large value like 0.32, the quality of SWClustering deteriorates quickly.
We note that the choice of ε = 0.32 represents a case in which the clusters are
determined by the data set with more than 30% outdated data.

5.5 Analysis of tracking clusters

Our SWClustering algorithm is able to track clusters in evolving data streams.
The experiment reported here is to demonstrate that the clusters can be tracked at
different time stamps based on the results of SWClustering.

We use the Network Intrusion data set as an example. Here, the window size
is set to be 4000 with current time stamp Tc being 10,000. SWClustering finds 58
EHCFs. Three of them are displayed in Figure 20, each of which corresponds to
one type of real-life network attacks. It can be seen that a snmpget attack ends
at 8200, an ipsweep attack begins at 7700 and ends at 8100, while a smurf
attack starts at 8400 and lasts till the end of the window. The evolving of these
attacks can be fully recorded. Furthermore, different characteristics of the attacks
are illustrated by the corresponding curves. For example, it can be seen that the
snmpget attack goes up slowly, the ipsweep attack seems relatively scattered
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Fig. 18 Accuracy impact of EHCF-ratios. The average SSQ for each data set becomes stable
when EHCF-ratio is about 10
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Fig. 19 Accuracy impact of error parameter ε
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Fig. 20 Tracking clusters

and the smurf attack goes up sharply. Further analysis on the evolving clusters
provides a deep understanding of the nature of different network attacks. This can
be used to predict new attacks in the future.

6 Conclusions

An effective and efficient clustering approach for analyzing evolving data streams
over sliding windows is proposed in this paper. An EHCF structure is introduced
by combining Exponential Histogram with Cluster Feature to record the evolu-
tion of each cluster and to capture the distribution of recent records. Comparing to
CluStream with batch updating and storing the whole snapshot, an EHCF is up-
dated only when new records are collected. This approach has several advantages:
(1) the quality of clustering is improved due to the fine granularity of EHCFs; (2)
theoretical analysis shows that the memory consumption is limited and bounded,
and the experiments show that its performance is better than CluStream in sliding
window scenario; (3) it provides a novel framework for analyzing cluster evo-
lution, which is very useful for online mining tasks over data streams. Moreover,
several innovative ideas such as the late merging of EHCFs are proven to be useful
for further improvement of the performance. Future work will focus on applying
EHCF to other data mining tasks such as outlier detection, and providing more
evolution analysis functionalities based on SWClustering.
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Appendix

A Proof Theorem 3 of in Sect. 3.2

Theorem 3 Assuming that an EHCF synopsis is constructed using n records, for any TCF Fi in
the EHCF, if there are (� 1

ε
�(2l −1) records before Fi , Fi could be constructed upon its following

2l records.

Proof Since Fi can be any one TCF in an EHCF, there are two cases: 1) If Fi is not the last TCF,
it keeps the structure of the EHCF. 2) If Fi is the last TCF, the absolute error of the number of
expired records is 2l . Because only the last TCF in an EHCF may contain expired records. And

Fi contains 2l records. The relative error is 2l

(� 1
ε
�(2l−1)

≈ ε, which also keeps the structure of the

EHCF. Therefore, Fi could be constructed upon its following 2l records. ��

B Proof Theorem 4 of in Sect. 3.3

Theorem 4 Let H1 and H2 denote two non-overlapping EHCF synopses, containing m1 and
m2 records, respectively. The merge operator upon them takes O( 1

ε
log(ε(m1 + m2))) time, and

the new EHCF synopsis uses O( 1
ε

log(ε(m1 + m2))) TCF synopses.

Proof Assume all m1 records in H1 arrive before all those m2 records in H2, the last TCF in H1

is a m-level TCF, and there are � 1
ε
� = 2l TCFs for each level from 0 to i in H2, where i ≥ m.

First, what should be proved is these i ∗ � 1
ε
� TCFs can be merge into TCFs larger than 2m .

The TCFs in H2 whose sizes are larger than 2m meet the constraint naturally. Thus, the only
consideration is on the TCFs with sizes from 2m−1 to 20 i.e., 1

ε
TCFs of (m − 1)-level, 1

ε
TCFs

of (m−2)-level, . . ., and 1
ε

TCFs of 0-level. These TCFs are merged by level, and 1
2ε

TCFs of m-

level , 1
22ε

TCFs of m-level, . . ., and 1
2m−1ε

TCFs of m-level are generated. As � 1
ε
� = 2l , only the

TCFs equal to or after the 1
2lε

TCFs of m-level are whole m-level TCFs. So all the TCFs before

the 1
2l ε

m-level TCFs are merged into ( 1
2l+1ε

+ 1
2l+2ε

+· · ·+ 1
2m−1ε

) = ( 1
2 + 1

4 +· · ·+ 1
2m−1−l ) ≈ 1

m-level TCF. Second, these m-level TCFs are inserted into H2 and keep at most � 1
ε
� + 1, i-

level TCFs for each i ≥ m. At last, H2 could add to H1 directly after transformation. Hnew
holds the ε error bound. In the merge process, only one scan over H1 and H2 is needed, while
the total number of TCFs in H1 and H2 is O( 1

ε
log(ε(m1 + m2))). So, the time complexity is

O( 1
ε

log(ε(m1 + m2))). As the new EHCF contains m1 + m2 records, the number of TCFs in

Hnew is O( 1
ε

log(ε(m1 + m2))) according to Theorem 2. ��

C Proof Lemma 1 of in Sect. 4.2

Lemma 1 If k natural numbers N1, N2, . . . Nk satisfy
∑k

i=1 Ni = N, then
∏k

i=1 Ni ≤ � N
k �k .

Proof Let N = km + r , 0 ≤ r < k, k and m be natural numbers. If k nature numbers N1,
N2, . . ., Nk satisfy

∑k
i=1 Ni = N , then

∏k
i=1 Ni ≤ mk−r (m + 1)r holds, which could be

found in a number of theory textbooks. Depending on r = 0 or not, there are two cases: 1) If
r = 0, then m = N

k . So, mk−r (m + 1)r = ( N
k )k ≤ � N

k �k . 2) If r �= 0, then m = N−r
k =

� N
k �− 1. So, mk−r (m + 1)r = (� N

k �− 1)k−r (� N
k �)r < � N

k �k . In these two cases, the inequality

mk−r (m + 1)r ≤ � N
k �k holds. Therefore,

∏k
i=1 Ni ≤ � N

k �k holds.
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