
Knowl Inf Syst
DOI 10.1007/s10115-006-0056-0

Knowledge and
Information Systems

REGULAR PAPER

Congnan Luo · Soon M. Chung

A scalable algorithm for mining maximal
frequent sequences using a sample

Abstract In this paper, we propose an efficient scalable algorithm for mining
Maximal Sequential Patterns using Sampling (MSPS). The MSPS algorithm re-
duces much more search space than other algorithms because both the subse-
quence infrequency-based pruning and the supersequence frequency-based prun-
ing are applied. In MSPS, a sampling technique is used to identify long frequent
sequences earlier, instead of enumerating all their subsequences. We propose how
to adjust the user-specified minimum support level for mining a sample of the
database to achieve better overall performance. This method makes sampling more
efficient when the minimum support is small. A signature-based method and a
hash-based method are developed for the subsequence infrequency-based pruning
when the seed set of frequent sequences for the candidate generation is too big to
be loaded into memory. A prefix tree structure is developed to count the candidate
sequences of different sizes during the database scanning, and it also facilitates
the customer sequence trimming. Our experiments showed MSPS has very good
performance and better scalability than other algorithms.

Keywords Data mining · Maximal frequent sequences · Sampling · Signatures ·
Prefix tree · Performance analysis

1 Introduction

Mining sequential patterns from large databases is an important problem in data
mining. With numerous practical applications, such as consumer market-basket
data analysis and Web-log analysis, it has become an active research topic. Since it

C. Luo · S. M. Chung (B)
Department of Computer Science and Engineering,
Wright State University, Dayton, OH 45435, USA
E-mail: {luo.3, soon.chung}@wright.edu

(2008) 15:149 –179

C© Springer-Verlag London Limited 2007
Published online: 24 January 2007
Received: 14 April 2005 / Revised: 15 September 2006 / Accepted: 7 October 2006 /

C. Luo, S. M. Chung

was introduced in Agrawal and Srikant [3], many algorithms have been proposed,
but most of them are to discover the full set of frequent sequences.

In pure bottom-up, breadth-first search algorithms such as GSP [17] and PSP
[12], only subsequence infrequency-based pruning is used to reduce the number
of candidate sequences. So, if a sequence with length l is frequent, all of its 2l sub-
sequences must be enumerated first. Thus, if some frequent sequences are long,
the overhead of enumerating all of their subsequences is so much that mining the
full set of frequent sequences is impractical. An alternative approach is mining
only the maximal frequent sequences. A frequent sequence is maximal if none of
its supersequences is frequent. Mining only the maximal frequent sequences is ef-
ficient because the search space can be reduced a lot by using the supersequence
frequency-based pruning. Another approach is to mine only the closed frequent
sequences [19, 20]. A frequent sequence is closed if none of its supersequences
has the same support. Obviously, the relationship between the set of all frequent
sequences (FS), the set of closed frequent sequences (CFS), and the set of maximal
frequent sequences (MFS) is MFS ⊆ CFS ⊆ FS. An advantage of mining CFS is
that the count information for all frequent sequences is also obtained. However, in
many cases, CFS could be still too large and orders of magnitude larger than MFS.
Thus, mining MFS can be most efficient and scalable. In interactive data min-
ing, after mining MFS quickly, we can selectively count the interesting patterns
subsumed by MFS by scanning the database just once. Moreover, managing and
querying a small set of maximal patterns is easy, time-saving, and space-saving.

The main challenge in mining MFS is how to look ahead for long or maximal
frequent sequences at a reasonable cost. If the look-ahead is not cost-effective, its
cost can offset the gain from the supersequence frequency-based pruning, like the
cases of AprioriSome and DynamicSome algorithms [3].

Although there are many maximal frequent itemset mining algorithms [9], they
cannot efficiently mine the maximal frequent sequences because of the unique
characteristics of the sequence mining. For example, an item can appear multiple
times in a sequence at different positions. Thus, the search space becomes much
larger. We consider the look-ahead technique used in Max-Miner [5], DepthPro-
ject [1], and MAFIA [6] algorithms to find potential maximal frequent itemsets.
They use a Lexicographic tree of itemsets to represent the search space, where
each node is associated with a frequent itemset, called head, and a set of extension
items, called tail. In this case, the union, head ∪ tail, is the only one candidate
maximal itemset to be checked for the node. But in the case of maximal frequent
sequence mining, the number of candidate maximal sequences to be checked for
the node is unlimited because each item in the tail can be included many times in a
candidate. For example, if the head contains only one item A and the tail contains
items B and C for a node, then possible candidate maximal sequences could be
A − B −C , A − B −C −C , A − B −C −C −C , and so on. Thus, the look-ahead
method of those maximal frequent itemset mining algorithms cannot work well
for the mining of maximal frequent sequences.

Some sequence mining algorithms, like SPAM [4], perform a depth-first
traversal of the Lexicographic sequence tree to mine long patterns. But they cannot
use the subsequence infrequency-based pruning effectively because the informa-
tion about infrequent short patterns is not enough. This is not so serious in the case

150150

A scalable algorithm for mining maximal frequent sequences using a sample

of maximal frequent itemset mining, like DepthProject [1], because the search
space is not usually very large. But, it could be a problem in sequence mining.

In this research, we explored the sampling technique to tackle the key issue
of cost-effective look-ahead in mining maximal frequent sequences. With sam-
pling, we can combine the Apriori candidate generation method [2, 3, 17] and the
supersequence frequency-based pruning. This enables us to avoid counting most
nonmaximal patterns against the whole database, while finding the maximal pat-
terns quickly.

The main search strategy of our MSPS algorithm is bottom-up and breadth-
first. But after the pass 2 over the database, we mine a small random sample
database first, starting with the candidate 3-sequences (i.e., sequences of three
items) generated from the set of frequent 2-sequences. The local maximal frequent
sequences that are found from the sample database starting with the global candi-
date 3-sequences, are verified in a top-down fashion against the original database,
so that we can efficiently collect the longest frequent sequences covered by them.
Then, the bottom-up search is resumed from the pass 3, and the supersequence
frequency-based pruning is applied at each pass by using the long patterns discov-
ered in the previous step. Thus, the MFS mined by MSPS provides a border under
which all frequent sequences exist.

The main contributions of this research are:

(1) A new MSPS algorithm is developed for mining maximal frequent sequences.
It uses a sampling technique to look ahead long patterns and then performs a
bottom-up levelwise mining. MSPS outperforms GSP considerably, and it also
shows better scalability than SPAM [4] and SPADE [23].

(2) How to trade-off the cost and the quality of sampling is studied thoroughly.
For association rule mining, they proposed to lower the user-specified mini-
mum support (denoted by minsup) for the mining of a sample to reduce the
number of misses (i.e., false negatives). They usually calculate the minsup for
the sample by using the Chernoff boundary without assuming any distribution
for the support of a sequence in the sample. As a result, the calculated minsup
for the sample could be too low, such that it produces many overestimates (i.e.,
false positives) [18]. For the case of sequence mining, where the search space
is much larger, lowering a small minsup for the sample often makes the cost of
mining the sample and verifying the result too high due to many overestimates.
However, we used the normal distribution to model the support of a sequence
in the sample, and analyzed how to increase the user-specified minsup to mine
the sample for the best overall performance.

(3) Optimization components are developed to reduce the computation complex-
ity of the maximal frequent sequence mining. A signature-based method
and a hash-based method are developed to perform a partial subsequence
infrequency-based pruning when the set of frequent sequences at some level
is too big to be loaded into memory. A new prefix tree structure and a cus-
tomer sequence trimming technique are also developed to count the candidate
sequences of different sizes efficiently by reducing the number of database
scans and the computational cost.

The rest of the paper is organized as follows: Sect. 2 introduces the basic con-
cepts of sequence mining. Section 3 reviews some related works. Section 4 de-
scribes the MSPS algorithm, and Sect. 5 theoretically analyzes the sampling in

151

C. Luo, S. M. Chung

MSPS. The experimental results and performance analyses are presented in Sect.
6. Section 7 contains some conclusions and future work.

2 Sequence mining

Let I = {i1, i2, . . . , in} be a set of items. An k-itemset i is a set of k items denoted
by {im1, im2, . . . , imk }, where 1 ≤ m1 < m2 < · · · < mk ≤ n. A sequence s is
an ordered list of itemsets denoted by 〈s1, s2, . . . , sk〉, where each si , 1 ≤ i ≤ k,
is an itemset. A sequence sa = 〈a1, a2, . . . , ap〉 is contained in another sequence
sb = 〈b1, b2, . . . , bq〉 if there exist integers 1 ≤ j1 < j2 < · · · < jp ≤ q
such that a1 ⊆ b j1, a2 ⊆ b j2, . . . , ap ⊆ b jp . If sa is contained in sb, sa is a
subsequence of sb, and sb is a supersequence of sa . An item may appear at most
once in an itemset, but it may appear multiple times in different itemsets of a
sequence. If there are k items in a sequence, the length of the sequence is k, and
we call it a k-sequence. For example, a 3-sequence 〈{A}, {B, C}〉 is a subsequence
of a 5-sequence 〈{C}, {A, D}, {B, C}〉. For simplicity, these two sequences can be
represented as A − BC and C − AD − BC .

Given a database D of customer transactions, each transaction consists of a
customer-id, transaction-time, and an itemset that includes all the items purchased
by the customer in that single transaction. All the transactions of a customer can
be viewed as a customer sequence, where these transactions are ordered by their
transaction times. We denote a customer sequence t as 〈T1, T2, . . . , Tm〉, which
means the customer has m transactions in the database and each transaction Ti ,
1 ≤ i ≤ m, contains all the items purchased in that transaction. A customer
supports a sequence if the sequence is contained by the customer sequence. The
support for a sequence in database D is defined as the fraction of total customers
who support the sequence. Given a user-specified minimum support, denoted by
minsup, a sequence is frequent if its support is greater than or equal to minsup. The
problem of sequence mining is to find all the frequent sequences in the database
with respect to a user-specified minsup. If a sequence is frequent and none of its
supersequences is frequent, then it is a maximal frequent sequence.

Based on the above definitions, two properties are often utilized to speed up
the sequence mining: (1) Any supersequence of an infrequent sequence is not fre-
quent, so it can be pruned from the set of candidates. This is called subsequence
infrequency-based pruning. (2) Any subsequence of a frequent sequence is also
frequent, so it can be pruned from the set of candidates. This is called superse-
quence frequency-based pruning.

3 Related work

Mining sequential patterns was introduced in Agrawal and Srikant [3] with Aprio-
riAll, AprioriSome, and DynamicSome algorithms. Although AprioriSome and
DynamicSome try to generate and count long candidate sequences before enu-
merating all their subsequences, their performance is usually worse than that of
AprioriAll. The reason is that too many false candidates are generated without be-
ing pruned by the subsequence infrequency-based pruning. The performance gain

152

A scalable algorithm for mining maximal frequent sequences using a sample

from the supersequence frequency-based pruning is not enough to offset the cost
of counting so many false candidates.

GSP [17] was proposed for generalized sequence mining, and it requires multi-
ple passes on the database. At pass k, the set of candidate k-sequences are counted
on the database, and frequent k-sequences are determined. Then, the candidate
(k +1)-sequences are generated by joining frequent k-sequences for the next pass.
This process will continue until no candidate is generated. Even though GSP is
much faster than AprioriAll, it has a very high overhead of enumerating every sin-
gle frequent subsequence when there are some long patterns. This is also the main
weakness of other Apriori-like algorithms, such as PSP [12]. For PSP, a prefix tree
was developed as the internal data structure to organize and count candidates more
efficiently. The differences between the PSP’s prefix tree and the one developed
for our MSPS will be discussed later.

SPADE [23] works on the databases with a vertical id-list format, where a list
of (customer-id, transaction-time) pairs is associated with each sequence, and the
candidates are counted by intersecting the id-lists. A lattice-theoretic approach is
used to decompose the search space into small pieces so that all working id-lists
can be loaded into memory. PrefixSpan [15] projects a large sequence database re-
cursively into a set of small postfix subsequence databases based on the currently
mined frequent prefix subsequences. Then, the subsequent mining is confined to
each small projected database. A memory-based pseudoprojection technique is de-
veloped to save the computation cost of projection and the memory space for pro-
jected databases. SPAM [4] uses a vertical bitmap representation of the database
for candidate generation and counting. A bitmap is created for each item in the
database, where each bit corresponds to a transaction. If transaction j contains
item i , then bit j in the bitmap for item i is set to 1; otherwise, it is set to 0.
SPAM also uses a depth-first traversal of the Lexicographic sequence tree and an
Apriori-based pruning of candidates.

DISC-all [8] uses a new strategy named Direct Sequence Comparison (DISC)
to prune the search space. The basic idea is that, when mining k-sequences, it sorts
the customer sequences in the database based on their k-minimum subsequences,
which are k-sequences smaller than any other k-sequences in terms of alphabetical
order and the transaction id of their items. As the customer sequences containing
the same k-minimum subsequences are listed consecutively after sorting, we can
easily check if the first k-minimum subsequence is frequent or not. Then, from the
customer sequences containing this first k-minimum subsequence, we can identify
a group of conditional k-minimum subsequences and update the sorted database
based on them. This procedure is repeated until all the frequent k-sequences are
found. In this way, many infrequent candidate k-sequences which are not appear-
ing in the database can be skipped without being counted. Furthermore, DISC-all
also combines the subsequence infrequency-based pruning, database projection,
and customer sequence trimming to improve its performance.

SPADE, PrefixSpan, SPAM, and DISC-all were reported more efficient than
GSP. However, their performance may not be scalable in certain cases. For
SPADE, if the database is in the horizontal format, where the transactions form
the tuples in the database, transforming it to the vertical format requires extra disk
space that is almost the same as its size. This may be a problem in practice if
the database is large. Even if the database is in the vertical format, to efficiently

153

C. Luo, S. M. Chung

count 2-sequences, SPADE proposes transforming it back to the horizontal format
on the fly. This usually requires much time and memory for very large databases
and results in a performance degradation, which is shown in our tests. SPAM is
more efficient in mining long patterns than other algorithms. However, it con-
sumes more memory space than SPADE and PrefixSpan. It is claimed to be a
memory-based algorithm. According to our tests, its scalability is much more sen-
sitive to the number of items and the database size than other algorithms. The
comparison between MSPS, GSP, SPADE, and SPAM is presented in detail in the
performance analysis section.

Even though we could not test PrefixSpan and DISC-all because we did not
have the source codes, we can still estimate their scalability theoretically. Pre-
fixSpan may be challenged when the database has a large number of customer
sequences and items. A large number of items often produce many combinations
at the early stage of mining with a small minimum support level, and it requires
PrefixSpan to construct more projected databases. If the database is very large, the
cost of projection will be high and much more memory is necessary. In addition,
PrefixSpan performs a depth-first search. Thus, the largest number of projected
databases to be resident in memory at the same time is same as the length of the
longest frequent sequence. When the minimum support is small, even with the
pseudoprojection of the database, the memory requirement can be easily much
more than the available memory space, because the size of the projected databases
based on the frequent 1-sequences alone can be almost the same as the original
database size without including the amount of memory required for the pseudo-
projection at the lower levels during the depth-first search.

A major problem of DISC-all is the sorting of the customer sequences based
on their k-minimum subsequences. When the database is large, for example, with
millions of customer sequences, the sorting could be very time-consuming, be-
cause the comparison between customer sequences with certain length is not triv-
ial and we may not have enough memory to perform a quick memory-based
sorting. Moreover, DISC-all needs to update the sorted database many times to
mine all the frequent sequences with the same length. For a large database with
many items, say 10,000 items, the number of distinct k-sequences appearing in the
database is usually very big, and thus results in a very high cost for the re-sorting.
The test results reported in Chiu et al. [8] could not show the scalability of DISC-
all even though the biggest database used is just about 50 Mbytes and contains
only 1000 items, which is about 10% of the biggest database used in our research
(500 Mbytes and 10,000 items).

There are not many algorithms proposed for mining closed frequent sequences
due to its complexity. CloSpan [20] performs a depth-first search on the Lex-
icographic sequence tree. At each node, CloSpan applies a pruning technique
called Early Termination by Equivalence to see if the subtree rooted at the current
node can be absorbed by any other potential closed frequent sequence already
found. Finally, a candidate set of closed frequent sequences is determined, and
a postpruning step is needed to exclude nonclosed frequent sequences. As dis-
cussed in Wang and Han [19], CloSpan follows the candidate maintenance-and-
test paradigm, which requires much memory to maintain all the historical candi-
date closed frequent sequences to do the closure checking for the newly found
closed sequence. Thus, the algorithms with this paradigm have rather poor scala-

154

A scalable algorithm for mining maximal frequent sequences using a sample

bility when the minimum support is low or patterns are long. The BIDE algorithm
[19] can solve this problem by adopting a novel sequence closure checking scheme
named Bidirectional Extension. With this, BIDE does not need to store any histor-
ical closed patterns. BIDE also performs a depth-first search on the Lexicographic
sequence tree. At each node, the forward directional extension is used to grow
the frequent prefix sequences and check the closure of the prefix sequences, while
the backward directional extension is used for both closure checking and search
space pruning. However, unlike other algorithms, the current version of BIDE can
mine only the closed frequent sequences of single items, instead of the sequences
of itemsets. It is noticed that, like PrefixSpan, both CloSpan and BIDE perform
the pseudoprojection of the database along the path of the depth-first search. This
poses the same scalability problem as in PrefixSpan when the minimum support
is low because we must have enough memory to hold almost the whole database
and associated pseudoprojection data structures.

In previous researches on sampling [7, 10, 11, 18, 21, 22], the focus was on
two aspects: (1) how to choose the sample size, and (2) how to avoid missing
patterns in the sample. In Chen et al. [7], the FAST algorithm progressively refines
the initial sample to obtain a small final sample and reports the set of frequent
itemsets in the final sample as the result. In Toivonen [18] and Zaki et al. [22],
the Chernoff boundary was used to choose the sample size and to lower the user-
specified minsup to mine the sample.

A new probabilistic framework was developed in Yang et al. [21] to mine the
sequences in a noisy environment. However, the proposed method defines a prob-
abilistic match only between the sequences of items, not between the sequences of
itemsets. For example, the match between A − B and AB is not defined. Thus, it
cannot mine the frequent sequences of itemsets. The Chernoff boundary was also
used in Yang et al. [21] to estimate if a sequence is frequent or not. The sequences
whose match is very close to the user-specified minimum match are considered
as ambiguous patterns, and they have to be verified against the whole database.
They theoretically proved that if a sequence is frequent, then its probability of
being missed in the sample is small. However, to reduce the number of misses in
the sample, they also suggested to lower the minimum match for the sample as in
Toivonen [18] and Zaki et al. [22].

In Domingo et al. [10, 11], they proposed how to dynamically determine the
sample size based on the estimated support of the candidate itemsets, which is
expected to be tighter than the sample size based on the Chernoff boundary. The
basic idea is that a relatively small sample can be used if the support of a candidate
itemset is far from the minimum support. The transactions are randomly selected
from the database and added into the sample one by one. Each candidate itemset
is evaluated based on the current sample to see if it needs to be evaluated with
more transactions at the next step. However, they tested this method with only
one candidate itemset. Thus, as suggested in Domingo et al. [10, 11], more work
needs to be done to combine this adaptive sampling method with some mining
algorithms, like Apriori, and more experiments are required to test the cost of the
online sampling.

Unlike the previous sampling methods, we used the normal distribution to
model the support of a sequence in the sample, instead of using the Chernoff
boundary. Moreover, instead of trying to reduce the misses in the sample ei-

155

C. Luo, S. M. Chung

ther by increasing the sample size too much or by lowering the user-specified
minsup support to mine the sample, we proposed to increase the small user-
specified minsup a little bit to mine the sample, so that we can achieve the best
overall performance.

4 MSPS algorithm

Like GSP, MSPS also uses the candidate generation then counting approach to per-
form the mining, but the performance is improved very much by combining the
supersequence frequency-based pruning into its bottom-up, breadth-first search.
It has the following original components: (1) A signature-based approach and a
hash-based approach are developed to perform a partial subsequence infrequency-
based pruning when the set of frequent k-sequences is too big to be loaded into
memory totally for the generation of candidate (k + 1)-sequences. (2) To effi-
ciently count candidates of different sizes, a prefix tree structure is developed, and
it also facilitates the customer sequence trimming. (3) To support supersequence
frequency-based pruning, sampling is used to find long frequent patterns early. (4)
To make the sampling more efficient and robust in sequence mining, a theoret-
ical method of adjusting the small user-specified minsup for mining the sample
database is proposed.

In this section, we first present an overview of MSPS and then describe the
candidate generation and pruning, candidate counting, and sampling in detail. The
following notations will be used in our description: DB is the original database
and db is a small random sample of DB. If a sequence is frequent in DB, it is
called a global frequent sequence. LDB

k is the set of all global frequent k-sequences
and CDB

k is the set of all candidate k-sequences generated from LDB
k−1. MFSDB

is the set of all global maximal frequent sequences in the whole database. If a
sequence is frequent in the sample db, we call it a local frequent sequence. Ldb

k ,
Cdb

k , and MFSdb are the set of local frequent k-sequences, the set of candidate k-
sequences generated from Ldb

k−1, and the set of local maximal frequent sequences
in the sample, respectively. LongF SDB is the set of verified long global frequent
sequences found from the sample result.

4.1 Description of MSPS

The basic idea of MSPS is simple: if some long frequent patterns are found early,
they can be used to prune the search space so that the mining can speed up. To
find long frequent patterns, a small sample db is mined first. We must balance the
gain from the supersequence frequency-based pruning and the cost for mining the
sample and then verifying the sample result. MSPS consists of three phases:

Phase 1: LDB
1 and LDB

2 are determined. Candidate 3-sequences are generated
from LDB

2 . To count candidate 2-sequences, a matrix is used. The entry at
position (i, j) in the upper-triangle of the matrix contains the counts of three
candidates: i − j , i j , and j − i .

156

A scalable algorithm for mining maximal frequent sequences using a sample

Phase 2: A random sample is drawn from DB, then how much the user-specified
minsup should be adjusted for mining the sample is determined. We mine the
sample starting with CDB

3 in a bottom-up, breadth-first manner. The local max-
imal frequent sequences are extracted to construct MFSdb. Then, we perform
a top-down search to find long global frequent sequences by using MFSdb. All
those sequences in MFSdb are considered as global candidates and counted
against DB. If a k-sequence, k > 3, is infrequent, all of its (k−1)-subsequences
are considered as candidates for the next pass. For a frequent k-sequence, we
stop splitting it, and put it into the set LongF SDB if none of its supersequences
is already in this set. For a newly generated candidate (k − 1)-sequence, if it
has any supersequence in LongF SDB, we remove it from further considera-
tion. We also check if the newly generated candidate (k −1)-sequence has any
subsequence which is already identified as infrequent. If yes, this candidate
(k − 1)-sequence must be split again. At the end of this Phase 2, LongF SDB

contains all the verified long frequent sequences found by using the sample
result.

Phase 3: The bottom-up search suspended at the end of Phase 1 is resumed from
pass 3. With LongF SDB, we can apply the supersequence frequency-based
pruning on the candidates generated at each pass. The candidates which ap-
pear in LongF SDB or have any supersequence in LongF SDB do not need to
be counted. They are simply considered as frequent and used for the candi-
date generation for the next pass. Finally, MFSDB is extracted from all global
frequent sequences found.

While the sample result helps us identify most long frequent sequences
quickly, the bottom-up mining of MSPS still generates all the frequent sequences.
Some of them are actually counted against the whole database, and others are not
counted as they are pruned by using the long frequent sequences found from the
sample. Thus, we will not miss any real maximal frequent sequences in our final
mining result.

Figure 1 shows how MSPS mines a database DB of eight customer sequences.
A random sample db is 50% of DB. The user-specified minsup is 50%, and it
is also used to mine the sample. In Phase 2, we mine db starting with CDB

3 and
finally obtain MFSdb. Then, a top-down search is performed to verify the patterns
in MFSdb. In this example, all the three patterns in MFSdb are globally frequent,
so they are put into LongF SDB. In Phase 3, at each pass, we use LongF SDB to
prune the candidates. In each CDB

k , the candidate sequences in grey color are the
ones pruned, and only the ones in black color are actually counted against DB.
Thus, with sampling and supersequence frequency-based pruning, MSPS largely
reduces the number of candidates to be counted against DB. To mine this database,
GSP needs to count 26 candidates against DB from pass 3, but MSPS counts only
three candidate sequences.

4.2 Candidate generation and pruning

In both Phases 2 and 3, we have performed the bottom-up, breadth-first search on
the sample and the original database, respectively. At pass k, the candidates are
generated in two steps:

157

C. Luo, S. M. Chung

Fig. 1 An example of MSPS

Join Step: we generate local (global) candidate (k + 1)-sequences by joining Ldb
k

with Ldb
k (LDB

k with LDB
k) as in the GSP algorithm. For any two local (global)

frequent k-sequences, say s1 and s2, in Ldb
k (LDB

k), if the subsequence obtained
by dropping the first item of s1 is the same as the subsequence obtained by
dropping the last item of s2, a new candidate is generated by extending s1 with
the last item of s2. The added item starts a new itemset in s1 if it was a separate
itemset in s2; otherwise, it becomes a member of the last itemset in s1.

Prune Step: In both Phases 2 and 3, the subsequence infrequency-based pruning
is applied. The local (global) candidate (k + 1)-sequences with any subse-
quence of length k which is not in Ldb

k (LDB
k) are removed. Especially in Phase

3, since we have LongF SDB, the supersequence frequency-based pruning also
can be performed. Thus, we remove global candidate (k +1)-sequences which
are in LongF SDB or have any supersequence in it.

A weakness of GSP is the way that a large LDB
k is processed. When the user-

specified minsup is very small, LDB
k could be too large to be loaded into mem-

ory totally. For this case, GSP proposed to use a relational merge-join technique

158

A scalable algorithm for mining maximal frequent sequences using a sample

Fig. 2 Comparison of hash-based and signature-based pruning

to generate candidates. But in this manner, the subsequence infrequency-based
pruning cannot be applied because the whole LDB

k is not available in memory and
retrieving the relevant portions of LDB

k from a disk requires too many swaps. With-
out the subsequence infrequency-based pruning, usually the performance of GSP
degrades a lot.

For MSPS, we have tried two methods to deal with this problem: hash-based
pruning and signature-based pruning. Figure 2 shows an example to illustrate the
two pruning methods, and it also demonstrates that the signature-based pruning
is more effective when the same amount of memory is used. For each frequent
sequence, we can calculate its hash value and signature by using a hash function
and a signature function, respectively. In the hash-based pruning, we use a bit
vector. If there is at least one frequent sequence hashed to a bit address in the
bit vector, the corresponding bit is “1”; otherwise, the bit is “0.” In the signature-
based pruning, a signature vector is used to contain all the unique signatures of the
frequent sequences. These signatures are sorted in ascending order in the signature
vector. Compared with the case of loading all the frequent sequences into memory,
the bit vector and the signature vector take much less memory, especially when the
frequent sequences are long. Both vectors can be loaded into memory totally.

In this example, suppose that L2 contains 7 frequent 2-sequences. For a fair
comparison, we used the same memory space for the bit vector and the signature
vector. For the signature vector, we need 7 integers of 4 bytes for all the unique
signatures. So, the bit vector can have 7×4×8 = 224 bits to use the same amount
of memory. The typical hash function used in this example was also used in Park et
al. [14] and Shintani and Kitsuregawa [16], and I1 and I2 denote the lexicographic
order of the items. In the hash function, we use the modulo operation to map the
value of I1 × 10 + I2 into the range between 0 and 223, because the bit vector has
only 224 bits. For example, the hash value of AW is (1×10+23) mod 224 = 33,
so that the bit vector has “1” at its bit address 33.

The given signature function is little more complex, where NumItemsets repre-
sents the number of itemsets in the frequent sequence. For example, the signature
of W − G is ((2 − 1) mod 26)226 + (23 × 10 + 7) mod 226 = 67109101. It is
the fifth element in the signature vector. We will explain the design idea of this
signature function later.

159

C. Luo, S. M. Chung

We can generate C3 by joining L2 with itself as described in Sect. 4.2, and they
are shown in Fig. 2. In the case that L2 can be totally loaded into memory, we are
able to perform the subsequence infrequency-based pruning used in Apriori, and
all candidate 3-sequences can be pruned. With the hash-based pruning, we cannot
prune the first three candidates due to the collision in hashing. For example, the
candidate ABC is pruned by the Apriori pruning because its subsequence AC is
not in L2. But in the hash-based pruning, ABC is not pruned because the hash
value of AC is 13 and the corresponding bit in the bit vector is “1,” which was
actually set by a frequent 2-sequence W − G. However, in the signature-based
pruning, the signature of AC , which is 13, is not in the signature vector. Thus, we
can detect that AC is infrequent and then remove ABC .

In our example, the 32-bit integer signature has two parts: (1) the lowest 26 bits
encode the items and their order in the sequence, and (2) the highest 6 bits encode
the number of itemsets in the sequence. The first part of the signature is determined
by (I1 × 10 + I2) mod 226 in the signature function, and it is similar to the hash
function used in our example. But, the difference is that the value of I1 × 10 + I2
is mapped into a much bigger range [0, 226 −1], which largely reduces the chance
of collision between signatures. The second part of the signature is determined by
((NumItemsets − 1) mod 26)226 in the signature function, and it can distinguish
the sequences like BC and B − C . Thus, the information of a sequence is better
represented by a signature than a hash value, and the signature-based pruning
is usually more effective than the hash-based pruning when the same amount of
memory is used.

Note that how to segment the 32-bit signature to encode different information
of a sequence has nothing to do with the signature vector size. In our example, as
we expect the length of the longest frequent sequence would be less than 64, the
second part of the signature takes only 6 bits, and the remaining 26 bits are used
for the first part.

The general forms of the hash function and the signature function of a se-
quence can be expressed as follows:

hash value =
(

k∑
i=1

(Ii × 10k−i)

)
mod NumBits

signature = (((NumItemsets − 1) mod 2p)2q+r)

+
⎛
⎝

⎛
⎝

⎛
⎝NumItemsets∑

j=1

(NumItems j × 10NumItemsets− j)

⎞
⎠ mod 2q

⎞
⎠ 2r

⎞
⎠

+
((

k∑
i=1

(Ii × 10k−i

))
mod 2r

Here, k is the total number of items in the sequence; Ii denotes the i th item
in the sequence; NumItemsets is the number of itemsets in the sequence; and
Num I tems j is the number of items in the j th itemset in the sequence.

For the signature-based pruning, we segment the 32-bit signature into three
parts. The lowest r bits encode the items and their order in the sequence, the mid-
dle q bits encode the information about the number of items in each itemset in the

160

A scalable algorithm for mining maximal frequent sequences using a sample

sequence, and the highest p bits encode the number of itemsets in the sequence.
This general signature function is a little bit different from the one used for the
example in Fig. 2. By encoding the information about the number of items in each
itemset in the sequence, we can distinguish the sequences like AB − D A and
AB D − A. In practice, we can set the parameters p, q , and r as 5, 7, and 20,
respectively, which show very good pruning effectiveness.

Comparing with the hash-based pruning, the signature-based pruning can be
more effective when the same memory space is used. Our devised signature func-
tion encodes not only the items and their order, but also the number of itemsets
and the size of each itemset. By encoding these information into different bits, it
actually partition the signatures of the sequences with different number of itemsets
and itemset sizes into different value ranges. Such partitioning reduces the chance
of collisions. In addition, because the signature value can be as big as the max-
imum value that a unsigned integer can represent, the signatures can have much
bigger value range than hash values, and hence have less probability of collisions.

A practical problem of hash technique is that even though the hash vector can
have millions of bits, a lot of them have “0” value. A good hash function can
produce randomly distributed hash values, but it is not so easy to get a good ran-
domizing hash function for the databases containing various data distributions and
skewness. For the signature-based pruning, if the signature vector has N entries,
we can guarantee that each of those entries covers at least one pattern. So, no entry
is empty and the memory space allocated is fully utilized. Thus, when the same
memory space is used, the signature technique can distinguish more patterns.

A disadvantage of the signature-based pruning is that the computation com-
plexity is O(log N) due to the binary search in the signature vector when N is
the number of entries in the signature vector. However, it is O(1) for hash-based
pruning. The extra search cost can be easily compensated as more candidate se-
quences can be pruned by the signature-based pruning, because counting those
false candidates against millions of customer sequences usually costs even more.

With the signature-based subsequence infrequency-based pruning, MSPS per-
forms much better than GSP when the seed set of frequent sequences for gener-
ating the candidates cannot be loaded into memory totally. If the memory cannot
hold all the candidates generated, they can be processed part by part.

4.3 Counting of candidate sequences

During the top-down search for long patterns covered by MFSdb, to reduce the
number of passes, we need to count candidates of different sizes at each pass over
the database. For that purpose, we developed a new prefix tree structure. Since it
is much more efficient than the hash tree, we also use it to count the candidates
of the same size during the bottom-up search in Phases 2 and 3. We first describe
our prefix tree and the customer sequence trimming technique, and then compare
it with the prefix tree used for PSP [12].

4.3.1 Overview of the prefix tree and the customer sequence trimming

The following example shows how the prefix tree works. Suppose we have 10
candidates of length 2 or 3. The prefix tree is constructed as shown in Fig. 3. Each

161

C. Luo, S. M. Chung

Fig. 3 Prefix tree of MSPS

node is associated with a pointer. If the path from the root to a node represents a
candidate, the pointer points to the candidate; otherwise, it is NULL. A node may
have two types of children. The “I-extension” child means the item represented
by the child node is in the same itemset with the item represented by its parent
node. The “S-extension” child means the item represented by the child node starts
a new itemset. All the S-extension (I-extension) children of a node are linked
together, and only the first child is linked to their parent node by a dashed (solid)
line. For example, nodes 4 and 5 are the S-extension children of node 1, and the
corresponding paths represent the candidates A−A and A−E , respectively. Nodes
6 and 7 are I-extension children, and their paths represent AC and AD, respectively.

To speed up the counting, a bit vector is associated with the prefix tree to
facilitate the customer sequence trimming. In this example, we have eight items in
the database: A, B, C, D, E, F, and H . Since B, F , and G do not appear in any
candidate, they should be ignored during the counting. Thus, the bit vector is set
as (10111001), where 1 at the i th bit position means item i appears in the prefix
tree. All the bits are initialized to 0, and the corresponding bits are set to 1 as we
insert candidates into the prefix tree.

Given a customer sequence s = ABCD − ADEFG − B − DH, we first trim it
to s′ = ACD − ADE − DH using the bit vector. Then, a recursive method is used
to count all the candidates contained in s′. At the root node, we check each item in
ACD − ADE − DH to see if it is in the root node’s S-extension children. The first
item of s′ is A, and it appears as the first S-extension child of the root node. So we
recursively call the count function at the root node with two sequence segments.
The segment CD − ADE − DH is used in the call for node 1’s I-extension link,
while ADE − DH is for its S-extension link. Then, we can locate the second item

162

A scalable algorithm for mining maximal frequent sequences using a sample

of s′, C , at node 2. Since node 2 has no S-extension child, only one recursive
call with the segment D − ADE − DH is made for its I-extension link. The third
item of s′, D, is the last item of the first itemset in s′. Only one call with segment
ADE − DH is made for node 3’s S-extension link. The fourth item of s′, A, can
be located at node 1 again, and we make two recursive calls. One is for the node
1’s I-extension link with DE − DH, and the other one is for its S-extension link
with DH. Then, we process the remaining items in s′, one by one, in the same
way. Whenever we locate an item at some node, if the pointer associated with the
node is not NULL and the count of the corresponding candidate is not increased
yet (for the current customer sequence), it should be increased.

The root node is processed differently from other nodes. At the root node,
there is no constraint on which items in the customer sequence should be checked
against the root’s S-extension link, because the first item of a candidate can appear
anywhere in the customer sequence. At other nodes, there are some constraints.
Let us see how to make recursive calls at node 1 along its I-extension link. Recall
that we have made two recursive calls at the root node with segments, CD −
ADE − DH and DE − DH, for node 1’s I-extension. Now we process them at
node 1. Since the two segments are specified for node 1’s I-extension link, we just
check the items in their first itemsets, CD and DE, against node 1’s I-extension
link, because only those items are in the same itemset with item A represented by
node 1. For CD − ADE − DH, since C appears at node 6 which has no child, we
stop there by just increasing the count of AC . Another item, D, appears at node
7. We increase the count of AD and make recursive calls for node 7’s links. Since
D is the last item of the first itemset in CD − ADE − DH, only one recursive call
with the segment ADE − DH is made for node 7’s S-extension link. For another
sequence segment DE −DH at node 1, two items of the first itemset, D and E , are
checked. D is located at node 7. Since the count of AD is already increased before,
we should not increase it again. Two recursive calls are made at node 1 for node
7’s links. One is with E − DH for node 7’s I-extension link and the other is with
DH for the S-extension link. We can ignore E because it is not an I-extension child
of node 1. This process will continue until a leaf node is reached or the sequence
segment is empty.

4.3.2 Features of the prefix tree and the customer sequence trimming

There are some major differences between our prefix tree and the PSP’s prefix tree:
(1) Our prefix tree is used to count candidates of different sizes, whereas PSP’s
prefix tree is only used to count the candidates of the same size. (2) To improve
the candidate counting, a bit vector is associated with our prefix tree to facilitate
the customer sequence trimming. (3) The supersequence frequency-based pruning
reduces the size of our prefix tree when we count the candidates against the whole
database.

Due to both (2) and (3), the prefix tree of MSPS is much more efficient. In our
prefix tree structure, the I-extension children and S-extension children of a node
are linked together, respectively. During the candidate counting, we frequently
need to locate the items in the customer sequences along these links. This search
could be either sequential or binary depending on how the links are implemented.

163

C. Luo, S. M. Chung

Obviously, making the tree smaller or reducing the number of search opera-
tions can enhance the counting process. In MSPS, by performing supersequence
frequency-based pruning in Phase 3, only a part of the candidate set needs to be
processed. Thus, our prefix tree is usually much smaller than PSP’s prefix tree at
each pass. Moreover, we also reduce the number of search operations by trim-
ming the customer sequences. In PSP, the items not in the prefix tree are not
trimmed from the customer sequence. Thus, when these items are processed, they
are searched along the corresponding links exhaustively even though they are not
in those links. This unnecessary search cost is not trivial when the number of cus-
tomer sequences is large. MSPS can avoid this problem. As the mining process
makes progress, fewer and fewer items would remain in the longer candidate pat-
terns, and the customer sequence trimming can save a lot of time.

Our customer sequence trimming is different from the transaction trimming
technique proposed in Park et al. [14]. In Phase 3 of MSPS, those candidates
removed by the supersequence frequency-based pruning are not counted, so we
do not know exactly how many times an item in a customer sequence appears in
the candidate sequences. This prevents us to do the customer sequence trimming
as in Park et al. [14]. We can only trim the customer sequences based on the items
appearing in the prefix tree.

5 Sampling in MSPS

For both frequent itemset mining and sequence mining, if a pattern is found fre-
quent in db but turns out to be infrequent in DB, it is an overestimate. However, if
a pattern is infrequent in db but actually frequent in DB, it is a miss.

Both our research and Toivonen [18] try to mine the exact result with the help
of sampling. While we focused on how to maximize the performance improve-
ment, more attention was given in Toivonen [18] on how to reduce the probability
of misses. To achieve that goal, two methods were suggested in Toivonen [18]:
(1) mine a large sample, and (2) lower the user-specified minsup for mining the
sample. These two methods can reduce the misses but also potentially degrade
the overall performance. Mining a large sample cuts the merit of sampling, while
lowering the user-specified minsup may generate a large number of overestimates.
Obviously, a complete sample result without misses does not necessarily mean the
best overall performance. In MSPS, the cost related to sampling includes all the
overhead of mining the sample and verifying the sample result, whereas the perfor-
mance gain is from the supersequence frequency-based pruning. The effectiveness
of this pruning is determined by how many long frequent patterns can be found
from the sample. As different settings of sample size and the adjusted minsup
for mining the sample are used, the overall performance varies accordingly. Thus,
we pay our attention to the sample size and the adjusted minsup in the following
discussion.

5.1 Sample size

In Toivonen [18] and Zaki et al. [22], the minimum sample size that guarantees a
small chance of misses with certain confidence is given by the Chernoff boundary.

164

A scalable algorithm for mining maximal frequent sequences using a sample

Unfortunately, this theoretical guideline is not quite practical because it is too
conservative. In MSPS, a large sample can improve the quality of sample result
with fewer misses and overestimates. Consequently, verifying the sample result
can be done quickly and the supersequence frequency-based pruning can be very
effective. But the overhead of mining a large sample is high. However, with a small
sample, the overhead of mining sample is low, but MFSdb may be in bad quality.
Then, the cost of verifying the sample result containing many overestimates would
be high. If the small sample size makes the minimum support count for mining
the sample (i.e., minsup × |db| or lowered minsup × |db|) very small, mining the
sample itself may take a long time. Thus, a small sample does not necessarily mean
a lower cost. Furthermore, if only few long frequent sequences are found under
the border formed by MFSdb, then the supersequence frequency-based pruning
will not be effective, either. That is why the sample should not be too large or too
small.

In general, we do not know the data distribution characteristic of the database
to be mined, so it is hard to determine the best sample size. MSPS allows users to
choose a plausible sample size empirically. In our experiments, we set the sample
size as 10% of the original database size. By using a default sample size, how to
balance the cost related to the sampling and the quality of sample result mainly
depends on the adjusted minsup for mining the sample. Even though the default
sample size may not be the best one all the time, with the method of adjusting the
minsup, it works very well in practice according to our extensive experiments. In
Sect. 6.3, we will show the effect of different sample sizes.

5.2 Adjusting the user-specified minimum support for mining the sample

In the sample mining result, a certain rate of misses is tolerable. Our tests show
that, for a missing k-sequence, if most of its long subsequences, such as subse-
quences with length k − 1 or k − 2, are found, then the supersequence frequency-
based pruning is not affected much. In practice, as long as the sample size is not
too small, the probability that most of these subsequences are also missed is quite
low. Compared to misses, overestimates could be a bigger problem. Once an in-
frequent k-sequence is identified frequent in db at pass k, then it may be joined
with many other k-sequences to generate a large number of false candidates in
mining the sample. Most importantly, the situation may become even worse when
the minimum support count for mining the sample is very small. We found this
is more serious for sequence mining than for frequent itemset mining, because
the search space is much larger. For MSPS, it not only degrades the efficiency of
mining the sample, but also causes a high cost to identify the overestimates.

In Toivonen [18], they proposed using the lowered minsup for the sample,
however they did not consider the case that the user-specified minsup is very small.
In that case, it is dangerous to lower the minsup further. In this research, we inves-
tigated how to avoid the overestimates in the case of small user-specified minsup,
because such mining task is more time-consuming.

There are three different cases that can happen when MSPS is used: (1) If the
user-specified minsup is big, simply using it or even a lowered one to mine the
sample works fine. Only a small number of misses and overestimates occur in
our tests. This is usually safe because our default sample size is not very small.

165

C. Luo, S. M. Chung

(2) If the user-specified minsup is small, the sampling technique is challenged.
Using a lowered minsup or even the original user-specified minsup for mining
the sample often causes many overestimates because lowered minsup × |db| or
minsup × |db| is too small. Even though increasing the sample size could be a
solution for this case, it limits the merit of sampling. Thus, we consider increasing
the minsup a little to mine the sample, hoping it will limit the overestimates to a
reasonable level. In that case, more misses may occur. However, even though there
is a missing pattern, as long as most of its long subsequences are still contained
in the sample result, the supersequence frequency-based pruning is not affected
much. (3) In some rare cases, the user-specified minsup is extremely small. Then,
just increasing the minsup for mining the sample cannot solve the problem. We
must consider increasing the sample size too. Actually, both cases (2) and (3) raise
the same technical question: when user-specified minsup is small, how to increase
the minsup for mining the sample of a certain size? We must keep in mind that if
the increase in the minsup for mining the sample is not enough, the problem of
overestimates cannot be solved. However, if it is increased too much, we may not
find any long patterns from the sample.

For an arbitrary sequence X in a database DB, we have the following theorem.

Theorem 1 For an arbitrary sequence X in a database DB, whose global support
in DB is P(X), the distribution of its local support P ′(X) in a random sample db
can be approximated by a normal distribution N(µ, σ 2):

µ = P(X), σ = √
P(X)(1 − P(X))/|db|

where |db| is the sample size, i.e., the number of customer sequences in the sample.

Proof Because the support of X in DB is P(X), the probability that a customer
sequence randomly selected from DB contains X is also P(X). For a random sam-
ple db with |db| customer sequences that are independently drawn from DB with
replacement, the random variable T (X), which represents the total number of cus-
tomer sequences containing X in db, has a binomial distribution of |db| trials with
the probability of success P(X). In general, if |db| is greater than 30, the distribu-
tion of T (X) can be approximated by a normal distribution whose mean is |db| ×
P(X) and the standard deviation is

√|db| × P(X)(1 − P(X)). In MSPS, sup-
pose that we draw a random sample db from DB and then use the point estimator
P ′(X) = T (X)/|db| to estimate the support of X in the population of DB. Then,
P ′(X) is also an unbiased estimator with mean |db| × P(X)/|db| = P(X) and
standard deviation

√|db| × P(X)(1 − P(X))/|db| = √
P(X)(1 − P(X))/|db|.

�
For MSPS, it is very important to avoid overestimates from sampling when

the user-specified minimum support is small. Thus, we investigated how much the
minimum support should be increased to mine the sample of a certain size.

Theorem 2 In the mining of a database DB for the user-specified minimum sup-
port (minsup ≤ 50%), if the adjusted minimum support used to mine the sample
db is S (S > minsup), the probability that an infrequent sequence Y can be over-
estimated as frequent in db is lower than 1 − PZ , where PZ is the probability of
the z-score Z = (S − minsup)/

√
minsup × (1 − minsup)/|db|.

166

A scalable algorithm for mining maximal frequent sequences using a sample

Proof By Theorem 1, for an arbitrary sequence X , its local support observed
from a sample, P ′(X), has a normal distribution with the mean equal to its
global support P(X), and the standard deviation is

√
P(X)(1 − P(X))/|db|.

Since P(X)(1− P(X)) = −(P(X)−1/2)2+1/4 is increasing in the P(X) interval
of [0, 1/2], the standard deviation of P ′(X) is also increasing in this interval.

Suppose there is a sequence Y1 and its global support is equal to the
user-specified minimum support, i.e., P(Y1) = minsup. Based on the nor-
mal distribution, if the adjusted minimum support used for mining the sam-
ple is set to S with S > P(Y1), i.e., S > minsup, the probability that
Y1 can be found as a local frequent sequence in db is 1 − PZ , where
the z-score Z = (S − P(Y1))/

√
P(Y1)(1 − P(Y1))/|db|, i.e., Z = (S −

minsup)/
√

minsup(1 − minsup)/|db|.
Let us consider an infrequent sequence Y2. By Theorem 1, its local support

in db, P ′(Y2), also has a normal distribution with mean P(Y2) and standard
deviation

√
P(Y2)(1 − P(Y2))/|db|. As discussed earlier, the standard deviation

of P ′(Y2) is also increasing in the P(Y2) interval of [0, 1/2]. Since minsup is
usually smaller than 50%, in our analysis both P(Y1) and P(Y2) are considered to
be in that range. As P(Y2) < P(Y1), both the mean and the standard deviation of
P ′(Y2) should be smaller than those of P ′(Y1), respectively. Therefore, compared
with the distribution curve of P ′(Y1), the distribution curve of P ′(Y2) is shifted
left and sharper. That means, if we set the adjusted minimum support for mining
the sample as S, the probability that an infrequent sequence Y2 is overestimated
as frequent should be lower than 1 − PZ , which is the probability that Y1 can be
found as a local frequent sequence in db. �

Finally, from Z = (S − minsup)/
√

minsup(1 − minsup)/|db|, we can derive

S = minsup + Z × √
minsup(1 − minsup)/|db|

Theorem 2 has shown the probability of an overestimate in the sample is lower
than 1 − PZ . In our experiments, the critical value of Z is set to 1.28, where
PZ = 0.90, such that the probability of the overestimate is at most 10%. The above
formula of S provides a theoretical guideline for adjusting the user-specified min-
imum support to mine the sample. Even though this adjusted minimum support
value may not be the best one all the time, it worked well in most of our experi-
ments. In Sect. 6.3, we will show the effect of different adjusted minimum support
values used for mining the sample.

6 Performance analysis

To compare MSPS with other algorithms, we implemented GSP and obtained the
source codes of SPAM and SPADE from their authors’ Web sites. All the exper-
iments were performed on a SuSE Linux PC with a 2.6 GHz Pentium processor
and 1 Gbytes main memory.

MSPS was compared with others on various databases, and we evaluated the
scalability of these algorithms in terms of the number of items and the number of
customer sequences. We also investigated how the sample size and the adjusted

167

C. Luo, S. M. Chung

Table 1 Parameters used in database generation

D Number of customers in the database
C Average number of transactions per customer
T Average number of items per transaction
S Average length of maximal potentially frequent sequences
I Average length of maximal potentially frequent itemsets
N Number of distinct items in the database
NS Number of maximal potentially frequent sequences
NI Number of maximal potentially frequent itemsets

minsup for mining the sample affect the performance of MSPS. Since the sam-
pling technique is probabilistic, we ran MSPS 100 times for each test. The aver-
age execution time of the 100 runs was reported as the performance result. The
default sample size was fixed as 10% of the test database for all experiments. The
databases used in our experiments are synthetically generated as in Agrawal and
Srikant [3]. The database generation parameters are described in Table 1. For all
databases, NS = 5000 and NI =25,000; and the names of the databases reflect
other parameter values used to generate them.

6.1 Performance comparison

We ran MSPS, GSP, SPADE, and SPAM on four databases with medium sizes of
about 100 Mbytes. The number of items in these databases is 10,000. In our tests,
SPAM could not mine these databases, and its run was terminated by the operating
system. Our machine is a 32-bit system, but the user address space is limited to
2 Gbytes. In all these tests, SPAM always required more than 2 Gbytes of memory,
and hence caused the termination.

As discussed before, when the user-specified minsup is small, simply using
it or a lowered one to mine the sample may cost too much due to so many over-
estimates. In practice, we may not know the data distribution characteristics of
the database to be mined. Thus, we conservatively assumed that all user-specified
minsups in our tests are small and simply increased them a little bit for mining the
sample. The adjusted minsup for each test is computed using the formula derived
in Sect. 5.2. The probability that an overestimate occurs is set to 10% at most, i.e.,
Z = 1.28. Some typical adjusted minsups computed using the formula are listed
in Table 2.

The test results are shown in Fig. 4. With the optimization components in-
tegrated, MSPS performs much better than GSP because it processes fewer can-
didates in a much more efficient way. The advantage of SPADE is the efficient
counting of the candidates by intersecting the id-lists. However, when mining a
medium-size database with 400,000 customers, the counting for LDB

2 in SPADE is

Table 2 Adjusted minsups for mining the sample (|db| = 400,000 × 10% = 40,000)

User-specified Minsup (%) 0.4 0.33 0.3 0.25 0.2 0.18
Adjusted Minsup (%) 0.432 0.359 0.327 0.275 0.223 0.201

168

A scalable algorithm for mining maximal frequent sequences using a sample

0

200

400

600

800

1000

1200

1400

0.3 0.2 0.1 0.08 0.06

Minimum Support (%)

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

GSP
SPADE
MSPS

0

500

1000

1500

2000

2500

3000

0.33 0.3 0.25 0.2 0.18

Minimum Support (%)

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

GSP
SPADE
MSPS

0

500

1000

1500

2000

2500

3000

0.3 0.25 0.2 0.15 0.12

Minimum Support (%)

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

GSP
SPADE
MSPS

0

1000

2000

3000

4000

5000

0.3 0.25 0.2 0.15 0.12

Minimum Support (%)

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

GSP
SPADE
MSPS

Fig. 4 Performance comparison on medium-size databases. (a) D400K-C10-T5-S5-I1.25-
N10K. (b) D400K-C10-T5-S10-I2.5-N10K. (c) D400K-C20-T2.5-S10-I2.5-N10K. (d) D400K-
C20-T2.5-S10-I1.25-N10K

inefficient and degrades the overall performance very much. Considering both fac-
tors, we can say that if there are not enough number of candidates to be counted,
SPADE cannot show its efficiency. That is why SPADE is even worse than GSP
when the minsup is big, as shown in some of the figures.

When the minsup is decreased, more and more candidates appear during the
mining. In that case, the overhead of GSP in candidate generation, pruning, and
especially counting using a huge hash tree increases drastically. For MSPS, this
situation is considerably improved by using the supersequence frequency-based
pruning, the prefix tree structure, and the customer sequence trimming. Figure 5
shows how much the search space can be reduced by MSPS compared to GSP
in mining D400K-C20-T2.5-S10-I1.25-N10K. Since counting CDB

1 and CDB
2 can

be done quickly on the database in the horizontal format, we focused on the total
number of candidates of length greater than 2, i.e., the candidates from pass 3 in
GSP and the candidates in Phase 3 of MSPS. We can see that MSPS can reduce

169

C. Luo, S. M. Chung

0

500

1000

1500

2000

2500

3000

0.3 0.25 0.2 0.15 0.12

Minimum Support (%)

To
ta

l N
um

be
r o

f C
an

di
da

te
s

af
te

r P
as

s
2

('0
00

s)

MSPS
GSP

Fig. 5 Search space comparison on D400K-C20-T2.5-S10-I1.25-N10K

the search space by 55–65%. When many passes are required for the mining, most
candidates usually appear after pass 2, hence MSPS can outperform GSP further
when the minsup is decreased. This improvement also makes MSPS better than
SPADE in most tests on the medium-size databases. Only when the minsup is very
small, SPADE can beat MSPS.

Figure 6 shows the distribution of the frequent sequences in the databases for
the smallest minsup used on them in the tests. Mining D400-C20-T2.5-S10-I1.25-
N10K with the minsup of 0.12% produced most frequent sequences, about 2.6
million, while mining D400-C10-T5-S5-I1.25-N10K with the minsup of 0.06%
produced only 526K frequent sequences. This difference is reflected in the corre-
sponding execution times of GSP: 4397.5 s versus 1230.5 s. On the contrary, the

1

10

100

1000

10000

100000

1000000

1 3 5 7 9 11 13 15 17 19
Length

Nu
m

be
r o

f F
re

qu
en

t S
eq

ue
nc

es

C10-T5-S5-I1.25
C10-T5-S10-I2.5
C20-T2.5-S10-I1.25
C20-T2.5-S10-I2.5

Fig. 6 Distribution of frequent sequences (D = 400K, N = 10K)

170

A scalable algorithm for mining maximal frequent sequences using a sample

1

10

100

1000

10000

0.33 0.3 0.25 0.2 0.18

Minimum Support (%)

Nu
m

be
r o

f P
at

te
rn

s
('0

00
)

FS
CFS
MFS

Fig. 7 Comparison of FS, CFS, and MFS

numbers of maximal frequent sequences in these two databases with respect to the
corresponding minsup values are 87K and 54K, respectively, and the correspond-
ing execution times of MSPS are 1112.4 and 429.7 s. That means, even if there is
a big difference between the numbers of frequent sequences in two databases, the
difference between the numbers of maximal frequent sequences is usually much
smaller. Thus, compared to frequent sequence mining algorithms, MSPS can be
more robust in dealing with the databases with different data distribution charac-
teristics.

Figure 7 shows the numbers of frequent sequences, closed frequent sequences,
and maximal frequent sequences in the D400K-C10-T5-S10-I2.5-N10K database
with respect to various minsups. When the minsup is decreased from 0.33% to
0.18%, the number of frequent sequences increases very quickly, from 47K to 1.7
million. But the number of maximal frequent sequences increases much slowly,
from 4.8K to 28K. That means, mining maximal frequent sequences could be
much more scalable. Another interesting observation is that the number of closed
frequent sequences is not much smaller than that of frequent sequences for all the
cases. For example, when the minsup is 0.18%, the number of closed frequent
sequences is 1.2 million, while the number of frequent sequences is 1.7 million.
That means, for certain cases, mining closed frequent sequences also might be
impractical.

6.2 Scalability evaluation

Both SPADE and SPAM need to store a huge amount of intermediate data to save
their computation cost. When the memory space requirement is over the mem-
ory size available, CPU utilization drops quickly due to the frequent swapping.
Compared with them, MSPS and GSP process the customer sequences one by
one, hence only a small memory space is needed to buffer the customer sequences
being processed. MSPS can also handle the situation that LDB

k or CDB
k cannot be

171

C. Luo, S. M. Chung

totally loaded into memory by using the signatures as explained in Sect. 4. There-
fore, MSPS does not require the memory space as much as GSP, SPADE, and
SPAM.

Many real-life customer market-basket databases have tens of thousands of
items and millions of customers, so we evaluated the scalability of the mining
algorithms in these two aspects. First, we started with a very small database D1K-
C10-T5-S10-I2.5 and changed the number of items from 500 to 10,000. The
user-specified minsup was 0.5%. To run MSPS on such a small database with
only 1000 customers, we selected the whole database as the sample and used the
user-specified minsup to mine it. When there are only 500 items, the database be-
comes very dense because each item has a higher probability of being selected by
the synthetic database generation program to construct the customer sequences.
As a result, all the four algorithms spent much more time to finish the mining.
Since MSPS does not apply the sampling on such a small database, supersequence
frequency-based pruning is not performed in mining. Thus, in this case, SPADE
and SPAM performed better than MSPS and GSP as long as their memory require-
ment is satisfied.

As the number of items is increased, SPAM shows its scalability problem.
Theoretically, the memory space required to store the whole database into bitmaps
in SPAM is D×C×N/8 bytes. For the id-lists in SPADE, it is about D×C×T ×4
bytes. But we found these values are usually far less than their peak memory space
requirement during the mining, because the amount of intermediate data in both
algorithms is quite large. As shown in Fig. 8, even though the D1K-C10-T5-S10-
I2.5-N8000 database takes only 260 Kbytes, and the theoretical memory space
requirement to store the database in SPAM is about 1000 × 10 × 8000/8 bytes
≈ 10 Mbytes, it could not finish the mining when the minsup was 0.5% because
it needed more than 2 Gbytes of memory. Compared with SPAM, SPADE divides
the search space into small pieces as only the id-lists being processed need to
be loaded into memory. Another advantage of SPADE is that the id-lists become

0

50

100

150

200

250

500 1000 2000 4000 8000 10000

Number of Items

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

GSP
SPAM
SPADE
MSPS

Fig. 8 Scalability: number of items (on D1K-C10-T5-S10-I2.5, minsup = 0.5%)

172

A scalable algorithm for mining maximal frequent sequences using a sample

100

1000

10000

100000

400 800 1200 1600 2000

Number of Customers ('000s)

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

GSP
SPADE
MSPS

Fig. 9 Scalability: number of customers (on C10-T5-S10-I2.5-N10K, minsup = 0.18%)

shorter and shorter with the progress in mining, whereas the length of the bitmaps
does not change in SPAM. These two differences make SPADE much more space-
efficient than SPAM.

We also fixed the parameter N as 1000 and changed the database size from 1K
to 100K customer sequences. SPAM cannot mine the databases with more than
20K customers due to the memory problem. Our tests showed that SPAM is very
sensitive to the number of items and the number of customers, which mainly limits
its applicability.

Second, we investigated how they perform on C10-T5-S10-I2.5-N10K when
the user-specified minsup is 0.18%. We fixed the number of items as 10,000
and increased the number of customers from 400K to 2000K. SPAM cannot per-
form the mining due to the memory problem. For SPADE, we partitioned the test
database into multiple chunks for better performance when its size was increased.
Otherwise, the counting of CDB

2 for a large database could be extremely time-
consuming. We made each chunk contain 400K customers so that it is only about
100 Mbytes, which is one-tenth of our main memory size. Thus, D400K-C10-
T5-S10-I2.5-N10K is processed as one chunk, D800K-C10-T5-S10-I2.5-N10K is
divided into two chunks, and so on. Figure 9 shows that the scalability of both
MSPS and GSP is quite linear. As the database size is increased, MSPS performs
much better than the others.

When the database was relatively small with only 400K customers, SPADE
performed best—about 20% faster than MSPS. But SPADE cannot maintain a
reasonable scalability as the database becomes larger, and MSPS starts outper-
forming SPADE. When the database size is increased from 1600K customers to
2000K customers, there is a sharp performance drop in SPADE, such that it is even
slower than GSP. In that case, MSPS is faster than SPADE by a factor of about
8. As discussed before, counting CDB

2 is a performance bottleneck for SPADE
because the transformation of a large database from the vertical format to the hor-
izontal format takes too much time. When the database is very large, the transfor-

173

C. Luo, S. M. Chung

100

1000

10000

100000

0.33 0.3 0.25 0.2 0.18

Minimum Support (%)

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

GSP
SPADE
MSPS

Fig. 10 Performance on a large database D2000K-C10-T5-S10-I2.5-N10K

mation also requires a large amount of memory and frequent swapping, hence the
performance drops drastically. Partitioning the database can relieve this problem
to some extent but does not solve it completely. In addition, for the database with
a large number of items and customers, SPADE needs more time to intersect more
and longer id-lists.

Finally, we mined a large database D2000K-C10-T5-S10-I2.5-N10K, which
takes about 500 Mbytes, for various minsups. This database was partitioned into
five chunks for SPADE, and the results are shown in Fig. 10.

Based on our tests, we found SPADE performs best for small size databases.
For medium size databases, MSPS performs better for relatively big minsups,
while SPADE is faster for small minsups. When the database is large, SPADE’s
performance drops drastically, and MSPS outperforms SPADE very much. If the
user-specified minsup is big and there are very few long patterns, GSP may per-
form as well as, or even better than the others due to its simplicity and effective
subsequence infrequency-based pruning.

6.3 Effect of the sample size and the adjusted minsup on the performance of
MSPS

In MSPS, the overall performance improvement from the supersequence
frequency-based pruning is determined by two factors: (1) how much search space
can be reduced in Phase 3, and (2) the cost of Phase 2 for mining the sample and
verifying the sample result. In this section, we will discuss how the sample size
and the adjusted minsup affect the performance of MSPS.

6.3.1 Effect of the sample size on the performance

We ran MSPS on D400K-C10-T5-S10-I2.5-N10K for the minsup of 0.18% with
different sample sizes: 5, 10, 20, 40, and 60% of the original database. To observe

174

A scalable algorithm for mining maximal frequent sequences using a sample

Table 3 Effect of the sample size on the performance of MSPS

Sample size

5% 10% 20% 40% 60%

Avg. performance (s) 1148 817 704 755 809
Best performance (s) 630 531 543 708 772
Worst performance (s) 3240 1994 1329 998 933
Std. dev. of performance (s) 492 257 140 42 31
of runs (≤ 650 s) 1 28 43 0 0
of runs (≥ 800 s) 81 38 18 7 47
Avg. time of phase 2 (s) 755 481 402 480 536
Avg. time of phase 3 (s) 334 277 244 215 214
Avg. % of search space reduced 75 78 81 82 82

how the sample size alone affects the performance of MSPS, we kept the user-
specified minsup unchanged for mining the sample. The experimental results are
shown in Table 3.

All the sample sizes we have chosen are not too small to represent the content
of the original database to some extent. Even though there may be more misses
for a small sample, there is no big difference in how much the search space is
reduced in Phase 3. This is because most long subsequences of those missing
sequences are still found from the sample. Thus, the supersequence frequency-
based pruning is not affected much. However, for a small sample, like 5% of the
database, the minimum support count (i.e., |db|× minsup) for mining the sample
is very low, hence more overestimates would be produced. The cost of Phase 2
shows that a small sample does not necessarily mean a lower mining cost. The
average performance of the 5% sample is not good; and in the worst case, it takes
more time than GSP does: 3240 versus 2359 s.

As the sample size is increased, the performance is improved mainly because
fewer overestimates are occurred. For the 60% sample, even though the quality of
sample result is improved with much fewer misses and overestimates, it requires
too much time for mining the sample itself. As a result, we cannot achieve the best
performance, either. Compared with others, the 20% sample was the best based on
all the measures shown in Table 3: average performance is best (704 s), more than
40% of runs were done in less than 650 s, and only 18 out of 100 runs took over
800 s. It is worth to mention that when we used the 10% sample with the adjusted
minsup of 0.201% (instead of the user-specified minsup of 0.18%), we obtained
a better average performance of 603 s. It demonstrates that adjusting the minsup
(for mining the sample) enables us to use a relatively small sample to achieve a
better performance.

6.3.2 Effect of the adjusted minsup on the performance

To evaluate the effect of the adjusted minsup for mining the sample, we used
D400K-C10-T5-S10-I2.5-N10K with the user-specified minsup of 0.18%. The
sample size was fixed as 10% of the original database. The adjusted minsup values
listed in Table 4 were chosen empirically, except for 0.20%, which is based on the
formula proposed in Sect. 5.2.

175

C. Luo, S. M. Chung

Table 4 Effect of the adjusted minsup on the performance of MSPS

Adjusted minsup for mining the sample
0.17% 0.18% 0.20% 0.22% 0.28% 0.5%

Avg. performance (s) 1331 817 622 691 884 947
Best performance (s) 697 531 528 590 805 941
Worst performance (s) 4682 1994 863 806 926 960
Std. dev. of performance (s) 692 257 66 56 24 3.6
of runs (≤ 650 s) 0 28 71 30 0 0
of runs (≥ 800 s) 95 38 2 1 100 100
Avg. Time of Phase 2 (s) 1006 481 160 78 29 11
Avg. Time of Phase 3 (s) 267 277 403 554 796 876
Avg. % of search space reduced 86 78 59 39 10 0.2

As shown in Table 4, when we adjusted the user-specified minsup too big or
too small, the overall performance was degraded. Simply using the small user-
specified minsup of 0.18% to mine the sample was not the best choice, either. The
best adjusted minsup was 0.20%, which is very close to the value computed using
our formula (0.201%): 71 out of 100 runs were finished within 650 s. With this
adjusted minsup, MSPS outperformed GSP (taking 2359 s) by a factor of about 3.
This result demonstrates that our proposed formula for the adjusted minsup value
is very reasonable.

As we can see in Table 4, when the user-specified minsup was lowered to
0.17% to mine the sample, the average performance was much worse than other
adjusted minsup values. If it is lowered further, mining the sample itself becomes
very hard and more overestimates will occur. When we increased the minsup to
0.5%, which was relatively too big, MSPS mined the sample and verified the sam-
ple result within just 11 s. Actually, it did not find long frequent sequences in the
sample that could speed up the mining process. In such cases, MSPS works with-
out the benefit of the supersequence frequency-based pruning. The performance
gain comes mainly from the efficient counting of the candidates using the prefix
tree structure and the customer sequence trimming. Compared to this case, the
adjusted minsup of 0.20% reduced the total execution time by 34%, from 947 to
622 s.

Our additional tests showed that if the user-specified minsup is big, then it is
better to use it without any change, or even a lowered one, for mining the sample.
In Toivonen [18], how to avoid the misses in mining the sample by lowering the
user-specified minsup is described. However, as mentioned before, without know-
ing whether a user-specified minsup is big or not for the database, lowering it to
mine the sample could be very risky. In our research, we simulated the practical
situations and adopted a safe approach of adjusting the minsup to a slightly bigger
value by using the proposed formula to mine the sample. Our method is more use-
ful when the user-specified minsup is small, and it is the case the mining process
takes a lot of time.

7 Conclusions and future work

In this paper, we proposed a new algorithm, named MSPS, for mining max-
imal frequent sequences using sampling. MSPS combined the subsequence

176

A scalable algorithm for mining maximal frequent sequences using a sample

infrequency-based pruning and the supersequence frequency-based pruning to-
gether to reduce the search space. In MSPS, a sampling technique is used to
identify potential long frequent patterns early. When the user-specified minsup
is small, we proposed how to adjust it to a little bigger value for mining the sam-
ple to avoid many overestimates. This method makes the sampling technique more
efficient in practice for sequence mining. Both the supersequence frequency-based
pruning and the customer sequence trimming used in MSPS improve the candi-
date counting process on the new prefix tree structure developed. Our extensive
experiments proved that MSPS is a practical and efficient algorithm. Its excel-
lent scalability makes it a very good candidate for mining customer market-basket
databases which usually have tens of thousands of items and millions of customer
sequences.

There are some research topics that need to be investigated further. (1) Theo-
retically analyzing the side-effect of sampling on the maximal sequential patterns.
(2) Improving the sample quality: if a random sample does not represent the con-
tent of the original database well, the performance of MSPS is affected. We are
considering the combination of sequence clustering and stratified sampling to im-
prove the sample quality. (3) Integrating the proposed sampling technique with
other sequence mining algorithms. It can improve their performance in certain
application domains. (4) Investigating if there is a cost-effective way, other than
sampling, that can detect long potential frequent sequences. If yes, combining it
with the depth-first search could be an interesting topic.

Acknowledgements This research was supported in part by Ohio Board of Regents, NCR, and
AFRL/Wright Brothers Institute (WBI).

References

1. Agarwal RC, Aggarwal CC, Prasad VVV (2000) Depth first generation of long patterns. In:
Proceedings of the 6th ACM SIGKDD international conference on knowledge discovery
and data mining, pp 108–118

2. Agrawal R, Srikant R (1994) Fast algorithms for mining association rules. In: Proceedings
of the 20th VLDB conference, pp 487–499

3. Agrawal R, Srikant R (1995) Mining sequential patterns. In: Proceedings of the interna-
tional conference on data engineering, pp 3–14

4. Ayres J, Gehrke J, Yiu T, Flannick J (2002) Sequential pattern mining using a bitmap rep-
resentation. In: Proceedings of the ACM SIGKDD international conference on knowledge
discovery and data mining, pp 429–435

5. Bayardo RJ (1998) Efficient mining long patterns from databases. In: Proceedings of the
ACM SIGMOD international conference on management of data, pp 85–93

6. Burdick D, Calimlim M, Gehrke J (2001) MAFIA: a maximal frequent itemset algorithm for
transaction databases. In: Proceedings of the international conference on data engineering,
pp 443–452

7. Chen B, Haas P, Scheuermann P (2002) A new two-phase sampling based algorithm for dis-
covering association rules. In: Proceedings of the ACM SIGKDD international conference
on knowledge discovery and data mining, pp 462–468

8. Chiu D, Wu Y, Chen ALP (2004) An efficient algorithm for mining frequent sequences by
a new strategy without support counting. In: Proceedings of the international conference on
data engineering, pp 375–386

9. Chung SM, Luo C (2004) Distributed mining of maximal frequent itemsets from databases
on a cluster of workstations. In: Proceedings of the 4th IEEE/ACM international symposium
on cluster computing and the grid—CCGrid 2004

177

C. Luo, S. M. Chung

10. Domingo C, Gavalda R, Watanabe O (1999) On-line sampling methods for discovering
association rules. Tokyo Tech Rep. C-126. Department of Math and Computing Science,
Tokyo Institute of Technology, Tokyo, Japan

11. Domingo C, Gavalda R, Watanabe O (2002) Adaptive sampling methods for scaling up
knowledge discovery algorithms. Data Min Knowl Discov 6(2):131–152

12. Masseglia F, Cathala F, Poncelet P (1998) The PSP approach for mining sequential patterns.
In: Proceedings of the European symposium on principle of data mining and knowledge
discovery, pp 176–184

13. Mendenhall W, Sincich T (1995) Statistics for engineering and the sciences, 4th edn.
Prentice-Hall, Englewood Cliffs, NJ

14. Park JS, Chen MS, Yu PS (1997) Using a hash-based method with transaction trimming for
mining association rules. IEEE Trans Knowl Data Eng 9(5):813–825

15. Pei J, Han J, Mortazavi-Asl B, Pinto H, Chen Q, Dayal U, Hsu MC (2001) PrefixSpan:
mining sequential patterns efficiently by prefix-projected pattern growth. In: Proceedings
of the international conference on data engineering, pp 215–224

16. Shintani T, Kitsuregawa M (1998) Mining algorithms for sequential patterns in parallel:
hash based approach. In: Proceedings of the Pacific-Asia conference on research and devel-
opment in knowledge discovery and data mining, pp 283–294

17. Srikant R, Agrawal R (1996) Mining sequential patterns: generalizations and performance
improvements. In: Proceedings of the 5th international conference on extending database
technology, pp 3–17

18. Toivonen H (1996) Sampling large databases for association rules. In: Proceedings of the
22nd VLDB conference, pp 134–145

19. Wang J, Han J (2004) BIDE: efficient mining of frequent closed sequences. In: Proceedings
of the international conference on data engineering, pp 79–90

20. Yan X, Han J, Afshar R (2002) CloSpan: mining closed sequential patterns in large datasets.
In: Proceedings of the SIAM international conference on data mining, pp 166–177

21. Yang J, Wang W, Yu PS, Han J (2002) Mining long sequential patterns in a noisy environ-
ment. In: Proceedings of the ACM SIGMOD international conference on management of
data, pp 406–417

22. Zaki MJ, Parthasarathy S, Li W, Ogihara M (1997) Evaluation of sampling for data mining
of association rules. In: Proceedings of the 7th international workshop on research issues in
data engineering, pp 42–50

23. Zaki MJ (2001) SPADE: an efficient algorithm for mining frequent sequences. Mach Learn
42(1):31–60

Author Biographies

Congnan Luo received the B.E. degree in Computer Sci-
ence from Tsinghua University, Beijing, P.R. China, in 1997,
the M.S. degree in Computer Science from the Institute of
Software, Chinese Academy of Sciences, Beijing, P.R. China,
in 2000, and the Ph.D. degree in Computer Science and Engi-
neering from Wright State University, Dayton, OH, in 2006.
Currently he is a technical staff at the Teradata division of
NCR in San Diego, CA, and his research interests include
data mining, machine learning, and databases.

178

A scalable algorithm for mining maximal frequent sequences using a sample

Soon M. Chung received the B.S. degree in Electronic En-
gineering from Seoul National University, Korea, in 1979, the
M.S. degree in Electrical Engineering from Korea Advanced
Institute of Science and Technology, Korea, in 1981, and the
Ph.D. degree in Computer Engineering from Syracuse Uni-
versity, Syracuse, New York, in 1990. He is currently a Pro-
fessor in the Department of Computer Science and Engineer-
ing at Wright State University, Dayton, OH. His research in-
terests include database, data mining, Grid computing, text
mining, XML, and parallel and distributed processing.

179

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

