
Knowl Inf Syst (2006) 10(3): 333–355
DOI 10.1007/s10115-006-0020-z

Knowledge and
Information Systems

REGULAR PAPER

Ji Zhang · Hai Wang

Detecting outlying subspaces for high-
dimensional data: the new task, algorithms,
and performance

Received: 3 December 2003 / Revised: 18 July 2005 / Accepted: 30 July 2005 /
Published online: 15 March 2006
C© Springer-Verlag London Ltd. 2006

Abstract In this paper, we identify a new task for studying the outlying de-
gree (OD) of high-dimensional data, i.e. finding the subspaces (subsets of fea-
tures) in which the given points are outliers, which are called their outlying sub-
spaces. Since the state-of-the-art outlier detection techniques fail to handle this
new problem, we propose a novel detection algorithm, called High-Dimension
Outlying subspace Detection (HighDOD), to detect the outlying subspaces of
high-dimensional data efficiently. The intuitive idea of HighDOD is that we mea-
sure the OD of the point using the sum of distances between this point and its
k nearest neighbors. Two heuristic pruning strategies are proposed to realize fast
pruning in the subspace search and an efficient dynamic subspace search method
with a sample-based learning process has been implemented. Experimental results
show that HighDOD is efficient and outperforms other searching alternatives such
as the naive top–down, bottom–up and random search methods, and the existing
outlier detection methods cannot fulfill this new task effectively.

Keywords Outlying subspace · High-dimensional data · Outlier detection ·
Dynamic subspace search

1 Introduction

Outlier detection is a classic problem in data mining that enjoys a wide range of
applications such as the detection of credit card frauds, criminal activities, and
exceptional patterns in databases. Outlier detection problem can be formulated as
follows: Given a set of data points or objects, find a specific number of objects

J. Zhang (B)
Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada
E-mail: jiz@cs.dal.ca

H. Wang
Sobey School of Business, Saint Mary’s University, Halifax, Nova Scotia, Canada

334 J. Zhang, H. Wang

that are considerably dissimilar, exceptional, and inconsistent with respect to the
remaining data [9].

Numerous research works in outlier detection have been proposed to deal with
the outlier detection problem defined earlier. They can broadly be divided into
distance-based methods [13, 14, 19] and local density-based methods [7, 12, 17].
However, many of these outlier detection algorithms are unable to deal with high-
dimensional data sets efficiently as many of them only consider outliers in the
entire space. This implies that they will miss out the important information about
the subspaces in which these outliers exist.

A recent trend in high-dimensional outlier detection is to use the evolutionary
search method [3] where outliers are detected by searching for sparse subspaces.
Points in these sparse subspaces are assumed to be the outliers. While knowing
which data points are the outliers can be useful, in many applications, it is more
important to identify the subspaces in which a given point is an outlier, which
motivates the proposal of a new technique in this paper to handle this new task.

To better demonstrate the motivation of exploring outlying subspaces, let us
consider the example in Fig. 1, in which 3 two-dimensional views of the high-
dimensional data are presented. Note that point p exhibits different ODs in these
three views. In the leftmost view, p is clearly an outlier. However, this is not so in
the other two views. Finding the correct subspaces so that outliers can be detected
is informative and useful in many practical applications. For example, in the case
of designing a training program for an athlete, it is critical to identify the specific
subspace(s) in which an athlete deviates from his or her teammates in the daily
training performances. Knowing the specific weakness (subspace) allows a more
targeted training program to be designed. In a medical system, it is useful for the
Doctors to identify from voluminous medical data the subspaces in which a par-
ticular patient is found abnormal and therefore a corresponding medical treatment
can be provided in a timely manner.

The major contribution of this paper is the proposal of a dynamic subspace
search algorithm, called High-Dimension Outlying subspace Detection (High-
DOD), that utilizes a sample-based learning process to efficiently identify the sub-
spaces in which a given point is an outlier. Note that, instead of detecting outliers
in specific subspaces, our method searches from the space lattice for the associated
subspaces whereby the given data points exhibit abnormal deviations. To our best
knowledge, this is the first such work in the literature so far. The main features of
HighDOD include the following:

1. The outlying measure, OD, is based on the sum of distances between a data
and its k nearest neighbors [4]. This measure is simple and independent of any
underlying statistical and distribution characteristics of the data points;

x
x

x
x

x

x
x xx

x

*p

x
xxx

x

x

x
xx

x

* p

x

x
x

x

x
x x xx

x

*p

Fig. 1 Two-dimensional views of the high-dimensional data

Detecting outlying subspaces for high-dimensional data 335

2. Two heuristic pruning strategies are proposed to aid in the search for outlying
subspaces;

3. A fast dynamic subspace search algorithm with a sample-based learning pro-
cess is proposed;

4. The heuristic on the minimum sample size based on the hypothesis testing
method is also presented.

The reminder of this paper is organized as follows. In Sect. 2, we survey the
related work in the classic outlier detection problem. Section 3 discusses the basic
notions and problem to be solved. In Sect. 4, we present our outlying subspace
detection technique, called HighDOD, for high-dimensional data. Section 5 dis-
cusses the detailed algorithms of HighDOD. Experimental results are reported in
Sect. 6. Section 7 concludes this paper.

2 Related work

Detecting outlying subspaces is a new task in the OD analysis for high-
dimensional data, which has rarely been treated so far. However, we have wit-
nessed intensive research efforts in dealing with a related traditional problem:
detecting outliers in a given space or subspace. In this section, we will present
a survey of literatures in this area to facilitate the analysis of applicability of
these techniques in handling the new task to be introduced in this paper. Lit-
eratures on outlier detection can be classified into four major categories based
on the techniques used, i.e. distribution-based methods, distance-based methods,
density-based methods, and clustering-based methods.

Distribution-based methods [5, 10] rely on the statistical approaches that as-
sume a distribution or probability model to fit the data set. Over 100 discor-
dancy/outlier tests have been developed for different circumstances, depending
on the parameter of data set (such as the assumed data distribution) and parameter
of distribution (such as mean and variance), and the expected number of outliers
[9, 13]. However, distribution-based methods suffer from some key drawbacks.
First, they cannot be applied in a multi-dimensional scenario because they are
univariate in nature. In addition, the lack of any prior knowledge regarding the un-
derlying distribution of the data set makes the distribution-based methods difficult
to use in practical applications. Finally, the quality of results cannot be guaranteed
because they are largely dependent on the distribution chosen to fit the data.

The notion of distance-based outliers is also proposed [13, 14], i.e. DB(pct,
dmin)-Outlier, which defines an object in a data set as a DB(pct, dmin)-Outlier
if at least pct% of the objects in the data sets have the distance larger than dmin
from this object. The notion of distance-based outlier is extended and the distance
to the kth nearest neighbors of a point p, denoted as Dk(p), is proposed to rank
the point so that outliers can be more efficiently discovered and ranked [19]. The
Dk(p)-outlier is further extended by considering for each point the sum of its k
nearest neighbors [4]. Unlike distribution-based methods, distance-based methods
do not rely on any assumed distribution to fit the data.

Recently, a density-based formulation scheme of outlier has been proposed [7].
This formulation ranks the OD of the points using Local Outlier Factor (LOF).
LOF of an object intuitively reflects the density contrast between its density and

336 J. Zhang, H. Wang

those of its neighborhood. Note that LOF ranks points by only considering the
neighborhood density of the points, thus it may miss the potential outliers whose
densities are close to those of their neighbors. The efficiency of this algorithm by
proposing an efficient micro-cluster-based local outlier mining algorithm [12], but
it still use LOF to mine outliers in data set.

The final category of outlier detection algorithm is clustering-based. So far,
there are numerous studies on clustering, and a number of them are equipped
with some mechanisms to detect outliers, such as CLARANS [16], DBSCAN
[8], BIRCH [23], WaveCluster [22]. Clustering techniques tailored to subspace
clustering for high-dimensional data includes DenClue [11], CLIQUE [1] and the
technique proposed in [21]. Strictly speaking, clustering algorithms should not be
considered as outlier detection methods because their objective is only to group
the objects in data set such that clustering functions can be optimized. The aim
to eliminate outliers in data set using clustering is only to dampen their adverse
effect on the final clustering result.

The methods discussed in the aforementioned categories are not sufficiently
applicable to high-dimensional data. Ref. [3] is the first work in high-dimensional
outlier detection. It searches for sparse subspace using the evolutionary search
method by first finding all the lower-dimensional projections that are locally
sparse. The sparsity of a k-dimensional projection is measured by the so-called
Sparse Coefficient of the corresponding k-dimensional cube. However, this Sparse
Coefficient is not characterized by any upward or downward closure in the set of
dimensions; hence, no pruning mechanism can be performed to find the sparse
subspaces quickly.

Remark 1 All the existing outlier detection algorithms, regardless of in low- or
high-dimensional scenario, invariably fall into the framework of detecting outliers
in a specific data space, either in full space or subspace. We term these methods
as “space → outliers” techniques. For instance, outliers are detected by first find-
ing locally sparse subspaces [3], and the so-called Strongest/Weak Outliers are
discovered by first finding the Strongest Outlying Spaces [14]. Our technique is
novel in that it approaches the outlying analysis from a different prospective: find-
ing the associated subspaces for each point in which this point is regarded as an
outlier, which we can call it an “outlier → spaces” technique.

3 Outlying degree measure and problem formulation

Before we formally discuss our outlying subspace detection technique, we start
with introduction of the OD measure that will be used in this paper and formula-
tion of the new problem of outlying subspace detection we identify.

3.1 Outlying degree (OD)

For each point, we define the degree to which the point differs from the majority of
the other points in the same space, termed the outlying degree (OD in short). OD
is defined as the sum of the distances between a point and its k nearest neighbors

Detecting outlying subspaces for high-dimensional data 337

in a data space [4]. Mathematically speaking, the OD of a point p in space s is
computed as:

ODs(p) =
k∑

i=1

Dist(p, pi)|pi ∈ K N N Set (p, s)

where K N N Set (p, s) denotes the set composed by the k nearest neighbors of
p in s. Note that the OD measure is applicable to both numeric and nomi-
nal data: for numeric data we use Euclidean distance, while for nominal data
we use the simple match method. Mathematically, the Euclidean distance be-
tween two numeric points p1 and p2 is defined as Dist(p1, p2) = [∑((p1i −
p2i)/(Maxi−Mini))

2]1/2, where Maxi and Mini denote the maximum and mini-
mum data value of the i th dimension. The simple match method measures the dis-
tance between two nominal points p1 and p2 as Dist(p1, p2) = ∑ |p1i − p2i |/t ,
where |p1i − p2i | is 0 if p1i equals to p2i and is 1 otherwise. t is the total number
of attributes.

3.2 Problem formulation

We now formulate the new problem of outlying subspace detection for high-
dimensional data as follows: given a data point or object, find the subspaces in
which this data is considerably dissimilar, exceptional or inconsistent with re-
spect to the remaining points or objects. These points under study are called query
points, which are usually the data that users are interested in or concerned with.

A distance threshold T is utilized to decide whether or not a data point devi-
ates significantly from its neighboring points. We call a subspace s is an outlying
subspace of data point p if O Ds(p) ≥ T . Note that the distance threshold T can
either be a uniform threshold for all the subspaces or a different one for each of
the subspaces. We call the former as the global distance threshold and the later as
the local distance threshold.

3.3 Applicability of existing high-dimensional outlier detection techniques

The existing high-dimensional outlier detection techniques, i.e. find outliers in
given subspaces, are theoretically applicable to solve the new problem identified
in this paper. To do this, we have to detect outliers in all subspaces and a searching
in all these subspaces is needed to find the set of outlying subspaces of p, which
are those subspaces in which p is in their respective set of outliers. Obviously, the
computational and space costs are both in an exponential order of d , where d is
the number of dimensions of the data point. Such an exhaustive space searching
is rather expensive in high-dimensional scenario. In addition, they usually only
return the top-k outliers in a given subspace; thus, it is impossible to check whether
or not p is an outlier in this subspace w.r.t the given distance threshold if p is not
in this top-k list. This analysis provides an insight into the inherent difficulty of
using the existing high-dimensional outlier detection techniques to solve the new
outlying subspace detection problem.

338 J. Zhang, H. Wang

Sample-based

Learning

Detected Subspaces

of Query Data

Users

Query Data

High-dimensional

Dataset
Indexed High-

dimensional data

Sampled Data

Downward and

upward pruning
possibilities

X-tree Indexing

Outlying Subspace

Detection

Random
Sampling

Fig. 2 The overview of HighDoD

4 HighDOD

In this section, we present an overview of our HighDOD method (shown in Fig. 2).
It mainly consists of four modules. The X-tree Indexing module performs X-tree
[6] indexing of the high-dimensional data set to facilitate kNN search in every
subspace. Sample-based Learning module randomly samples the data set and per-
forms dynamic subspace search to estimate the downward and upward pruning
probabilities of subspaces from 1 to d dimensions. Outlying Subspace Detection
module uses the probabilities obtained in the Learning module to carry out a dy-
namic subspace search to find the outlying subspaces of the given query data point.

4.1 X-tree indexing

We utilize X-tree (eXtended node tree) [6] to index the high-dimensional data
set in order to speedup the kNN queries in different subspaces (see Fig. 3). X-
tree is an index structure that is designed to support efficient query processing of
high-dimensional data. The introduction of X-tree is motivated by the problem
with the R-tree-based index structures that the overlap of bounding boxes in the
directory will increase as the dimension grows. The basic idea of X-tree is to use
overlap-minimizing split and supernodes to keep the directory as hierarchical as
possible and at the same time to avoid splits that will result in high overlap. It is a
hybrid of linear array-like and R-tree like directory. The hierarchical organization
is good for low dimensions, while in high dimensions, a linear organization is
more efficient. For medium number of dimensionality, a dynamic organization of
the tree such that the data producing high overlap are organized in a linear format,
while those data can be organized hierarchically without causing too much overlap

Detecting outlying subspaces for high-dimensional data 339

Normal Directory Nodes Supernodes Data Nodes

Fig. 3 X-tree

are organized in a hierarchy. X-tree has been shown experimentally outperform the
well-known R*-tree and TV-tree for high-dimensional data by up to two orders of
magnitude.

4.2 Subspace pruning

To find the outlying subspaces of a query point, we make use of the heuristics we
devise to quickly detect the subspaces in which the point is not an outlier or the
subspaces in which the point is an outlier. All these subspaces can be removed
from further consideration in the later stage of the search process.

In our work, we utilize two classes of strategies for subspace pruning in the
searching process, i.e. Global-T pruning and Local-T pruning. In the Global-T
pruning, a global distance threshold T is used for delimiting outlying and non-
outlying subspaces in the space lattice for a query data point. While in the Local-
T pruning, different local distance thresholds are used for different subspaces re-
quired to evaluate in the searching process.

4.2.1 Global-T pruning strategy

OD maintains two interesting monotonic properties that allow the design of an ef-
ficient outlying subspace search algorithm in Global-T pruning. These two prop-
erties are based on the fact that the OD value of a point in a subspace cannot be
less than that in its subset spaces. Mathematically, we have O Ds1(p) ≥ O Ds2(p)
if s1 ⊇ s2. We first present the proof of this proposition as follows.

Proposition 1 O Ds1(p) ≥ O Ds2(p) if s1 ⊇ s2.

Proof Let ak and bk be the kth nearest neighbors of p in the an m-dimensional
subspace s1 and n-dimensional subspaces s2, respectively (1 ≤ n ≤ m ≤ d and
s1 ⊇ s2). Max Dists2(p) is the maximum distance between p and ai , 1 ≤ i ≤ k,
in the subspace s2.

340 J. Zhang, H. Wang

We have Dists1(p, ak) ≥ Dists1(p, ai)|1≤i≤k . Since s1 is a superset of s2, we
thus know Dists1(p, ai) ≥ Dists2(p, ai)|1≤i≤k . This implies Dists1(p, ak) ≥
Dists2(p, ai)|1≤i≤k , By definition of Max Dists2, we have Dists1(p, ak)
≥ Max Dists2(p) ≥ Dists2(p, bk). In other words, Dists1(p, ak) ≥
Dists2(p, bk). Likewise, it is hold that Dists1(p, ai) ≥ Dists2(p, bi)|1≤i≤k ,
Since O Ds1(p) = ∑k

1 Dists1(p, ai) and O Ds2(p) = ∑k
1 Dists2(p, bi). We

therefore conclude: O Ds1(p) ≥ O Ds2(p).

��
The corollary of the aforementioned proposition are the two monotonic prop-

erties given later.

Property 1 If a point p is not an outlier in a subspace s, then it cannot be an outlier
in any subspace that is a subset of s.

Property 2 If a point p is an outlier in a subspace s, then it will be an outlier in
any subspace that is a superset of s.

In the downward Global-T pruning strategy, we make use of Property 1 of OD
to quickly prune away those subspaces in which the point cannot be an outlier.
This is because if O Ds1(p) < T , then O Ds2(p) < T , where s1 ⊇ s2 and T is the
distance threshold. In the upward Global-T pruning strategy, Property 2 of OD is
utilized to detect those subspaces in which the point is definitely an outlier. The
reason is that if O Ds2(p) ≥ T , then O Ds1(p) ≥ T .

The global distance threshold T is specified as follows:

T = C

√√√√
d∑

i=1

O D
2
ei
, where dim(ei) = 1

where O Dei denotes the averaged OD value of points in the one-dimensional
subspace ei and C is a constant factor (C > 1). This specification stipulates that,
in any subspace, only those points whose OD values are significantly larger than
the average level in the full space are regarded as outliers. The average OD level in

the full space is approximated by
√∑d

i=1 O D
2
ei

and the significance of deviation
is specified by the constant factor C , normally we set C = 2 or 3.

4.2.2 Local-T pruning strategy

Let Ts be the local distance threshold for subspace s, and s1 and s2 be two
subspaces that satisfy s1 ⊃ s2. In the downward Local-T pruning strategy,
if O Ds1(p) < Ts1 , then s2 will be pruned only when the following condition
is satisfied:

∀ei , O Dei (p) ≤ 1

C
· O Dei , where dim(ei) = 1, ei ⊆ s2

In the upward Local-T pruning strategy, if O Ds2(p) ≥ Ts2 , then s1 will be
pruned only when the following condition is satisfied:

∀ei , O Dei (p) ≥ C · O Dei , where dim(ei) = 1, ei ⊆ s1 − s2

Detecting outlying subspaces for high-dimensional data 341

where C is the same constant factor used in the Global-T pruning. Being more
conservative than the Global-T pruning, the two requirements mentioned earlier
intuitively mean that the subspace s′ which is a superset/subset of the current
subspace s can be pruned for data point p only when the O D(p) value in each
of the one-dimensional subspaces that belong to s or the difference of the two
subspaces (i.e. s′ − s) is significantly smaller or larger than the corresponding
average OD level.

Similar to the specification of the global distance threshold T , we can specify
Ts , the distance threshold for a subspace s, as follows:

Ts = C

√∑
O D

2
ei
, where dim(ei) = 1, ei ⊆ s

The part of
√∑

O D
2
ei

is the approximation of the average OD level in the sub-
space s.

Remark 2 By comparing the previous two pruning strategies, we can learn their
pros and cons. Since the Global-T pruning strategy performs subspace pruning in
a more aggressive way and may be able to prune a larger number of subspaces
in each step than the Local-T pruning strategy, therefore it is faster to execute
and more scalable to high-dimensional data set. However, the Global-T pruning
strategy is limited in the situation that the average OD values of the points in dif-
ferent subspaces differ significantly, which makes it inaccurate to use a uniform
distance threshold for all the subspaces. Adopting different distance thresholds
for different subspaces is, therefore, more advantageous by taking into account
the varied denseness/sparsity of points in different subspaces, which enables the
Local-T pruning strategy to detect outlying subspaces with a higher level of accu-
racy. Still, it is comparatively slow and less scalable to high-dimensional data set.
The selection between these two pruning strategies involves a tradeoff between
speed/scalability and accuracy.

4.2.3 Saving factors of subspaces pruning

Now, we will compute the savings obtained by applying the pruning strategies
during the search process quantitatively. Before that, let us first give three defini-
tions.

Definition 1 Downward Saving Factor (DSF) of a Subspace.

The Downward Saving Factor of a m-dimensional subspace s is defined as the
savings obtained by pruning all the subspaces that are subsets of s. In other words,
the Downward Saving Factor of s, denoted as DSF(s), is computed as DSF(s) =∑m−1

i=1 Ci
m ∗ i , where Ci

m denotes the combinatorial number of choosing i items
out of a total of m items.

Definition 2 Upward Saving Factor (USF) of a Subspace.

The Upward Saving Factor of an m-dimensional subspace s, denoted as
USF(s), is defined as the savings obtained by pruning all the subspaces that are
supersets of s. It is computed as USF(s) = ∑d−m

i=1 [Ci
d−m ∗ (m + i)].

342 J. Zhang, H. Wang

Definition 3 Total Saving Factor (TSF) of a Subspace.

The Total Saving Factor of a m-dimensional subspace, in terms of a query
point p, denoted as TSF(m, p), is defined as the combined savings obtained by
applying the two pruning strategies during the search process. It is computed as
follows:

TSF(m, p) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

prup(m, p) ∗ fup(m) ∗ USF(m), m = 1

prdown(m, p) ∗ fdown(m) ∗ DSF(m)

+prup(m, p) ∗ fup(m) ∗ USF(m), 1 < m < d

prdown(m, p) ∗ fdown(m) ∗ DSF(m), m = d

where we have the following:

(1) fdown(m) and fup(m) are the percentages of the remaining subspaces to be
searched. Specifically, fdown(m) = Cdown left(m)/Cdown(m) and fup(m) =
Cup left(m)/Cup(m).
Let dim(s) denote the number of dimensions for subspace s. Cdown left(m)
and Cup left(m) are computed as: Cdown left(m) = ∑

dim(s), where s is an
unpruned or unevaluated subspace and dim(s) < m. Cup left(m) = ∑

dim(s),
where s is an unpruned or unevaluated subspace and dim(s) > m.
Cdown(m) and Cup(m) are the total subspace search workload in the sub-
spaces whose dimensions are lower and higher than m, respectively. Intu-
itively, fdown(m) and fup(m) approximate the fraction of DSF and USF of
an m-dimensional subspace that are potentially achievable in each step of the
search process.

(2) prup(m, p) and prdown(m, p) are the probabilities that upward and downward
pruning can be performed in the m-dimensional subspace, respectively. In
other words, for a m-dimensional subspace s, prup(m, p) = Pr(O Ds(p) ≥
T) in the Global-T pruning and prup(m, p) = Pr(O Ds(p) ≥ Ts) in the
Local-T pruning. prdown(m, p) = 1 − prup(m, p) in both pruning strate-
gies. A difficulty in computing the two prior probabilities, i.e. prup(m, p) and
prdown(m, p), is that their values are unknown if there lacks any prior knowl-
edge of the data set. To overcome this difficulty, we first perform a sample-
based learning process to obtain some knowledge about the data set and then
apply this knowledge in the later subspace search for each query point. The
estimates of prup(m, p) and prdown(m, p) can be viewed as an approximated
estimation of the linkage in the data probability distribution of the data set
involved.

4.3 Sampling-based learning

We adopt a sample-based learning process to obtain some knowledge about the
data set before subspace search of the query points are performed. This is desirable
when the data set is large so that learning the whole data set becomes prohibitive.
The task of performing this sampling-based learning is twofold: first, we will have
to estimate O Dsi which will be used in specifying the global and local distance

Detecting outlying subspaces for high-dimensional data 343

thresholds and the requirements in the Local-T pruning. Secondly, we will have
to compute the two priors prup(m, p) and prdown(m, p). In this learning process,
a small number of points are randomly sampled from the data set.

At first, the subspace searches are performed in the d one-dimensional sub-
spaces si on all the sampling data and O Dsi is computed as the average OD values
of all sampling points in subspace si , i.e.

O Dsi = 1

S

S∑

j=1

O Dsi (sp j)

where S is the number of sampling points and sp j denotes the i th sampling point.
Secondly, the subspace searches are performed in the lattice of data space

on the sampling data. For each sampling point sp, we have the following initial
specifications regarding the two priors prup(m, p) and prdown(m, p):

prup(m, sp) = prdown(m, sp) = 0.5, 1 < m < d
prup(m, sp) = 1 and prdown(m, sp) = 0, m = 1
prup(m, sp) = 0 and prdown(m, sp) = 1, m = d

This initialization implies that we assume equal probabilities for upward and
downward pruning in the subspaces of any dimension, except 1 and d, for each
sampling point at the beginning. After all the m-dimensional subspaces have been
evaluated for sp, the prup(m, sp) and prdown(m, sp) are computed as the percent-
ages of m-dimensional subspaces s in which O Ds(sp) ≥ T and O Ds(sp) < T ,
respectively. The average prup and prdown values of subspaces from 1 to d dimen-
sions can be obtained as follows:

prup(m) = 1

S

S∑

i=1

prup(m, spi)

prdown(m) = 1

S

S∑

i=1

prdown(m, spi)

where we have prdown(1) = prup(d) = 0.
For each query point p, we set prup(m, p) = prup(m) and prdown(m, p) =

prdown(m) in the computation of TSF(m, p) of the query point p.

Remark 3 There might be a misunderstanding that the sampling technique will
fail here because the outliers are rare in the data set. Recall that we are trying to
detect outlying subspaces of query points, not outliers. Every point can become
query point and every query point will have its outlying subspaces, if its set of
outlying subspaces is not empty. Hence, the outlying subspaces can be regarded
as a global property for all the points and a sample of sufficient size will make
sense in the learning process.

4.4 Dynamic subspace search

In HighDOD, we use a dynamic subspace search method to find the subspaces
in which the sampling points and the query points are outliers. The basic idea of

344 J. Zhang, H. Wang

Table 1 Computation of Dyna-CSF

Dimension of subspaces TSF

(a)
4 28
3 13
2 12
1 19

(b)
3 9
2 10
1 17.7

(c)
3 2.7
2 2

the dynamic subspace search method is to commence search on those subspaces
with the same dimension that has the highest TSF value. As the search proceeds,
the TSF of subspaces with different dimensions will be updated and the set of sub-
spaces with the highest TSF values are selected for exploration in each subsequent
step. The search process terminates when all the subspaces have been evaluated
or pruned. Note that the only difference between the dynamic subspace search
method used on the sample points and query points lies in the decision of values
of prup(m, p) and prdown(m, p): For sample points, we assume an equal proba-
bility of upward and downward pruning (referring to Section 4.3), while for query
points we use the averaged probabilities obtained in the learning process.

Example 1 Now, we give an example to illustrate how the TSF of a subspace
is computed at each step of the search process using Global-T pruning strategy.
Without loss of generality, we suppose, for a sample point sp, the O D(sp) values
of the subspaces in the boxes are larger than T, while the O D(sp) values of the
subspaces underlined are smaller than T, as shown in Fig. 4. We compute the TSF
for subspaces with different dimensions (1–4) in each step of the search process
(as shown in Table 1(a)–(c)). In each step, we select the dimension that has the
maximum TSF value, which are highlighted in each of the tables. The order of
subspaces in the search process is 4 → 1 → 3 → 2, meaning that the four-
dimensional subspaces are searched first, followed by one- and three-dimensional
subspaces. The two-dimensional subspaces are searched at last.

Fig. 4 Subspaces of a four-dimensional full space

Detecting outlying subspaces for high-dimensional data 345

4.5 Minimum sampling size for training data set

Recall that the sampling method is utilized to obtain a training data set that can
be used to pre-compute the prior probabilities of upward and downward pruning,
namely prup(m) and prdown(m) (1 ≤ m ≤ d). As such, samples of different sizes
will only affect the pruning efficiency of the algorithm. They will not change the
number of subspaces found.

With this in mind, we now wish to determine the minimum sample size to
accurately predict prup(m) and prdown(m) with certain degree of confidence. We
denote X as the sample point that can be expressed as an S-dimensional vector as
X = [x1, x2, . . . , xS] where S is the size of the sample. Each data in the sample is
a d-dimensional vector as xi = [xi,1, xi,2, . . . , xi,d]T where xi, j denote the value
of j th dimension of i th data in the sample. Applying dynamic subspace searching
on sampling points, for each dimension m, we obtain

Ydown(m) = [prdown(m, sp1), prdown(m, sp2), . . . , prdown(m, spS)] (1 ≤ m ≤ d)

We use the S measurements, prdown(m, spi)(1 ≤ i ≤ S) as the training data to
estimate the mean of prdown(m). We estimate the sample size by constructing the
confidence interval of the mean of prdown(m). Specifically, to obtain a (1 − α)-
confidence interval, the minimum size of a random sample is given as follows
[15]:

Smin(m) =
[

tα/2 ∗ σ ′
m

δ∗

]2

where σ ′
m denotes the estimated standard deviation of prdown in the mth dimension

using the training points that is defined as:

σ ′
m =

√√√√
S∑

i=1

(prdown(m, spi) − prdown(m, sp))2/(S − 1)

δ∗ denotes the half-width of the confidence interval.
Note that the value of σ ′

m varies for different m. Let σ ′
max = max(σ ′

m)(1 ≤
m ≤ d), the minimum sample size Smin that satisfies respective minimum sample
size requirement of each dimension is computed as:

Smin =
[

tα/2 ∗ σ ′
max

δ∗

]2

Similar reasoning applies to prup(m), since prup(m) = 1 − prdown(m).

5 Algorithms

The algorithm of dynamic subspace search is presented in Fig. 5. In this algo-
rithm, SetDim stores the number of dimension of the subspaces (from 1 to d). A
non-empty SetDim indicates that there are still some subspaces to be searched.
The new TSF of the remaining dimensions are computed (calling function Com-
puteDynaTSF()) and an additional pass of the subspace search is performed. The

346 J. Zhang, H. Wang

Fig. 5 Algorithm of dynamic subspace search

dimension of the subspace with the maximum TSF in the current step is stored
in the variable CurrDim (calling function MaxiDynaTSF()). All the subspaces de-
tected (calling function SubspaceSearch()) are saved in SetDetectSS. The current
dimension of subspaces is deleted from SetDim and the whole program terminates
when SetDim becomes empty.

Note that the algorithm presented in Fig. 5 can run on both the sampling and
the query points. The only difference lies in the function ComputeDynaTSF().
Here, the sampling points use the pre-defined probabilities as the priors, while
the query points use the probabilities as the priors obtained in the sample-based
learning process. The function of ComputeDynaTSF() dynamically computes the
TSF values in the subspace searching process.

The function SubspaceSearch() (see Fig. 6) returns all the detected subspaces
of the CurrDim dimension. It displays a generic skeleton of the function Subspace
Search() for subspace searching using either the Global-T or the Local-T pruning

Fig. 6 The generic algorithm of searching subspaces of a given dimension

Detecting outlying subspaces for high-dimensional data 347

strategy. Note that there are two differences between the exact implementation of
the function for the two pruning strategies: (1) T represents the global distance
threshold in the Global-T pruning strategy and the local distance threshold for
each subspace in the Local-T pruning strategy; (2) In the Local-T pruning strat-
egy, the algorithm has to check the satisfiability of the pruning requirements within
the functions PruneExist SS(superset (ss)) and PruneExist SS(subset (ss))
before the pruning is performed, while the Global-T pruning strategy does not
have to.

6 Experimental results

In this section, we will carry out extensive experiments to test the efficiency of
outlying subspace detection and the effectiveness of outlying subspace compres-
sion in HighDOD. Synthetic data sets are generated using a high-dimensional data
set generator and four real-life high-dimensional data sets from the UCI machine
learning repository, which have been used in [3] for performance evaluation of
their high-dimensional outlier detection technique, are also used.

In the synthetic data generator, we can specify the number of instances (tu-
ples) (N) and dimensions (d) of the data set generated. We will further specify
the number of the intervals (NI) and the maximum (max) and minimum (min)
values for each dimension of the data set. The length for each interval will be
(max − min)/(NI). For each dimension, N/NI distinct instances are generated
based on the Gaussian distribution in each of the NI intervals. (The projection of
high-dimensional data within small intervals in each dimension can be reasonably
assumed to fit Gaussian distribution [3].) In this way, we will be able to obtain N
distinct instances for each dimension. The data set generated generally displays
dense and sparse regions in the data space, which serves as an ideal test-bed for
our experiments. Specifically, we specify NI = 10, min = 0, max = 100 for each
dimension in our experimental setting.

All the algorithms are implemented on a 1.8 GHz Pentium PC with 256 MB
of main memory running on Windows 2000. In all the experiments, we set k, the
number of neighbors we are interested in, to 10.

6.1 Efficiency study

Since the existing high-dimensional outlier detection techniques fail to handle the
new outlying subspace detection problem, we thus choose to compare the effi-
ciency of several subspace search methods, i.e. top–down, bottom–up, random
and dynamic subspace search, instead.

These searching methods aim to find the outlying subspaces of the given query
data using various searching strategies. The top–down search method only em-
ploys a downward pruning strategy, while the bottom–up search method only uses
an upward pruning strategy. The random search method, the “headless chicken”
search alternative, randomly selects the layer in the lattice for search without
replacement in each step. The dynamic search method, a hybrid of upward and
downward search, computes the TSF of all subspaces of different dimensions and
selects the best layer of subspaces for search. To evaluate the efficiency of the

348 J. Zhang, H. Wang

10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

800

900

1000

Number of dimensions (N=100k, Nq=200)

A
ve

ra
ge

 C
P

U
 e

xe
cu

tio
n

tim
e

(S
ec

.)
Top-down (Global-T)
Bottom-up (Global-T)
Random (Global-T)
Dynamic (Global-T)
Sample-based dynamic (Global-T)
Top-down (Local-T)
Bottom-up (Local-T)
Random (Local-T)
Dynamic (Locall-T)
Sample-based dynamic (Local-T)

Fig. 7 Execution time when varying dimension of data

sample-based learning process, we run the dynamic search algorithm with and
without incorporating the sample-based learning process. We implement the pre-
vious five searching methods with each of the two pruning strategies, which results
in a total of 10 searching methods. Note that the execution times shown in this sec-
tion are the average time spent in processing each point in the learning and query
process.

6.1.1 Effect of dimensionality

First, we investigate the effect of dimensions on the average execution time of
HighDOD (see Fig. 7). We can see that the execution time of all the 10 methods
increase at an exponential rate since the number of subspaces increases exponen-
tially as the number of dimension goes up, regardless of which searching and
pruning strategy is utilized. On a closer examination, we see that (1) the execu-
tion time of top–down and bottom–up search methods increase much faster than
the dynamic search method; (2) when using the sample-based learning process,
the dynamic search method performs better than the method without using the
sample-based learning process; (3) the execution times of the methods using the
Global-T pruning strategy increase much less slowly compared with the those
methods using the Local-T pruning strategy. This is because the Local-T pruning
strategy is more conservative than the Global-T pruning strategy and therefore
fewer subspaces can be pruned in each step of the searching process.

Detecting outlying subspaces for high-dimensional data 349

100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000

1200

1400

1600

Size of dataset (K) (d=50, nq=200)

A
ve

ra
ge

 C
P

U
 e

xe
cu

tio
n

tim
e

(S
ec

.)
Top-down (Global-T)
Bottom-up (Global-T)
Random (Global-T)
Dynamic (Global-T)
Sample-based dynamic (Global-T)
Top-down (Local-T)
Bottom-up (Local-T)
Random (Local-T)
Dynamic (Local-T)
Sample-based dynamic (Locall-T)

Fig. 8 Execution time when varying size of data set

6.1.2 Effect of data set size

Second, we fix the number of dimensions at 50 and vary the size of data sets
from 100k to 1000k. Figure 8 shows that the average execution times using the 10
methods to process each query point are approximately linear with respect to the
size of the data set. Similar to results of the first experiment, the dynamic search
method with sample-based learning process and Global-T pruning strategy gives
the best performance.

6.1.3 Effect of number of query points

Next, we vary the number of query points Nq . Figure 9 shows the results of the
five searching method using the Local-T pruning strategy only. It is interesting to
note that when Nq is large, dynamic search method with sample-based learning
process gives the best performance. However, when Nq is small, it is better to use
dynamic search without sample-based learning. The reason is because when the
number of query points is small, the saving in computation by using the learning
process is not sufficient to justify the cost of the learning process itself.

6.1.4 Effect of sample size

We also investigate the effect of the number of sampling points, S, used in the
learning process. A large S gives a more accurate estimation of the possibilities
of upward and downward pruning in subspaces, which in turn, helps to speedup
the search process. However, a large S also implies an increase in the computa-
tion during the learning process, which may increase the average time spent in the

350 J. Zhang, H. Wang

50 100 150 200 250 300 350 400 450 500
40

50

60

70

80

90

100

110

120

Number of query points (N=100,000, d=50)

A
ve

ra
ge

 C
P

U
 e

xe
cu

tio
n

tim
e

(S
ec

.)

Top-down
Bottom-up
Dynamic
Sample-based dynamic

Fig. 9 Execution time when varying the number of query points

20 40 60 80 100 120 140 160 180 200
50

60

70

80

90

100

110

120

Number of sampling points (N=100,000, d=50, Nq=200)

A
ve

ra
ge

 C
P

U
 e

xe
cu

tio
n

tim
e

(S
ec

.)

Dynamic
Sample-based dynamic

Fig. 10 Execution time when varying the size of sample

Detecting outlying subspaces for high-dimensional data 351

whole detection process. As shown in Fig. 10, the execution time is first decreased
when the number of sampling points is small, this is because the prediction of pos-
sibility is not accurate enough, which cannot greatly speedup the later searching
process. When the sample size increases, the prediction of the possibilities are suf-
ficiently accurate, therefore any larger size of sample will no longer contribute to
the speedup of the search process, but only increase the execution time as a whole.
The horizontal dot-line in Fig. 10 indicates the execution time when dynamic sub-
space search without sample-based learning is employed.

6.1.5 Results on real-life data sets

Finally like [3], we evaluate the practical relevance of HighDOD by running ex-
periments on five real-life high-dimensional data sets in the UCL machine learning
repository. The data sets range from 8 to 160 dimensions. Table 2 shows the results
of the five search methods using the Local-T pruning strategy. It is obvious that
dynamic search with sampling-based learning process works best in all the real-
life data sets. Furthermore, using dynamic subspace search alone is faster than
top–down bottom–up or random search methods by approximately 20%, while in-
corporating sample-based learning process into dynamic subspace search further
reduces the execution time by about 30%.

6.2 Effectiveness study

In this part, we will show that the existing outlier detection techniques (we term
them “space → outliers” techniques) will break down when trying to perform
the task of finding the subspaces in which given points are outliers. We will first
present two definitions that will be used in the experiment evaluation in this part.

Definition 4 Outlying Strength of points.

The Outlying Strength of a point p, denoted as O S(p), is defined as the per-
centage of number of subspace in which p is a outlier against the total number of
subspaces, i.e.

O S(p) = No. of subspaces in which O Ds(p) ≥ T

No. of subspaces

Definition 5 Detecting ability of “space → outliers” techniques.

Table 2 Results of running five methods on real-life data sets (average CPU time in seconds for
each query point)

Data sets (dimensions) Top–down Bottom–up Random Dynamic Sample + dynamic

Machine (8) 56 49 58 41 32
Breast cancer (14) 165 176 150 121 110
Segmentation (19) 251 237 256 222 197
Ionosphere (34) 472 477 456 414 387
Musk (160) 5203 4860 5002 4389 3904

352 J. Zhang, H. Wang

We measure the ability of “space → outliers” techniques in finding the sub-
spaces in which given points are outliers, denoted as ϕ, by computing the percent-
age of the number of given points that appear in the top n subspaces obtained by
the method against the total number of given points, i.e.

ϕ = No. of given points that appear in the subspaces selected

No. of given points

The setup of this experiment is specified as follows. We first select a fixed num-
ber of points (we select 50 in our experiment) for each different group of Outlying
Strength ranging from 10 to 80%. (The information of Outlying Strength of points
can be obtained using HighDOD in advance.) We then apply the evolutionary-
based search method, the latest member of the “space → outliers techniques, on
all these selected points and compute the value of ϕ based on points in each group.
We adopt two ways for selecting the subspaces for study, i.e. randomly selecting n
subspaces from the whole space lattice and selecting the top-k subspaces returned
by the evolutionary-based search method. We vary the value of n, the number of
subspace selected, from 20 to 100 in this experiment. The objective of this experi-
ment is to test the effectiveness of the evolutionary-based search method in finding
the subspaces of query points under different Outlying Strengths of given points
and different number of subspaces returned by this method.

The result is shown in Tables 3 and 4. We can see, from the two tables, that
the evolutionary-based search method performs poorly in finding the subspaces in
which points are outliers. For overwhelming majority of the points, this method
cannot return any subspaces in which these points are true outliers. Even when a
point appears in the top n subspaces obtained by this method, the method can only
find the subspaces within the n subspaces returned rather than the whole spec-
trum of subspaces. Increasing the number of subspaces returned can theoretically
improve the performance, but such increasing in the number of subspaces will
invariably increase the computation exponentially that render it almost infeasible
in practice. The reason that the evolutionary-based search method, also includ-
ing other “space → outliers” techniques, performs poorly in this experiment is
because the subspaces that are spare are not necessarily, in most cases, the right
subspaces in which the given points are outliers.

Table 3 Values of ϕ (%) of the evolutionary-based search method with randomly selected sub-
spaces

No. of subspaces 10–20% 20–30% 30–40% 40–50% 50–60% 60–70% 70–80%

20 0 0 0 0 0 2 4
60 0 0 0 0 0 4 6
100 0 0 0 0 3 7 11

Table 4 Values of ϕ (%) of the evolutionary-based search method with top-k subspaces

No. of subspaces 10–20% 20–30% 30–40% 40–50% 50–60% 60–70% 70–80%

20 0 0 0 0 0 3 5
60 0 0 0 0 1 4 6
100 0 0 0 0 2 9 12

Detecting outlying subspaces for high-dimensional data 353

7 Conclusions

In this paper, we propose a novel algorithm, called HighDOD, to address the new
problem of detecting outlying subspaces for high-dimensional data. In HighDOD,
two heuristics for fast pruning in the subspace search and a dynamic subspace
search method with a sample-based learning process are used. Experimental re-
sults justify the efficiency and effectiveness of outlying subspace searching in
HighDOD, in comparison with other search alternatives and the existing outlier
detection techniques. We believe that HighDOD is useful in revealing new and
interesting knowledge in outlying analysis of high-dimensional data and can be
potentially used in many practical applications.

By no means dismissing their advantages, we aim to show the “space →
outliers” techniques cannot effectively deal with the new task identified in this
paper. Actually, by proposing the new task of outlying subspace detection and
HighDOD, we are able to have more options when handing outliers in high-
dimensional space: when we want to detect outliers in a certain subspace, we
can use the evolutionary-based search method, while when we are interesting in
getting insights on the subspaces in which points are outliers, our technique can
come into play.

Finally, we have to admit that the task of detecting outlying subspace for high-
dimensional data itself still remains a very hard problem even after the search
heuristics introduced in this paper have been applied. To further lower the hardness
of this problem and make HighDOD more efficient, future research efforts will be
taken in the following two directions. First, we will study the compress scheme for
compacting the voluminous resultant outlying subspaces detected to make them
more space efficient. Second, we are interested in exploring the parallel computing
architecture to render HighDOD workable in a parallel paradigm so as to achieve
a higher level of efficiency.

Acknowledgements The authors would like to thank Dr. Tok Wang Ling and Dr. Wynne Hsu,
both from School of Computing, National University of Singapore, for their useful comments
on the earlier drafts of this paper. This work is supported in part by NSERC Grant 312423.

References

1. Agrawal R, Gehrke J, Gunopulos D, Raghavan P (1998) Automatic subspace clustering of
high dimensional data mining application. In: Proceedings of ACM SIGMOD’98, Seattle,
Washington, USA, pp 94–105

2. Aggarwal CC, Procopiuc C, Wolf JL, Yu PS, Park JS (1999) Fast algorithms for projected
clustering. In: Proceedings of the ACM SIGMOD’99, Philadelphia, Pennsylvania, USA, pp
61–72

3. Aggarwal CC, Yu PS (2001) Outlier detection in high dimensional data. In: Proceedings of
the ACM SIGMOD’01, Santa Barbara, California, USA

4. Angiulli F, Pizzuti C (2002) Fast outlier detection in high dimensional spaces. In: Proceed-
ings of PKDD’02, Helsinki, Finland, pp 15–26

5. Barnett V, Lewis T (1994) Outliers in statistical data, 3rd edn. Wiley, New York
6. Berchtold S, Keim DA, Kriegel H (1996) The X-tree: an index structure for high-

dimensional data. In: Proceedings of the VLDB’96, Mumbai, India, pp 28–39
7. Breuning M, Kriegel H-P, Ng R, Sander J (2000) LOF: identifying density-based local

outliers. In: Proceedings of the ACM SIGMOD’00, Dallas, Texas, pp 93–104

354 J. Zhang, H. Wang

8. Ester M, Kriegel H-P, Sander J, Xu X (1996) A density-based algorithm for discovering
clusters in large spatial databases with noise. In: Proceedings of the SIGKDD’96, Portland,
Oregon, USA, pp 226–231

9. Han J, Kamber M (2000) Data mining: concepts and techniques. Morgan Kaufman
10. Hawkins D (1980) Identification of outliers. Chapman and Hall, London
11. Hinneburg A, Keim DA (1998) An efficient approach to cluster in large multimedia

databases with noise. In: Proceedings of the SIGKDD’98, New York, NY, USA, pp 58–
65

12. Jin W, Tung AKH, Han J (2001) Finding top n local outliers in large database. In: Proceed-
ings of the SIGKDD’01, San Francisco, CA, pp 293–298

13. Knorr EM, Ng RT (1998) Algorithms for mining distance-based outliers in large dataset.
In: Proceedings of the VLDB’98, New York, NY, pp 392–403

14. Knorr EM, Ng RT (1999) Finding intentional knowledge of distance-based outliers. In:
Proceedings of the VLDB’99, Edinburgh, Scotland, pp 211–222

15. Mace AE (1964) Sample-size determination. Reinhold Publishing Corporation, New York
16. Ng R, Han J (1994) Efficient and effective clustering methods for spatial data mining. In:

Proceedings of the VLDB’94, Santiago, Chile, pp 144–155
17. Papadimitriou S, Kitagawa H, Gibbons PB, Faloutsos C (2003) LOCI: fast outlier detection

using the local correlation integral. In: Proceedings of the ICDE’03, Bangalore, India, pp
315–325

18. Preparata F, Shamos M (1998) Computational geometry: an introduction. Springer-Verlag,
Berlin Heidelberg New York

19. Ramaswamy S, Rastogi R, Kyuseok S (2000) Efficient algorithms for mining outliers from
large data sets. In: Proceedings of the ACM SIGMOD’00, Dallas, Texas, pp 427–438

20. Ruts I, Rousseeuw P (1996) Computing depth contours of bivariate point clouds. Comput
Stat Data Anal 23: 153–168

21. Sarafis IA, Trinder PW, Zalzala AMS (2003) Towards effective subspace clustering with
an evolutionary algorithm. In: IEEE congress on evolutionary computation, Canberra,
Australia

22. Sheikholeslami G, Chatterjee S, Zhang A (1999) WaveCluster: a wavelet based clustering
approach for spatial data in very large database. VLDB J 8(3/4): 289–304

23. Zhang T, Ramakrishnan R, Livny M (1996) BIRCH: an efficient data clustering method
for very large databases. In: Proceedings of the ACM SIGMOD’96, Montreal, Canada, pp
103–114

Ji Zhang received his BS from Department of Information
Systems and Information Management at Southeast Univer-
sity, Nanjing, China, in 2000 and MSc from Department of
Computer Science at National University of Singapore in
2002. He worked as a researcher in Center for Information
Mining and Extraction (CHIME) at National University of
Singapore from 2002 to 2003 and Department of Computer
Science at University of Toronto from 2003 to 2005. He is
currently with Faculty of Computer Science at Dalhousie
University, Canada. His research interests include Knowledge
Discovery and Data Mining, XML and Data Cleaning. He
has published papers in Journal of Intelligent Information
Systems (JIIS), Journal of Database Management (JDM),
and major international conferences such as VLDB, WWW,
DEXA, DaWaK, SDM, and so on.

Detecting outlying subspaces for high-dimensional data 355

Hai Wang is an assistant professor in the Department of
Finance Management Science at Sobey School of Business
of Saint Mary’s University, Canada. He received his BSc in
computer science from the University of New Brunswick,
and his MSc and PhD in Computer Science from the Uni-
versity of Toronto. His research interests are in the areas of
database management, data mining, e-commerce, and perfor-
mance evaluation. His papers have been published in Inter-
national Journal of Mobile Communications, Data Knowl-
edge Engineering, ACM SIGMETRICS Performance Evalu-
ation Review, Knowledge and Information Systems, Perfor-
mance Evaluation, and others.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

