
Knowl Inf Syst (2006) 10(2): 211–227
DOI 10.1007/s10115-006-0018-6

Knowledge and
Information Systems

SHORT PAPER

Karin Kailing · Hans-Peter Kriegel ·
Martin Pfeifle · Stefan Schönauer

Extending metric index structures
for efficient range query processing

Received: 22 August 2004 / Revised: 24 January 2005 / Accepted: 26 March 2005 /
Published online: 15 March 2006
C© Springer-Verlag London Ltd. 2006

Abstract Databases are getting more and more important for storing complex ob-
jects from scientific, engineering, or multimedia applications. Examples for such
data are chemical compounds, CAD drawings, or XML data. The efficient search
for similar objects in such databases is a key feature. However, the general prob-
lem of many similarity measures for complex objects is their computational com-
plexity, which makes them unusable for large databases. In this paper, we combine
and extend the two techniques of metric index structures and multi-step query pro-
cessing to improve the performance of range query processing. The efficiency of
our methods is demonstrated in extensive experiments on real-world data includ-
ing graphs, trees, and vector sets.

Keywords Complex objects · Metric indexing · Multi-step query processing ·
Density-based clustering

1 Introduction

Databases are getting more and more important for storing complex objects from
scientific, engineering, or multimedia applications. Examples for such data are
chemical compounds, CAD drawings, XML data, web sites, or color images. The
efficient search for similar objects in such databases, for example to classify new
objects or to cluster database objects, is a key feature in those application domains.
Often a feature transformation is not possible, therefore a simple distance function
like the Euclidean distance cannot be used. In this case, the use of more complex
distance functions like the edit distance for graphs or trees is necessary. However,

K. Kailing (B) · H.-P. Kriegel · M. Pfeifle · S. Schönauer
Institute for Computer Science, University of Munich, Oettingenstr. 67, 80538 Munich,
Germany
E-mail: {kailing, kriegel, pfeifle, schoenauer}@dbs.informatik.uni-muenchen.de

212 K. Kailing et al.

a general problem of all such measures is their computational complexity, which
disqualifies their use for large databases.

An area where this complexity problem is a strong handicap is that of clus-
tering, one of the primary data mining tasks. Density-based clustering has proved
to be successful for clustering complex objects [8, 10]. Density-based clustering
algorithms like DBSCAN [6] or OPTICS [2] are based on range queries for each
database object. These algorithms are only applicable to large collections of com-
plex objects if those range queries are supported efficiently. When working with
complex objects, the necessary distance calculations are the time-limiting factor.
For complex objects, distance calculations are often significantly more expensive
than disk accesses.

One approach to improve the performance of range queries is to use a filter-
refinement architecture. The core idea is to apply a filter criterion to the database
objects in order to obtain a small set of candidate answers to a query. The final
result is then retrieved from this candidate set through the use of the complex sim-
ilarity measure. This reduces the number of expensive object distance calculations
and speeds up the search process.

Another possibility is the use of a metric index structure. In [4], several effi-
cient access methods for similarity search in metric spaces are presented. In most
real-world applications, a static index structure is not acceptable, so dynamic in-
dex structures like the M-tree [5] are applied.

So far, both aforementioned concepts, multi-step query processing and metric
index structures, have only been used separately. We claim that these concepts can
beneficially be combined and that through the combination a significant speed-up
compared to both separate approaches can be achieved. In this paper, we discuss
how the two approaches can be combined and present some other techniques to
improve the efficiency of range query processing. Filters can easily be used to
speed-up the creation and the traversing of a metric index structure like the M-
tree. Additionally, caching can be used to prevent the same distance calculations
to be performed more than once.

The remainder of the paper is organized as follows. In Sect. 2, we present
some recent work in the field of indexing and clustering complex objects. Sec-
tion 3 presents our techniques used to save costly distance calculations while
performing range queries. The performance gain of our new techniques is pre-
sented in Sect. 4, while Sect. 5 concludes the paper and gives some hints at future
work.

2 Motivation and related work

In the next section, we present three promising and approved modeling approaches
and distance measures for complex objects (see Fig. 1 for an illustration). The
evaluation part will show that in all those cases we achieve a performance gain
using our new techniques. Afterwards, we present some recent approaches for
clustering and query processing on complex objects.

As this is an extremely broad field, we do not make any claim on completeness.
The main purpose of this section is to motivate the necessity of new techniques
which allow efficient similarity range queries on complex objects.

Extending metric index structures for efficient range query processing 213

complex
objects

complex

models

complex distance measure

Fig. 1 Examples of complex objects

2.1 Data types of complex objects

In [10], an effective and flexible similarity model for complex 3D CAD data is
introduced, which helps to find and group similar parts. It is not based on the
traditional approach of describing one object by a single feature vector, but instead
an object is mapped onto a set of feature vectors, i.e. an object is described by a
vector set. The similarity measure for comparing two such vector sets has cubic
time complexity, which makes calculating even a single similarity distance an
expensive operation.

In addition to a variety of content-based attributes, complex objects typically
carry some kind of internal structure, which often forms a hierarchy. A successful
approach is to use degree-2 edit distance [18], which has been applied to trees
for web site analysis [17], structural similarity of XML documents [14], shape
recognition [15], or chemical substructure search [17].

Attributed graphs are another natural way to model structured data. Most of
the known similarity measures for attributed graphs are either limited to a special
type of graph or are computationally extremely complex, i.e. NP complete. A
new measure for attributed graphs with cubic time complexity has recently been
presented in [11].

2.2 Clustering complex objects

In recent years, the research community spent a lot of attention to clustering re-
sulting in a large variety of different clustering algorithms. However, most of those
algorithms were designed for vector data, so there is still a need for research on
clustering complex objects.

In this paper, we focus on the acceleration of density-based clustering algo-
rithms like DBSCAN [6] and OPTICS [2], which are based on ε-range queries.
Density-based clustering algorithms provide the following advantages:

1. They can be used for all kinds of metric data spaces and are not confined to
vector spaces.

214 K. Kailing et al.

2. They are robust concerning outliers.
3. They have proved to be very efficient and effective in clustering all sorts of

data.
4. OPTICS is – in contrast to most other algorithms – relatively insensitive to

its two input parameters, ε and MinPts. The authors in [2] state that the input
parameters just have to be large enough to produce good results.

5. Traditional clustering algorithms are based on one representation space, usu-
ally a vector space. However, for complex objects, often multiple representa-
tions exist for each object. Proteins for example are characterized by an amino
acid sequence, a secondary structure and a 3D representation. In [8], an effi-
cient density-based approach to cluster such multi-represented data, taking all
available representations into account is presented.

6. In [3] the authors show how visualizing the hierarchical clustering structure of
a database of objects can aid the user in his time-consuming task to find similar
objects. Based on reachability plots produced by the density-based clustering
algorithm OPTICS [2], approaches which automatically extract the significant
clusters in a hierarchical cluster representation along with suitable cluster rep-
resentatives are provided.

2.3 Query processing on complex objects

2.3.1 Multi-step query processing

The main goal of a filter-refinement architecture, as depicted in Fig. 2, is to reduce
the number of complex and, therefore, time consuming object distance calcula-
tions in the query process. To achieve this goal, query processing is performed in
two or more steps. The first step is a filter step, which returns a number of candi-
date objects from the database. For these candidate objects, the exact object dis-
tance is then determined in the refinement step and the objects fulfilling the query
predicate are reported. To reduce the overall search time, it is essential that the
filter predicate is considerably easier to evaluate than the exact similarity measure
and a substantial part of the database objects must be filtered out. Additionally, the
completeness of the filter step is essential, i.e. all database objects satisfying the
query condition are included in the candidate set. Available similarity search algo-
rithms guarantee completeness if the distance function in the filter step fulfills the
lower-bounding property. Using a multi-step query architecture requires efficient
algorithms, which actually make use of the filter step. Agrawal et al. [1] proposed
such an algorithm for range search.

filter
candidates

resultrefinement

Fig. 2 A multi-step query processing architecture

Extending metric index structures for efficient range query processing 215

2.3.2 Metric index structures

In some applications, objects cannot be mapped into feature vectors. However,
there still exists some notion of similarity between objects, which can be expressed
as a metric distance between the objects, i.e. the objects are embedded in a met-
ric space. Several index structures for pure metric spaces have been proposed in
the literature (see [4] for an overview). A well-known dynamic index structure
for metric spaces is the M-tree [5]. The M-tree, which is explained in detail in
Sect. 3.1, aims at providing good I/O performance as well as reducing the number
of distance computations.

3 Efficient range queries on complex objects

So far, the concepts of multi-step query processing and metric index structures
have only been used separately. We claim that these concepts can beneficially be
combined and that, through the combination, a significant speed-up compared to
both separate approaches can be achieved. In the following, we will demonstrate
the ideas for range queries with the M-tree as index structure and arbitrary filters
fulfilling the lower-bounding criterion. It is worth noting that the techniques can
also be applied to similar metric index structures like the Slim-tree [16].

This section is organized as follows. After introducing the necessary concepts
for similarity range queries using the M-tree, we present the concept of “positive
pruning” in Sect. 3.2. In Sect. 3.3, we combine the two worlds of direct metric in-
dex structures and multi-step query processing based on filtering. Finally, we show
in Sect. 3.4 how caching can be applied to accelerate the processing of similarity
range queries.

3.1 Similarity range queries using the M-tree

The M-tree (metric tree) [5] is a balanced, paged and dynamic index structure
that partitions data objects not by means of their absolute positions in the multi-
dimensional feature space but on the basis of their relative distances in this feature
space. The only prerequisite is that the distance function between the indexed
objects is metric. Thus, the M-tree’s domain of applicability is quite general, and
all sorts of complex data objects can be organized with this index structure.

The maximum size of all nodes of the M-tree is fixed. All database objects Od
or references to them are stored in the leaf nodes of an M-tree, along with their
feature values and the distance d(Od, P(Od)) to their parent object P(Od). In-
ner nodes contain so-called routing objects, which correspond to database objects
to whom a routing role was assigned by a promoting algorithm that is executed
whenever a node has to be split. In addition to the object description and the dis-
tance to the parent object, routing objects Or also store their covering radius r(Or)
and a pointer ptr(T (Or)) to the root node of their subtree, the so-called covering
tree of Or. For all objects Od in this covering tree, the condition holds that the
distance d(Or, Od) is smaller or equal to the covering radius r(Or). This property
induces a hierarchical structure of an M-tree, with the covering radius of a parent

216 K. Kailing et al.

Fig. 3 Pseudo-code description of similarity range search on M-trees

object always being greater or equal than all covering radii of their children and
the root object of an M-tree storing the maximum of all covering radii.

Range queries are specified by a query object Oq and a range value ε by which
the answer set is defined to contain all the objects Od from the database that have
a distance to the query object Oq of less than or equal to ε.

Definition 1 (similarity range query) Let O be a domain of objects and DB ⊆
O be a database. For a query object Oq ∈ O and a query range ε ∈ IR+

0 , the
similarity range query simRange : O×IR+

0 �→ 2DB returns the set

simRange(Oq, ε) = {Od ∈ DB|dist(Od, Oq) ≤ ε}.

Given a query object Oq and a similarity range parameter ε, a similarity range
query simRange(Oq, ε) starts at the root node of an M-tree and recursively tra-
verses the whole tree down to the leaf level, thereby pruning all subtrees which
certainly contain no result objects.

A description of simRange in pseudo-code and the recursive procedure
rangeSearch used to traverse the M-tree is given in Fig. 3.

The subtree of a routing object Or can be pruned, if the absolute value of
the distance of the routing object’s parent object Op to the query object Oq,
d(Op, Oq), minus the distance between Or and Op is greater than the covering
radius of Or plus ε:

Extending metric index structures for efficient range query processing 217

Fig. 4 Positive pruning for the M-tree

|d(Op, Oq) − d(Op, Or)| > r(Or) + ε

A proof for this is given in [5]. Thus, as the distance between Op and Oq has
already been computed when accessing a node N , subtrees can be pruned without
further distance computations (see line 5 of the algorithm in Fig. 3).

3.2 Positive pruning

A hierarchical index structure, like the M-tree, is composed of directory nodes
with routing objects Or which represent all objects in their respective subtree
T (Or). For all objects O ∈ T (Or), d(Oq, Or) ≤ r(Or) holds. Efficient processing
of range queries on the original M-tree is based on the concept of “negative prun-
ing”. During the query processing, certain subtrees are excluded from the search
based on the following formula: d(Oq, Or) > r(Or) + ε (see line 7 of the algo-
rithm in Fig. 3).

In this section, we introduce the concept of “positive pruning”. If a directory
node is completely covered by the query range, we can report all objects on the leaf
level of the M-tree without performing any cost intensive distance computations
(cf. Fig. 4).

Lemma 1 Let Oq ∈ O be a query object and ε ∈ IR+
0 a query range. Further-

more, let Or be a routing object in an M-tree with a covering radius r(Or) and a
subtree T (Or). Then the following statement holds:

d(Or, Oq) + r(Or) ≤ ε ⇒ ∀O ∈ T (Or) : d(O, Oq) ≤ ε

Proof The following inequalities hold for all O ∈ T (Or) due to the triangle in-
equality and due to d(Or, Oq) + r(Or) ≤ ε:

d(O, Oq) ≤ d(O, Or) + d(Or, Oq) ≤ r(Or) + d(Or, Oq) ≤ ε 	

218 K. Kailing et al.

Fig. 5 Adaptation of similarity range search on M-trees for positive pruning

In the case of negative pruning, we skip the recursive tree traversal of a subtree
T (Or), if the query range does not intersect the covering radius r(Or). In the case
of positive pruning, we skip all the distance calculations involved in the recursive
tree traversal if the query range completely covers the covering radius r(Or). In
this case, we can report all objects stored in the corresponding leaf nodes of this
subtree without performing any further distance computations. Figure 5 shows
how this concept can be integrated into the original method rangeSearch depicted
in Fig. 3.

This approach is very beneficial for accelerating density-based clustering on
complex objects. DBSCAN, for instance, only needs the information whether an
object is contained in simRange(Oq, ε) = {O ∈ DB|d(O, Oq) ≤ ε} but not the
actual distance of this object to the query object Oq.

3.3 Combination of filtering and indexing

The M-tree reduces the number of distance calculations by partitioning the data
space even if no filters are available. Unfortunately, the M-tree may suffer from
the navigational cost related to the distance computations during the recursive tree
traversal. On the other hand, the filtering approach heavily depends on the quality
of the filters.

When combining both approaches, these two drawbacks are reduced. We use
the filter distances to optimize the required number of exact object distance cal-
culations needed to traverse the M-tree. Thereby, we do not save any I/O cost
compared to the original M-tree, as the same nodes are traversed, but we save a
lot of costly distance calculations necessary for the traversal. The filtering M-tree
stores the objects along with their corresponding filter values within the M-tree.
A similarity query based on the filtering M-tree always computes the filter dis-
tance values prior to the exact distance computations. If a filter distance value is
already a sufficient criterion to prune branches of the M-tree, we can avoid the ex-
act distance computation. If we have several filters, the filter distance computation
always returns the maximum value of all filters.

The pruning quality of the filtering M-tree benefits from both the quality of the
filters and the clustering properties of the index structure. In the following, we will
show that the number of distance calculations used for range queries as well as for
the creation and update of an M-tree can be optimized by using lower-bounding
filters.

Extending metric index structures for efficient range query processing 219

Fig. 6 Similarity range query based on the filtering M-tree

3.3.1 Range queries

Similarity range queries are used to retrieve all objects from a database which are
within a certain similarity range from the query object (cf. Definition 1). By com-
puting the filter distance prior to the exact distance, we can save on many distance
computations. Based on the following lemma, we can prune many subtrees with-
out computing the exact distances between a query object Oq and a routing object
Or (cf. Fig. 6).

Lemma 2 Let O be a set of objects and DB ⊆ O a database. Furthermore, let
do, d f : O × O �→ IR+

0 be two distance functions, for which d f lower bounds
do, i.e. ∀O1, O2 ∈ O : d f (O1, O2) ≤ do(O1, O2) holds. Let Oq ∈ O, ε ∈ IR+

0 .
For each routing object Or ∈ DB with covering radius r(Or) ∈ IR+

0 and subtree
T (Or) the following statement holds:

∀O ∈ T (Or) : (d f (Oq, Or) > r(Or) + ε) ⇒ do(Oq, O) > ε

Proof As ∀O1, O2 ∈ O : �{(O∞,O∈) ≤ ��(O∞,O∈) holds, the following state-
ment is true:

d f (Oq, Or) > r(Or) + ε ⇒ do(Oq, Or) > r(Or) + ε

Based on the triangle inequality and our assumption that do(O, Or) ≤ r(Or), we
can proof the aforementioned lemma as follows:

d f (Oq, Or) > r(Or) + ε

⇒ do(Oq, Or) > r(Or) + ε

⇒ do(Oq, Or) − r(Or) > ε

⇒ do(Oq, Or) − do(O, Or) > ε

⇒ do(Oq, O) > 	

Let us note that a similar optimization can be applied to the objects stored

on the leaf level with the assumption that their ‘covering radius’ is 0. Figure 7
shows how this concept can be integrated into the original method rangeSearch
of Fig. 3.

220 K. Kailing et al.

Fig. 7 Adaptation of similarity range search on M-trees for filtering

3.3.2 Construction and update

Filters can also be used for accelerating the creation and update of an M-tree. For
the necessary adaptations of the insertion and split algorithms, we refer the reader
to [7].

3.4 Caching distance calculations

In this section, we present a further technique which helps to avoid costly distance
computations for index construction and query processing.

Efficient query processing of range queries also benefits from the idea of
caching distance calculations. During the navigation through the M-tree directory,
the same distance computations may have to be carried out several times. Al-
though each object O is stored only once on the leaf level of the M-tree, it might
be used several times as routing object. Furthermore, we often have the situation
that distance calculations carried out on the directory level have to be repeated at
the leaf level.

As shown in Fig. 3, a natural way to implement range queries is by means of
recursion resulting in a depth-first search. We suggest to keep all distance compu-
tations in main memory which have been carried out on the way from the root to
the actual node. After leaving the node, i.e. when exiting the recursive function,
we delete all distance computations carried out at this node. This limits the actual
main memory footprint to O(h · b), where h denotes the maximum height of a
tree and b denotes the maximum number of stored elements in a node. Even in
multi-user environments, this rather small worst-case main memory footprint is
tolerable. The necessary adaptations of the rangeSearch algorithm are drafted in
Fig. 8.

Extending metric index structures for efficient range query processing 221

Fig. 8 Adaptation of similarity range search on M-trees for caching

4 Evaluation

To show the efficiency of our approach, we chose the applications and data types
described in Sect. 2 and performed extensive experiments. All algorithms were
implemented in Java 1.4 and the experiments were run on a workstation with a
Xeon 1.7 GHz processor and 2 GB main memory under Linux. We implemented
the M-tree as described in [5]. As in all cases, the time for distance calculations
was dominating the runtime of a range query, we only show the number of distance
calculations and not the runtime.

4.1 CAD vector set data

For the experiments with this data type, we used the similarity model presented
in [10], where CAD objects were represented by a vector set consisting of seven
vectors in 6D. All experiments were carried out on a data set containing 5000 CAD
objects from an American aircraft producer. As distance measure between sets of
feature vectors we used the minimal matching distances which can be computed
in O(k3), where k denotes the cardinality of the point set, by means of the Kuhn–
Munkres algorithm [12, 13]. As filter, we used the centroid filter introduced in
[10].

Figures 9 and 10 show in what way the different approaches for range query
processing depend on the chosen ε value. Figure 9 shows that for the investigated
data set, the original M-tree is the worst access method for all ε values. On the
other hand, the pure filter performs very well. For this data set, reasonable ε val-
ues for density-based clustering would be about 1 for DBSCAN and about 2 for

222 K. Kailing et al.

0

1000

2000

3000

4000

5000

6000

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5 6 6,5 7 7,5 8 8,5 9 9,5 10

epsilon

n
o

. o
f

d
is

ta
n

ce
 c

al
cu

la
ti

o
n

s

Hits Filter M-tree M-tree+Cache+Filter+PosPruning

Fig. 9 Comparison of our best technique to M-tree and filtering for vector set data

0

1000

2000

3000

4000

5000

6000

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5

epsilon

n
o

. o
f

d
is

ta
n

ce
 c

al
cu

la
ti

o
n

s

M-tree+Filter M-tree+Cache M-tree+Cache+Filter M-tree+Cache+Filter+PosPruning

Fig. 10 Comparison of our techniques for vector set data

OPTICS. In this parameter range, our approach clearly outperforms both the filter
and especially the original M-tree.

In Fig. 10, one can see that for small ε values, we benefit from the filtering
M-tree, whereas for higher values, we benefit from caching and positive pruning.

Furthermore, we clustered the data set using OPTICS [2]. which forms the
basis for the visual data mining tool presented in Sect. 2.2. With a suitable param-
eter setting for OPTICS we achieved a speed-up of 16% compared to the centroid
filter, 33% compared to the original M-tree, and 104% compared to the sequential

Extending metric index structures for efficient range query processing 223

0

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

9.000

10.000

2 5 15

epsilon

n
o

. o
f

d
is

ta
n

ce
 c

al
cu

la
ti

o
n

s

Filter Mtree Mtree+Filtering+Caching+PositivePruning

Fig. 11 Comparison of our best technique to M-tree and filtering for tree structured data

scan. Let us note that the average cardinality of the result set of each range query
was almost 2000, which limits the best achievable speed-up to 150%.

4.2 Image data

Image data are a good example for multi-represented complex objects. A lot of
different similarity models exist for image data, each having its own advantages
and disadvantages. Using for example text descriptions of images, one is able
to cluster all images related to a certain topic, but these images need not look
alike. Using color histograms instead, the images are clustered according to the
distribution of color in the image. The approach for clustering multi-represented
objects presented in [8] is able to get the best out of all these different types of
representations. We present some experiments for image data represented as trees
or graphs, where the efficiency of range query processing is especially important.

4.2.1 Tree structured image data

Images can be described as segmentation trees. Thereby, an image is first divided
into segments of similar color, then a tree is created from these segments by itera-
tively applying a region growing algorithm, which merges neighboring segments
if their colors are sufficiently alike. As similarity measure for the resulting trees,
we used the degree-2 edit distance and implemented the filter-refinement archi-
tecture as described in [9]. We used a sample set of 10,000 color TV images.
For the experiments, we chose reasonable epsilon values for the multi-represented
clustering algorithm.

Figure 11 shows that we achieve a significant speed-up compared to the origi-
nal M-tree. As can be seen, we also outperform the pure filtering approach.

224 K. Kailing et al.

0

2000

4000

6000

8000

10000

12000

00,20,40,60,81

selectivity of filter

n
o

. o
f

d
is

ta
n

ce
 c

al
cu

la
ti

o
n

s

Filter Mtree+Filtering+Caching+PositivePruning Mtree

Fig. 12 Comparison of our techniques for graph data

4.2.2 Graph structured image data

To extract graphs from the images, they were segmented with a region growing
technique and neighboring segments were connected by edges to represent the
neighboring relationship. We used the edge matching distance and the image data
set as described in [11]. The filter presented in this paper is almost optimal, i.e.
the number of unnecessary distance calculations during query processing is very
low. Even in this case, our techniques is as good as the filter.

To show the robustness of our approach against the filter selectivity, we re-
duced it in a stepwise process. We weighted the original filter distances with con-
stant factors to decrease the filter selectivity. Figure 12 shows that independent of
the filter selectivity, our approach outperforms the original M-Tree by a factor of
almost 2 and is at least as good as the pure filtering approach.

5 Conclusions

The similarity measures used for complex objects are often computationally very
complex, which makes them unusable for large databases. To overcome the effi-
ciency problems, metric index structures or multi-step query processing are ap-
plied. We combined and extended these approaches to achieve the best from two
worlds. More precisely, we presented three improvements for metric index struc-
tures, i.e. positive pruning, the combination of filtering and indexing, and caching.
In a broad experimental evaluation based on real-world data sets, we showed that
a significant speed-up for similarity range queries is achieved with our approach.
By means of our new techniques, application areas like visually mining through
cluster hierarchies of complex objects or clustering of complex multi-represented
objects can be extended to larger databases.

Extending metric index structures for efficient range query processing 225

References

1. Agrawal R, Faloutsos C, Swami AN (1993) Efficient similarity search in sequence
databases. In: Proceedings of the 4th international conference of foundations of data or-
ganization and algorithms (FODO), pp 69–84

2. Ankerst M, Breunig MM, Kriegel H-P, Sander J (1999) OPTICS: ordering points to identify
the clustering structure. In: Proceedings of the ACM SIGMOD international conference on
management of data (SIGMOD’99), Philadelphia, PA, pp 49–60

3. Brecheisen S, Kriegel H-P, Kröger P, Pfeifle M (2004) Visually mining through cluster hi-
erarchies. In: Proceedings of the SIAM international conference on data mining (SDM’04),
Orlando, FL

4. Chavez E, Navarro G, Baeza-Yates R, Marroquin JL (2001) Searching in metric spaces.
ACM Comput Surv 33(3):273–321

5. Ciaccia P, Patella M, Zezula P (1997) M-tree: An efficient access method for similarity
search in metric spaces. In: VLDB’97, Proceedings of the 23rd international conference on
very large databases, August 25–29, 1997, Athens, Greece, pp 426–435

6. Ester M, Kriegel H-P, Sander J, Xu X (1996) A density-based algorithm for discovering
clusters in large spatial databases with noise. In: Proceedings of the 2nd international con-
ference on knowledge discovery and data mining (KDD’96), Portland, OR, pp 291–316

7. Kailing K, Kriegel H-P, Pfeifle M, Schönauer S (2004) Efficient indexing of complex ob-
jects for density-based clustering. In: Proceedings of the 5th international workshop on
multimedia data mining (MDM/KDD), Seattle, WA, pp 28–37

8. Kailing K, Kriegel H-P, Pryakhin A, Schubert M (2004) Clustering multi-represented ob-
jects with noise. In: Proceedings of the 8th Pacific-Asia conference on knowledge discovery
and data mining (PAKDD’04), Sydney, Australia, pp 394–403

9. Kailing K, Kriegel, H-P, Schönauer S, Thomas S (2004) Efficient similarity search for hi-
erachical data in large databases. In: Proceedings of the 9th international conference on
extending database technology (EDBT 2004), pp 676–693

10. Kriegel H-P, Brecheisen S, Krger P, Pfeifle M, Schubert M (2003) Using sets of feature
vectors for similarity search on voxelized cad objects. In: Proceedings of the ACM SIG-
MOD international conference on management of data (SIGMOD’03), San Diego, CA, pp
587–598

11. Kriegel H-P, Schönauer S (2003) Similarity search in structured data. In: Proceedings of the
5th international conference, DaWaK 2003, Prague, Czech Republic, pp 309–319

12. Kuhn H (1955) The Hungarian method for the assignment problem. Naval Res Logist Quart
2:83–97

13. Munkres J (1957) Algorithms for the assignment and transportation problems. J SIAM
6:32–38

14. Nierman A, Jagadish HV (2002) Evaluating structural similarity in XML documents. In:
Proceedings of the 5th international workshop on the web and databases (WebDB 2002),
Madison, Wisconsin, USA, pp 61–66

15. Sebastian TB, Klein PN, Kimia BB (2001) Recognition of shapes by editing shock graphs.
In: Proceedings of the 8th international conference on computer vision (ICCV’01), Vancou-
ver, BC, Canada, vol 1, pp 755–762

16. Traina C Jr., Traina A, Seeger B, Faloutsos C (2000) Slim-trees: high performance metric
trees minimizing overlap between nodes. In: Proceedings of the 7th international conference
on extending database technology, Konstanz, Germany, March 27–31, 2000, pp 51–65

17. Wang JTL, Zhang K, Chang G, Shasha D (2002) Finding approximate patterns in undirected
acyclic graphs. Pattern Recog 35(2):473–483

18. Zhang K, Wang J, Shasha D (1996) On the editing distance between undirected acyclic
graphs. Int J Found Comput Sci 7(1):43–57

226 K. Kailing et al.

Author Biographies

Karin Kailing received her PhD from the University of Mu-
nich where she is working as a research and teaching assis-
tant. She is currently on a leave of absence to the IBM Al-
maden Research Center. Her research interests are in query
processing and knowledge discovery in databases. One of her
focus areas is the development of new techniques for mining
complex objects.

Hans-Peter Kriegel is a full professor for database systems
in the Department of Computer Science at the University of
Munich and the department head since 2003. His research
interests are in spatial and multimedia database systems, par-
ticularly in query processing, performance issues, similarity
search, high-dimensional indexing as well as in knowledge
discovery and data mining. He received his MS and Ph.D.
in 1973 and 1976, respectively, from the University of Karl-
sruhe, Germany. Hans-Peter Kriegel has been chairman and
program committee member in many international database
conferences. He has published over 200 refereed conference
and journal papers. In 1997 Hans-Peter Kriegel received the
“SIGMOD Best Paper Award” for the publication and proto-
type implementation “Fast Parallel Similarity Search in Mul-
timedia Databases” together with four members of his re-
search team.

Dr. Martin Pfeifle works as a research and teaching assis-
tant in the group of Prof. Dr. Hans-Peter Kriegel. The re-
search interests of Martin Pfeifle include database support for
virtual engineering, with a strong emphasis on spatial index
structures and similarity search in spatial databases. Further-
more, he is interested in the area of knowledge discovery in
databases, especially in density-based clustering.

Extending metric index structures for efficient range query processing 227

Stefan Schönauer currently is a Post-Doc at IBM Almaden
Research Center in the reasearch group of Rakesh Agrawal.
He received his MS and Ph.D. in 1999 and 2004, respectively,
from the University of Munich, Germany. His research inter-
ests are in similarity search and data mining in complex ob-
jects, content-based image retrieval and bioinformatics. He is
a member of ACM SIGMOD.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

