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Abstract A database session is a sequence of requests presented to the database
system by a user or an application to achieve a certain task. Session identifica-
tion is an important step in discovering useful patterns from database trace logs.
The discovered patterns can be used to improve the performance of database sys-
tems by prefetching predicted queries, rewriting the current query or conducting
effective cache replacement.

In this paper, we present an application of a new session identification method
based on statistical language modeling to database trace logs. Several problems
of the language modeling based method are revealed in the application, which
include how to select values for the parameters of the language model, how to
evaluate the accuracy of the session identification result and how to learn a lan-
guage model without well-labeled training data. All of these issues are impor-
tant in the successful application of the language modeling based method for
session identification. We propose solutions to these open issues. In particular,
new methods for determining an entropy threshold and the order of the language
model are proposed. New performance measures are presented to better evalu-
ate the accuracy of the identified sessions. Furthermore, three types of learn-
ing methods, namely, learning from labeled data, learning from semi-labeled
data and learning from unlabeled data, are introduced to learn language mod-
els from different types of training data. Finally, we report experimental results
that show the effectiveness of the language model based method for identifying
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sessions from the trace logs of an OLTP database application and the TPC-C
Benchmark.

Keywords Statistical language modeling · Session identification · Database trace
logs

1 Introduction

The performance of a database system is influenced by the characteristics of its
hardware and software components as well as of the workload it has to process
[7]. The workload is a set of requests the system receives during a period of time.
It reflects the query behavior of the database users. The analysis of the workload
has played an important role in optimizing the performance of database systems.

While most work on workload analysis is based on transactions recorded
on the database trace logs, it has been brought into attention that analysis of
task-oriented user sessions provides useful insight into the query behavior of the
database users [16, 33]. A session is a sequence of queries issued by a user (or an
application) to achieve a certain task. It consists of one or more database trans-
actions, which are in turn a sequence of operations performed as a logical unit of
work. Analysis of sessions allows us to discover high-level patterns that stem from
the structure of the task the user is solving. The discovered patterns can be used
to predict incoming user queries based on the queries that the user has already
issued. The prediction can be utilized in the semantic query caching technique to
optimize database performance by prefetching predicted queries, rewriting current
query and conducting effective cache replacement [33, 41].

In order to find useful patterns in user sessions, it is necessary, as the first step,
to group the queries on the database trace logs into sessions. A user may have a
single session or multiple sessions during a period of time, depending on the num-
ber of tasks the user performs during that period of time. Only once these sessions
have been identified, can common usage patterns among sessions be discovered
by statistical or data mining tools.

The most commonly used session identification method is called timeout [15],
in which a user session is defined as a sequence of requests from the same user
such that no two consecutive requests are separated by an interval more than a
predefined threshold. This session identification method suffers from the problem
that it is difficult to set the time threshold. Different users may have different query
behaviors, and their time intervals between sessions may be significantly different.
Even for the same user, intervals between sessions may vary.

Recently, a new session identification method based on statistical language
models was proposed and used to detect session boundaries in Web logs [22].
The method does not rely on any time intervals when identifying session bound-
aries. Instead, it uses an information theoretic approach to identifying session
boundaries dynamically by measuring the change of information in the sequence
of requests. The method has been demonstrated to be more effective than the
timeout and two other methods in discovering interesting association rules in a
Web mining domain. However, the successful use of this method depends on how
to select values for some parameters, such as the order of the language model
and an entropy threshold, which is the minimum change of entropy between two
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consecutive requests. How to select suitable values for these parameters for a
given data set remains open. In addition, the method was only used with unlabeled
training data and was only evaluated on a Web log data set in which true sessions
were not known. The evaluation was based on the number of interesting associ-
ation rules generated from the identified sessions, which is an indirect evaluation
of the accuracy of the session identification method. Better performance metrics
are necessary to demonstrate the effectiveness of the method.

In this paper, we present an application of the language modeling based session
identification method to the trace logs of an OLTP database system. Our objective
is to determine whether the language modeling method is effective for detecting
the boundaries of user sessions in database applications. We also propose solutions
to the open issues in the language modeling based method. To solve the parameter
selection problem, we propose new methods for determining the entropy thresh-
old and the order of the language model. In addition, new performance measures
are proposed to better evaluate the accuracy of the identified sessions. The perfor-
mance measures are used in the evaluation of the method and are also utilized in
the parameter selection and tuning process. Furthermore, three types of learning
methods, namely, learning from labeled data (LLD), learning from semi-labeled
data (LSD) and learning from unlabeled data (LUD), are introduced to learn lan-
guage models. These learning methods are designed to suit the different character-
istics of real log data sets. Finally, we present a performance evaluation, in which
the language modeling based method is compared to the timeout method. The
evaluation results show that the language modeling method is significantly better
than the standard timeout method.

The paper is organized as follows. In Sect. 2, we describe the background of
our application and the application data set. In Sect. 3, a complete picture of the
language modeling based session identification method is presented. We describe
the statistical formulation of language modeling, how to use the language model-
ing technique for session detection, new methods for automatic parameter selec-
tion, and performance measures. In Sect. 4, we present a performance evaluation
of the language modeling based session identification method on our application
data set. Performance evaluation on the TPC-C Benchmark is presented in Sect. 5.
More evaluation results are provided in Sect. 6. Other related work is described in
Sect. 8. Finally, in Sect. 9, we summarize the contributions of this paper, discuss
the impact of the work and describe future work.

2 Background

2.1 Motivation

The application presented in this paper is part of a large research project that in-
vestigates how data mining can be used for database query optimization. We par-
ticularly focus on how to discover and model user access patterns from database
workloads and how to use the user access patterns for semantic query caching.
Semantic query caching is a data caching technique that makes use of the cached
query results to evaluate the incoming queries. Our work is based on the belief
that the queries submitted by a client or an application are not random; they con-
tain business meanings and may follow certain rules. Discovery of these rules
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will enable the prediction of incoming queries based on the queries that are al-
ready submitted. The prediction in turn enables effective query prefetching, query
rewriting and cache replacement.

We have proposed to use user access graphs to model the query behavior of
a user or a group of users and suggested algorithms to use such information to
predict queries, rewrite queries and select queries for caching [41]. We currently
work on automatic generation of user access graphs from database trace logs. In
order to generate user access graphs, requests in the trace logs need to be grouped
into sessions, each of which is a sequence of requests submitted by a user or
an application to perform a task. Only after user sessions are obtained, can user
access graphs be discovered by data mining algorithms. In other words, session
identification is a prerequisite for discovering use access graphs.

2.2 Application domain

To test our ideas in the project, we have been using a clinic OLTP application as a
test bed. The clinic is a private physiotherapy clinic located in Toronto. It has five
branches across the city. It provides services such as joint and spinal manipulation
and mobilization, post-operative rehabilitation, personal exercise programs and
exercise classes, massage and acupuncture. In each day, the client applications
installed in the branches make connections to the center database server, which is
Microsoft SQL Server 7.0.1 In each connection, a user may perform one or more
tasks, such as checking in patients, making appointments, displaying treatment
schedules, explaining treatment procedures and selling products.

2.3 Data collection and preprocessing

The log file is collected by using Microsoft SQL Profiler. The SQL Profiler can
monitor all queries that are issued to the SQL Server database, and a user can
define the queries to be monitored manually. We use the SQL Profiler to collect
all SQL queries submitted by the client application within a period of observa-
tion time. The log entry contains information about the corresponding SQL query,
such as the query content (Sql), the beginning time (StartTime), the finishing time
(EndTime) and the connection id (Spid).

Not all the information in the log entry is relevant to the task of session iden-
tification. Thus, data preprocessing was conducted on the database traces. The
following two steps were performed to preprocess the data:

1. identifying the users from each log entry, and
2. classifying and identifying user requests from the log entry.

In our application, a connection is made by a single user whose user id and
password are submitted at the beginning of the connection. Thus, the requests
from the connections that have the same user id belong to the same user.

There are many different SQL queries in a given log file. Many of these queries
have similar query formats. For example, queries “select name from profile where

1 SQL Server 7.0 is registered trademark of Microsoft Corporation.
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Fig. 1 Extracting user request sequence

id=1” and “select name from profile where id=2” only differ in the value part, and
they are the same kind of user request. Since our objective is to predict incoming
queries for query optimization, it is necessary to generalize the query by ignoring
the value difference among queries. We developed a program to replace the data
values embedded in an SQL query with the wildcard character (%). The modified
SQL query is called an SQL query template. By replacing each SQL query with
its corresponding SQL query template, we can obtain a collection of SQL query
templates. By replacing each SQL query template with a label, we can obtain
a sequence of request labels made by each user, which is the input of the session
identification program. We call this step as request classification and identification
step. Figure 1 shows an example of classifying and identifying user requests.2

The collected data contain 18 connections, eight users and 7244 queries within
a 10 h observation time. For each user the requests are sorted according to the
connection id and StartTime. Clearly, in the request sequence of each user, the
change of connection id is a session boundary. However, there is usually more
than one session within a connection. Our task is to group the requests within one
connection into sessions.

2.4 Session example

Table 1 shows an instance of a session for displaying the treatment schedule for
a patient. The session contains queries for checking the authority (30), check-
ing whether the customer exists (9), retrieving the membership card information
(10), retrieving the customer’s contact information (20), retrieving the customer’s
treatment history (47), and retrieving the schedule information (49). Knowing the
structure of the sessions can help predict, pre-fetch or rewrite queries for better

2 Field EndTime is not shown in the figure.
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Table 1 An instance of schedule display session

Label Statement

30 Select authority from employee where employee id =‘1025’
9 Select count(*) as num from customer where cust num = ‘1074’
10 Select card name from customer t1,member card t2 where 1.cust num =

‘1074’ and t1.card id = t2.card id
20 Select contact last,contact first from customer where cust num = ‘1074’
47 Select t1.branch ,t2.* from record t1, treatment t2 where t1.contract no =

t2.contract no and t1.cust id =‘1074’ and check in date = ‘2002/03/04’
and t1.branch = ‘scar’

49 Select top 10 contract no from treatment schedule where cust id = ‘1074’
order by checkin date desc

performance. For example, all the queries in sequence 9,10,20 request informa-
tion from table customer. If this sequence is found to be a frequent sequence, we
can rewrite the first query to retrieve all the necessary information from table cus-
tomer and put the result in a local cache. When the two other queries are submitted
by the user, they can be answered from the cache.

3 Session identification with language modeling

3.1 Statistical language model

The original motivation for statistical language modeling comes from speech
recognition, where the goal is to predict the probability of natural word sequences.
Given a word sequence, s = w1, w2, . . . , wN , its probability can always be writ-
ten using the probability chain rule as:

P(s) = P(w1)P(w2|w1)P(w3|w1w2), . . . , P(wN |w1, . . . , wN−1)

=
N∏

i=1

P(wi |w1, . . . , wi−1)

The simplest and most successful statistical language models have been n-gram
language models. In n-gram language modeling, it is assumed that the probability
of a word only depends on its at most n −1 preceding words. Thus, the probability
of a word sequence s becomes

P(s) =
N∏

i=1

P(wi |wi−n+1, . . . , wi−1)

where the subscript of w in wi−n+1, . . . and wi−1 should always be bigger than 0,
that is, w j with j ≤ 0 should be ignored. For example, when n = 3,

P(s) = P(w1)P(w2|w1)P(w3|w1w2), . . . , P(wN |wN−2wN−1)

A statistical language model, then, can be represented by a specific choice of con-
ditional probabilities for all possible n-grams: P(wi |wi−n+1, . . . , wi−1).
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The quality of a given statistical language model can be measured by its em-
pirical perplexity and entropy on a given corpus of text s [3], where the empirical
perplexity of the model on s is defined as

Perplexity(s) = P(s)−
1
N

and the empirical entropy of the model on s is

Entropy(s) = log2 Perplexity(s)

= − 1

N
log2 P(s)

That is, we would like the language model to place high probability on natural test
sequences s, and hence obtain a small value of empirical perplexity or entropy.

The key issue in statistical language modeling is how to estimate the n-gram
probabilities from a given corpus of training data. A straightforward method for
estimating n-gram probabilities uses the observed frequencies of word sequences
in the training corpus as follows:

P(wi |wi−n+1, . . . , wi−1) = #(wi−n+1, . . . , wi )

#(wi−n+1, . . . , wi−1)
(1)

where #(·) is the number of occurrences of a specified word sequence in the train-
ing corpus. Although one could attempt to use this simple n-gram model to capture
long range dependencies in language, such a simple approach to estimation suf-
fers from the sparse data problem. For instance, to train a trigram model with a
vocabulary size of 20,000, there are eight trillion free parameters to be estimated.
However, any reasonable training set may only contain a sequence of a few mil-
lion words. In general, using word sequences of length up to n entails estimating
the probability of W n events, where W is the size of the word vocabulary. Be-
cause of the heavy tailed nature of language (i.e., Zipf’s law) one is likely to en-
counter novel n-grams that were never witnessed during training in a test corpus,
and the probability for these unseen n-grams should clearly not be zero. There-
fore, a mechanism for assigning non-zero probability to novel n-grams is a central
and unavoidable issue in statistical language modeling. One standard approach
to smoothing probability estimates to cope with the sparse data problem (and to
cope with potentially missing n-grams) is to use some sort of back-off estimator
as follows [26].

P(wi |wi−n+1, . . . , wi−1)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

P̂(wi |wi−n+1, . . . , wi−1),

if #(wi−n+1, . . . , wi ) > 0

β(wi−n+1, . . . , wi−1) × P(wi |wi−n+2, . . . , wi−1),

otherwise
(2)

where

P̂(wi |wi−n+1, . . . , wi−1) = discount #(wi−n+1, . . . , wi )

#(wi−n+1, . . . , wi−1)
(3)
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is called discounted probability and β(wi−n+1, . . . , wi−1) is a normalization con-
stant calculated to be

β(wi−n+1, . . . , wi−1) = 1 − ∑
x :#(wi−n+1,...,wi−1x)>0 P̂(x |wi−n+1, . . . , wi−1)

1 − ∑
x :#(wi−n+1,...,wi−1x)>0 P̂(x |wi−n+2, . . . , wi−1)

(4)
Different methods can be used for computing the discounted probability in

Eq. (3). Typical discounting techniques include absolute smoothing (ABS), Good-
Turing smoothing (GT), linear smoothing (LIN) and Witten–Bell smoothing (WB)
[13]. The objective of smoothing is to reserve a small amount of probability mass
for unobserved events. Different discounting techniques have different assumption
on how to reserve this probability mass. We use Witten–Bell smoothing in the
experiments reported in this paper. In Witten–Bell discounting, the probability of
a word wi given wi−n+1, . . . , wi−1 is calculated as:

P̂(wi |wi−n+1, . . . , wi−1) = α
#(wi−n+1, . . . , wi )

#(wi−n+1, . . . , wi−1)

where α is defined differently as:

α = 1 − C

#(wi−n+1, . . . , wi−1) + C

where C denotes the number of distinct words that can follow wi−n+1, . . . , wi−1
in the training data.

3.2 N-gram based session identification

Although the original motivation of language modeling is to estimate the proba-
bility of naturally occurring word sequences, language modeling actually provides
a general strategy for estimating the probability of any sequence—regardless of
whether the basic units consist of words, characters, or any other arbitrary al-
phabet. In this sense, many problems can be formulated as a language modeling
problem. In database applications, queries are issued sequentially in a particular
order, similar to the word sequences that occur in a natural language. If we con-
sider each query as a basic unit, like a word or character in natural language, we
can then attempt to estimate the probability of query sequences using the same
language modeling tools described above.

The basic goal of session identification in a database application is to group
sequential queries in a database trace log that are issued to achieve a certain task,
and segment queries that are unrelated. Language modeling provides a simple,
natural approach to segmenting these log sequences. Imagine a set of queries for
a task that are frequently issued one after another. In this case, the entropy (or
perplexity) of the sequence is low. However, when a new query is observed in
the sequence that is not relevant to the original task (but in fact indicates a shift
to a new task), the introduction of this new query causes an increase in the en-
tropy of the sequence because it is rarely issued after the preceding sequence of
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Fig. 2 Entropy evolution in our web log dataset

queries. Such an entropy increase serves as a natural signal for session boundary
detection. If the change in entropy passes a threshold, a session boundary could be
placed before the new query. In other words, the uncertainty (which is measured
by entropy) within a session should be roughly constant, allowing for a fixed level
of variability within a topic. However, whenever the entropy increases beyond a
threshold, this presents a clear signal that the user’s activity has changed to an-
other topic. Thus, we should set a session boundary at the place where the entropy
changes.

Figure 2 shows the entropy evolution of a query sequence in one connection
from our OLTP application, where the X-axis is the sequence represented by query
ids, Y-axis is the entropy of the sequence from the first query to the current query,
and the two curves are based on the n-gram models trained in the LUD and LLD
modes (explained in Sect. 3.3), respectively. As one can see, the entropy changes
radically at some points, although it remains stable in other places. This figure
gives an intuition how entropy could be used for session boundary detection.

3.3 Learning from labeled, semi-labeled and unlabeled data

The probabilities in an n-gram model come from the data it is trained on. This
training data need to be carefully designed. If the training data is too specific
to one task, the probabilities may be too narrow and not generalize well to
other tasks. If the training data is too general or too small, the probabilities may
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not reflect the task or the domain efficiently. Good training data should con-
tain enough information about the observed application or user, i.e., the train-
ing data should reflects the dynamic behavior of the observed application or the
users.

There are three kinds of training data, labeled training data, unlabeled training
data and partially labeled training data . In labeled training data, sessions have
been identified and thus the training data set consists of a set of sessions. This is
similar to the situation in computational linguistics where the punctuation symbols
can separate an article into sentences. An n-gram model is trained on sentences
instead of the whole article, in which the frequencies of inter-sentence words are
set to 0. We refer to the n-gram learning method that is based on the labeled
training data as learning from labeled data (LLD) method.

In some situations, it is very difficult, if not impossible, to obtain a labeled
training data set. For example, log files for Web applications do not usually contain
session boundaries. In this case, we can estimate request frequencies based on
the un-labeled data sequence, and the corresponding n-gram model contains both
the inter-session and the intra-session request frequencies. We call this session
detection method the learning from unlabeld data (LUD) method. In the n-gram
model trained by the LUD method, the difference between the inter-session and
intra-session entropy changes is not as large as in the model derived from the
LLD session detection method (as shown in Fig. 2). Therefore, the LUD learning
is more sensitive to the selection of parameters, such as the entropy threshold and
the n-gram order.

In a third type of situation, which is most common, the training data are par-
tially labeled. For example, in some database or Web applications, users are re-
quired to make a connection to the server and/or to log in with their user names
and password. A login request is clearly the beginning of a session. However, the
user may conduct several tasks within one connection and most users do not log
out after they finish their tasks. Therefore, the log data contain part of the bound-
ary points and are thus partially separated by the boundary points. In this case, we
can build an n-gram model by estimating the probabilities based on the partially
labeled training data. We refer to this method as learning from semi-labeled data
(LSD) method.

In either LUD or LSD learning, inter-session probabilities are over-estimated
due to the use of unlabeled or partially labeled training data. However, assum-
ing sessions are independent, these inter-session probabilities are usually much
smaller than the estimated intra-session probabilities. Since sessions are identi-
fied by observing the entropy change in the data sequence, it is still reasonable to
use the learned language model to identify sessions on a data sequence. However,
to obtain the best values for n-gram model parameters, such as the order n and
the entropy change threshold, a development set that contains completely labeled
sessions is needed. We will describe how to estimate the parameters later in this
section. The development set can be obtained by taking a small portion of the
training data and manually separating the data into sessions using domain knowl-
edge. Since the development set is small, it is much easier to obtain than a large
labeled training data set.
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3.4 Performance measures

After an n-gram model is built over the training data, it can be used to divide
an unseparated test sequence of requests into sessions. Performance measures are
needed to evaluate the accuracy of the session detection. In this section, we pro-
pose to use two performance measures that have not been used in evaluation of
session detection and discuss their correlations. One of the measures will be used
in parameter selection for building n-gram models.

The first measure is referred to as F-measure, which has been used in infor-
mation retrieval to measure the retrieval performance. Suppose we know the true
session boundaries in the test sequence. The precision of session detection is de-
fined as the ratio of the number of the true session boundaries that are correctly
detected to the total number of estimated boundaries. The recall of session de-
tection is the hit-rate, which is the portion of the true session boundaries that are
correctly detected. F-measure is defined as

F-Measure = 2 × Precision × Recall

Precision + Recall

A higher F-measure value means a better overall performance.
The second measure is called cross entropy. For a set T of se-

quences {φ1, . . . , φm} and a smoothed n-gram model that have probabilities
P(wi |wi−n+1, . . . , wi−1), we can calculate the probability of the set T as the
product of the probabilities of all the sequences in T :

P(T ) =
m∏

i=1

P(φi ),

where P(φi ) can be calculated by using P(wi |wi−n+1, . . . , wi−1). The mea-
sure of cross-entropy is motivated by the well-known relation between prediction
and compression. In particular, given a language model that assigns probability
P(T ) to a set T , we can derive a compression algorithm that encodes T using
− log2 P(T ) bits. The cross-entropy Hp(T ) of a model P(wi |wi−n+1, . . . , wi−1)
on data T is defined as [13, 36]

Hp(T ) = − 1

N
log2 P(T ),

where N is the number of events in T . This value can be interpreted as the aver-
age number of bits needed to encode each event in T by using the compression
algorithm associated with model P(wi |wi−n+1, . . . , wi−1). A smaller cross-entry
value means a better compression algorithm [36], and a better session separating
model as well. This is because the entropy of such models’ predictions will be
lower inside sessions, leading to larger changes in entropy at session boundaries.
An advantage of using cross entropy to measure the performance of an n-gram
model for session detection is that we do not need to know the true session bound-
aries in test data to calculate the cross entropy. This feature makes it possible to
make use of cross entropy as a performance measure on the test data set for ad-
justing the parameters of an n-gram model (see Sect. 3.5.2). However, the n-gram
model should be trained in the LLD mode (i.e., trained on the labeled data set)
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in order for cross entropy to be a reliable performance measure on test data. If
the model is trained on an unlabeled data set, the unlabeled data set will have the
smallest cross entropy, which results in failure in detecting any session boundaries.

3.5 Parameter selection

Assuming the smoothing method is determined, there are two parameters in the
language modeling based session detection method. One is the order of the n-gram
model, which is n. The other is the entropy change threshold used in segmenting
the test sequence.

3.5.1 Automatic selection of threshold

Threshold selection is a critical task of the language modeling based session
boundary detection method. If the threshold is too large, many session bound-
aries are missed and the recall of the detection is low. On the other hand, a small
threshold causes many non-boundary queries to be mistreated as session bound-
aries, which results in low precisions. In both cases, the performance in term of
F-Measure is low. To see how threshold selection is important, we compared the
performances of the n-gram method based on different threshold values. The re-
sult is shown in Fig. 3. In the experiment, the change in entropy is measured by
the relative change in entropy values, defined as

Entropy(s1) − Entropy(s0)

Entropy(s0)

where s0 is a sequence of requests and s1 contains s0 plus the next request follow-
ing s0 in the test data sequence. Based on this definition, a threshold value of 0.20
means that if the change in entropy is over 20%, there is a boundary at the end of
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Fig. 3 Performance change with different threshold values
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s0. From Fig. 3, we can observe that the performance of an n-gram model greatly
depends on the threshold value.

To achieve good performance, we propose an automatic method for choosing
a threshold value for our language model session detection method. Suppose that
the test data sequence has m sessions and N queries. After we estimate the en-
tropy value of each sequence in the test data, we can calculate and sort the relative
entropy difference values in decreasing order. If our language model can find all
m − 1 session boundaries correctly, then the corresponding relative entropy dif-
ference values will occupy the first m − 1 positions in the sorted list. Thus, the
mth value in the sorted list is the estimated threshold value. In practice, we may
not know the actual value of m. However, if we know the average session length
(avgLen), we can estimate m to be N/avgLen and thus choose the (N/avgLen)th

value in the sorted list as the threshold value. For LLD learning, we can estimate
the average session length from the training data. For LUD or LSD learning, we
can use the development set to estimate the average session length.3 Note that for
different n-gram orders, the estimated threshold values are different.

3.5.2 Automatic selection of N-gram orders

Given a data set with average session length avgLen, we can choose an n-gram
order between 1 and avgLen. The 1-gram method assumes that each query is
independent, while the 2-gram model assumes that the current query only depends
on the query just preceding it. We can also choose a larger n-gram order since it
can use more history data. Figure 4 illustrates how the performance of an n-gram
method changes with the order of the model on one of our test data sets. The result
shows that for our application an n-gram model with an order between 2 and 8 is
generally good, and the performance of the model with a lower order (from 2 to 5)
is always better than that with a higher order (from 6 to 8). Since different data sets
may achieve the best performance at different order values, an automatic method
for order selection is necessary. We propose the following method to select the
best n-gram order for a data set. The method treats LLD learning and LUD or
LSD learning differently.

For LLD learning, we train a set of n-gram models with different n values, say
from 2 to 8, on the labeled training data set. We then test each model on the un-
labeled test data sequence with an entropy threshold selected using the automatic
threshold selection method. The performance of each model on the test sequence
is measured in terms of cross entropy. The model with the smallest cross entropy is
selected. Cross entropy, instead of F-measure, is used as the performance measure
in this process because it can be calculated without knowing the true boundaries
in the test data sequence.

For LUD or LSD learning, a set of n-gram models with different n values
is trained on the unlabeled or partially labeled training data. Then each model is
tested on the development set. The performance of each model on the development
set is measured by F-measure. The model with the highest F-measure is chosen.
Note that we cannot use the test data sequence and cross entropy to test the models

3 It is much easier and more plausible to estimate the average session length from the train-
ing or development data than estimating the entropy threshold value assuming the training or
development data share similar patterns with the test data.
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as in LLD learning because the models are trained on the unlabeled data and thus
the unlabeled test data sequence will have the smallest cross entropy. Using F-
measure on the development set is more reliable in this situation.

4 Performance evaluation on a real application data set

In this section, we evaluate our method for session identification by comparing the
performance of the method to the performance of the timeout method.

4.1 The data sets

The data sets used in our experiments were based on the database trace logs de-
scribed in Sect. 2. The trace file is collected by using Microsoft SQL Profiler.4 The
SQL Profiler can monitor all queries that are issued to the SQL Server database,
and a user can define the queries to be monitored manually. We use the SQL Pro-
filer to collect all SQL queries submitted by the client application within a period
of observation time. The database trace log (400M bytes) contains 81,417 queries
belonging to 9 different applications, such as front-end sales, daily report, monthly
report, data backup, and system administration. The target application of the pa-
per is the front-end sales application. After preprocessing the trace log, we obtain
7,244 SQL queries from 18 database connection instances of the front-end sales
application. Of these SQL queries, there are 2,989 distinct queries and only 4% of
the queries have occurred for more than 5 times. These distinct queries are further
generalized into 201 SQL query templates by replacing their value parts using
wildcard characters.5

4 SQL Profiler is registered trademark of Microsoft Corporation.
5 In this paper, an SQL query template corresponds to an element of the alphabet in a language

model.
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Table 2 Testing data sets

Name Number of queries Number of sessions Average session length

D1 677 65 10.4
D2 441 56 7.9
D3 816 118 6.9
D4 1181 153 7.7

Although the data set used in the paper is based on a clinic application, the
idea presented in the paper can be used in any database application, such as the
ERP or CRM applications that may contain thousands or even millions different
types of sessions. In our experiments, we do not differentiate sequences in terms
of users. Learning from the data set containing all the users allows us to learn the
common behavior of the users.

To give a complete picture of the performance of the n-gram based session
identification method, we evaluate the method in all the three learning modes:
LLD, LUD and LSD learning. To evaluate the LLD learning method, we manually
separated the data set into sessions according to domain knowledge with the help
from a domain expert. This process is time-consuming, but the effort is worthwhile
because it does not only allow us to train n-gram models with labeled data, but
also enables us to evaluate the results of session identification by comparing the
identified sessions to the true sessions.

We randomly selected four test data sets from the collected data set, referred to
as D1, D2, D3, and D4. Each test data set corresponds to one database connection.
The characteristics of each test data set are shown in Table 2.

For LLD learning, the four test data sets are taken out from the training data.
For LUD or LSD learning, we use the whole data set as the training data to calcu-
late the probabilities in the n-gram model, and use D1 as the development set to
tune parameters. The learned model are tested on D2, D3, and D4.

The training data for the LUD method consist of the 18 unlabeled data se-
quences, corresponding to the 18 connections, respectively. For the LSD method,
some boundary “words” are used to partially separate the training data sequences.
In our application, the boundary words are user sign-in/sign-out and user autho-
rization checking, which were obtained by consulting the domain experts. How-
ever, in our data set, not all the sessions begin or end with a boundary word. The
LSD learning is thus most suitable for our application.

4.2 Performance of the timeout method

For the timeout method, we conducted experiments with a number of timeout
thresholds, ranging from 0.2 s to 30 min. The results of these timeout methods
in terms of F-Measure are shown in Fig. 5. The results show that the best per-
formance in term of F-measure is around 70%. The performance of the timeout
method obviously depends on the timeout threshold. Different applications may
have different best timeout thresholds. For the same application, the best threshold
may also vary among different database connections or users. Even for the same
user or connection, the interval between sessions can be different from time to
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time. In our particular application, a threshold value between 3 and 10 s leads to
the best performance for the timeout method. This is different from Web applica-
tions where an optimal threshold is usually between 10 and 30 min [8, 20].

4.3 Performance of N-gram learning from unlabeled data

For the LUD learning method, the whole data set is used as training data to es-
timate the probabilities in an n-gram model and D1 is used as the development
set to tune the parameters. The trained model is then tested on other test data sets.
Table 3 show the results in terms of the number of true sessions in each test data
set, the number estimated sessions, the number of correct sessions in the estimated
sessions, and the F-measure values. To evaluate our automatic threshold selection
method, we compare the automatic selection method with a more exhaustive pa-
rameter selection method, in which a number of threshold values joined with a
number of values for order n are tested on the development set and the parameter

Table 3 The performance of the LUD method

Number of sessions F-measure
Test data True Estimated Correct Auto Best n-gram Average Best timeout

D2 56 58 48 0.84 0.85 0.78 0.71
D3 118 103 93 0.84 0.89 0.80 0.62
D4 153 137 97 0.67 0.71 0.64 0.69
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Table 4 The performance of the LLD method

Number of sessions F-Measure
Test data True Estimated Correct Auto Best n-gram Average Best timeout

D1 65 67 59 0.89 0.89 0.80 0.70
D2 56 64 53 0.88 0.88 0.81 0.71
D3 118 101 93 0.84 0.85 0.78 0.62
D4 153 168 126 0.78 0.81 0.73 0.69

values that achieve the best performance on the development set are chosen. The
F-measure values from the exhaustive method are shown under “Best n-gram” in
Table 3. The “Average” F-measure in Table 3 is the average of F-measures re-
sulting from the different parameter settings tested in the exhaustive method. We
also list the best results from the timeout method. Note that the timeout thresh-
olds that achieve the best timeout performance are different among the data sets.
We can observe that the results from the automatic parameter selection method
are close to the best n-gram results from the exhaustive method. For two of the
test data sets, the automatic method is significantly better than the best timeout
method.

4.4 Performance of N -gram learning from labeled data

In the LLD n-gram based session detection method, the training data consist of
well-labeled sessions and the test data are not included in the training data. The
results are shown in Table 4. It can be observed that the automatic parameter se-
lection method performs almost the same as the exhaustive method and its perfor-
mance is well above the average n-gram and the best timeout performance.

4.5 Performance of N -gram learning from semi-labeled data

In the LSD learning method, the training data contain partially labeled sessions,
in which boundary words are used as session boundaries, but not all the session
boundaries are identified. Similar to learning from unlabeled data, D1 is used as
the development set to tune the parameters and the whole data set is used as train-
ing data to estimate the probabilities in an n-gram model. The results for the LSD
method are shown in Table 5.

Table 5 The performance of the LSD method

Number of sessions F-Measure
Test data True Estimated Correct Auto Best n-gram Average Best timeout

D2 56 53 47 0.86 0.88 0.80 0.71
D3 118 122 98 0.82 0.88 0.80 0.62
D4 153 150 116 0.77 0.78 0.70 0.69
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4.6 Comparison of all the methods

In Fig. 6, we compare all the methods in terms of F-measure. The results for the
LUD, LLD and LSD methods are the results from the automatic parameter selec-
tion method. The result for the timeout method on a data set is the best timeout
result on that data set. Note that the timeout threshold for the best result may be
different among the data sets. For example, the best timeout threshold for data set
D1 is 5 s, while the one for D4 is 10 s.

We can observe from the figure that the LLD learning method achieves the best
results on all the test data sets; LSD learning method is comparable to the LUD
method on the D2 and D3 data sets but is significantly better than the LUD method
on data set D4; all the three n-gram methods are significantly better than the best
timeout method (except on D4 the performance of the LUD method is slightly
worse than that of the best timeout method). In general, we can say that, using
the automatic parameter selection method, the n-gram based session identification
method is significantly better than the timeout method, which has been the only
method for database session identification.

5 Performance evaluation on the TPC-C benchmark

In this section, we present the experimental results on the TPC-C benchmark data
sets and conduct further comparison between our proposed method and the time-
out method.

5.1 The data sets

TPC Benchmark C (TPC-C) [37] is an OLTP workload and a widely recognized
standard OLTP benchmark, developed by TPC.6 This benchmark offers a rich

6 Transaction Processing Performance Council.
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Table 6 TPC-C training and testing data

Duration Users Nummber Number Session execution time (s)
Name (min) per conn. of requests of sessions Avg. Min. Max.

Train1 90 1 7062 272 0.105 0.005 32.309
Dev 60 1 5064 193 0.097 0.004 31.792
Test1 480 1 40,207 1569 0.082 0.004 8.975
Test2 60 20 51,405 2748 0.172 0.004 26.132
Test3 15 60 82,852 3227 0.237 0.010 65.62

environment (such as multiple on-line terminal sessions) that emulates many com-
plex OLTP applications. In particular, the TPC-C benchmark models a wholesale
supplier managing orders which involves a mixture of five different business trans-
actions7 operated against a database of nine tables. These transactions include en-
tering and delivering orders, recording payments, checking the status of orders,
and monitoring the level of stock at the warehouses.

We use the Query Benchmark Factory software [4] to simulate TPC-C re-
quests on a Microsoft SQL Server 2000 database. In Query Benchmark Fac-
tory, all queries of a business transaction share the same database connection
and most of business transactions (such as Delivery Transaction) contain multi-
ple database transactions. Using the software, we generated a training data set, a
development data set and three test data sets. The characteristics of each gener-
ated data set are shown in Table 6. Here each business transaction is treated as a
session.

5.2 Performance of the timeout method

The performance of the timeout method in terms of F-measure is shown in Fig. 7.
We observe that the performance of the timeout method is very good on the de-
velopment set and the Test1 set, where there is only one user per connection.
However, the performance decreases when the number of users who share the
same database connection increases. In Table 6, we observe that the average
session time is around 0.1 s when there is only one user in a database connec-
tion. This number is very small compared to the time interval between two ses-
sions ranging from 7 to 30 s [37]. However, when the number of shared users
increases in a database connection, the average session time is increased from
0.1 to 0.17 s (for 20 users) and 0.24 s (for 60 users). Meanwhile, the time inter-
val between sessions decreases greatly since many users compete for the same
database connection. When the number of users in one database connection be-
comes larger, the average session time becomes longer and the time interval
between two sessions becomes smaller, which makes it harder for the timeout
method to detect the boundaries between two sessions. This explains why the
performance of the timeout method decreases as the number of shared users
increases.

7 A business transaction is comprised of one or more database transactions.
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5.3 Performance of LLD and LUD N-gram learning

For the LLD learning method, we use the labeled data train1 as the training data to
train the model and use the model to identify sessions on the other unlabeled ses-
sion data sets. Figure 8 shows how the performance of LLD changes with the en-
tropy threshold, where the n-gram order is set to 6. For the LUD learning method,
we use the original unlabeled data train1 to train the model, and then use the
model to identify sessions in data test1, test2 and test3. The result is shown in
Fig. 9, where the n-gram order is set to 6.

From Figs. 8 and 9, we can observe that the performance of LLD and LUD
learning does not change much as the number of users increases. Obviously, the
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performance of LLD and LUD learning is much more stable comparing to the
timeout method. In particular, their performance is much better than the timeout
method when there are a number of users who share the same database connection.
The reason for the language modeling method to perform better is that the queries
in a business transaction follows certain business logic, which can be recognized
better by the n-gram models.

5.4 Influence of different N-gram models

In order to investigate the influence of different n-gram orders, we conducted a
series of experiments, in which different orders are used to separate the test data.
For LLD, train1 is used as training data to train the model and to tune the entropy
threshold. The tuned model is then used to identify sessions in dev, test1, test2 and
test3. The performance of the LLD method with different n-gram orders is shown
in Fig. 10. For the LUD method, unlabeled train1 is used as training data to train
the model and dev is used to determine the entropy threshold. The model is then
used to identify sessions in test1, test2 and test3. The performance of LUD with
different n-gram orders is shown in Fig. 11. As we can see, the order of n-gram
models does not have too much effect on the performance except when the order
is 1 where the requests are considered to be independent.

6 Further performance evaluation

In this section, we report the results of 10-fold cross validation of n-gram models
on both the clinic and TPC-C data sets. In addition, we investigate whether mixed
order n-gram models can improve the session identification performance. Further,
we compare n-gram models with a stronger baseline method that segments ses-
sions based on certain informative events combined with the timeout method.
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6.1 Ten-fold cross validation results

To provide more reliable evaluation results, we conducted 10-fold cross validation
on both the clinic application data set and the TPC-C data set. Table 7 shows the
results of 10-fold cross validation in terms of F-measure. In this experiment, the
n-gram methods (LLD and LUD) use the automatic method for selecting entropy
thresholds and n-gram orders; and for the timeout method, a number of the timeout
threshold values were tested and the best result is reported. One can see from the
results that the n-gram models (LLD and LUD) are significantly better than the
timeout method.
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Table 7 Ten-fold cross validation results (in F-measure)

Data LLD LUD Timeout

Clinic 0.76 0.62 0.47
TPC-C 0.71 0.65 0.53

6.2 Performance of mixed order N-gram models

A mixed order n-gram model combines two or more single order n-gram models
when determining session boundaries. In this section, we investigate whether a
mixed order n-gram model improves the performance of a single order n-gram
model. The clinic data set is used for this purpose. In our experiment, we test
n1 × n2 mixed order models that combine an n1-gram model with an n2-gram
model, where n1 is set to 2 and n2 is set to 3, 4, 5 and 6. With an n1 × n2 mixed
order model, a session boundary is identified when both n1-gram and n2-gram
models pass their corresponding entropy threshold value. The threshold values
were determined according to the development set D1. The LUD learning is used
in this experiment. Table 8 lists the results for all the tested mixed order models
and their corresponding single order n-gram models. The last column is the result
for the single order LUD model that uses the automatic method for tuning both
entropy threshold and order parameters. From the results we can see that mixed
order models may or may not improve the performance of single order models. In
addition, how to select the best combination of orders is yet to be determined.

6.3 Comparison with a stronger baseline method

We have been comparing the language modeling based session identification
method with the timeout method, which is, to the best of our knowledge, the only
other method used so far for identifying database sessions. However, the timeout
method can be enhanced by combining timeout with segmenting sessions based on
certain informative events. In this session, we provide the results of this enhanced
timeout method and compare it with the original timeout and n-gram methods.

In the enhanced timeout method, we consider all the queries that do user au-
thorization checking as the beginning of a session. Notice that not all the true
sessions start with user authorization checking. We combine this segmentation
method with the original timeout method. The results are shown in Table 9. For
both timeout methods, the best results are used among the results for different
timeout thresholds. For the n-gram methods, parameters (i.e., entropy threshold

Table 8 Comparison of mixed order and single order models (with LUD learning method)

Data Mixed order (n1 × n2) Single order

2 × 3 2 × 4 2 × 5 2 × 6 2-gram 3-gram 4-gram 5-gram 6-gram Auto

D2 0.87 0.80 0.78 0.77 0.84 0.84 0.73 0.80 0.73 0.84
D3 0.81 0.76 0.76 0.78 0.84 0.84 0.83 0.83 0.80 0.84
D4 0.73 0.70 0.55 0.67 0.65 0.58 0.67 0.67 0.51 0.67
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Table 9 Comparison with enhanced timeout method

Data Enhanced timeout Original timeout LLD LSD LUD

D1 0.72 0.70 0.89 n/a n/a
D2 0.72 0.71 0.88 0.88 0.85
D3 0.71 0.62 0.85 0.88 0.89
D4 0.73 0.69 0.81 0.78 0.71

and n-gram order) are automatically selected. One can see from the results that
the enhanced timeout method is better than the original timeout method, but is
still not as good as the n-gram methods except that it becomes better than LUD
on D4. Notice that in this experiment the informative events are not made use of
when testing the n-gram models on test data (i.e., the enhancement is only done
to the timeout method).

7 Impact of session identification

Session identification has a broader impact on the database and data mining. Anal-
ysis of sessions allows us to discover high-level patterns that stem from the struc-
ture of the task the user is solving. The discovered patterns can be used to predict
incoming user queries based on the queries that the user has already issued. The
prediction can be utilized in the database tuning and semantic query caching to
optimize database performance by prefetching predicted queries, rewriting cur-
rent query and conducting effective cache replacement.

7.1 Database tuning

The queries submitted by a database user are logically correct, but may not be
executed efficiently. Database users can re-design the submitted queries according
to the user access patterns. By analyzing the sessions, the user access patterns can
be found and the query execution orders can be reconstructed. This approach can
lead to a better overall system performance. In [43], we found that the pseudo-
code/queries provided by the TPC-W specification is not efficient. We tried to
rewrite these queries in different ways to improve the system performance. For
example, we have tried 6 different ways to implement the order display web in-
teraction that corresponds a database session. The experimental result shows that
these solutions can improve system performance in terms of response time, net-
work throughput, and the number of disk I/Os.

There are many studies done on tuning DBMS through analyzing database
workloads, such as index tuning [10] and materialized view suggesting [1, 11].
These techniques may provide useful suggestions for improving system perfor-
mance, but the drawback is that they do not distinguish the step of finding user
behaviors with the step of using the behaviors for query optimization, also the
collected workload may not reflect the user behaviors correctly. In our approach,
we separated the process of mining patterns with that of using patterns. Since user
access patterns represent the user behavior, tuning the database system based on
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the user access patterns is better than the traditional way of analyzing the queries
in a workload.

7.2 Query prediction and caching

The prediction can be utilized in the semantic query caching technique to optimize
database performance by prefetching predicted queries, rewriting current query
and conducting effective cache replacement [41, 42]. We can predict future queries
based on the user access patterns derived from the session files. Pre-computing the
answers of future queries can reduce the query response time.

In some cases, semantic relationships exist between the queries submitted by
one user. Such relationships can help to rewrite and cache a query to answer mul-
tiple queries. In [41], we propose three types of solutions to reconstruct the query
execution orders. Given two consecutive queries u and v, a sequential-execution
(SEQ) solution prefetches the answer of v when u is submitted. We may also sub-
mit the union query (u ∪ v) to answer both u and v, and it is called the union-
execution (UNI) solution. The third solution is called probe-remainder-execution
(PR) solution. In this solution, an extended version of query u, referred to as u′,
is submitted and cached. It includes columns needed by query v. To answer v,
the solution retrieves part of the answer from Ru′ , as well as submitting a re-
mainder query v′ to the server to retrieve the tuples that are not in the cache. The
SEQ solution pre-executes queries to shorten the latency between the request and
the response, while the UNI and PR solutions aim to improve response time by
decreasing the network transmission cost and the server processing cost. For ex-
ample, we can submit a query “select * from customer where cust num=‘1074’ to
answer both query q9 and q20, and partly answer query q10 in Table 1.

Database users usually have no controls on how the queries are executed in
the server, and it is the task of DBMS to provide mechanisms to accept submitted
SQL queries and convert them into query execution plans that can lead to efficient
retrieval of stored data from database. Since the submitted queries have certain
format and follow certain order, it is reasonable to define certain rules to guide
the execution of these queries. Thus, we proposed a new database gateway, SQL-
Relay in [42]. Unlike other database gateways and database caching servers, SQL-
Relay treat each query as one type of event, and use pre-defined query execution
rules to process it. It also traces the user request sequence for query prediction.
Database users can pre-define query execution rules to guide the execution of the
events. A prefetching rule pre-fetches the answer of future queries based on the
current request sequence. When semantic relationships exist between the queries
of a user access path, a local rewriting rule can make use of such semantic relation-
ship to rewrite the current query to answer multiple queries. These goals cannot
be achieved without a proper method for identifying user sessions.

8 Related work

In this section, we discuss previous work in three areas that are related to database
session identification. Namely, they are web session identification, Chinese word
segmentation, and topic detection and tracking.
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8.1 Web session identification

Several session identification methods have been reported in the literature, almost
all of which are designed for identifying user sessions from Web logs. In Web
applications, a session is defined as a sequence of requests made by a user for a
single navigation purpose.

The most common and simplest method for Web session identification is time-
out. He and Goker [20] reported the results of experiments that used the timeout
method on two sets of web logs. They concluded that a time range of 10–15 min
was an optimal session interval threshold. Catledge and Pitkow [8] also reported
the results of an experiment where a web browser was modified to record the time
interval between user actions on the browser’s interface. One result was that the
average time interval between two consecutive events by a user was 9.3 min. As-
suming that the most statistically significant events occur within 1.5 standard de-
viations from the mean, 25.5 min was subsequently recommended as the threshold
for session identification. However, the optimal timeout threshold clearly depends
on the specific problem. Despite the application dependence of the optimal inter-
val length, most commercial products use 30 min as a default timeout. The time-
out method can be applied to both Web and database logs. According to [16], the
timeout method is the only method provided by database vendors to keep track
of sessions for electronic library database products. They reported that timeout
values can vary widely between vendors, ranging from 7 to 30 min on average.

Cooley et al. [15] proposed a method, called reference length, for Web transac-
tion identification. The method uses histograms to analyze the time a user spends
on Web pages and classifies the pages into content and auxiliary pages. A ses-
sion boundary is detected whenever a content page is met. The problem with this
method is that only one content page is included in each session. This may not be
a good model for real sessions since users may obviously look at more than one
content page for a single retrieval purpose. In addition, this method can only be
applied to Web logs.

Another session identification method, referred to as maximal forward refer-
ence, is due to Chen et al. [14]. In this approach, each session is defined as the
set of pages from the first page in a request sequence to the final page before a
backward reference is made. A backward reference is naturally defined to be a
page that has already occurred in the current session. Clearly, the method only
applies to Web logs. The language modeling method presented in this paper can
be applied to both Web and database access logs.

8.2 Chinese word segmentation

A Chinese text is sequences of Chinese characters. There is no deliminator be-
tween words in Chinese. Chinese word segmentation has been heavily researched
in the past decade [6, 9, 18, 25, 29, 31, 35]. Traditionally there have been three Chi-
nese word segmentation approaches taken to tokenization: the dictionary based ap-
proach, the character based approach and the mutual information based statistical
approach [12, 23, 24, 27, 28]. In the dictionary based approach, one pre-defines a
lexicon containing a large number of Chinese words and then uses heuristic meth-
ods such as maximum matching to segment Chinese sentences. In the character



Applying language modeling to session identification from database trace logs 499

based approach, sentences are tokenized simply by taking each character to be
a basic unit. In mutual information based statistical approach, one uses the lex-
ical statistics of the Chinese characters in corpora to mark the word boundaries.
The lexical statistics include the occurrence frequency of a character in text cor-
pora, and the co-occurrence frequency of two characters in text corpora. While
this approach does not require the use of a dictionary, it can only generate one- or
two-character words. All these three approaches have advantages and disadvan-
tages. A good overview of segmenting text into words was given in [5], which
also presented a model-based and unsupervised algorithm that optimizes a global
criterion rather than a local one for identifying word boundaries. Experiments on
phonemic transcripts of spontaneous speech by parents to young children sug-
gested that the algorithm was more effective than other proposed algorithms when
utterance boundaries were given and the text included a substantial number of
short utterances. Recently, Peng et al [30] used the conditional random fields to
conduct Chinese word segmentation and detect new words. Zhang et al. [44] used
a hierarchical HMM to incorporate lexical knowledge and Xue [39] used a sliding-
window maximum entropy classifier to tag Chinese characters.

The problem of segmenting text into words is related to but different from the
problem of identifying sessions from database trace logs. Firstly, the total number
of Chinese characters is quite large and somewhat ill-defined. A well-educated
adult typically recognizes at least 5000–6000 characters. Some ancient literatures
contain approximately 60,000 Chinese characters. In the domain of database trans-
actions, the total number of different database queries that correspond to Chinese
characters is much smaller. In our experiments, the real-world OLTP dataset con-
tains 201 distinct SQL query templates and the TPC-C benchmark dataset con-
tains 30 distinct SQL query templates. Furthermore, according to Frequency dic-
tionary of modern Chinese 1980, (see [17]), among the top 9000 most frequent
words, 26.7% are uni-grams, 69.8% are bi-grams, 2.7% are tri-grams, 0.007% are
4-grams, and 0.002% are 5-grams. So most Chinese words are within 4 charac-
ters long. The average length of a Chinese word was estimated around 1.5 [38].
In our experiments, the average session lengths are 7.21 and 23.30 for the clinic
OLTP dataset and TPC-C benchmark dataset, respectively, which are much longer
than the average length of a segmented word in Chinese. These differences imply
that a method working well for text segmentation may not work well for session
identification, or vice versa.

8.3 Topic detection and tracking

Topic Detection and Tracking (TDT) in information retrieval is another research
area related to database session identification.8 TDT is a research program in-
vestigating methods for automatically organizing news stories by the events that
they discuss [2]. The goal of TDT consists of breaking the stream of news into
individual news stories, monitoring the stories for events that have not been seen
before, detecting breaking stories and gathering stories into groups that each dis-
cuss a single topic. Several approaches have been explored for comparing news
articles in TDT. The traditional vector space approach [40] using cosine similarity

8 It is a project sponsored by the US Defense Advanced Research Projects Agency (DARPA).
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has been a consistently successfully approach across different tasks and several
data sets. Hatch [19] investigated the use of lexical chaining for topic detection, in
which the WordNet semantic network was used to judge whether a noun should
be added to an existing lexical chain or used to start a new topic. Stokes [34]
believed that co-occurrence statistics would provide stronger evidence of related-
ness than lexicographical relationship found in WordNet. Language Modeling is
a new area of research that has recently been applied to TDT problems. In TDT,
a relevance model, which is defined as the probability of observing a word w in
a document that is relevant to a query, is built for each story. To implement such
a system, we must be able to use a query Q to retrieve a set of highly ranked
documents R(Q) where R represents the class of relevant documents and then,
for each word in those documents, calculate the probability that it will occur in
the set. This approach has been proven to be very effective in several information
retrieval tasks [32].

Unlike the approaches to topic detection and tracking, the language modeling
method that we proposed for session identification does not make use of content
information, such as the content of SQL queries and their semantic relationships
(corresponding to meaningful words in a document and their semantic relation-
ships in TDT), when identifying database sessions. This makes our approach more
applicable when such domain knowledge is not available.

9 Conclusions

We have presented a language modeling based method for session identification
and applied it to identify sessions from the workloads of an OLTP application and
the TPC-C Benchmark. The paper makes the following contributions.

1. It presents a novel application that applies a new session identification method
to the trace logs of a database system. The method is demonstrated to be sig-
nificantly better than the standard timeout method for database session identi-
fication.

2. We propose solutions to the open issues in the original language modeling
based session identification method. The issues were revealed when we first
conducted the application. In particular, we propose a novel method for au-
tomatically selecting the entropy threshold and a method for automatically
tuning the order of the n-gram model based on the data set. The performance
of the proposed parameter selection method is demonstrated to be close to the
best performance of the n-gram based method in which the parameters are
selected through an exhaustive search and testing of a large number of combi-
nations of parameter values.

3. New performance measures, namely F-measure and cross entropy, that have
not been used to evaluate the performance of session identification, are pro-
posed and used in our experiments. Previous work on language modeling
based session identification indirectly evaluated the session identification re-
sults through the interestingness of the association rules discovered from the
identification sessions [21, 22].

4. We propose to use the language modeling method in any of three learning
modes, namely, learning from labeled data, learning from unlabeled data, and
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learning from semi-labeled data, depending on the characteristics of the train-
ing data. If the training data consist of well-labeled sessions, LLD can be
used; otherwise, LUD or LSD learning are used. This flexibility is an advan-
tage of the language modeling method compared to other learning methods.
In most real applications, boundary words do not exist or partially exist in
the log data. Allowing “imperfect” training data makes the language modeling
based method more applicable to real world problems. We have demonstrated
that both LUD and LSD methods perform significantly better than the timeout
method.

The work presented in the paper has a broader impact on the database and data
mining fields. Effective identification of user sessions enables us to discover useful
user access patterns from the database workload. The discovered patterns can be
used to predict incoming queries based on the queries already submitted, which
can be used to improve the database performance by effective query prefetch-
ing, query rewriting and cache replacement. The improved session identification
method can also be applied to Web logs to provide better, more accurate data for
web log mining and to detect the changes of Web users’ browsing interests. The
result of Web log mining can be used to improve Web design, to provide per-
sonalized Web service and to make personalized recommendations. Furthermore,
effective session identification is important for compiling statistics on library elec-
tronic resource usage. This capability can offer potentially valuable information
about how patrons make use of the library’s Web-accessible resources, which can
result in significant change in the evaluation of library collections and user prefer-
ences.

We plan to work on the following items in the future:

1. The language modeling method assumes that high entropy values coincide
with session boundaries. When a session with the same sequence of events
is being repeated many times one after the other, or when consecutive ses-
sions share similar beginning and ending events, session boundaries may have
low entropy if these sessions are not labeled well in the training data for the
LSD and LUD learning modes. To address this problem, We will investigate
whether a method that combines the n-gram method with the timeout method
can improve the performance of session identification.

2. When the training data is unlabeled or semi-labeled, once the entropy thresh-
old is determined from the development data, the training data may as well be
segmented with the threshold value and the n-gram model can be re-trained
with the partial segmentation information derived from the threshold cut-off.
Such re-trained model may assign less probability mass over session bound-
aries, which then may make sharper entropy boosts across sessions. We will
investigate whether and how much re-training can improve the performance of
session identification.

3. Our approach basically assumes that the database has static query patterns,
such that future query accesses can benefit from the one time off-line learning.
With database systems with dynamically changing query patterns, however,
incremental learning method will be more desirable. We will investigate how
to adaptively incorporate new available data into the n-gram model to maintain
the session identification performance when query patterns have changed.
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4. Session identification can also be valuable for OLAP applications. We plan
to apply our session identification method to OLAP trace logs. We are also
applying the method to DNA sequence analysis.
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