
Knowl Inf Syst (2006) 10(3): 315–331
DOI 10.1007/s10115-006-0010-1

Knowledge and
Information Systems

REGULAR PAPER

Shakil Ahmed · Frans Coenen · Paul Leng

Tree-based partitioning of data
for association rule mining

Received: 28 January 2004 / Revised: 12 May 2005 / Accepted: 12 June 2005 /
Published online: 24 March 2006
C© Springer-Verlag London Limited 2006

Abstract The most computationally demanding aspect of Association Rule Min-
ing is the identification and counting of support of the frequent sets of items that
occur together sufficiently often to be the basis of potentially interesting rules.
The task increases in difficulty with the scale of the data and also with its density.
The greatest challenge is posed by data that is too large to be contained in primary
memory, especially when high data density and/or low support thresholds give
rise to very large numbers of candidates that must be counted. In this paper, we
consider strategies for partitioning the data to deal effectively with such cases. We
describe a partitioning approach which organises the data into tree structures that
can be processed independently. We present experimental results that show the
method scales well for increasing dimensions of data and performs significantly
better than alternatives, especially when dealing with dense data and low support
thresholds.

Keywords Association rules · Partial support · Data structures · Set-enumeration
tree

1 Introduction

An association rule [2] is an implication of the form A → B, relating disjoint sets
of database attributes, which is interpreted to mean “if the set of attribute-values
A is found together in a database record, then it is likely that the set B will
be present also”. Association Rule Mining involves the discovery, in a tabular
database, of all such rules that satisfy defined threshold requirements. Of these
requirements, the most fundamental concerns frequency: a rule is likely to be
applicable only if the relationship it describes occurs sufficiently often in the data.

S. Ahmed · F. Coenen · P. Leng (B)
Department of Computer Science, The University of Liverpool, Liverpool L69 3BX, UK
E-mail: {shakil, frans, phl}@csc.liv.ac.uk

316 S. Ahmed et al.

The support for the rule A → B is the number (or proportion) of database records
within which the set of attribute-values A ∪ B is found. The frequent sets are
those sets for which the support exceeds some threshold value. Association Rule
Mining requires that all frequent sets are identified and their support determined,
so that other properties of rules such as confidence and lift [6] can be calculated.

It is recognised that identifying the frequent sets is the most computationally
demanding aspect of Association Rule Mining. The problem arises because the
number of possible sets is exponential in the number of possible attribute-values.
Continuously valued attributes can be dealt with by discretization, and, for con-
venience of processing, most methods convert multiple-valued attributes into a
number of binary attributes, or items, each of which can be said to be present or
absent in each record. For most real data, the number n of such items is likely to
be such that counting the support of all 2n sets of items (item sets) is infeasible.
For this reason, almost all methods attempt to count the support only of candidate
item sets that are identified as possible frequent sets. It is, of course, not possible
to completely determine the candidate item sets in advance, and it will therefore
be necessary to consider many item sets that are not in fact frequent.

In general, algorithms for finding frequent sets involve one or (usually) several
passes of the source data, in each of which the support for some set of candidate
item sets is counted. The performance of these methods, clearly, depends both on
the size of the original database, typically millions or billions of records, and on
the number of candidate item sets being considered. The number of possible can-
didates increases with increasing density of data (greater number of items present
in a record) and with decreasing support thresholds. In applications such as med-
ical epidemiology, we may be searching for rules that associate rather rare items
within quite densely-populated data, and in these cases the low support thresholds
required may lead to very large candidate sets. These factors motivate a continuing
search for efficient algorithms.

Performance will be affected, especially, if the magnitudes involved make it
impossible for the algorithm to proceed entirely within primary memory. In these
cases, some strategy for partitioning the data may be required to enable algorith-
mic stages to be carried out on primary-memory-resident data. Effective partition-
ing will reduce the number of accesses to secondary memory. In this paper, we
examine methods of partitioning to limit the total primary memory requirement,
including those required both for the source data and for the candidate sets. We
consider both ‘horizontal’ partitioning, which divides the source data into sets
of records and ‘vertical’ partitioning, which partitions records into sets of items.
We describe a new method of vertical partitioning that exploits tree structures we
have previously developed for Association Rule Mining. Experimental results are
presented that show this method offers significantly better performance than hori-
zontal partitioning.

2 Background

Most methods for finding frequent sets are to a greater or lesser extent based on
the “Apriori” algorithm [3]. Apriori performs repeated passes of the database, suc-
cessively computing support counts for sets of single items, pairs, triplets and so
on. At the end of each pass, sets that fail to reach the required support threshold

Tree-based partitioning of data for association rule mining 317

are eliminated, and candidates for the next pass are constructed as supersets of the
remaining (frequent) sets. Since no set can be frequent which has an infrequent
subset, this procedure guarantees that all frequent sets will be found.

One of the inherent performance weaknesses of Apriori is that it requires the
source data to be scanned repeatedly; in principle, the number of passes required
is one greater than the size of the largest frequent set. This is especially a problem
if, as is likely to be the case in many applications, the source data cannot be con-
tained in primary memory. An early refinement of the method attempted to reduce
this cost by partitioning the data into a number of equal-sized segments that can
be so contained. The “Partition” algorithm [18] applies the Apriori procedure to
each data segment in turn, retaining the segment in primary storage throughout
its repeated passes. For each segment, thus, a set of locally frequent item sets is
determined, each of which reaches the proportionate threshold of support in that
segment. A second pass of the complete database is required to establish which
of the locally frequent sets are (globally) frequent. Similar thinking motivated the
strategy introduced by Toivonen [19]. Here, a random sample of the source data,
small enough to contain in primary memory, is first processed using the Apriori
procedure, with a modified support threshold and other modifications designed to
make it likely that all the globally frequent sets will be identified in the sample.
The sets thus found become candidates for a single full pass of the source data to
verify this.

The drawback of both these approaches highlights the second weakness of
Apriori that the number of candidates whose support is to be counted may be-
come very large, especially when the data is such that the frequent sets may con-
tain many items (the “long pattern” problem [1]). If, for example, there is just one
set of 20 items that reaches the threshold of support, then the method inescapably
requires the support for all the 220 subsets of this set to be counted. In the Parti-
tion algorithm, this is exacerbated because there may be many more sets that are
locally frequent in some partition, even though they are not globally frequent. In
Toivonen’s method also, it is necessary for the initial processing of the sample
to identify an enlarged candidate set, to give a reasonable probability that all the
actual frequent sets will be included. Both these methods also require all candi-
dates to be retained in primary memory (for efficient processing) during the final
database pass.

Other methods [1, 4, 5, 20] aim to identify maximal frequent sets without
first examining all their subsets. These algorithms may cope better with densely-
populated databases and long patterns than the others described, but again usually
involve multiple database passes. The DepthProject [1] algorithm bypasses the
problem by explicitly targeting memory-resident data. The method of Zaki et al.
[20] is of interest, as it introduces a different kind of partitioning. In this, candi-
date sets are partitioned into clusters which can be processed independently. The
problem with the method is that, especially when dealing with dense data and low
support thresholds, expensive preprocessing is required before effective clustering
can be identified. The partitioning by equivalence class, however, is relevant to
the methods we will describe.

Our methods begin by performing a single pass of the database to perform
a partial summation of the support totals. These partial counts are stored in a
tree structure that we call the P-tree, which enumerates item sets counted in

318 S. Ahmed et al.

lexicographic order. The term P-tree has been used elsewhere (e.g. [15]) to de-
scribe other structures: here we use it to denote the structure we first introduced in
[12], representing a tree of Partial support counts. The P-tree contains all the sets
of items present as distinct records in the database, plus some additional sets that
are leading subsets of these.

To illustrate this, consider a database with items {a, b, c, d, e} and 20 records:

{abcde, abce, abd, abde, abe, acde, ace, ade, b, bcde,

bce, bd, bde, be, cd, cde, ce, d, de, e}
(Not necessarily in this order.) For convenience, we will use the notation abd ,
for example, to denote the set of items {a, b, d}. Figure 1 shows the P-tree that
would be constructed. The counts stored at each node are incomplete support to-
tals, representing support derived from the set and its succeeding supersets in the
tree.

We then apply to this structure an algorithm, Apriori-TFP, which completes
the summation of the final support counts, storing the results in a second set-
enumeration tree (the T-tree, of Total support counts), ordered in the opposite way
to the P-tree. The T-tree finally contains all frequent sets with their complete sup-
port counts. The algorithm used, essentially a form of Apriori that makes use of
the partial counting that has already been done, is described in [8], where we also
explain the rationale of the approach and its advantages. Experimental results re-
ported in [8] demonstrate significant performance gains in comparison with Apri-
ori and also some improvements over the FP-growth [13] algorithm, which uses
somewhat similar structures and has some similar properties. The FP-tree used in
[13] is a more pointer-rich structure than the P-tree, leading to greater difficulties
in dealing with non-memory-resident data, although strategies for this have been

Fig. 1 Example of a P-tree

Tree-based partitioning of data for association rule mining 319

proposed, which will be discussed further later. The CATS tree, an extension of
the FP-tree proposed in [7], also assumes no limitation on main memory capacity.
In this paper, we consider implementations of Apriori-TFP in cases when it will
be impossible to contain all the data required in main memory, requiring some
strategy for partitioning this.

3 Strategies for partitioning

3.1 Horizontal partitioning

The natural implementation of Apriori, when source data cannot be contained
in primary memory, requires all the data to be read from secondary memory in
each pass. The equivalent for Apriori-TFP, because the first stage of the method
involves the construction of a P-tree, requires a partitioning of the data into seg-
ments of manageable size. We will refer to this form of partitioning, in which
each segment contains a number of complete database records, as ‘horizontal’
partitioning (HP), or segmentation. We first take each segment of data separately
and create for it a P-tree that is then stored in secondary memory. The stored P-
trees are then treated as a composite structure from which we compute the final
support totals for all the frequent sets, storing these in a single T-tree. Each pass of
Apriori-TFP requires each of the P-trees to be read in turn from secondary mem-
ory. The method creates a final T-tree in primary memory, which contains all the
frequent sets and their support counts.

3.2 Vertical partitioning

The drawback of the simple approach outlined earlier in the paper is that it repli-
cates the two weaknesses of the Apriori methodology. As with Apriori, all the
source data (now in the form of P-trees) must be re-read from secondary memory
in each pass. The second problem is that the entire T-tree, which finally contains
all the frequent sets, must be contained in primary memory while counting pro-
ceeds. As we have noted, this tree may itself become very large, especially when
long frequent patterns are encountered. Even if the tree is not too large to be con-
tained in primary memory, a large set of candidates leads to slower counting, in
Apriori-TFP just as for Apriori.

A possible alternative way of partitioning the data is to divide the set of items
under consideration into subsets, each of which defines a vertical partition of the
data set. The problem with this is that, in general, the sets for which support is to be
counted contain items from several partitions. The P-tree structure offers another
form of vertical partitioning into subtrees that represent equivalence classes of
the items represented. In this case, again, it is still not possible to compute the
support for a set by considering only the subtree in which it is located. Although
succeeding supersets of a set S in the P-tree are located in the subtree rooted at
S, predecessor supersets are scattered throughout the preceding part of the P-tree.
For example, consider the support for the set bd in the data used for Fig. 1. In the
subtree rooted at b, we find a partial support total for bd , which includes the total
for its superset bde. To complete the support count for bd , however, we must add

320 S. Ahmed et al.

in the counts recorded for its preceding supersets bcde, abd (incorporating abde)
and abcde, the latter two of which are in the subtree headed by a.

The problem can be overcome by a different partitioning of the P-tree struc-
ture. Our Tree Partitioning (TP) method begins by dividing the ordered set of items
into subsequences. For example, for the data used in Fig. 1, we might define three
sequences of items {a, b}, {c, d} and {e} labelled as 1, 2 and 3, respectively. For
each sequence we define a Partition-P-tree (PP-tree), labelled PP1, PP2 and PP3.
The construction of these is a slight modification of the original method. The first
partition tree, PP1, is a proper P-tree that counts the partial support for the power
set of {a, b}. PP2, however, counts all those sets that include a member of {c, d}
in a tree that includes just these items and their predecessors. The third tree, PP3,
will count all sets that include any member of {e}. The three trees obtained, from
our example, are illustrated in Fig. 2. The PP-trees are, in effect, overlapping par-
titions of the P-tree of Fig. 1, with some restructuring resulting from the omission
of nodes when they are not needed.

The effect of this is that the total support for any set S can now be obtained
from the PP-tree corresponding to the last item within S; for example, we now find
all the counts contributing to the support of bd are included in PP2. The drawback
is that the later trees in the sequence are of increasing size; in particular, PP3 in our
example is almost as large as the original P-tree. We can overcome this, however,
by a suitable reordering of the items. In descending order of their frequency in the
data, the items of our example are e, d , b, c and a. Using the same data as for

Fig. 2 Partition-P-trees from Fig. 1

Tree-based partitioning of data for association rule mining 321

Fig. 3 PP-trees after reordering of items

Figs. 1 and 2, we will construct PP-trees using this ordering, for the sets of items
{e, d}, {b, c} and {a} respectively.

The results are shown in Fig. 3. Now, because the less frequent items appear
later in the sequence, the trees become successively more sparse, so that PP3 now
has only 13 nodes, compared with 23 of PP3 in Fig. 2. In fact, our previous work
has shown [9] that ordering items in this way leads to a smaller P-tree and faster
operation of Apriori-TFP. The additional advantage for partitioning is that the PP-
trees become more compact and more equal in size. The total support count for bd
(now ordered as db) is again to be found within PP2, but now requires the addition
of only two counts (db + edb).

3.3 Counting total support using PP-trees

The form of partitioning we have described offers us a way of dividing the source
data into a number of PP-trees each of which may then be processed indepen-
dently. With a sufficiently large data set, it will of course still not be possible to
construct the PP-trees within primary memory. We can, however, combine this ap-
proach with a (horizontal) segmentation of the original data into segments small
enough to allow the corresponding PP-trees to be contained in primary store.

The overall method is as follows. For clarity, we will use the term segment
when we refer to the horizontal division of the data into sets of records and parti-
tion when we refer to the vertical division into sets of items and the corresponding
tree structures:

322 S. Ahmed et al.

1. Obtain an (at least approximate) ordering of the frequency of items.
2. Using this ordering, choose an appropriate partitioning of the items into n

sequences 1, 2, 3, . . . , etc.
3. Divide the source data into m segments.
4. For each segment of data, construct n PP-trees in primary memory, storing

finally to disk. This construction phase involves just one pass of the source
data.

5. For partition 1, read the PP1 trees for all segments into memory and apply the
Apriori-TFP algorithm to build a T-tree that finds the final frequent sets in the
partition. This stage requires the PP1 trees for each segment of data to be read
once only. The T-tree remains in memory throughout, finally being stored to
disk.

6. Repeat step 5 for partitions 2, 3, . . . , n.

The method offers two speed advantages over simple horizontal segmentation.
First, we have now effectively reduced the number of disk passes to two: one (step
4) to construct the PP-trees, and a second pass (of the stored trees) to complete the
counting (steps 5 and 6). The second advantage is that we are now, at each stage,
dealing with smaller tree structures, leading to faster traversal and counting.

3.4 Comparison with other methods

As we have noted earlier, our P-tree structure, first presented in [12], has many
properties in common with the FP-tree structure developed independently and
contemporaneously by Han et al. [13]. The principal differences are two. First,
the nodes of the FP-tree correspond to individual items, whereas in the P-tree a
sequence of items which is partially closed (i.e. which has no leading subsequence
with greater support in the tree) will be stored as a single tree node. Thus, for
example, two transactions {a, b, c, d, e} and {a, b, c, x, y}, which share a common
prefix {a, b, c}, would require in all seven nodes in the FP-tree. In the P-tree,
conversely, only three nodes would necessarily be created: a parent for {a, b, c}
and child nodes for {d, e} and {x, y}. The second difference is that, in order to
implement the FP-growth algorithm, the FP-tree must store pointers at each node
to link all nodes representing the same item and also to link a node to its parent
and child nodes. The Apriori-TFP algorithm, however, treats the P-tree essentially
as a set of nodes which can be processed in any order. This makes it possible, once
the tree has been constructed, to store it in a tabular form in which no pointers are
required.

Both these differences lead to a more compact tree structure. Furthermore, the
absence of pointers allows us easily to use horizontal partitioning in order to build
a succession of P-trees, each of which is vertically partitioned into PP-trees, as
described earlier. It is then straightforward to collect all the PP-trees representing
a single partition from their separate segments and use these trees in any order to
construct the final T-tree for that partition.

Partitioning the FP-tree is necessarily more complex. The partitioning we de-
scribe, as illustrated in Fig. 3, is essentially similar to that obtained by the con-
struction of conditional databases described in [13, 17]. In [14] two strategies are
proposed for dealing with an FP-tree too large for primary storage. In the first of

Tree-based partitioning of data for association rule mining 323

these, parallel projection, the original database is partitioned into a set of projected
databases, one for each item. Each projected database contains only transactions in
which the item is present with some predecessors in the item ordering. Thus, each
projected database essentially represents the same information as would be con-
tained in a corresponding PP-tree in our method. The second method described,
partition projection, would (using our example to illustrate) first construct the a-
conditional database corresponding to PP3, and after building the FP-tree for this,
would copy relevant transactions (e.g. {e, d, b, c.a}), into the next (c-conditional)
database, as {e, d, b, c}. This reduces the total size of the projected databases at a
cost of some additional processing.

A number of other researchers have made use of the FP-tree or variants
thereof. The CFP-tree described in [16] stores frequent closed item sets in a form
that facilitates subsequent query processing. The construction algorithm is similar
to that used for FP-tree construction, using conditional databases as described in
[13] to partition the data and produce separate trees for query processing. The fo-
cus of this work is on the form of a structure that can be re-used efficiently, rather
than on the efficiency of the construction algorithm. Reusability is also a feature
of our P-tree structures, which retain all relevant information from the original
data as well as performing part of the support counting. In [15] a structure is de-
scribed, also (coincidentally) called a P-tree, which is quite similar to our P-tree
but (like the FP-tree) stores only one item at each node. The P-tree of [15] shares
with ours the property of retaining all the information from the database needed
for counting of support at any threshold rather than just counts of frequent sets.
The approach described in [15] constructs FP-trees from the P-tree rather than
from the original data; results presented show that this offers significant perfor-
mance gains when multiple FP-trees are required. The partitioning strategy de-
scribed for dealing with large databases is essentially horizontal, dividing the data
into segments for each of which a P-tree is constructed. The method produces
a single overall FP-tree, however, for which further partitioning might become
necessary.

The COFI-trees proposed in [10] also create subtrees that can be processed in-
dependently but require an initial construction of an FP-tree that must be retained
in primary memory for efficient processing. In [11], a method is described for
building COFI-trees from an inverted database structure called “Inverted Matrix”.
In this structure, each item is represented by a row of the matrix which lists all
transactions in which the item occurs. Each element of the list contains a pointer
to the next item in the transaction. Constructing the Inverted Matrix requires two
passes of the original database and will, in general, lead to an expansion in size
because of the need to store a pointer with every item occurrence. The COFI-trees
constructed from this have similar properties to the conditional FP-trees produced
by database projection, as in [13]. However, to produce the COFI-trees it is neces-
sary to mine the large inverted matrix, and the pointers between rows of this imply
that no simple partitioning of this is possible. The approach seems to work well
with very sparse databases, but for dense data it seems likely that following the
links through a disk-resident matrix will be a costly overhead.

In general, all methods that use FP-tree-like structures require to employ pro-
jection of conditional databases in some manner in order to avoid the problem of
dealing with a single large FP-tree or its equivalent in primary memory. In our

324 S. Ahmed et al.

experiments, described later, we compare the performance of Apriori-TFP using
our TP method with that of FP-growth using database projection.

4 Results

We first consider some general performance properties of our method. To investi-
gate performance, we have used synthetic data sets constructed using the QUEST
generator described in [3]. The programs were written in standard C++ and run
under the Linux operating system. We performed these experiments on an AMD
Athlon workstation with a clock rate of 1.3 GHz, 256 KB of cache and 512 MB of
RAM. The data was stored on an NFS server (1 GB filestore).

We first need to establish that the method scales acceptably; that is, that the
partitioning strategy successfully constrains the maximum requirement for pri-
mary memory, without leading to unacceptable execution times. For this purpose,
we generated data sets with parameters T 10.I 5.N500: i.e 500 items, with an av-
erage record length of 10 items and an expected maximal frequent pattern size
of 5. We divided the data into segments of 50,000 records, and within each seg-
ment generated 500 partitions, i.e. a PP-tree for each item. In this and all other
experiments, the TP is naive: after ordering the items, we partition into sequences
of equal length (in this case, 1). In fact, our experiments seem to show that in-
creasing the degree of (vertical) partitioning always reduces the primary memory
requirement (as would be expected) and also almost always reduces execution
time. The latter, less obvious result arises because the increased time taken to con-
struct a greater number of PP-trees (step 4 of the algorithm outlined earlier) is
usually more than compensated by the faster processing of smaller T-trees (steps
5 and 6).

Figure 4 shows the overall time to generate frequent sets, with a support thresh-
old of 0.01%, for data sets of increasing size, i.e. one, two, three, four and five seg-
ments. The figure shows the performance of the TP method in comparison with the
simple method involving horizontal partitioning (segmentation) only (HP). The
times illustrated include both the time to construct the P-trees (HP method) or
PP-trees (TP method) and to execute the Apriori-TFP algorithm. As can be seen,
TP offers substantially better performance than horizontal partitioning and its per-
formance scales linearly with the size of the data set.

Importantly, this performance is achieved within conservative requirements
for primary storage. In the second phase of the TP method (steps 5 and 6 of the

Fig. 4 Execution times for T 10.I 5.N500 (0.01% support)

Tree-based partitioning of data for association rule mining 325

algorithm outlined earlier), it is necessary to contain in memory all the PP-trees
for one partition and the corresponding T-tree containing the frequent sets in that
partition. In the experiment of Fig. 4, this led to a maximum memory require-
ment for the TP method that varied from 1.38 MB (one segment) to 1.6 MB (five
segments). In general, larger data sets, requiring greater horizontal segmentation,
lead to some increase in the combined size of the PP-trees, but this is relatively
slight. By contrast, the HP method requires the P-tree for one data segment and
the whole of the T-tree to be contained in primary store, leading to a maximum
memory requirement of between 116 and 128 MB in the case illustrated.

The combined sizes of the PP-trees for any one segment are, of course, greater
than the size of a corresponding P-tree. In the experiment of Fig. 4, the sum of the
sizes of the PP-trees for any one segment was about 15.56 MB (varying little be-
tween segments), compared to a P-tree size of about 1.85 MB. This was not the
dominant store requirement in the case we have illustrated, but in other cases,
could be a constraint during the construction of the PP-trees (step 4 of the method
described earlier). If this is so, the problem can easily be overcome by imposing a
greater degree of horizontal segmentation. Our experiments show that increasing
the number of segments has little effect on execution times, while reducing mem-
ory requirements during the PP-tree construction. Figure 5 shows the results of
experiments with increasing segmentation of T 10.I 5.N500.D50000, again with
a support threshold of 0.01%. Having first established the linear scaling of the
method, in the results presented earlier, this experiment for convenience used this
relatively small database, but in order to replicate the problems of dealing with
large databases, we imposed a requirement that only one segment can be retained
in primary store at one time.

In this case, we imposed a vertical partitioning of 50 items per partition (10
partitions in all), while varying the number of segments. Figure 5 shows that the
overall execution time (for both methods) increases only slightly with increasing
segmentation. The total memory requirement to contain all the PP-trees for any
one segment decreases, as one would expect, from 7.8 MB (1 segment) to a maxi-
mum of 0.22 MB (50 segments).

The method scales well with increasing number of items also. Figure 6 shows
the execution times for the TP method for T 10.I 5.D50000, with a support thresh-
old of 0.01, a vertical partitioning of 10 items per partition, and horizontal parti-
tioning of 10,000 records per segment (i.e. five segments). The maximum mem-
ory requirement in this case also remained small (between 6 and 15 MB, with no

Fig. 5 Effect of increasing segmentation

326 S. Ahmed et al.

Fig. 6 Performance of TP with increasing number of items

Fig. 7 Execution times for various database characteristics

general upward trend). Conversely, the simple HP method has a rapidly increasing
memory requirement in this case because of the greater size of the unpartitioned
T-tree.

The performance of the method when dealing with more dense data sets is
shown in Figs. 7 and 8. In these experiments, we generated databases with D =
250,000, N = 500, varying the T and I parameters. Here we compared the TP
method both with HP and with a method based on the “Negative Border” approach
of [19] (labelled NB in the figures). In the latter, P-trees are first constructed for
all segments, as for the HP method. Then, all the proportionately frequent sets
in the first segment of data are found using a support threshold reduced to two-
third of the original and also retaining the negative border of the sets found, i.e.
those sets which, although not themselves frequent, have no infrequent subsets.
The frequent sets, with their negative border, are stored in a T-tree which is kept
in store to complete the counts for these sets for the remaining segments. The
reduced support threshold and the inclusion of the negative border make it very
likely that all the finally frequent sets will be included in this tree, in which case
the method requires the disk-stored P-trees to be read once only.

The figures show the results with a support threshold of 0.1% using 5 segments
and 10 items per partition. With this support threshold (higher than in the previous
experiments), there is little difference in the total execution times for the T 10.I 5
data: in this case, the faster computation of the frequent sets by the TP method is
offset by the longer time taken to construct the PP-trees. With more dense data,
however, the latter factor becomes decreasingly significant and the advantage of
the TP method becomes increasingly apparent. This is principally because of the
much smaller candidate sets that are involved. This becomes apparent from the

Tree-based partitioning of data for association rule mining 327

Fig. 8 Memory requirements for various data

Fig. 9 Execution times for T 10.I 5.N500.D250000

Fig. 10 Memory requirements for T 10.I 5.N500.D250000

comparison of maximal memory requirements shown in Fig. 8. This reflects the
growing size of the candidate sets (and hence the T-tree) as the data density in-
creases, leading both to larger memory requirements and to longer times to find
candidates. The problem is particularly acute with the ‘Negative Border’ method.
This works well with relatively sparse data, but at high density, the reduced sup-
port threshold and the inclusion of the negative border lead to very large candidate
sets.

In Figs. 9 and 10, we compare the performance of the three methods for differ-
ent support thresholds. These results again relate to the T 10.I 5.N500.D250000
data, for support thresholds decreasing from 1.0 through to 0.01. In these experi-
ments, we divided the data into five segments, and for the TP method used 500 par-
titions (1 item per partition). Here again, as can be seen from Fig. 9, the overhead
of constructing the multiple PP-trees for the TP method leads to relatively poor
execution times when the support threshold is high; in this case, the NB method is

328 S. Ahmed et al.

Fig. 11 Comparison of Apriori-TFP with FP-growth

fastest. As the support threshold is reduced, however, the increasing cost of servic-
ing a growing candidate set leads to rapidly increasing memory requirements and
execution times for the alternative methods, whereas the TP method scales much
better.

Finally, we compare our method with an implementation of FP-growth, using
the FP-tree structure of [13]. For this purpose, we implemented both Apriori-
TFP, using our TP method, and an FP-growth algorithm in Java with the aim of
obtaining as fair a comparison as possible. In this experiment, we used the data
set T 20.I 10.N500.D500K , which was divided into five equal segments. For FP-
growth, we processed each segment in turn to generate conditional databases for
each of the 500 items, using the parallel projection method described in [14]. The
conditional database segments were then combined in order to build an overall
conditional FP-tree for each item in turn, to which the FP-growth algorithm was
applied to produce frequent sets. For Apriori-TFP, each segment is used to con-
struct 500 PP-trees, as described earlier. The experiments were in this case run on
a 1.2 GHz Intel Celeron CPU with 512 MB RAM.

The overall execution times for the two methods are shown in Fig. 11, for sup-
port thresholds from 1.0 down to 0.1. As can be seen, on this data Apriori-TFP
with TP outperforms a comparable implementation of FP-growth partitioned by
parallel projection. We believe the advantage of Apriori-TFP in this case arises
from the relatively efficient iterative processing of the simple P-tree structures, in
comparison with the recursive generation of multiple FP-trees required by FP-
growth. This is especially expensive with relatively dense data because of the
greater depth of recursion required.

5 Conclusions

Because Data Mining is principally concerned with obtaining information from
data of very large dimensions, it is important that methods used should scale ef-
fectively to deal with the most extreme cases. In this paper, we have examined
ways of partitioning data for Association Rule Mining. Our aim has been to iden-
tify methods that will enable efficient counting of frequent sets in cases where
the data is much too large to be contained in primary memory and also where the
density of the data means that the number of candidates to be considered becomes
very large. Our starting point was a method which makes use of an initial prepro-
cessing of the data into a tree structure (the P-tree) which incorporates a partial

Tree-based partitioning of data for association rule mining 329

counting of support totals. In previous work, we have shown this method to offer
significant performance advantages. Here, we have investigated ways of applying
the approach in cases that require the data to be partitioned for primary memory
use. We have, in particular, described a method that involves a partitioning of the
tree structures involved to enable separate subtrees to be processed independently.
The advantage of this approach is that it allows both the original data to be par-
titioned into more manageable subsets and also partitions the candidate sets to
be counted. The latter results in both lower memory requirements and also faster
counting.

The experimental results we have reported here show that the TP method de-
scribed is extremely effective in limiting the maximal memory requirements of the
algorithm, while its execution time scales only slowly and linearly with increasing
data dimensions. Its overall performance, both in execution time and especially in
memory requirements, is significantly better than that obtained from either sim-
ple data segmentation or from other methods considered. The advantage increases
with increasing density of data and with reduced thresholds of support – i.e. for
the cases that are in general most challenging for Association Rule Mining. Fur-
thermore, a relatively high proportion of the time required by the method is taken
up in the preprocessing stage during which the PP-trees are constructed. Because
this stage is independent of the later stages, in many applications it could be ac-
cepted as a one-off data preparation cost. In this case, the gain over other methods
becomes even more marked. Note also that the P-tree construction, and the par-
titioning thereof, is essentially generic: it leads to no loss of relevant information
and so could be used as the first stage of other quite different algorithms for com-
pleting the support counts. A further advantage, not examined here, is that the
independent processing of subtrees can be carried out in parallel.

References

1. Agarwal R, Aggarwal C, Prasad V (2000) Depth first generation of long patterns. In: Pro-
ceedings of the ACM KDD conference on management of data, Boston, pp 108–118

2. Agrawal R, Imielinski T, Swami A (1993) Mining association rules between sets of items in
large databases. In: Proceedings of the ACM SIGMOD conference on management of data,
Washington, DC, pp 207–216

3. Agrawal R, Srikant R (1994) Fast algorithms for mining association rules. In: Proceedings
of the 20th VLDB conference, Santiago, Santiago, Chile, pp 487–499

4. Bayardo RJ (1998) Efficiently mining long pattern from databases. In: Proceedings of the
ACM SIGMOD conference on management of data, pp 85–93

5. Bayardo RJ, Agrawal R, Gunopulos D (1999) Constraint-based rule mining in large, dense
databases. In: Proceedings of the 15th interantional conference on data engineering, pp 188–
197

6. Berry MJ, Linoff GS (1997) Data mining techniques for marketing, sales and customer
support. Wiley, New York

7. Cheung W, Zaiane OR (2003) Incremental mining of frequent patterns without candidate
generation or support constraint. In: Proceedings of seventh international database engi-
neering and applications symposium (IDEAS’03), pp 111–116

8. Coenen F, Goulbourne G, Leng P (2001) Computing association rules using partial totals.
In: Proceedings of the 5th European conference on principles of data mining and knowledge
discovery (PKDD’01). LNCS, vol 2168. Springer, Berlin Heidelberg New York, pp 54–66

9. Coenen F, Leng P (2001) Optimising association rule algorithms using itemset ordering.
In: Bramer M, Coenen F, Preece A (eds) Research and development in intelligent systems
XVIII (Proceedings of ES2001). Springer-Verlag, London, pp 53–66

330 S. Ahmed et al.

10. El-Hajj M, Zaiane OR (2003) Non recursive generation of frequent K-itemsets from fre-
quent pattern tree representations. In: Proceedings of 5th international conference on data
warehousing and knowledge discovery (DaWaK 2003). LNCS, vol 2737. Springer-Verlag,
Berlin Heidelberg New York, pp 371–380

11. El-Hajj M, Zaiane OR (2003) Inverted matrix: efficient discovery of frequent items in large
datasets in the context of interactive mining. In: Proceedings of the ninth ACM SIGKDD
international conference on knowledge discovery and data mining (KDD 2003), ACM,
pp 109–118

12. Goulbourne G, Coenen F, Leng P (2000) Algorithms for computing association rules using a
partial-support tree. J Knowl Based Syst 13:141–149 (also in Proceedings ES’99, December
1999. Springer, London, pp 132–147)

13. Han J, Pei J, Yin Y (2000) Mining frequent patterns without candidate generation. In: Pro-
ceedings of the ACM SIGMOD conference on management of data, Dallas, pp 1–12

14. Han J, Pei J, Yin Y, Mao R (2004) Mining frequent patterns without candidate generation:
a frequent-pattern tree approach. Data Min Knowl Discov 8(1):53–87

15. Huang H, Wu X, Relue R (2002) Association analysis with one scan of databases. In: Pro-
ceedings of the 2002 IEEE international conference on data mining (ICDM’02), pp 629–632

16. Liu G, Lu H, Lou W, Yu J (2003) On computing, storing and querying frequent patterns. In:
Proceedings of the ninth ACM SIGKDD international conference on knowledge discovery
and data mining (KDD 2003), ACM, pp 607–612

17. Pei J, Han J, Mao R (2000) CLOSET: an efficient algorithm for mining frequent closed
itemsets. In: Proceedings of ACM SIGMOD workshop on data mining and knowledge dis-
covery, pp 11–20

18. Savasere A, Omiecinski E, Navathe S (1995) An efficient algorithm for mining association
rules in large databases. In: Proceedings of the 21th VLDB conference, pp 432–444

19. Toivonen H (1996) Sampling large databases for association rules. In: Proceedings of the
22th VLDB conference, pp 1–12

20. Zaki MJ, Parthasarathy S, Ogihara M, Li W (1997) New algorithms for fast discovery of
association rules. Technical report 651, University of Rochester, Computer Science Depart-
ment, New York

Shakil Ahmed received a first class BSc (Hons) degree from
Dhaka University, Bangladesh, in 1990; and an MSc (first
class), also Dhaka University, in 1992. He received his PhD
from The University of Liverpool, UK, in 2005. From 2000
onwards he is a member of the Data Mining Group at the De-
partment of Computer Science of the University of Liverpool,
UK. His research interests include data mining, Association
Rule Mining and pattern recognition.

Tree-based partitioning of data for association rule mining 331

Frans Coenen has been working in the field of Data Min-
ing for many years and has written widely on the subject. He
received his PhD from Liverpool Polytechnic in 1989, after
which he took up a post as a RA within the Department of
Computer Science at the University of Liverpool. In 1997, he
took up a lecturing post within the same department. His cur-
rent Data Mining research interests include Association rule
Mining, Classification algorithms and text mining. He is on
the programme committee for ICDM’05 and was the chair
for the UK KDD symposium (UKKDD’05).

Paul Leng is professor of e-Learning at the University of
Liverpool and director of the e-Learning Unit, which is re-
sponsible for overseeing the University’s online degree pro-
grammes, leading to degrees of MSc in IT and MBA. Along
with e-Learning, his main research interests are in Data Min-
ing, especially in methods of discovering Association Rules.
In collaboration with Frans Coenen, he has developed effi-
cient new algorithms for finding frequent sets and is explor-
ing applications in text mining and classification.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

