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Abstract Although in the past machine learning algorithms have been suc-
cessfully used in many problems, their serious practical use is affected by the
fact that often they cannot produce reliable and unbiased assessments of their
predictions’ quality. In last few years, several approaches for estimating reliability
or confidence of individual classifiers have emerged, many of them building upon
the algorithmic theory of randomness, such as (historically ordered) transduction-
based confidence estimation, typicalness-based confidence estimation, and
transductive reliability estimation. Unfortunately, they all have weaknesses: either
they are tightly bound with particular learning algorithms, or the interpretation of
reliability estimations is not always consistent with statistical confidence levels.
In the paper we describe typicalness and transductive reliability estimation frame-
works and propose a joint approach that compensates the above-mentioned weak-
nesses by integrating typicalness-based confidence estimation and transductive
reliability estimation into a joint confidence machine. The resulting confidence
machine produces confidence values in the statistical sense. We perform series
of tests with several different machine learning algorithms in several problem
domains. We compare our results with that of a proprietary method as well as
with kernel density estimation. We show that the proposed method performs as
well as proprietary methods and significantly outperforms density estimation
methods.
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1 Introduction

Usually machine learning algorithms output only bare predictions (classifications)
for the new unclassified examples. While there are ways for almost all machine
learning algorithms to at least partially provide quantitative assessment of the
particular classification, so far there is no general method to assess the quality
(confidence, reliability) of a single classification. We are interested in the assess-
ment of classifier’s performance on a single example and not in average perfor-
mance on an independent dataset. Such assessments are very useful, especially
in risk-sensitive applications (medical diagnosis, financial and critical control ap-
plications) because there it often matters, how much one can rely upon a given
prediction. In such cases an overall quality measure of a classifier (e.g. classifica-
tion accuracy, mean squared error, . . . ) with respect to the whole input distribution
would not provide the desired value. Another possible use of quality assessment of
single classifications is in ensembles of machine learning algorithms for selecting
or combining answers from different classifiers [13].

There have been numerous attempts to assign probabilities to machine learning
classifiers, (decision trees and rules, Bayesian classifiers, neural networks, nearest
neighbour classifiers, . . . ) in order to interpret their decision as a probability dis-
tribution over all possible classes. In fact, we can trivially convert every machine
learning classifier’s output to a probability distribution by assigning the predicted
class the probability 1, and 0 to all other possible classes. The posterior probability
of the predicted class can be viewed as a classifier’s confidence (reliability) of its
prediction. However, such estimations may in general not be good due to inherent
biases of the applied algorithms.1 Reliability estimation of a classification (̃y) of
a single example (x), given its true class (y) should have the following property:

Rel(ỹ | x) = t ⇒ P(ỹ �= y) ≤ 1 − t (1)

If Eq. (1) holds, or even better, if it approaches equality, a reliability measure can
be treated as a confidence value [15].

1.1 Related work

Several methods for inducing probabilistic descriptions from training data, fig-
uring the use of density estimation algorithms, are emerging as an alternative to
more established approaches for machine learning. Frequently kernel density es-
timation [30] is used for density estimation of input data using diverse machine
learning paradigms such as probabilistic neural networks [25], Bayesian networks
and classifiers [9], and decision trees [24]. By this approach a chosen paradigm,
coupled with kernel density estimation, is used for modelling the probability dis-
tribution of input data. Alternatively, stochastically changing class labels in the
training dataset is proposed [6] in order to estimate conditionally class probabil-
ity.

There is some ongoing work for constructing classifiers that divide the data
space into reliable and unreliable regions [1]. Such meta-learning approaches have

1 An extreme case of inherent bias can be found in a trivial constant classifier that blindly
labels any example with a predetermined class with self-proclaimed confidence 1.
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also been used for picking the most reliable prediction from the outputs of an
ensemble of classifiers [23].

Meta learning community is partially dealing with predicting the right ma-
chine learning algorithm for a particular problem [18] based on performance and
characteristics of other, simpler learning algorithms. In our problem of confidence
estimation such an approach would result in learning to predict confidence value
based on characteristics of single examples.

Much work has been done in applications of the transduction methodology
[22], in connection with algorithmic theory of randomness. Here, approximations
of randomness deficiency for different methods (SVMs, ridge regression) have
been constructed in order to estimate confidence of single predictions. The draw-
back of this approach is that confidence estimations need to be specifically de-
signed for each particular method and cannot be applied to other methods.

Another approach to reliability estimation, similarly based on the transduc-
tion principle, has been proposed in [13]. While it is general and independent of
the underlying classifier, interpretation of its results isn’t always possible in the
statistical sense of confidence levels.

A few years ago typicalness has emerged as a complementary approach to
transduction [8, 15, 19]. By this approach, a “strangeness” measure of a single ex-
ample is used to calculate its typicalness, and consequently a confidence in clas-
sifier’s prediction. The main drawback of this approach is that for each machine
learning algorithm an appropriately constructed strangeness measure is needed.

In this paper we present a further development of the latter two approaches
where transductive reliability estimation serves as a generic strangeness measure
in the typicalness framework. We compare the experimental results to those of
kernel density estimation and show that the proposed method significantly out-
performs it. We also suggest how the basic transduction principle can be used to
significantly improve the results of kernel density estimation so it almost achieves
the results of transductive typicalness.

The paper is organized as follows. In Sect. 2 we describe the basic ideas of
typicalness and transduction, outline the process of their integration, and review
kernel density estimation methods used for comparison. In Sect. 3 we evaluate
how our methodology compares to other approaches in 15 domains with 6 ma-
chine learning algorithms. In Sect. 4 we present some conclusions and directions
for future work.

2 Methods and materials

The produced confidence values should be valid in the following sense. Given
some possible label space Y , if an algorithm predicts some set of labels Y ⊆ Y
with confidence t for a new example which is truly labelled by y ∈ Y , then we
would expect the following to hold over randomization of the training set and the
new example:

P(y /∈ Y ) ≤ 1 − t (2)

Note that Eq. (2) is very general and valid for both classification (Y is predicted
set of classes) and regression problems (Y is a predicted interval). As we deal only
with single predictions in this paper, Eq. (2) can be simplified to a single predicted
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class value (Y = {ỹ}):
P(y �= ỹ) ≤ 1 − t (3)

2.1 Typicalness

In the typicalness framework [15, 16, 22] we consider a sequence of examples
(z1, . . . , zn) = ((x1, y1), . . . , (xn, yn)), together with a new example xn+1 with
unknown label ỹn+1, all drawn independently from the same distribution over Z =
X ×Y where X is an attribute space and Y is a label space. Our only assumption is
therefore that the training as well as new (unlabelled) examples are independently
and identically distributed (iid assumption).

We can use the typicalness framework to gain confidence information for each
possible labelling for a new example xn+1. We postulate some labels ỹn+1 and for
each one we examine how likely (typical) it is that all elements of the extended
sequence ((x1, y1), . . . , (xn+1, ỹn+1)) might have been drawn independently from
the same distribution or how typically iid the sequence is. The more typical the
sequence, the more confident we are in ỹn+1. To measure the typicalness of se-
quences, we define, for every n ∈ N, a typicalness function t : Zn → [0, 1]
which, for any r ∈ [0, 1] has the property

P((z1, . . . , zn) : t (z1, . . . , zn) ≤ r) ≤ r (4)

If a typicalness function returns 0.05 for a given sequence, we know that the
sequence is unusual because it will be produced at most 5% of the time by any iid
process. It has been shown [15] that we can construct such functions by consider-
ing the “strangeness” of individual examples. If we have some family of functions

f : Zn × {1, 2, . . . , n} → R, n ∈ N, . . . , (5)

then we can associate a strangeness value

α(zi ) = f ({z1, . . . , zn}; i), i = 1, 2, . . . , n (6)

with each example and define the following typicalness function

t ((z1, . . . , zn)) = #{α(zi ) : α(zi ) ≥ α(zn)}
n

(7)

We group individual strangeness functions αi into a family of functions An : n ∈
N, where An : Zn → R

n for all n. This is called an individual strangeness mea-
sure if, for any n, any permutation π : {1, . . . , n} → {1, . . . , n}, any sequence
(z1, . . . , zn) ∈ Zn , and any (απ(1), . . . , απ(n)) ∈ R

n) it satisfies the following
criterion [15]:

(α1, . . . , αn) = An(z1, . . . , zn) =⇒ (
απ(1), . . . , απ(n)

) = An
(
zπ(1), . . . , zπ(n)

)

(8)

The meaning of this criterion is that the same value should be produced for each
individual element in sequence, regardless of the order in which their individual
strangeness values are calculated. This is a very important criterion, because it
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can be proven [15] that the constructed typicalness function Eq. (7) satisfies the
condition from Eq. (4), provided that the individual strangeness measure satisfies
the Eq. (8).

From a practical point of view it is advisable [15] to use positive strangeness
measures, ranging between 0 for most typical examples, and some positive upper
bound, (up to +∞), for most atypical examples.

2.1.1 Typicalness in machine learning

In the machine learning setup, for calculating the typicalness of a new example
zn+1 = (xn+1, ỹn+1) described with attribute values xn+1 and labelled ỹn+1, given
the training set (z1, . . . , zn), Eq. (7) changes to

t ((z1, . . . , zn+1)) = #{α(zi ) : α(zi ) ≥ α(zn+1)}
n + 1

(9)

Note that on the right-hand side of Eq. (9), zi belongs to the extended se-
quence, i.e. zi ∈ {z1, . . . , zn+1}. For a given machine learning algorithm, first
we need to construct an appropriate strangeness measure and modify the algo-
rithm accordingly.2 Then, for each new unlabelled example x , all possible la-
bels ỹ ∈ Y are considered. For each label ỹ a typicalness of labelled example
t ((x, ỹ)) = t ((z1, . . . , zn, (x, ỹ))) is calculated. Finally, the example is labelled
with “most typical” class, that is the one that maximizes {t ((x, ỹ))}. By Eq. (7)
the second largest typicalness is an upper bound on the probability that the ex-
cluded classifications are correct [19]. Consequently, the confidence is calculated
as follows:

confidence((x, ỹ)) = 1 − typicalness of second most typical label. (10)

2.2 Transductive reliability estimation

Transduction is an inference principle that takes a training sample and aims at es-
timating the values of a discrete or continuous function only at given unlabelled
points of interest from input space, as opposed to the whole input space for in-
duction. In the learning process the unlabelled points are suitably labelled and
included into the training sample. The usefulness of unlabelled data has also been
advocated in the context of co-training. It has been shown [2] that for every better-
than-random classifier its performance can be significantly boosted by utilizing
only additional unlabelled data.

It has been suggested [27] that when solving a given problem one should avoid
solving a more general problem as an intermediate step. The reasoning behind this
principle is that, in order to solve a more general task, resources may be wasted
or compromises made which would not have been necessary for solving only the
problem at hand (i.e. function estimation only on given points). This common-
sense principle reduces a more general problem of inferring a functional depen-
dency on the whole input space (inductive inference) to the problem of estimating
the values of a function only at given points (transductive inference).

2 This is the main problem of the typicalness approach, as the algorithms need do be consid-
erably changed.
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2.2.1 A formal background

Let X be a space of attribute descriptions of points (examples) in a training sample
(dataset), and Y a space of labels (continuous or discrete) assigned to each point.
Given a probability distribution P , defined on the input space X × Y , a training
sample

S = {(x1, y1), . . . , (xl , yl)} (11)

consisting of l points, is drawn iid (identically independently distributed) accord-
ing to P . Additional m data points (working sample)

W = {xl+1, . . . , xl+m} (12)

with unknown labels are drawn in the same manner. The goal of transductive in-
ference is to label all the points from the sample W using a fixed set H of functions
f : X 
→ Y in order to minimize an error functional both in the training sample S
and in the working sample W (effectively, in S ∪ W ). In contrast, inductive infer-
ence aims at choosing a single function f ∈ H that is best suited to the unknown
probability distribution P .

At this point there arises a question how to calculate labels of points from
a working sample. This can be done by labelling every point from a working
sample with every possible label value; however given m working points this leads
to a combinatorial explosion yielding nm possible labellings. For each possible
labelling, an induction process on S ∪W is run, and an error functional (error rate)
is calculated. In case of m = 1 we can significantly reduce the computational
complexity by labelling a point with a label predicted from S only [12].

By leveraging the iid sampling assumption and transductive inference, one
can for each labelling estimate its reliability (also referred to as confidence, a
probability that it is correct). If the iid assumption holds, the training sample S
as well as the joint correctly labelled sample S ∪ W should both reflect the same
underlying probability distribution P .

If one could measure a degree of similarity between probability distributions
P(S) and P(S ∪W ), this could be used as a measure of reliability of the particular
labelling. Unfortunately, this problem in general belongs to the non-computable
class [14], so approximation methods have to be used [12, 29].

Evaluation of the prediction reliability for single points in a data space has
many uses. In risk-sensitive applications (medical diagnosis, financial and critical
control applications) it often matters, how much one can rely upon a given predic-
tion. In such a case a general reliability measure of a classifier (e.g. classification
accuracy, mean, squared error, . . . ) with respect to the whole input distribution
would not provide the desired warranty. Another use of reliability estimations is
in combining answers from different predictors, weighed according to their relia-
bility.

2.2.2 Why does transduction work?

There is a strong connection between the transduction principle and the algorith-
mic (Kolmogorov) complexity. Let the sets S and S ∪ W be represented as binary
strings u and v, respectively. Let l(v) be the length of the string v and C(v) its
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Kolmogorov complexity, both measured in bits. We define the randomness defi-
ciency of the string v as following [14, 29]:

δ(v) = l(v) − C(v) (13)

Randomness deficiency measures how random is the respective binary string and
therefore the set it represents. The larger it is, more regular is the string (and the
set). If we could calculate the randomness deficiency (but we cannot, since it is
not computable), we could do it for all possible labellings of the set S ∪ W and
select the labelling of W with largest randomness deficiency as the most probable
one [29]. That is, we would select the most regular one. We could also construct a
universal Martin-Löf’s test for randomness [14]:

∑

{P(x | l(x) = n) : δ(x) ≥ m} ≤ 2−m (14)

That is, for all binary strings of fixed length n, the probability of their randomness
deficiency δ being greater than m is less than 2−m . The value 2−δ(x) is therefore a
p-value function for our randomness test [29].

Unfortunately, as the definition of randomness deficiency is based on the Kol-
mogorov complexity, it is not computable. Therefore we need feasible approxi-
mations to use this principle in practice. Extensive work has been done by using
Support Vector Machines [4, 22, 29], however no general approach exists so far.

2.2.3 A machine learning interpretation

In machine learning terms, the sets S and S ∪ W are represented by the in-
duced models MS and MS∪W . The randomness of the sets is reflected in the
(Kolmogorov) complexity of the respective models. If for the set S ∪ W the la-
belling of W with the largest randomness deficiency is selected, it follows from
our definition of randomness deficiency (Eq. (13)) that since the length l(v) is
constant, the Kolmogorov complexity C(MS∪W ) is minimal. Therefore the model
MS∪W is most similar to the MS .

This greatly simplifies our view on the problem, namely it suffices to compare
the (finite) models MS and MS∪W . Greater difference between them means that
the set S ∪ W is more random than the set S and (under the assumption that S is
sufficient for learning effective model) that W consist of (at least some) improp-
erly labelled the atypical examples.

Although the problem seems easier now, it is still a computational burden to
calculate changes between model descriptions (assuming that they can be effi-
ciently coded; black-box methods are thus out of question). However, there exists
another way.

Since transduction is an inference principle that aims at estimating the values
of a function only at given points of interest from input space (the set W ), we
are interested only in model change considering this example. Therefore we can
compare the classifications (or even better, probability distributions) of models MS
and models MS∪W . Obviously, the labelling of W that would minimally change
the model MS is as given by MS . We will examine this approach in more detail in
the next section.
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The transductive reliability estimation process and its theoretical foundations
originating from Kolmogorov complexity are described in more detail in [13].
Basically, we have a two-step process, featuring an inductive step followed by a
transductive step.

– An inductive step is just like an ordinary inductive learning process in machine
learning. A machine learning algorithm is run on the training set, inducing a
classifier. A selected example is taken from an independent dataset and classi-
fied using the induced classifier. An example, labelled with the classified class
is temporarily included into the training set.

– A transductive step is almost a repetition of an inductive step. A machine
learning algorithm is run on the changed training set, transducing a classi-
fier. The same example as before is taken from the independent dataset and
and classified using the transduced classifier. Both classifications of the same
example are compared and their difference (distance) is calculated, thus ap-
proximating the randomness deficiency.

– After the reliability is calculated, the example in question is removed from the
training set.

In practice the inductive step is performed only once, namely on the original
training set. New examples are not permanently included in the training set; this
would be improper since the correct class is at this point still unknown. Although
retraining for each new example seems to be highly time consuming, it is not such
a problem in practice, especially if incremental learners (such as naive Bayesian
classifier) are used.

A brief algorithmic sketch is given in Fig. 1. An intuitive explanation of trans-
ductive reliability estimation is that we disturb a classifier by inserting a new ex-
ample in a training set. A magnitude of this disturbance is an estimation of the
classifier’s instability (unreliability) in a given region of its problem space.

Since a prerequisite for a machine learning algorithm is to represent its classi-
fications as a probability distribution over all possible classes, we need a method to
measure the difference between two probability distributions. The difference mea-
sure D should ideally satisfy all requirements for a distance (i.e. nonnegativity, tri-
angle nonequality and symmetry), however in practice nonnegativity suffices. For
calculating the difference between probability distributions, a Kullback-Leibler

Fig. 1 The algorithm for transductive reliability estimation
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divergence is frequently used [5, 26]. A Kullback-Leibler divergence, sometimes
referred to as a relative entropy or I -divergence, is defined between probability
distributions P and Q:

I (P, Q) = −
n∑

i=1

pi log2
pi

qi
(15)

In our experiments we use a symmetric Kullback-Leibler divergence, or
J -divergence, which is defined as follows:

J (P, Q) = (I (P, Q) + I (Q, P)) =
n∑

i=1

(pi − qi ) log2
pi

qi
(16)

J (P, Q) is limited to the interval [0, ∞], where J (P, P) = 0. Since in this con-
text we require the values to be from the [0, 1] interval we normalize the diver-
gence in the spirit of Martin-Löf’s test for randomness.

JN (P, Q) = 1 − 2−J (P,Q) (17)

However, measuring the difference between probability distributions does not al-
ways perform well. There are at least a few exceptional classifiers (albeit trivial
ones) where the original approach utterly fails.

2.2.4 Assessing the classifier’s quality: the curse of trivial models

So far we have implicitly assumed that the model produced by the classifier is
good (at the very least better than random). Unsurprisingly, our approach works
very well with random classifiers (probability distributions are randomly calcu-
lated) by effectively labelling their classifications as unreliable [11].

On the other hand, there also exist simple constant and majority classifiers. A
constant classifier is such that it classifies all examples into the same class Ck with
probability 1. In such cases our approach always yields reliability 1 since there is
no change in probability distribution. A majority classifier is such that it classifies
all examples into the same class Ck that is the majority class in the training set.
Probability distribution is always the same and corresponds to the distribution
of classes in the training set. In such cases our approach yields reliability very
close to 1 since there is almost no change in probability distribution (only for
the example in question), that is at most for 1/N , where N is number of training
examples. In large datasets this change is negligible.

Note that such extreme cases do occur in practice and even in real life. For
example, a physician that always diagnoses an incoming patient as ill is a constant
classifier. On the other hand, a degenerated – overpruned – decision tree (one leaf
only) is a typical majority classifier.

In both cases all classifications are seemingly completely reliable. Obviously
we also need to take in account the quality of classifier’s underlying model and
appropriately change our definition of reliability.
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Obviously we assume that the learnt (induced) data model is good. Our reli-
ability estimations actually estimate the conditional reliability with respect to the
model M

Rel(yi | M) = P(yi is a true class of xi | model M is good) (18)

To calculate required unconditional reliability we apply the conditional prob-
ability theorem for the whole model

Rel′(yi ) = P(model M is good) ∗ P(yi is true class of xi | model M is good)
(19)

or even better for the partial models for each class yi

Rel′(yi ) = P(model M is good for yi )

∗P(yi is true class of xi | model M is good for yi ) (20)

Now we only need to estimate the unconditional probabilities

P(model is good) or ∀i : P(model is good for yi ) (21)

In machine learning we have many methods to estimate the quality of the induced
model, e.g. a cross-validation computation of classification accuracy is suitable
for estimation of Eq. (21). However it may be better to calculate it in a less coarse
way, since at this point we already know the predicted class value (yi ).

We propose a (Bayesian) calculation of probability that the classification in a
certain class is correct. Our approach is closely related to the calculation of post-
test probabilities in medical diagnostics [3, 17]. Required factors can be easily
estimated from the confusion matrix (Definition 1) with internal testing.

Definition 1 A confusion matrix (CM) is a matrix of classification errors obtained
with an internal cross validation or leave-one-out testing on the training dataset.
The i j-th element cij stands for the number of classifications to the class i that
should belong to the class j .

C M =









c11 c12 c13 . . . c1N
c21 c22 c23 . . . c2N
c31 c32 c33 . . . c3N
...

...
...

. . .
...

cN1 cN2 cN3 . . . cN N









cij = number of classifications to class i that belong to class j (22)

Definition 2 Class sensitivity and specificity are a generalization of sensitivity
(true positives ratio) and specificity (true negatives ratio) values for multi-class
problems. Basically, for N classes we have N two-class problems. Let C p be a
correct class in certain case, and C a class, predicted by the classifier in the same
case. For each of possible classes Ci , i ∈ {1..N }, we define its class sensitivity
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Se(Ci ) = P(C = Ci | C p = Ci ) and its class specificity Sp(Ci ) = P(C �= Ci |
C p �= Ci ) as follows:

Se(Ci ) = P(C = Ci | C p = Ci ) = cii
∑

j ci j
(23)

Sp(Ci ) = P(C �= Ci | C p �= Ci ) =
∑

j �=i c ji
∑

j �=i
∑

k c jk
(24)

Class conditional probability is calculated for each class Ci , given its prior proba-
bility P(Ci ), approximated with the prevalence of Ci in the training set, its class
specificity (Sp) and sensitivity (Se):

Pcond(Ci ) = P(Ci )Se(Ci )

P(Ci )Se(Ci ) + (1 − P(Ci ))(1 − Sp(Ci ))
(25)

To calculate the reliability estimation we therefore need the probability distri-
butions P and Q, and index i = argmax P that determines the class with max.
probability (Ci ). According to the Eq. (20) we calculate the reliability estimations
by

Rel(P, Q; Ci ) = Pcond(Ci ) × JN (P, Q) (26)

Multiplication by class conditional probabilities accounts for basic domain char-
acteristics (prevalence of classes) as well as classifier’s performance. This includes
class sensitivity and specificity, and it is especially useful in an automatic setting
for detecting possible anomalies such as default (either majority or constant) clas-
sifiers that – of course – cannot be trusted. It is easy to see that in this case we
have one class with sensitivity 1 and specificity 0, whereas for all other classes
we have sensitivity 0 and nonzero specificity. In the first case, the class post-test
probability is equal to its prior probability, whereas in the second case it is 0.

2.3 Merging the typicalness and transduction frameworks

There is a very good reason for merging typicalness and transductive reliability
estimation frameworks together. While transduction gives good reliability estima-
tions, they are often hard to interpret in the statistical sense. On the other hand, the
typicalness framework gives clear confidence values, however in order to achieve
this a good strangeness measure α(zi ) needs to be constructed.

Of course, there is a trivial solution to it, namely a uniform strangeness mea-
sure αi = C , where C is some constant value. Unfortunately, this does us no
good, since it treats all examples as equally strange and can be considered as most
conservative strangeness measure. It is therefore necessary to construct a sensi-
ble strangeness measure. In [15, 19] some ideas on how to construct strangeness
measures for different machine learning algorithms are presented.

On the other hand, as we shall see later, for a strangeness measure we can
always use transductive reliability estimation. We may speculate that most reliable
examples are also least strange. Therefore we define the strangeness measure for
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a new example zn+1 = (xn+1, ỹn+1), described with attribute values xn+1 and
labelled ỹn+1, given the training set (z1, . . . , zn) as follows:

α(zn+1) = f (z1, . . . , zn+1; n + 1) = 1 − Rel(zn+1) ∈ [0, 1] (27)

It can be shown that such a strangeness function satisfies the criterion from Eq. (8)
and therefore has the property required by Eq. (7).

Theorem 1 The strangeness measure α(zi ) = 1 − Rel((xi , ỹi )) is independent of
the order in which the examples’ strangeness values are calculated.

Proof The training set is only temporarily changed by including a suitably la-
belled new example in a transductive step (Fig. 1. It is restored back to the initial
training set as soon as the reliability estimation is calculated. Therefore the train-
ing set remains invariant for all new examples for which the reliability estimation
needs to be calculated. It follows that it is irrelevant in which order the examples
are presented and the criterion for Eq. (8) is therefore satisfied. Note that Eq. (8)
does not require that examples are ordered in any particular way, but only that any
permutation of the order of their evaluations produces the same result for each
example. ��

Consequently we can, for any machine learning classifier, universally use a
strangeness measure α((x, ỹ)) = 1−Rel((x, ỹ)) (although, as we shall see later, in
the typicalness setting this expression can be even more simplified). It is positive,
and the “more strange” examples have higher strangeness values, as suggested in
[15].

2.3.1 Simplification of transductive reliability estimation for application
within the typicalness framework

Alternatively, the calculation of the strangeness measure can, in the context of
typicalness and reliability estimation, be much simplified. Simplifications are
twofold.

1. Since the only requirement for strangeness measure is that is is positive, no
transformations to [0, 1] interval are necessary. The transformation is actually
performed by Eq. (9).

2. The typicalness framework efficiently deals with extremely deviant classi-
fiers (such as those from Sect. 2.2.4). As an example, let us consider the
most “pathological” case, the constant classifier. With constant classifiers,
all strangeness values are equal (i.e. all examples are equally – maximally –
strange). Note that in this case magnitudes of strangeness values are irrelevant
as they are all the same. By Eq. (9) it follows that for all possible classifications
of every (new) example the typicalness is therefore 1.0. By Eq. (10) this yields
confidence of 0. Such trivial classifiers are therefore maximally distrusted.

Let P(x ,̃y) and Q(x ,̃y) be the probability distributions obtained after the induc-
tive step (P(x ,̃y)) and transductive step (Q(x ,̃y)) of the algorithm from Fig. 1. It can
easily be shown that Theorem 1 holds also for α((x, ỹ)) = J (P(x ,̃y), Q(x ,̃y)) (sym-
metric Kullback-Leibler divergence) as well as for α((x, ỹ)) = I (P(x ,̃y), Q(x ,̃y))
(asymmetric Kullback-Leibler divergence).
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Implementing a transductive reliability estimation in a typicalness framework
is straightforward. For all training examples, reliability estimation is calculated by
leave-one-out testing, and they are labelled as correctly or incorrectly classified.
For each new example x with classification ỹ its confidence conf((x, ỹ)) is cal-
culated as in Sect. 2.1, Eq. (10). Regardless of the number of classes in original
problem, there are only two possibilities (meta-classes) for each classification. It
is either correct or incorrect. Therefore we always deal with exactly two meta-
classes that represent correct classifications and incorrect classifications. As we
want the confidence to reflect the probability of a correct classification, we need
to invert the confidence values for incorrect meta-class:

confidence((x, ỹ)) =
{

conf((x, ỹ)) “correct” meta-class,
1 − conf((x, ỹ)) “incorrect” meta-class.

(28)

2.4 Meta-learning and kernel density estimation

The problem of estimating a confidence value can also be viewed as a meta-
learning problem where the original class value is replaced by the correctness of
its prediction. Let ŷ be a meta-class for training examples obtained with internal
leave-one-out testing (i.e. ŷ = 1 for correct and ŷ = 0 for incorrect classifica-
tions). We can calculate the confidence in a given prediction of a new, previously
unseen example x by estimating the function ŷ(x) with a nearest neighbour clas-
sifier:

ŷ(x) = 1

K

∑

xi ∈NK (x)

ŷi (xi ) (29)

Here NK (x) is the set of K points nearest to x according to some distance mea-
sure. However, such simple estimations may be problematic when the attribute
space is large (lots of multi-valued, possibly correlated, attributes), and sparsely
populated (relatively small number of training examples). Our experimental re-
sults (Table 2) also shows this problem, as using a nearest neighbour meta-learner
results in lowest performance of all methods.3 Therefore, a transformation of input
space is necessary to reduce the dimensionality of input space. We have chosen
the principal component analysis (PCA) methodology on the training data, and
two components with largest variances were selected as data descriptors. On aver-
age, the sum of the two components’ relative variances is about 0.7. This means,
that the two principal components describe about 70% of data variability.

Rather than giving the nearest neighbours equal weights, we can assign them
weights that decrease smoothly with distance from the target point. This leads us
to kernel density estimation [28] in reduced and uncorrelated data space. It can be
estimated by using the Nadaraya-Watson kernel weighted average:

ŷ(x) =
∑N

i=i Kλ(x, xi )ŷi (xi )
∑N

i=i Kλ(x, xi )
(30)

3 To be fair, it must be said that other more advanced meta-learners could have been used.
However, this was not the aim of the paper.



Quality assessment of individual classifications in machine learning and data mining 377

where λ = [λ1, λ2] is a vector of kernel parameters (bandwidths), and Kλ(x, xi )
is a simplified (uncorrelated) bivariate gaussian kernel:

Kλ1,λ2(x, xi ) = 1

2πλ1λ2
e
− 1

2
(x[1]−xi [1])2

λ2
1

+ (x[2]−xi [2])2
λ2

1 (31)

As the PCA involves a numerical procedure that transforms a number of possi-
bly correlated input variables (attributes) into a (smaller) number of uncorrelated
variables (principal components), it is therefore perfectly justified to use a sim-
plified bivariate Gaussian kernel for density estimation on uncorrelated variables.
Our experiments have shown, that indeed in all cases the correlation between the
largest two principal components is less than 10−14, also negligible. For the bi-
variate Gaussian kernels, appropriate bandwidths were calculated from training
data according to the rule of thumb as described by Wand [30, p. 98].

For each dataset and algorithm the following procedure was performed. For
each training example, a correctness of its classification was determined by the
leave-one-out testing methodology. Training examples were partitioned in sets of
correctly and incorrectly classified examples, and used for kernel density estima-
tions of correct and incorrect classifications. For each new examples, principal
components were calculated and used to calculate the density of correct classifi-
cations (cd) as well as the density of incorrect classifications (id) at respective co-
ordinates. The confidence value of a new example was calculated as cd/(cd + id)
[7].

2.5 Improving kernel density estimation by transduction principle

The procedure described in Sect. 2.4 is computationally fast when applied to new
examples as it involves only calculating the principal components (scaling and
one matrix multiplication), and two fast uncorrelated density estimations. Unfor-
tunately, its performance (Table 2) compared to transductive confidence estimation
is rather uninspiring. The performance, however, can be easily improved by using
some ideas from meta learning and transduction frameworks. Namely, we can eas-
ily extend the original data description by including the predicted class as well as
class probability distributions. They may be obtained with internal leave-one-out
testing on the training set.

On extended data the principal components are calculated. A new example’s
class and class distribution is predicted by the original classifier, and the exam-
ple’s description is enhanced by the classifier’s prediction. An enhanced example
description is then used in the density estimation procedure as described in Sect.
2.4.

2.6 Testing methodology

To validate the proposed methodology we performed extensive experiments with
6 different machine learning algorithms – naive and semi naive Bayesian clas-
sifier [10], backpropagation neural network [21], K -nearest neighbour, locally
naive Bayesian classifier (a combination of KNN and naive Bayesian classifier)
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[13], two kinds of Assistant (ID3-like decision trees) with both information gain
and ReliefF [20] impurity measures. Experiments were performed with 14 well-
known benchmark datasets from the UCI repository (Mesh, Breast cancer, Di-
abetes, Heart, Hepatitis, Iris, Chess endgame (king-rook vs. king), LED, Lym-
phography, Primary tumor, Rheumatology, Soybean, Voting), and on a real-life
problem of nuclear cardiology diagnostics (Nuclear).

For each dataset and algorithm we determined for each training example by
internal leave-one-out testing its correctness – whether it was correctly (1) or in-
correctly (0) classified. For reliability estimations, confidence values and density
estimations, we calculated their correlation with correctness. In an ideal case (each
correct example has value 1, each incorrect 0), the result would be 1.

We also measured how well a method discriminates between correctly and
incorrectly classified examples. For each method (reliability estimations, confi-
dence values, and density estimations) we calculated the boundary b that maxi-
mizes purity (information gain) of the discriminated examples. The boundary b is
calculated by maximizing Eq. (33).

H(S) = −|S1|
|S| log2

|S1|
|S| − |S2|

|S| log2
|S2|
|S| (entropy before split)

H(S; b) = |S1|
|S| H(S1) + |S2|

|S| H(S2) (entropy after split) (32)

Gain(S, b) = H(S) − H(S; b)

Here, S is the set consisting of all examples, in the set S1 there are unreliable
examples {zi : Rel(zi ) < b} whereas in the set S2 there are reliable examples
{zi : Rel(zi ) ≥ b}. In an ideal case when both splits are pure, the result would be
equal to the entropy of classifications H(S).

All experiments were performed by leave-one-out testing. In this setup, one ex-
ample was reserved, while learning and preparatory calculations were performed
on the rest, in many cases two nested leave-one-out testings were carried out. Fi-
nal results are averages of leave-one-out experiments on all examples from the
dataset.

Finally, we also applied our approach to a real-world application on a large
database of 600.000 customers of a large local corporation. Here, due to large
quantities of data, the testing methodology was slightly different. While leave-one
out testing was still used for obtaining strangeness values for the training (50%)
dataset, the remaining data was used as an independet testing set.

3 Results

Experimental results were obtained with two different setups. The first one con-
sists of series of experiments on well-known (UCI) problem domains. These re-
sults were used to validate our approach and compare it with existing ones. The
second experimental setup consists of applications in a real-life commercial data
mining system. It also presents some valuable practical considerations.
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Table 1 Comparison of confidence estimation on KNN with the algorithm-specific TCM-NN,
both with 10 nearest neighbours. Accurracy was obtained with a standard 10-NN algorithm.

Correlation with correctness Information gain
Accuracy
KNN (%) TCM-NN KNN TCM-NN KNN

w Mesh 64.7 0.49 0.40 0.26 0.19
Brest cancer 80.2 0.09 0.14 0.02 0.03
Nuclear 81.0 0.35 0.28 0.12 0.07
Diabetes 73.7 0.26 0.19 0.06 0.05
Heart 79.3 0.34 0.18 0.11 0.09
Hepatitis 85.2 0.28 0.25 0.07 0.07
Iris 94.7 0.23 0.36 0.12 0.12
Chess end. 92.0 0.43 0.33 0.21 0.12
LED 73.2 0.20 0.19 0.04 0.05
Lymphography 83.1 0.50 0.22 0.32 0.18
Primary turnour 41.3 0.10 0.37 0.00 0.19
Rheumatology 61.3 0.42 0.42 0.17 0.16
Soybean 92.1 0.32 0.38 0.12 0.12
Voting 94.0 0.42 0.26 0.18 0.09

Average 78.3 0.32 0.28 0.13 0.11

3.1 Experiments on benchmark problems

Results of confidence estimation on the KNN (nearest neighbour) algorithm are
compared with the TCM-NN nearest neighbour confidence machine [19], where a
tailor-made strangeness measure for confidence estimation in a typicalness frame-
work was constructed. In Table 1 experimental results in 15 domains are shown.
Results of TCM-NN are slightly better, as could be expected from the tailor-made
method, though the differences are not significant with two-tailed, paired t-test).

3.1.1 Reliability, confidence and density estimation

The obtained confidence values are compared with transductive reliability estima-
tions and density estimations. Our first goal was to evaluate the performance of
confidence values in terms of correlation with correctness, and its ability to sepa-
rate correct and incorrect classifications in terms of information gain. Our second
goal was to see whether confidence values are more easily interpretable than trans-
ductive reliability estimations.

Figures 3a and b depict how reliability estimations are transformed to confi-
dence levels. This is a typical example and probably the most important result of
our work, as it makes them easily statistically interpretable. On average, the best
decision boundary for reliability estimations is 0.74, on the other hand, for con-
fidence it is about 0.45. Also, the mass of correct and incorrect classification has
shifted towards 1 and 0, respectively.

In Table 2 experimental results are presented. We see that confidence val-
ues significantly (p < 0.05 with two-tailed, paired t-test) outperform reliabil-
ity estimations in terms of correlation with correctness. From Fig. 3 it is clear
that this is because of the shift towards 1 and 0. Information gains do not differ
significantly.
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Table 2 Experimental results with confidence values, reliability and density estimations with 6
machine learning algorithm in 15 datasets. Accuracy was calculated as an average of all 6 base
classifiers.

Correlation with correctness Information gain (in bit)

Confi- Density Reliab- Confi- Den-
Domain Accuracy (%) Reliability dence ility dence sity

Mesh 65.7 0.51 0.46 0.10 0.25 0.25 0.12
Brest cancer 77.4 0.28 0.22 0.09 0.10 0.10 0.07
Nuclear 88.0 0.21 0.21 0.09 0.07 0.08 0.07
Diabetes 74.3 0.26 0.33 0.08 0.18 0.18 0.05
Heart 80.7 0.26 0.27 0.08 0.11 0.11 0.11
Hepatitis 86.6 0.25 0.30 0.12 0.12 0.11 0.14
Iris 93.8 0.23 0.42 0.08 0.13 0.13 0.09
Chess endgame 95.5 0.09 0.27 0.08 0.11 0.11 0.05
Chess endgame 71.1 0.11 0.12 0.07 0.10 0.10 0.05
LED 73.0 0.16 0.18 0.04 0.05 0.05 0.03
Lymphography 81.9 0.20 0.27 0.13 0.13 0.13 0.17
Primary tumor 44.8 0.39 0.38 0.07 0.16 0.16 0.07
Rheumatology 58.0 0.47 0.48 0.10 0.22 0.22 0.10
Soybean 89.4 0.35 0.37 0.08 0.14 0.13 0.09
Voting 94.0 0.17 0.22 0.09 0.08 0.08 0.07

Average 78.3 0.26 0.30 0.09 0.13 0.13 0.08

Comparing confidence values and density estimations shows a slightly dif-
ferent picture. Here, in terms of correlation with correctness as well as for for
information gain criterion, the differences are significant (p < 0.01 with two-
tailed, paired t-test). Figure 2 depicts typical density estimations for both correct
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Fig. 2 Densities of correct and incorrect classification in soybean dataset using neural networks
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Fig. 3 Relative frequencies of reliability estimations and confidence levels in soybean dataset
using neural networks

and incorrect classifications. On average, the best decision boundary for density
estimations is 0.52.

In Table 2 we can also see that meta-learning with 10 nearest neighbours
(10-NN) performed worst (although 10 was a tuned parameter). This was ex-
pected, since it was used in the whole – sparsely populated – attribute space.
Density estimations (Den.) performed significantly better on a reduced attribute
space (p < 0.01 with two-tailed, paired t-test). We also see that transductive
attributes improve the performance of density estimation (Tr. den.) quite signifi-
cantly (p < 0.05 with two-tailed, paired t-test). While it does not reach perfor-
mance of transductive reliability or confidence estimations, it is much easier to
compute as it does not require re-learning of a classifier.

3.2 Real-life application and practical considerations

We also did a practical application of integration of decision support system with
data mining methods working with data from extensive customer relationship



382 M. Kukar

management (CRM) survey for a large local corporation. It turned out that im-
mense quantities of raw data had been collected and needed to be assessed. Thus
the use of data mining methods was called for. The system was implemented in
Oracle 9i application framework using Oracle’s Data Mining (ODM) database ex-
tension. An Adaptive Bayesian Network classifier was used. The database con-
sisted of about 600,000 customers’ records consisting of up to 100 attributes.
The preparatory calculations (leave-one-out testing on training dataset) were quite
lengthy as they took more than a week. However, producing a confidence estima-
tion for a single customer was much more acceptable; depending on system use it
took about a minute.

Produced confidence values were much better (on average by 0.2 bit of gained
information) than the probability estimations of the applied Adaptive Bayesian
Network classifier. There was also improvement of more than 10% of the confi-
dent classification (confidence ≥ 95%). In practice this could (and in near future
probably will) save significant amounts of CRM campaign money.

The main drawback of our approach in this practical problem is its relative
slowness. It needs more than a week to perform preparatory calculations and it
took again more than a week to calculate confidence values for all testing exam-
ples (customer records from independent set). It may therefore not be suitable for
quick on-line analysis of an overall situation, but is perfectly suited for assessment
of individual customers. A great advantage of typicalness/transduction approach
over other approaches (such as kernel density estimation) is that it can be easily
implemented even with relatively closed (no source code available for modifica-
tions) commercial data mining systems.

4 Discussion

We propose an approach that compensates the weaknesses of typicalness-based
confidence estimation and transductive reliability estimation by integrating them
into a joint confidence machine.

The resulting values are true confidence levels, and this makes them much eas-
ier to interpret. Contrary to the basic typicalness and transductive confidence esti-
mation, the described approach is not bound to the particular underlying classifier.
This is an important improvement since this makes possible to calculate confi-
dence values for almost any classifier, no matter how complex it is.

Experimental comparison on comparable unmodified and modified algorithms
(confidence estimation on a KNN algorithm and TCM-NN nearest neighbour con-
fidence machine) show that the proposed approach performs similarly to the spe-
cially modified algorithm. There is no significant reduction in performance while
there is a huge gain in generality.

Comparisons with kernel density estimation show that the computed confi-
dence values significantly outperform density estimations. However, this does not
mean that density estimations should not be used as they are much easier to com-
pute and do not require re-learning of a classifier. Their performance can also be
significantly improved by using additional transductive attributes.

Experimental results performed with different machine learning algorithms in
several problem domains show that there is no reduction of discrimination per-
formance with respect to transductive reliability estimation. More important than
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this, statistical interpretability of confidence values makes it possible to use appli-
cations in risk-sensitive problems with strict confidence limits.

The main drawback of our approach is computational complexity, as it needs to
perform the leave-one-out testing in advance, and requires temporary re-learning
of a classifier for each new example. However, this may not be a problem if incre-
mental learners (such as naive Bayesian classifier) are used. In other cases, density
estimation with included transductive attributes may also be used.

In the near future we are planning several experiments in risk-sensitive busi-
ness problems as well as in medical diagnostics and prognostics.
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