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Abstract. This work is concerned with the identification of models for nonlinear dynamical
systems using multiobjective evolutionary algorithms. Systems modelling involves the processes
of structure selection, parameter estimation, model performance and model validation and in-
volves a complex solution space. Evolutionary Algorithms (EAs) are search and optimisation
tools founded on the principles of natural evolution and genetics, which are suitable for a wide
range of application areas. Due to the versatility of these tools and motivated by the versatility of
genetic programming (GP), this evolutionary paradigm is proposed for this modelling problem.
GP is then combined with a multiobjective function definition scheme. Multiobjective genetic
programming (MOGP) is applied to multiple, conflicting objectives and yields a set of candidate
parsimonious and valid models, which reproduce the original system behaviour. The MOGP ap-
proach is then demonstrated as being applicable for system modelling with chaotic dynamics.
The circuit introduced by Chua, being one of the most popular benchmarks for studying nonlin-
ear oscillations, and the Duffing–Holmes oscillator are the systems to test the evolutionary-based
modelling approach introduced in this paper.

Keywords: Chaotic dynamic systems; Genetic programming; Multiobjective optimisation; Sys-
tem modelling

1. Introduction

Evolutionary computation (EC) is a fascinating field that has attracted the atten-
tion of many researchers from diverse backgrounds. This interest in evolution-based
search and optimisation algorithms has motivated new developments and applica-
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tions. In this paper, genetic programming (GP), an EC paradigm, is applied where
the computer structures that undergo adaptation are themselves represented as com-
puter programs (Banzhaf et al. 1998; Koza 1992). Since the emergence of the GP
paradigm, there have been an increasing amount of research working on both theory
(Poli 2001; Rosca and Ballard 1999) and applications (Chen and Yeh 1996; Gray
et al. 1996; Miller et al. 2000; Nikolaev and Iba 2001; Nordin 1994; Ryan and
Ivan 1999; Spector and Alpern 1995; Witbrock and Neil-Reilly 1999), amongst other
domains. One of this application areas is system modelling. Modelling can be de-
fined as an experimental process of building a mathematical model from input–output
observations from a system. In other words, it is the art of creating a mathemati-
cal description of an unknown dynamic system. In the context of GP, this prob-
lem is formulated as requiring the discovery of a computer program (mathemat-
ical expression of a nonlinear or linear model) that provides an acceptable pre-
diction (near-optimal model) of a system under investigation from a given set of
input–output data. System modelling is important in the study of a wide class of
signal-processing problems, where applications range from analysis of marketing data
(Chen and Yeh 1996; Kaboudan 1999) through modelling and prediction (Evans et
al. 2001; Koza 1992; Nikolaev and Iba 2001; Oakley 1994). In each case, a model
considering the best possible approximation to the dynamic system is estimated based
on observation (or historical) data. However, it has long been realised that the re-
sponses of many nonlinear dynamic systems do not follow simple, regular, and pre-
dictable trajectories, but swirl around in a random-like and seemingly irregular be-
haviour. As long as the process involved is nonlinear, even a simple strictly deter-
ministic model may develop such complex behaviour. This behaviour is known and
defined as chaos and has led to developments in study of nonlinear systems. A spe-
cial feature of chaos is its fundamental property, known as extreme sensitivity to
initial conditions, in the sense that two sets of similar initial conditions can give rise
to two dramatically different asymptotic states of the system trajectory. A second
feature of chaos is its inability to predict long-term behaviour. Some studies of GP
applied for chaotic systems modelling and prediction have been undertaken. Exam-
ples of them are Koza (1992), Mulloy et al. (1996) and Oakley (1994), which have
the same foundations, where the problem was formulated as a symbolic regression
problem and the function set was defined as

F = {+,−, ∗, %, sin, cos, exp, log}
(% represents the protected division function).

In previous work (Evans et al. 2001; Rodríguez-Vázquez and Fleming 1999), the
use of genetic programming in polynomial NARMAX structures modelling has been
studied. Results have been shown to work well. Therefore, these works are the basis
of this paper, which considers the use of a multiobjective fitness function evaluation
applied to dynamic systems exhibiting chaotic behaviour. It is also pointed out that
knowledge about the system under analysis can be included into the multiobjective
cost function and, thus, a search process can be addressed to a specific region of the
entire search space. The paper is then organised as follow. In Sect. 2.1, the definition
of genetic programming is given. The optimisation and multiobjective optimisation
concepts are defined in Sect. 2.2. How to formulate the nonlinear system modelling
problems using genetic programming is answered in Sect. 2.3. The concepts of term
clustering, cluster coefficients and fixed-points, features that can be known a priori
and are useful information to determine the nonlinearities and address the search
process into a feasible region, are presented in Sect. 3. Numerical examples to il-
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lustrate the application of this alternative system modelling method are provided in
Sect. 4. Finally, conclusions are drawn in Sect. 5.

2. Multiobjective genetic programming (MOGP)

In this section, the concepts of genetic programming, multiobjective optimisation and
how genetic programming encoding can be applied to represent nonlinear dynami-
cal models are discussed. The application of this nonconventional system modelling
method, named here as multiobjective genetic programming (MOGP), is illustrated
in Sect. 4.

2.1. Genetic programming

GP (Banzhaf et al. 1998; Koza 1992) is a subclass of genetic algorithms, GAs
(Goldberg 1989). GAs are search and optimisation tools that use computational
models of evolutionary processes in the design of computer-based problem solving.
They work by maintaining a population of structures that evolve according to rules
of selection and other operators such as recombination and mutation. In a similar
way to that of natural evolution and heredity, the simple GA has a structure as shown
in Program 2.1. Thus, this algorithm works on a population of N binary fixed-length
individuals, P(t) = {xt

1, . . . , xt
N }, representing search points in the space of potential

solutions of a given problem. How well each individual xt
i adapts each generation t

to the problem under investigation is provided by a quality measure called the fitness.
The population evolves, generation by generation, toward better regions of the search
space by means of genetic processes, such as selection, recombination and mutation.
The selection process uses the fitness measure to choose individuals of the previous
generation, (P(t − 1)), to be reproduced, favouring those of higher quality. The re-
combination, or crossover, operation promotes the exchange of genetic information
between parent individuals, thereby producing descendants. The simplest crossover
operator takes two parent individuals that exchange a portion of their chromosomes
to produce two offspring. The mutation operation alters the genetic information by
introducing some changes into the population. In the case of binary encoding, mu-
tation swaps 0’s with 1’s, and vice versa. The evaluation process is repeated until
a predefined termination criterion is met, or alternatively, until a maximum number
of generations (iterations) is reached.

Program 2.1 Evolution-based algorithmYY

y

PROGRAM Evolution-Based Algorithm
t=0
Create Initial Population P(t)
Evaluate Initial Population P(t)
While(not termination_criterion) do

t=t+1
Select Individuals for Reproduction P(t) from P(t-1)
Alter P(t)
Evaluate New Population P(t)

end
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Fig. 1. A mathematical expression represented hierarchically by its parse tree

In the case of GP, the individuals (potential solutions) of the population are ex-
pressed as programs instead of individuals represented as bit strings. The fact that
many problems can be expressed as computer programs makes GP a more power-
ful tool than its predecessor, the GA. Here, these programs, which are composed of
functions and terminals appropriate to the problem domain, are encoded as hierarch-
ical tree structures, providing a dynamic and variable representation. To illustrate the
hierarchical encoding used for GP, Fig. 1 gives a simple example where the opera-
tions F = {+,−, ∗, %,>,<,=, IF} belong to the function set and the variables and
constants T = {1, 2, 3, . . . , 5, TIME} constitute the terminal set. This hierarchical
tree represents the following mathematical expression:

f =
{

1 + 2 + 3 = 6 if TIME > 10
1 + 2 + 4 = 7 otherwise .

2.1.1. Genetic operators

Like the standard GA, the two main operators are crossover and mutation. The
crossover, a sexual operator, works by first selecting a pair of structures from the
current population. Then, a node rooted from each parent is randomly selected. These
nodes become the roots for the substructures located below the crossover point. In
the next step, the substructures are exchanged between the parents, producing two
new structures. Because of the dynamic representation used in genetic programming,
the parents are typically of different size, shape and content, and the offspring are
also generally different. Figure 2 illustrates the crossover operation where the marked
nodes are the roots (crossover nodes) for the subexpressions.

Mutation operates by randomly selecting a node, which can be either a terminal
or internal point, and replacing the associated substructure with a randomly generated
subtree up to a maximum size.

The fitness measure of each computer program is assigned in terms of how well it
performs in the particular problem domain. This fitness value depends on the prob-
lem but is generally defined as the error produced by the computer program. In
conventional genetic programming approaches, and, in general, in any evolution-
ary algorithm, the assigned fitness measure is based on the evaluation of a scalar
function. But these population-based methods possess the characteristic of simultan-
eously searching for multiple solutions and, more, can evaluate several aspects of
the problem. For this reason, this work presents an extension of the conventional or
single fitness measure genetic programming mapping into a multiobjective genetic
programming approach described in the next section.
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Fig. 2. GP-crossover operation

2.2. Multiobjective optimisation

As has been mentioned, nonlinear system modelling problems typically consist of
multiple and competing characteristics to be evaluated. Some approaches do not con-
sider all aspects of the identification or these are aggregated into a single objective
function (e.g. Akaike information criterion [AIC] (Akaike 1974)). However, these
approaches have significant drawbacks and it is preferable to treat the multiple ob-
jectives separately. Hence, multiobjective optimisation has become a useful tool for
describing real problems, in general, that cannot be effectively represented in a unidi-
mensional space. Multiobjective (also called multicriteria, multiperformance or vec-
tor) optimisation is then defined as the problem of finding:

a vector of decision variables that satisfies constraints and optimises a vector func-
tion, the elements of which represent the objective functions. These functions are
usually in conflict with each other. Hence, the term optimise means finding such
a solution that would give values for all the objective functions acceptable to the
designer.

Expressing this definition mathematically, it can be stated as finding the vector
x∗ = [x∗

1, x∗
2, . . . , x∗

n]T that satisfies the m inequality constraints,

gi(x) ≥ 0 i = 1, 2, . . . , m, (1)

the p equality constraints,

hi(x) = 0 i = 1, 2, . . . , p, (2)

and optimises the vector function,

f (x ) = [ f1(x ), f2(x), . . . , fk(x )], (3)

where x = [x1, x2, . . . , xn]T is the vector of decision variables.
The constraints given by 1 and 2 define the feasible region X and any point x

in X defines a feasible solution. The k components of the vector f (x) represent
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the noncommensurable criteria that must be considered. The constraints gi(x) and
hi(x) represent the restrictions imposed on the decision variables. The vector x∗ de-
notes the optimal solution set. In multiobjective optimisation (MO), the solution is
a set of alternative solutions rather than a single optimal one. Thus, the simultan-
eous evaluation of model complexity, model performance and model validation of the
identification procedure are performed for each member of the population of poten-
tial mathematical models. The fitness value of each population member is assigned
by means of a rank-based fitness method (Fonseca and Fleming 1995). This fitness
evaluation is based on the definition of Pareto-optimality or nondominance, which
constitutes by itself the origin of research in multiobjective optimisation. Consider-
ing an optimisation (minimisation) problem and given two n components objective
function vectors, f u and f v, we can say that f u dominates f v (is Pareto-optimal) if

∀i ∈ {1, . . . , n}, fui ≤ fvi ∧ ∃i ∈ {1, . . . , n}, fui < fvi , (4)

producing a set of possible and valid solutions known as the Pareto-optimal or ad-
missible solution set of the problem. Selection in genetic programming is made using
a method of ranking that favours nondominant individuals of the population (Fonseca
and Fleming 1995).

Current research on evolutionary multiobjective optimisation algorithms propose
alternative multiobjective evaluation schemes. Examples of these works are the non-
dominated sorting genetic algorithm (NSGA) proposed and extended by Deb et al.
(2000), the Pareto archived evolution strategy (PAES) proposed by Knowles and
Corne (2000) and the micro-genetic algorithm by Coello-Coello and Toscano-Pulido
(2001), amongst others. A survey of research on evolutionary multiobjective opti-
misation (EMO) techniques can be found in Coello-Coello et al. (2002). However,
these efforts have been mainly focused on simple biobjective constrained and un-
constraind test problems of parameter optimisation. In our case, the main point is
to solve a practical multiobjective problem evaluating attributes of model structure,
performance and validation. It is important to point out that we use a Pareto-based
fitness assignment based on previous work by Fonseca and Fleming (1995) but we
are also able to integrate any other multiobjective evaluation technique.

2.3. Difference equation program model representation

The well-known NARMAX (nonlinear autoregressive moving average with exoge-
nous inputs) model that is an extended ARMAX description for representing non-
linear systems has been introduced by Leontaritis and Billings (1985). This model
is given by a nonlinear function, F�(•), of the output, y(k), the input, u(k), and the
possible noise disturbance, e(k). Thus,

y(k) = F�(y(k − 1), . . . , y(k − ny),u(k − 1), . . . u(k − nu),

e(k − 1), . . . e(k − ne)) + e(k), (5)

where ny, nu and ne are the maximum lags considered for the output, input and
noise terms, respectively, and � is the degree of nonlinearity of the model structure.
Note that, if � = 1, the resulting model is a linear structure. As has been stated in
previous work by Chen and Billings (1989), the most typical choice for F�(•) in (5) is
a polynomial expansion. The model is linear in the parameters and can, therefore, be
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estimated by means of a least-squares algorithm. Then, based on the polynomial rep-
resentation of the NARMAX model, the GP population consists of tree-structured in-
dividuals that readily represent alternative structures for the application of the NAR-
MAX approach. Potential models are encoded as hierarchical tree structures, thus
providing a dynamic and variable representation, and these constitute members of
a population of different model structures. These structures consist of functions (in-
ternal nodes) and terminals (leaf nodes) appropriate to the problem domain. Hence,
the function set is here defined as F = {ADD, MULT } = {+, ∗} and the termi-
nal set as T = {X0, X1, . . . , Xny, Xny+1, . . . , Xny+nu, Xny+nu+1, . . . , Xny+nu+ne} =
{c, y(k−1), . . . , y(k−ny), u(k−1), . . . , u(k−nu), e(k−1), . . . , e(k−ne)}. This hier-
archical tree representation of polynomial NARMAX models is interpreted in Polish
notation.1 An example is the following expression: (ADD (ADD X1 X5) (MULT
(ADD X2 X3)(ADD X1 X4))). This is equivalent to the polynomial nonlinear model
defined as

y(k) = θ0 + θ1e(k − 1) + θ2y(k − 1) + θ3y(k − 2)

+ θ4y(k − 1)u(k − 1) + θ5y(k − 2)u(k − 1), (6)

where {X1, X2, X3, X4, X5} = {1.0(the constant term), y(k − 1), y(k − 2), u(k − 1),
e(k − 1)}. A least-squares algorithm is applied to compute the parameter vector θi
to minimise the residual of errors ε(k) between the measured output y(k) and the
predicted output ŷk that is given by

ε(k) = y(k) − ŷ(k, θ̂). (7)

This parameter estimation algorithm works by first calculating the process terms
coefficients and, by means of (7), the residuals are computed. Once the residuals
are known, these are incorporated into the model and a new set of parameters is
estimated.

3. Term clustering and fixed points

The concepts of term clustering and cluster coefficients are useful to extract some
dynamical properties such as the number of fixed points. The fixed points are directly
related to the degree of nonlinearity of the output, as described below, and these
provide useful information that can be integrated into the MOGP method. In order
to analyse the relationship between the structure of NARMAX polynomials and their
respective fixed points, some definition are given as follow.

3.1. Term clustering and fixed points

In term clustering (Aguirre and Mendes 1996), the deterministic part of a NARMAX
model, that is the NARX model, is expanded as the summation of terms with degrees
of nonlinearity in the range 1 ≤ m ≤ �. Each mth order term can contain a pth order

1 This reverse polish expression can be also represented as a tree being the root node y(k), lagged input,
output and noise terms and constant representing the terminal set and the function set consisting of addition
and products.
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factor in y(k−ni) and a (m-p)th order factor in u(k−ni) and is multiplied by a cluster
coefficient C p, m-p(n1, . . . , nm) as follows:

y(k) =
�∑

m=0

m∑
p=0

ny,nu∑
n1,nm

Cp,m−p(n1, . . . , nm)

p∏
i=1

y(k − ni)

m∏
i=p+1

u(k − ni), (8)

where
ny,nu∑
n1,nm

=
ny∑

n1=1

. . .

nu∑
nm=1

(9)

and the upper limit is ny if the summation refers to factors in y(k − ni) or nu for
the case of factors in u(k − ni).

For example, expanding the summation up to second order, that is, � = 2 gives

y(k) = C0,0 +
ny∑
n1

C1,0(n1)y(k − n1) +
nu∑
n1

C0,1(n1)u(k − n1)

+
ny∑
n1

ny∑
n2

C2,0(n1, n2)y(k − n1)y(k − n2)

+
ny∑
n1

nu∑
n2

C1,1(n1, n2)y(k − n1)u(k − n2)

+
nu∑
n1

nu∑
n2

C0,2(n1, n2)u(k − n1)u(k − n2) . (10)

Definition 1 (Cluster coefficients (Mendes 1995)). The constants
∑ny,nu

n1,nm
Cp,m−p

(n1, . . . , nm) are the coefficients of the term clusters Ωy pum−p, which contain terms
of the form y(k − i)pu(k − j)m−p for m = 0, . . . , � and p = 0, . . . , m. Such coeffi-
cients are called cluster coefficients represented as

∑
y pum−p .

From the last definition, one can say that the set of all candidate terms for
a NARX model is the union of all possible clusters up to degree �. That is,

{All possible terms} =
⋃

p=0,... ,m
m=0,... ,�

Ωy
pum−p

= constants ∪ Ωy ∪ Ωu ∪ Ωy2 ∪ Ωyu ∪ Ωu2 ∪ . . . ∪
all possible combinations up to degree �.

Definition 2 (Fixed points). Defining a vector x as the state of the dynamical system
and the function f that describes how the system moves, there are special circum-
stances where the system does not move, but stays in a special state. These states
are called fixed points (or equilibrium points) of the dynamical system.

To illustrate this definition, an example is considered.
Given the nonlinear discrete time system

x(k + 1) = [x(k)]2 − 6 (11)
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and given the state x(k) = 3, the value at the next instance is computed as

x(k + 1) = x(k)2 − 6 = 32 − 6 = 3 . (12)

We observe that the system is again at state x = 3. This value is a fixed point
of the system because, if we are ever in state 3, we remain there for all time.

In the context of the NARMAX model representation, this concept has been ap-
plied by Aguirre and Mendes (1996). The fixed points are defined as those points
for which y(k) = y(k + 1), i ∈ Z , and usually constitute the starting point in an
analysis of nonlinear system models.

In what follows, the fixed points will be computed for the autonomous version
of the system under investigation. If the original polynomial is nonautonomous, then
u(k − i) = 0, i = 0, 1, . . . . All possible clusters of an autonomous polynomial with
degree of nonlinearity � are Ω = constant, Ωy, Ωy2 ,. . . , Ωy� . Hence, the fixed points
of an autonomous polynomial with degree of nonlinearity are given by the roots of
the clustered polynomial, expressed as

y(k) = C0,0 + y(k)

ny∑
n1=1

C1,0(n1) + y(k)2
ny,ny∑
n1,n2

C2,0(n1, n2) + . . .

+ y(k)�
ny,ny∑
n1,n�

C�,0(n1, . . . , n�) . (13)

By using the definition of cluster coefficients and eliminating the argument k, the
last equation can be rewritten as follows:∑

y�

y� + . . . +
∑

y2

y2 + (
∑

y

−1)y +
∑

0

= 0 . (14)

From the last equation, it becomes clear that an autonomous polynomial with
degree of nonlinearity � will have � fixed points if

∑
y� 	= 0.

Moreover, the fixed points can be directly extracted from the data. Relevant in-
formation about the system dynamics can then be obtained before the modelling
procedure takes place. A routine to perform this task has been written by Mendes
(1995), which is based on the algorithm proposed by Glover and Mees (1993). This
procedure is explained in the following subsection.

3.2. Fixed points from data

Looking at the time series of Fig. 7, lines have been drawn inferring a possible
fixed point and its position. The idea of the Glover and Mees algorithm (Glover and
Mees 1993) says that an estimation of a fixed point of a linear model is given by the
average value of the time series. However, in this case, the time series only behaves
in a linear way for a limited time, the trajectory eventually leaves the vicinity of the
fixed point and higher order terms become important. Then, there are k short sections
and the process for obtaining fixed points from data starts by modelling these short
sections, or windows, of the time series. If the window is {x1, x2, . . . , x2m+1} then,

k+m∑
i=k

ci xi = 1 k = 1, . . . , m + 1 . (15)
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(a) Histogram of pk (b) Plot of log(rk) vs. pk for m = 6

Fig. 3. Each k produces a single point

This AR(m) model has m +1 parameters and then m +1 equations for a window
of length 2m + 1. Equation (15) can then be rewritten as,

Xc = 1m+1, (16)

where matrix X has elements Xi, j = xi, j−1 and 1m+1 is a vector the elements of
which are one. The solution is given by c = X−11m+1. The fixed point of the model
corresponds to a constant time series xi = p and replacing this in (15) gives

p−1 =
m+1∑
i=1

ci =
m+1∑
i, j=1

X−1
i, j . (17)

For each window, there is a different value of p (fixed points). Then, for each k,
there is a pk to be the value of the fixed point for the linear model of the window
{xk, xk+1, . . . , xk+2m }.

In order to graphically present this information, the distance between the m-
dimensional points vk = (xk, . . . , xk+m+1) and the m-dimensional fixed points qk =
(pk, . . . , pk) is calculated. Points near the fixed point are also close to their corres-
ponding fixed-point estimates. Thus, rk = ||vk − qk|| is defined and a plot of log(rk)
vs. pk from time series of Fig. 7 is presented (see Fig. 3). It is seen from Fig. 3
that there is a strong accumulations around ±1.5 and a weaker one near 0.

4. Simulation results

This section provides two examples concerning the use of multiobjective genetic pro-
gramming (MOGP) in modelling nonlinear dynamic systems. These examples pos-
sess the characteristics of having a chaotic motion. The first example, the well-known
Duffing–Holmes oscillator (Holmes 1979), illustrates how MOGP can be applied in
the identification of NARMAX models. The second example discusses the identifi-
cation of models from chaotic data sets.
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Fig. 4. Input–output data from the Duffing–Holmes equation exhibiting a chaotic regime

Fig. 5. Reconstructed attractor from measured data of the Duffing–Holmes oscillator

4.1. Example 1. Duffing–Holmes oscillator

The well-known Duffing–Holmes equation is commonly used to model mechanical
oscillations. This system is characteristic of many structural nonlinearities encoun-
tered in practice (Hunter 1992). This system is modelled by means of the following
equation:

ÿ + δ ẏ − βy + αy3 = Au . (18)

In this equation, δ = 0.15, β = 1.0, α = 1.0, A = 0.30, u = cos(ωk) and
ω = 1 rad/s. This set of parameters drives the Duffing–Holmes equation to exhibit
chaotic motion (see Figs. 4 and 5).
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Table 1. GP parameters used in nonlinear systems identification

Parameter name Description

Objective Find a program to model the relationship of input-output data gathered
from the system in study.

Terminal set c, y(k − 1), . . . , y(k − ny), u(k − 1), . . . , u(k − nu).

Function set ADD, MULT.

Fitness cases The number of pairs of data.

Fitness function The fitness function is given in a multiobjective fashion (equations 1 and
14) and considered attributes related to the model complexity, model per-
formance and the number and location of fixed points which constrain the
search space.

GP-parameters MaxGen = 200, PopSize = 100.

GP-operators Crossover: 0.9, Mutation: 0.1.

Termination criterion Maximum number of generations.

Because a priori knowledge about the system can be obtained (the number and
location of fixed points extracted from the original data and also expressed in equa-
tion (18)), this information is introduced as objectives because it has a direct rela-
tionship to the dynamic model degree. The inclusion of this objective has the aim
of searching in the region of models exhibiting these characteristics. Nevertheless,
a disadvantage that the MOGP framework exhibits is the inability to deal straightfor-
ward with equality constraints. Therefore, in order to overcome this weakness, the
objective related to model degree was redefined as

ObjDEG = |DEG − No.FXP|, (19)

where the number of fixed points are (the variable No. FXP from (19)) defined to
be 3 as shown from Figs. 4 and 5. Thus, the distance between solution value and
the constraint value must be a minimum, where the minimum value of (19) will be
zero and corresponds to the correct number of fixed points of the system. MOGP
can then deal directly with the minimisation of this objective. Alternative algorithms
to treat equality constraints combined with evolutionary algorithms have appeared
in the literature. GENOCOP (genetic algorithm for numerical optimisation for con-
strained problems) introduced by Michalewicz and Nazhiyath (1995) uses some ideas
of repair algorithms. In the approach by Hinterding (2001), equality constraints are
replaced by inequalities h(x) ≤ δ and h(x) ≥ δ, where δ is adaptively adjusted based
on the proportion of the population that is in the feasible region rather than being
assigned a sufficiently small value.

The Duffing–Holmes system shows three equilibrium points located at (−√
β, 0,√

β) (Mendes 1995), one trivial and two symmetrical. Notice that, for β = 1, the
equilibrium are located at (−1, 0, 1).

Several runs of the multiobjective GP approach were carried out. Maximum lag
values were set to be ny = nu = 10. The GP parameters were set up as describe in
Table 1 and the set of objectives and constraints for this problem were defined as
shown in Table 2. Performance error was defined as (7), while fixed point number
was defined as (19) and set as constraint (the search is addressed to the region of
cubic models). The long-term prediction error (LTPE) was measured in order to
generate stable models.
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Table 2. Description of the objectives considered in the MOGP-identification procedure

Attribute Objective name Description Type

Model complexity Model size Number of process terms Objective (minimise)

Model degree Fixed points no. Constraint (minimise)

Model lag Maximum lagged input and
output terms

Objective (minimise)

Model Performance Residual variance Variance of predicted error
between measured and esti-
mated output

Objective (minimise)

LTPE Long-term predictive error Objective (minimise)

Table 3. Performance of Duffing–Holmes models obtained by means of MOGP identification method (σ2
ε is

the residual variance)

Model P DEG ny nu σ2
ε Fixed points

1 3 3 3 5 5.2599 × 10−3 (−1.0782, 0, 1.0782)

2 3 3 5 7 2.2504 × 10−3 (−1.0044, 0, 1.0044)

3 4 3 3 2 2.4610 × 10−5 (−0.9796, 0, 0.9796)

4 5 3 2 2 6.5465 × 10−6 (−0.9939, 0, 0.9939)

5 8 3 3 2 1.6745 × 10−8 (−1.0015, 0, 1.0015)

6 10 3 5 2 4.5810 × 10−9 (−1.0000, 0, 1.0000)

7 11 3 7 2 3.2077 × 10−9 (−1.0001, 0, 1.0001)

4.1.1. Numerical results

The multiobjective GP-NARMAX method previously described is an innovative
method for modelling dynamic systems. Recapitulating, the multiobjective approach
has the aim of optimising different measure requirements within the modelling pro-
cess. Hence, the NARMAX modelling problem is formulated as the problem of find-
ing the vector of decision variables (the vector of model regressors, linear and non-
linear terms), x = [x1, . . . , xm], that minimise the n components vector function

F(x) = [ f1(x), . . . , fn(x )], (20)

where F is the fitness function (cost function), which can include measurements
related to model structure (e.g. nonlinearity degree), the goodness to fit of the es-
timated model, validation criteria or any criteria (e.g. location of fixed points) to
evaluate the identified models.

Then, models with 3 and up to 11 terms were generated by means of this ap-
proach (see Table 3). Note that, in order to have a trivial and symmetrical nontriv-
ial fixed points, the identified autonomous part of the models should possess terms
from the clusters Ωy and Ωy3 . The cluster Ωu was also identified; this is confirmed
in (12). The inclusion of the correct terms in the model structure is detailed in
Table 4.

Models 5, 6 and 7 possess terms that belong to the cluster Ωyu . This is considered
to be a spurious cluster due to the small values of the cluster coefficients (Table 5).
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Table 4. Duffing–Holmes clusters and model structures

Model Ωy Ωu Ωyu Ωy3

1 y(k − 1) u(k − 5) y(k − 1)y(k − 2)y(k − 3)

2 y(k − 1) u(k − 7) y(k − 2)y(k − 4)y(k − 5)

3 y(k − 1), y(k − 2) u(k − 2) y(k − 1)2 y(k − 3)

4 y(k − 1), y(k − 2) u(k − 2) y(k − 1)2 y(k − 2),
y(k − 1)y(k − 2)2

5 y(k − 1), y(k − 2), u(k − 1), u(k − 2) y(k − 1)u(k − 2) y(k − 1)3, y(k − 1)2 y(k − 2)

y(k − 3)

6 y(k − 1), y(k − 2), u(k − 1), u(k − 2) y(k − 1)u(k − 2) y(k − 1)3, y(k − 1)2 y(k − 2),
y(k − 3) y(k − 1)2 y(k − 5),

y(k − 1)y(k − 2)y(k − 5)

7 y(k − 1), y(k − 2), u(k − 1), u(k − 2) y(k − 1)u(k − 2) y(k − 1)3, y(k − 1)2 y(k − 2),
y(k − 3) y(k − 1)2 y(k − 5),

y(k − 1)2 y(k − 7),
y(k − 1)y(k − 2)y(k − 5)

Table 5. Duffing–Holmes cluster coefficients

Model Ωy Ωu Ωyu Ωy3

1 1.1442 × 100 2.8242 × 10−1 −1.2403 × 10−1

2 1.1463 × 100 1.9213 × 10−1 −1.4503 × 10−1

3 1.0436 × 100 4.8607 × 10−2 −4.5474 × 10−2

4 1.0435 × 100 5.1880 × 10−2 −5.1965 × 10−2

5 1.0357 × 100 3.5589 × 10−2 −2.7461 × 10−5 −3.5655 × 10−2

6 1.0260 × 100 2.6017 × 10−2 −4.4668 × 10−5 −2.6004 × 10−2

7 1.0282 × 100 2.8197 × 10−2 −1.3635 × 10−5 −2.8171 × 10−2

The comparison of the original system and the identified models is presented in
Fig. 6, where the attractor is reconstructed using these models. Estimated output
ŷ(k) is computed as

ŷ(k) = f �(ŷ(k − 1), . . . , ŷ(k − ny), u(k − 1), . . . , u(k − nu)) . (21)

The first ny output points are taken from measured data, and the remaining points
are calculated by means of models given in Table 4. Although models 1 and 2 show
the desired number and location of equilibrium, their associated attractors suggest
that, in order to describe the dynamics of the system, models must include the output
linear terms and lag of input terms must be small.

These results show how MOGP can address simultaneously model performance
and model structure of system identification problems. Only information about the
number of fixed points (nonlinearity degree of autonomous part of the model) was
considered in the MOGP framework in order to direct the search into the feasible
zone (search space of cubic models). No information about term clustering was in-
volved; nonetheless, MOGP was capable of generating a family of solutions that
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Fig. 6. Duffing–Holmes embedded attractors reconstructed from identified models
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Fig. 7. Z-coordinate in the Chua circuit

included the correct clusters. As seen from these results, MOGP generates a family
of equivalent solutions (based on the concept of Pareto optimality). It is seen from
Tables 3 and 4 that there are no solutions better in all objectives. These objectives
are in conflict with each other. Thus, these solutions are equivalent, nondominant
and satisfy the prescribed goals.

4.2. Example 2. Chua circuit

This section discusses the modelling of nonlinear polynomial models from chaotic
data sets. The Chua circuit (Chua and Hasler 1993) is one of the most popular bench-
marks for studying nonlinear oscillations. The normalised equations of the Chua cir-
cuit can be written as (Chua and Hasler 1993; Chua et al. 1986):


ẋ = α(y − h(x))

ẏ = x − y + z
ż = −βy

h(x) =
{

m1x + (m0 + m2) x ≥ 1
m0x |x| ≤ 1

m1x − (m0 + m1) x ≤ −1,
(22)

where m0 = −1/7 and m1 = 2/7. The variation of α and β parameters drives the
system to display several regular and chaotic regimes. The well-known double-scroll
attractor is obtained for α = 9.0 and β = 100/7. Based on these values, 22 was
simulated using a Runge–Kutta method of 4th-order with step size of 0.001.2 The
z-coordinate of the double-scroll attractor was then chosen for this example (see
Figs. 7 and 8).

Selecting the input terms in the NARMAX model formulation to be zero gives the
nonlinear auto regressive moving average (NARMA) model description (Leontaritis
and Billings 1985),

y(k) = F�(y(k − 1), . . . , y(k − ny), e(k − 1), . . . e(k − ne)) + e(k) . (23)

The identification technique previously described in this paper is used to identify
nonlinear polynomial models of this form.

2 Thanks are given to Eduardo Mendes, who performed this simulation and provided the data.
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Fig. 8. Double-scroll attractor obtained from the simulation of (21)

4.2.1. Validation

Besides the inclusion of fixed points in the multiobjective cost function, statistical
validation functions are also considered in this example. Thus, the multiobjective
identification method is applied and a family of nonlinear candidate models based
on the evaluation of the performance, complexity and validity criteria can emerge.
Regarding the validation criteria, Billings and Tao (1991) have introduced time-series
validation tests based on general correlations. These are given by




Φ
ε
′
ε
′ (τ) = E

[
(ε(k) − ε(k))(ε(k − τ) − ε(k))

]
= δ(t)

Φ
ε
′
(ε

′2)
(τ) = E

[
(ε(k) − ε(k))(ε2(k − τ) − ε2(k))

]
= 0

Φ
(ε

′2)(ε
′2)

(τ) = E
[
(ε2(k) − ε2(k))(ε2(k − τ) − ε2(k))

]
= δ(τ) .

(24)

Thus, the objectives considered in this example are as defined in Table 2, adding
three validation criteria given by (24) and defined as constraints to be minimised. For
the validation purpose, it is desirable that the fixed points of the estimated models be
as close as possible to the fixed points of the original system. Based on the concept
of symmetry of fixed points, it is stated in Mendes (1995) that the fixed points
of a cubic polynomial with a (−z, 0, z) symmetry are obtained from the cluster
polynomial (see (14)), where

∑
0 = 0. This guarantees that the respective dynamical

polynomial model should not have any terms taken from the clusters Ω0 and Ωy2 .
In this case, the symmetrical fixed points are at

y = ±
√∑

y −1∑
y3

. (25)
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Table 6. Set of polynomial models used to reconstruct the double-scroll attractor plotted in Fig. 8

Model p DEG LAG σ2
ε (×10−5) Fixed point location

1 9 3 3 3.5222 (−1.5323, 0, 1.5323)

2 10 3 4 3.1718 (−1.5341, 0, 1.5341)

3 12 3 4 1.3427 (−1.5096, 0, 1.5096)

4 13 3 4 1.2139 (−1.5013, 0, 1.5013)

5 14 3 4 1.2133 (−1.5023, 0, 1.5023)

6 14 3 5 1.1768 (−1.5028, 0, 1.5028)

7 14 3 8 1.1668 (−1.5048, 0, 1.5048)

It is interesting to note that the double-scroll attractor possesses these character-
istics and the results show that the dynamical polynomial models identified using
GP only possess linear and cubic terms in their structures. Table 6 gives the loca-
tion of the fixed points for each model and details of their structures. An additional
feature for the validation of chaotic models should be to verify if such models settle
to attractors that resemble the geometry of the original data. Thus, the embedded
attractors of the identified models are shown in Fig. 9.

As mentioned above, three additional criteria defined as constraints were evalu-
ated in this example.

From these results, the most parsimonious model (model 1) that was identified
and can reproduce the double-scroll attractor consists only of nine terms. The struc-
ture is given as

z(k) = 2.9579z(k − 1) − 2.9369z(k − 2) + 1.0354z(k − 3) − 0.6932z(k − 1)3

+ 2.3307z(k − 1)2z(k − 2) + 1.9162z(k − 1)z(k − 2)z(k − 3)

− 0.4732z(k − 1)z(k − 3)2 − 1.1913z(k − 1)2z(k − 3)

− 1.9134z(k − 1)z(k − 2)2 . (26)

5. Conclusions

Genetic programming is a technique that has been developed for the purpose of
evolving programs. Combining this technique with the general NARMAX represen-
tation has proved to be a powerful tool for nonlinear system modelling, demonstrating
effective performance. The application area of this technique has been tested, in this
paper, on two typical benchmark modelling problems that exhibit chaotic motions.

Using validation and additional information extracted from the original data prior
to the identification, MOGP was able to find models that could reproduce the dynam-
ics presented in the system under investigation. In the case of the Chua circuit, the
set of models bred using MOGP was able to reproduce the attractors that resemble
the geometry of the original data.

In the study of the Duffing–Holmes oscillator, spurious terms were included in
some of the nondominated models. Nevertheless, the resulting models were able to
reproduce the original attractor trajectories. The two most parsimonious models pos-
sessed the correct number and approximate location of the equilibrium points. How-
ever, they were unable to describe the chaotic regime and reproduce the attractor of



Evolution of mathematical models 253

Fig. 9. Double-scroll attractor reconstructed using models identified by means of the NARMA-GP approach
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the original system. Further work could include not only the evaluation of statistical
but also dynamical validation tools, such as the Lyapunov exponent and correlation
dimension (Mendes 1995). These criteria could add a degree of selectivity to the
identification procedure and point to more accurate models. The results presented
in this paper demonstrate that formulating the modelling process as a multiobjec-
tive optimisation problem can provide a more practical way for solving them. On
the other hand, genetic programming gives an alternative approach for generating
simple and near-optimal solutions of practical and complex problems.
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