
Springer-Verlag London Ltd.  2004
Knowledge and Information Systems (2005) 7: 458–475

DOI 10.1007/s10115-004-0176-3

A high-performance distributed algorithm for
mining association rules

Assaf Schuster1, Ran Wolff1, Dan Trock2

1Department of Computer Science, Technion—Israel Institute of Technology, Haifa, Israel
2Department of Electrical Engineering, Technion—Israel Institute of Technology, Haifa, Israel

Abstract. We present a new distributed association rule mining (D-ARM) algorithm that
demonstrates superlinear speed-up with the number of computing nodes. The algorithm is the
first D-ARM algorithm to perform a single scan over the database. As such, its performance is
unmatched by any previous algorithm. Scale-up experiments over standard synthetic benchmarks
demonstrate stable run time regardless of the number of computers. Theoretical analysis reveals
a tighter bound on error probability than the one shown in the corresponding sequential algo-
rithm. As a result of this tighter bound and by utilizing the combined memory of several com-
puters, the algorithm generates far fewer candidates than comparable sequential algorithms—the
same order of magnitude as the optimum.

Keywords: Association rule; Data mining; Distributed data mining; High-performance comput-
ing

1. Introduction

The economic value of data mining is today well established. Most large organiza-
tions regularly practice data-mining techniques. One of the most popular techniques
is association rule mining (ARM), which is the automatic discovery of pairs of elem-
ent sets that tend to appear together in a common context. An example would be
to discover that the purchase of certain items (say tomatoes and lettuce) in a super-
market transaction usually implies that another set of items (salad dressing) is also
bought in that same transaction.

Like other data-mining techniques that must process enormous databases, ARM is
inherently disk-I/O intensive. These I/O costs can be reduced in two ways: by reduc-
ing the number of times the database needs to be scanned or through parallelization,

Received 19 November 2003
Revised 9 January 2004
Accepted 16 February 2004
Published online 31 August 2004

A high-performance distributed algorithm for mining association rules 459

by partitioning the database between several machines which then perform a dis-
tributed ARM (D-ARM) algorithm. In recent years, much progress has been made
in both directions.

The main task of every ARM algorithm is to discover the sets of items that
frequently appear together—the frequent itemsets. The number of database scans
required for the task has been reduced from a number equal to the size of the largest
itemset in Apriori (Agrawal and Srikant 1994), to typically just a single scan in
modern ARM algorithms such as Sampling and DIC (Toivonen 1996; Brin et al.
1997).

Much progress has also been made in parallelized algorithms, in which the archi-
tecture of the parallel system plays a key role. For instance, many of the proposed
algorithms take advantage of the fast interconnect, or the shared memory, of parallel
computers. Notable examples include Han et al. (2000) and Zaki et al. (1997b). The
latest development is Zaiane et al. (2001), in which each process makes just two
passes over its portion of the database.

Parallel computers are, however, very costly. Hence, although these algorithms
were shown to scale up to 128 processors, few organizations can afford to spend
such resources on data mining. The alternative is distributed algorithms, which can
be run on cheap clusters of standard, off-the-shelf PCs. Algorithms suitable for such
systems include the CD and FDM algorithms (Agrawal and Shafer 1996; Cheung
et al. 1996), both parallelized versions of Apriori, published shortly after it was
described. However, while clusters may easily and cheaply be scaled to hundreds of
machines, these algorithms were shown not to scale well (Cheung and Xiao 1998).
The DDM algorithm (Schuster and Wolff 2001), which overcomes this scalability
problem, was recently described. Unfortunately, all the D-ARM algorithms for share-
nothing machines scan the database as many times as Apriori. Since many business
databases contain large frequent itemsets (long patterns), these algorithms are not
competitive with DIC and sampling.

In this work, we present a parallelized version of the sampling algorithm, called
D-sampling. The algorithm is intended for clusters of share-nothing machines. The
main obstacle of this parallelization, that of achieving a coherent view of the dis-
tributed sample at reasonable communication costs, was overcome using ideas taken
from DDM. Our distributed algorithm scans the database once, just like the sam-
pling algorithm, and is thus more efficient than any D-ARM algorithm known today.
Not only does this algorithm divide the disk-I/O costs of the single scan by parti-
tioning the database among several machines, it also uses the combined memory
to linearly increase the size of the (global) sample. This increase further improves
the performance of the algorithm because the safety margin required in sampling
decreases accordingly.

Extensive experiments on standard synthetic benchmarks show that D-sampling
is superior to previous algorithms in every way. When compared with sampling—
one of the best sequential algorithms known today—it offers superlinear speed-up.
When compared with FDM, it improves runtime by orders of magnitude. Finally, on
scalability tests, an increase in both the number of computing nodes and the size of
the database does not degrade D-sampling performance.

The rest of this paper is structured as follows: We conclude this section with
some notations and a formal definition of the D-ARM problem. In the next section,
we present relevant previous work. Section 3 describes the D-sampling algorithm,
and Sect. 4 provides the required statistical background. Section 5 describes the ex-
periments we conducted to verify D-sampling performance. We conclude with some
open research problems in Sect. 6.

460 A. Schuster et al.

1.1. Notation and problem definition

Let I = {i1, i2, ..., im} be the items in a certain domain. An itemset is a subset
of I . A transaction t is also a subset of I that is associated with a unique trans-
action identifier—TID. A database DB is a list of such transactions. Let DB =
{DB1, DB2, ..., DBn} be a partition of DB into n parts. Let S be a list of trans-
actions that were sampled uniformly from DB, and let S = {S1, S2, ..., Sn} be the
partition of S induced by DB. For any itemset X and any group of transactions A,
Support(X, A) is the number of transactions in A that contain all the items of X
and Freq(X, A) = Support(X,A)

|A| . We call Freq(X, DBi) the local frequency of X in

partition i and Freq(X, DB) its global frequency; likewise, we call Freq(X, Si) the
estimated local frequency of X in partition i and Freq(X, S) its estimated global
frequency.

For some frequency threshold 0 ≤ MinFreq ≤ 1, we say that an itemset X is
frequent in A if Freq(X, A) ≥ MinFreq and infrequent otherwise. If A is a sample,
we say that X is estimated frequent or estimated infrequent. If A is a partition, we
say that X is locally frequent, and if A is the whole database, then X is globally
frequent. Hence, an itemset may be estimated locally frequent in the kth partition,
globally infrequent, etc. The group of all itemsets with frequency above or equal to
fr in A is called Ffr[A]. The negative border of Ffr[A] is all those itemsets that
are not themselves in Ffr[A] but have all their subsets in Ffr[A]. Finally, for a pair
of globally frequent itemsets X and Y such that X ∩ Y = ∅, and some confidence
threshold 0 < MinConf ≤ 1, we say the rule X ⇒ Y is confident if and only if
Freq(X ∪ Y, DB) ≥ MinConf ·Freq(X, DB).

Definition 1.1. Given a partitioned database DB and given MinFreq and MinConf,
the D-ARM problem is to find all the confident rules between frequent itemsets in
FMinFreq[DB].

2. Previous work

Since its introduction in 1993, the ARM problem (Agrawal et al. 1993) has been
studied intensively. Many algorithms, representing several different approaches, were
suggested. Some algorithms, such as Apriori, Partition, DHP, DIC, and FP-growth
(Agrawal and Srikant 1994; Savasere et al. 1995; Park et al. 1995a; Brin et al. 1997;
Han et al. 1999), are bottom-up, starting from itemsets of size 1 and working up.
Others, like Pincer-Search (Lin and Kedem 1998), use a hybrid approach, trying to
guess large itemsets at an early stage. Most algorithms, including those cited above,
adhere to the original problem definition, while others search for different kinds of
rules. These may be implication rules (Brin et al. 1997), generalized rules (Srikant
and Agrawal 1994; Han and Fu 1995), quantitative rules (Srikant and Agrawal 1996)
or rules constrained to some meta-form (Srikant et al. 1997; Pei and Han 2000;
Thomas and Chakravarthy 2000). Finally, the algorithms also differ in the way the
data are stored: horizontally as a TID with the list of items in that transaction,
vertically as an itemset with the list of TIDs in which it appears (Savasere et al.
1995; Ananthanarayana et al. 2000), or a combination of the two (Zaki et al. 1997a).

Algorithms for the D-ARM problem usually can be seen as parallelizations of
sequential ARM algorithms. The CD, FDM, FPM and DDM (Agrawal and Shafer
1996; Cheung et al. 1996; Cheung and Xiao 1998; Schuster and Wolff 2001) algo-
rithms parallelize Apriori (Agrawal and Srikant 1994), and PDM (Park et al. 1995b)

A high-performance distributed algorithm for mining association rules 461

parallelizes DHP (Park et al. 1995a). The major difference between parallel algo-
rithms is in the architecture of the parallel machine. This may be shared memory, as
in the case of Zaki et al. (1996), Cheung and Xiao (1998) and Zaiane et al. (2001),
distributed shared memory, as in Jarai et al. (1998), or shared nothing, as in Agrawal
and Shafer (1996), Cheung et al. (1996) and Schuster and Wolff (2001).

The algorithm presented here combines ideas from several groups of algorithms.
It first mines a sample of the database and then validates the result. It can thus
be seen as a parallelization of the sampling algorithm (Toivonen 1996). The sam-
ple is stored in a vertical trie structure that resembles the one in Savasere et al.
(1995) and Ananthanarayana et al. (2000), and it is mined using modifications of
the DDM (Schuster and Wolff 2001) algorithm, which is Apriori based. We thus
include a short description of Apriori and its parallelizations and of the sequential
sampling algorithm.

Apriori: A year after the 1993 paper that introduced the ARM problem, Agrawal
and Srikant presented Apriori (Agrawal and Srikant 1994). Apriori is a levelwise
algorithm for identifying frequent itemsets. It begins by assuming that each item
is a candidate to be a frequent itemset of size 1. Then Apriori performs several
rounds of a two-phased computation. In the first phase of the kth round, the database
is scanned and frequency counts are calculated for all k-sized candidate itemsets
(itemsets containing k items). Those candidate itemsets with a frequency above the
user-supplied MinFreq threshold are inserted into FMinFreq [DB]. In the second phase,
candidate itemsets of size k + 1 are generated from the frequent itemsets of size k
if and only if all their size-k subsets are frequent. The rounds terminate when there
are no candidates of size k+1. Because it is a levelwise algorithm, Apriori performs
exactly k database scans.

Sampling: In 1996, Toivonen presented a single-scan algorithm called sampling
(Toivonen 1996). The idea behind sampling is simple. A random sample of the
database is used to predict all the frequent itemsets, which are then validated in
a single database scan. Because this approach is probabilistic and therefore fallible,
not only are the frequent itemsets counted in the scan but also their negative border.
If the scan reveals that itemsets that were predicted to belong to the negative border
are frequent, a second scan is performed to discover whether any superset of these
itemsets is also frequent. To further reduce the chance of failure, Toivonen suggests
that mining be performed using some low_ fr < MinFreq and the results reported
only if they pass the original MinFreq threshold. He also gives a heuristic that can
be used to determine low_ fr. The cost of using low_ fr is an increase in the num-
ber of candidates. The sampling algorithm and the DIC algorithm (Brin et al. 1997)
are the only single-scan ARM algorithms known today. Their performance is thus
unrivaled by any other sequential ARM algorithm.

FDM: Also in 1996, Cheung et al. presented an algorithm called FDM (Cheung
et al. 1996). FDM is a parallelization of Apriori to n shared-nothing machines, each
with its own partition of the database. At every level and on each machine, the
database scan is performed independently on the local partition. Then a distributed
pruning technique is employed. The pruning technique is based on the inference
that, in order for an itemset to appear in the database at a certain frequency, it must
appear with at least that frequency in at least one partition of the database. Thus, in
FDM, every party first names those candidate itemsets that are locally frequent in
its partition. Next, support counts are globally summed for those candidate itemsets
that were named by at least one party. According to the global counts, itemsets are

462 A. Schuster et al.

identified as globally frequent. Those frequent itemsets are used to generate the next
level candidates.

If the probability that an itemset has the potential to be frequent is Prpotential ,
then FDM only communicates Prpotential |C| of the itemsets, where C is the group
of all candidate itemsets considered by Apriori. The communication complexity of
FDM is thus O(Prpotential |C|n). The main problem with FDM is that Prpotential is not
scalable in n. It has been shown by Cheung and Xiao that Prpotential quickly increases
to 1 as n increases (Cheung and Xiao 1998). The convergence to 1 is especially fast
in nonhomogeneous databases: as the nonhomogeneity of the database (measured
by a skewness measure) increases or the number of partitions grows, FDM pruning
techniques are rendered increasingly ineffective.

DDM: In a previous paper (Schuster and Wolff 2001), we described another Apriori-
based D-ARM algorithm—DDM. As in FDM, candidates in DDM are generated
levelwise and are then counted by each node in its local database. The nodes then
perform a distributed decision protocol in order to find out which of the candidates
are frequent and which are not. DDM differs from FDM in that the DDM protocol
allows some of the nodes to choose to publish the local frequency of a candidate
and others not to. The protocol is directed by two hypotheses that are maintained
about each candidate: in one, called the public hypothesis, each node assumes that
the global frequency of the itemset is equal to the average of the local frequencies
published for it thus far (or zero if none was published); in the other, called the
private hypothesis, each node assumes that its local frequency is shared by all those
that have not published their own local frequency for the candidate. If a node finds
that the public and private hypotheses about an itemset disagree (i.e. one predicts that
the itemset is frequent while the other predicts that it is infrequent), it will publish
the local frequency. It is easy to show that, when the protocol dictates that no node
should publish the local frequency of a certain itemset, the public hypothesis for that
itemset correctly predicts whether it is frequent or infrequent. DDM improves the
communication complexity of previous solutions to O(Prabove|C|n), where Prabove
is the chance of an itemset being locally frequent at a specific partition. Prabove is
by definition smaller than Prpotential and is also independent of n. DDM is thus far
more communication efficient, scalable, and resilient to data skewness.

3. D-sampling algorithm

The distributed algorithms described in the previous section are based on Apriori. In-
deed, all parallel algorithms that have been presented until now are levelwise and re-
quire multiple database scans1. The reason why no distributed form of sampling was
suggested in the 6 years since its presentation may lie in the communication com-
plexity of the problem. As we have seen, the communication complexity of D-ARM
algorithms is highly dependent on the number of candidates and on the noise level
in the partitioned database. When the sampling algorithm samples the database and
lowers the MinFreq threshold, it greatly increases both the number of candidates
and the noise level. This may render a distributed algorithm useless.

1 The only exception is a parallelization (Zaiane et al. 2001) of the two-scans FP-Growth algorithm (Han
et al. 1999). But that algorithm is intended for shared memory machines. When it is executed over clusters
of share-nothing machines, its performance quickly degrades as the number of computers grows (Iko and
Kitsuregawa 2003).

A high-performance distributed algorithm for mining association rules 463

Fig. 1. The development of the trie throughout D-sampling: first (a) the trie is developed according to the local
frequencies of the itemsets. Then (b) MDDM is performed once and the estimated globally frequent itemsets
are identified. The error reduction phase (c) follows, by the end of which low_fr is set and the itemsets that
are frequent according to this threshold are identified. At this stage, the negative border is calculated, the
database is scanned, and actual frequencies are counted for the combined candidate set. Finally, (d) MDDM
is run once more with these frequencies and the original MinFreq. The frequent itemsets are identified. If
one of them belongs to the negative border, failure is reported; otherwise, rules are calculated

{}
1.0, 1.0

{1,3}
0.6, 0.0

{1}
0.9, 0.0

{2}
0.6, 0.0

{4}
0.2, 0.0

{m}
0.2, 0.0

H

P
{3}

0.6, 0.0

(a) The trie is initialized
with the size-1 itemsets
and then developed until no
more locally frequent item-
sets can be found. Written
below the itemset are P, the
private hypothesis, and H,
the global hypothesis. At
first, the H values are all
zero.

{m}
0.2, 0.0

{}
1.0, 1.0

0.6, 0.0

{1,3}

Outgoing

<{1},0.9>
<{4},0.8>
<{3},1.0>

{2}
0.6, 0.0

{3}
0.8, 1.0

{4}
0.5, 0.8

{1}
0.9, 0.9

Incoming

(b) Some of the itemsets
may be selected and sent—
as in the case of {1}. Others,
like {2}, {3} and {4}, may
have the value of their hy-
potheses changed because of
incoming messages.

{m}
0.2, 0.0

{}
1.0, 1.0

0.6, 0.0

{1,3}

{2}
0.6, 0.0

{4}
0.5, 0.8

{3,4}
0.5, 0.8

Outgoing Incoming

<{3,4},0.8>

{1}
0.9, 0.9

{3}
0.8, 1.0

(c) A message may arrive
concerning an itemset that
has not yet been developed.
In that case, it is developed
and inserted into the trie.

Fig. 2. The development of the trie during MDDM, assuming two nodes

This is the reason that the reduced communication complexity of DDM seems to
offer an opportunity. The main idea of D-sampling is to utilize DDM to mine a dis-
tributed sample using low_ fr instead of MinFreq. After Flow_ fr [S] has been identi-
fied, the partitioned database is scanned once in parallel to find the actual frequencies
of Flow_ fr [S] and its negative border. Those frequencies can then be collected and
rules can be generated from itemsets more frequent than MinFreq.

We added three modifications to this scheme. First, although the given DDM is
levelwise, here it is executed on a memory-resident sample. Thus, we could modify
DDM to develop new itemsets on the fly and calculate their estimated frequency with
no disk-I/O. Second, a new method for the reduction of MinFreq to low_ fr has two
additional benefits: it uses a rigorous error bound, compared with the heuristic one
used in sampling, and it produces far fewer candidates than the rigorous method sug-
gested previously. Third, after scanning the database, it would not be wise to merely
collect the frequencies of all candidates. Because these candidates were calculated
according to the lowered threshold, few of them are expected to have frequencies

464 A. Schuster et al.

above the original MinFreq. Instead, we run DDM once more to decide which can-
didates are frequent and which are not. We call the modified algorithm D-sampling
(Algorithm 1).

Algorithm 1 D-sampling

For node i out of n
Input:
MinFreq, MinConf, DBi , s, M, δ

Output:
The set of confident associations between globally frequent itemsets
Main:
Set p_error ← 1, low_ fr ← MinFreq
Load a sample Si of size s from DBi into memory
Initialize the trie with all the size-1 itemsets and calculate their TID lists
Flow_ fr [S] ← MDDM(MinFreq)

While p_error > δ

1. Flow_ fr [S] ← Flow_ fr [S] ∪ M_Max(M)

2. Set low_ fr to the frequency of the least frequent itemset in Flow_ fr [S]
3. Set p_error to the new error bound according to MinFreq, low_ fr and Flow_ fr [S]
Let C be Flow_ fr [S] ∪ Negative_Border(Flow_ fr [S])
Scan the database and compute Freq(c, DBi) for each c ∈ C. Update the frequencies in the trie to the
computed ones.
Compute FMinFreq [DB] by running MDDM(MinFreq), this time with the actual frequencies
If there exists c ∈ FMinFreq [DB] such that c 	∈ Flow_ fr [S] (i.e. from negative border) report failure
Gen_Rules(FMinFreq [DB], MinConf)

3.1. Algorithm

D-sampling begins by loading a sample into memory. The sample is stored in a trie—
a lexicographic tree. This trie is the main data structure of D-sampling and is ac-
cessed by all its subroutines. Each node of the trie stores, in addition to structural
information (parents, descendants etc.), the list of TIDs of those transactions that
include the itemset associated with this node. These lists are initialized from the
sample for the first level of the trie; when a new trie node—and itemset—are de-
veloped, the TID lists of two of the parent nodes are intersected to create the TID
list of the new node.

Figure 1 describes the development of the trie throughout D-sampling. The first
step of D-sampling is to run a modification of DDM on the distributed sample.
Then, in order to set low_ fr, the algorithm enters a loop; in each cycle through the
loop, it calls another DDM derivative called M-Max to mine the next M estimated
frequent itemsets. M is a tunable parameter we set to about 100. After it finds those
additional itemsets, D-sampling reduces low_ fr to the estimated frequency of the
least frequent one and re-estimates the error probability using a formula described
in Sect. 4. When this probability drops below the required error probability, the loop
ends. Then D-sampling creates the final candidate set C by adding to Flow_ fr [S] its
negative border.

Once the candidate set is established, each partition of the database is scanned
exactly once and in parallel, and the actual frequencies of each candidate are calcu-
lated. With these frequencies, D-sampling performs yet another round of the modified
DDM. In this round, the original MinFreq is used; thus, unless there is a failure,

A high-performance distributed algorithm for mining association rules 465

no candidates outside the negative border need to be used. If indeed no failure oc-
curs, then all frequent itemsets will be evaluated according to the actual frequencies
that were found in the database scan. Hence, after this round, it is known which of
the candidates in C are globally frequent and which are not. In this case, rules are
generated from FMinFreq [DB] using the known global frequencies.

If an itemset belonging to the negative border of Flow_ fr [S] does turn out to be
frequent, this means that D-sampling has failed: a superset of that candidate, which
was not counted, might also turn out to be frequent. In this case, we suggest the
same solution offered by Toivonen: to create a group of additional candidates that
includes all combinations of anticipated and unanticipated frequent itemsets, and then
perform an additional scan. The size of this group is limited by the number of antic-
ipated frequent itemsets times the number of possible combinations of unanticipated
frequent itemsets. Because failures are very rare events and the probability of mul-
tiple failure is exponentially small, the additional scan will incur costs that are of
the same scale as the first scan.

3.2. MDDM—a modified distributed decision miner

The original DDM algorithm, as described in Sect. 2, is levelwise. When the database
is small enough to fit into memory, the levelwise structure of the algorithm becomes
superfluous. Modified Distributed Decision Miner, or MDDM (Algorithm 2), there-
fore starts by developing all the locally frequent candidates regardless of their size.
It then continues to develop candidates whenever they are required, i.e. when all
their subsets are assumed frequent (according to the local hypothesis—P) or when
another node refers to the associated itemset.

The remaining steps in MDDM are the same as in DDM. Each party looks for
itemsets for which the global hypothesis and local hypothesis disagree and commu-
nicate their local counts to the rest of the parties. When no such itemset exists, the
party passes (it can return to activity if new information arrives). If all of the par-
ties pass, the algorithm terminates and the itemsets that are predicted to be frequent
according to the public hypothesis H are the estimated globally frequent ones.

Figure 2 exemplifies the development of the trie as messages are sent and re-
ceived. First, the locally frequent itemsets are developed, their TID lists calculated
and their public hypothesis and private hypothesis evaluated (H and P, respectively).
The starting value of H is zero and that of P is the local frequency. As messages are
received, those values change. Itemsets are sent when their H and P are on opposite
sides of MinFreq. Therefore, in this toy example, where MinFreq is 0.75, itemset
{1} is sent (not all eligible candidates have to be sent on each communication cycle).
When a message is received about an itemset that has already been developed (as is
the case for {2}, {3} and {4}), it causes the reevaluation of H and P. If a message
is received for an itemset that has not yet been developed (as is the case for {3, 4}),
it is developed on the fly and its local frequency is calculated.

3.3. M-max algorithm

The modified DDM algorithm identifies all itemsets with frequency above MinFreq.
D-sampling, however, requires a further decrease in the frequency of itemsets that are
included in the database scan. The reason for this, as we shall see in Sect. 4, is that
three parameters affect the chances for failure. These are the size of the sample, N,

466 A. Schuster et al.

Algorithm 2 Modified distributed decision miner

For node i out of n
Input:
fr—the target frequency
Output:
Ffr [S]
Definitions:

P(X, Si) =
∑

j∈G(X)

|S j |Freq(X, S j)

|S| +

∑

j 	∈G(X)

|S j |Freq(X, Si)

|S|

H(X) =






∑
j∈G(X) |S j |Freq(X, S j)

∑
j∈G(X) |S j | G(X) 	= ∅

0 otherwise

Main:
Develop all the candidates that are more frequent than fr according to P
Do

• Choose a candidate X that was not yet chosen and for which either H(X) < fr ≤ P(X, Si) or P(X, Si) <
fr ≤ H(X)

• Broadcast m = 〈id(X), Freq(X, Si)〉
• If no such itemset exists, broadcast 〈pass〉
Until |Passed| = N
R ← all X with H(X) ≥ fr
Return R
When node i receives a message m from party j:

1. If m = 〈pass〉, insert j into Passed
2. Else m = 〈id(X), Freq(X, S j)〉

If j ∈ Passed, remove j from Passed
If X was not developed, then develop it, set G(X) = ∅ Calculate X.tid_list by intersecting the TID lists
of two of X’s immediate subsets and set Freq(X, Si) = |X.tid_list|

|Si |
Insert j into G(X)

Recalculate H(X) and P(X, Si)

the size of the negative border, and the estimated frequency of the least frequent
candidate. The first parameter is given, the second we can calculate or bound and
the last parameter is the one we can control.

The frequency of the least frequent candidate can be controlled by reducing
low_ fr. However, this must be done with care: lowering the frequency threshold
increases the number of candidates. This increase depends on the distribution of
itemsets in the database and is therefore nondeterministic. The larger number of can-
didates affects the scan time: the more candidates you have, the more comparisons
must be made per transaction. In a distributed setting, the number of candidates is
also strongly tied to the communication complexity of the algorithm.

To better control the reduction of low_ fr, we propose another version of DDM
called M-Max (Algorithm 3). M-Max increases the number of frequent itemsets by
a given factor rather than decreasing the threshold value by an arbitrary value. Al-
though worst-case analysis shows that an increase of even one frequent itemset may
require that any number of additional candidates be considered, the number of such

A high-performance distributed algorithm for mining association rules 467

candidates tends to remain small and roughly proportional to the number of addi-
tional frequent itemsets. We complement this algorithm with a new bound for the
error (presented in Sect. 4). The combined scheme is both rigorous and economical
in the number of candidates.

Algorithm 3 M-Max

For node i out of n
Input:
low_ fr
Output:
The M most frequent itemsets not yet in Flow_ fr [S]
Definitions: same as for Algorithm 2
Let B denote the initial size of Flow_ fr [S], fr = low_ fr
Main:
Do

1. Call set_ fr
2. Choose X that was not yet chosen and for which either H(X) < fr ≤ P(X, Si) or P(X, Si) < fr ≤

H(X)

Broadcast m = 〈id(X), Freq(X, Si)〉
3. If no such itemset exists, broadcast 〈pass〉
Until |Passed| = N
R ← all X in the trie with H(X) ≥ fr that are not in Flow_ fr [S]
Return R
When node i receives a message m from party j:

1. If m = 〈pass〉, insert j into Passed
2. Else m = 〈id(X), Freq(X, S j)〉

If j ∈ Passed, remove j from Passed
If X was not developed, then develop it, set G(X) = ∅, Calculate X.tid_list by intersecting the TID
lists of two of X’s immediate subsets and set Freq(X, Si) = |X.tid_list|

|Si |
Insert j into G(X)
Recalculate H(X) and P(X, Si)

Call set_ fr

procedure set_ fr:
Do M times:

• Select the next most frequent itemset outside Flow_ fr [S] and develop its descendants if they have not
been developed yet

Set fr to the H value of the last itemset selected For itemsets with H = 0, consider P instead

The M-Max algorithm is based on the inference that changing the MinFreq
threshold to the H value of the M largest itemset2 every time an itemset is de-
veloped or a hypothesis value is changed will result in all parties agreeing on the
M most frequent itemsets when DDM terminates. This is easy to prove. Take any
final state of the modified algorithm. The H value of each itemset is equal in all
parties; hence, the final MinFreq is equal in all parties as well. Now compare this
state with the corresponding state under DDM, with the static MinFreq value set to
the one finally agreed upon. The state attained by M-Max is also a valid final state
for this DDM. Thus, by virtue of DDM correctness, all parties must be in agreement
on the same set of frequent itemsets.

2 P is used when the M largest H is zero.

468 A. Schuster et al.

As a stand-alone ARM algorithm, M-Max may be impractical because a node
may be required to refer to itemsets it has not yet developed. If the database is
large, this would require an additional disk scan whenever new candidates are de-
veloped. Nevertheless, at the low_ fr correction stage of D-sampling, the database is
the memory-resident sample. It is thus possible to evaluate the frequency of arbitrary
itemsets with no disk-I/O.

4. Statistical analysis

Two statistical issues should be settled in order to validate that D-sampling has the
required failure probability. The first is bounding the probability of failure that fol-
lows the error adjustment phase. The second is showing how a distributed database
can be sampled uniformly.

4.1. A bound on the sampling error

Let 0 < fr < 1 be the frequency of some arbitrary itemset X in DB. Consider
a random sample S of size N from DB. We will assume that transactions in the
sample are independent. Hence, the number of rows in S that contain X can be seen
as a random variable, x ∼ Bin(N, fr).

The frequency of X in N transactions, s_ fr = x/N, is an estimate for fr, which
improves as N increases. The best-known way to bound the chance that s_ fr will
deviate from fr is with the Chernoff bound. We use a tighter bound for the case of
binomial distributions (see Hagerup and Rub (1989/90)):

Pr(| fr − s_ fr| > ε) ≤
[(

1 − fr

1 − s_ fr

)1−s_ fr (
fr

s_ fr

)s_ fr
]N

.

Lemma 4.1. Given a random uniform sample S of N transactions from DB, a fre-
quency threshold MinFreq, the lowered frequency threshold low_ fr, and the negative
border of Flow_ fr [S], denoted NB, the probability p failure that any X ∈ NB will have
frequency larger than or equal to MinFreq (hence causing failure) is bounded by:

|NB| ·
[(

1 − MinFreq

1 − low_ fr

)1−low_ fr (
MinFreq

low_ fr

)low_ fr
]N

.

Proof. For any specific itemset in NB, the probability that this itemset will cause
failure is the probability that its estimated frequency is below low_ fr while its actual
frequency is above MinFreq. Substituting MinFreq for fr and low_ fr for s_ fr, the
bound gives us

Pr(|Freq(X, DB) − Freq(X, S)| > ε) ≤
[(

1 − MinFreq

1 − low_ fr

)1−low_ fr (
MinFreq

low_ fr

)low_ fr
]N

.

A high-performance distributed algorithm for mining association rules 469

As for the entire NB,

Pr(∃X ∈ NB : X fails) ≤
∑

X∈NB

Pr(X fails) ≤

|NB|
[(

1 − MinFreq

1 − low_ fr

)1−low_ fr (
MinFreq

low_ fr

)low_ fr
]N

.

Because calculating the negative border is in itself a costly process, we choose
to relax this bound by substituting |I ||Flow_ fr [S]| for |NB|. Obviously, any itemset
in Flow_ fr [S] can only be extended by at most |I | items, and thus this relaxed bound
holds. ��
Corollary 4.1 (Toivonen 1996). If none of the itemsets in the negative border caused
failure, then no other itemset can cause failure.

Proof. Any other itemset X outside Flow_ fr [S] and NB must include a subset from
NB. Hence, its frequency must be less than or equal to the frequency of this subset.
It follows that, if the frequency of each itemset in NB is below MinFreq, so is the
frequency of X. ��

4.2. Uniformly sampling a partitioned database

Uniform sampling is not a simple task in any database. At worst, it may require as
much as a full scan of the database to ensure uniformity. Partitioning the database,
as we do, adds a further complication. Here we show that any existing method for
uniformly sampling a single database can be leveraged into a scheme for sampling
partitioned databases.

The scheme we use is simple. In order to randomly choose a single transaction
from the partitioned database, we first uniformly choose a partition3 and then uni-
formly choose a transaction from the chosen partition. Extending this to a sample of
size |S|, we first choose randomly, for each transaction in the sample, the partition
from which it will be sampled. Then, knowing exactly how many transactions should
be sampled from each partition, we randomly choose that number of transactions.
Note that the theoretical bound we use allows sampling with repetitions; the algo-
rithm, however, will require slight modifications for a single TID to appear twice in
the sample.

This does not yet mean that D-sampling works well with every partitioned sam-
ple. Because local sample sizes are selected randomly, one of these local samples
may be small. Small samples are, by definition, noisier than large ones. Because the
performance of DDM depends on Prabove and hence on the noisiness of the data,
a sample that is biased against a specific partition may result in a longer run time.

The choice of the number of transactions to be sampled from each partition is
distributed multinomially. The expected number of transactions from each of the n
partitions is hence |S|

n . Because we choose the partitions independently, we can apply
the Chernoff bound to the size of the sample from a specific partition,

Pr

(∣∣Si
∣∣ ≤ (1 − ε)

|S|
n

)
≤ e− ε2|S|

2n .

3 If the partitions are not equal in size, this choice is weighted according to the partition sizes.

470 A. Schuster et al.

Taking ε = 10%, we get Pr
(|Si | ≤ 0.9 |S|

n

) ≤ e− |S|
200n . In our experiments, |S| =

80,000 · n. This is based on the size of the sample in Toivonen’s experiments: be-
tween 20,000 and 80,000 transactions. The chance of having a 10% smaller sam-
ple with these figures is negligible: less than e−400. Obviously, a 10% difference in
sample size will not have any noticeable effect on the noise level or on the run time.

Because the chances of a sample that is largely biased toward a specific partition
are slim, the best thing to do if such a sample does occur is to sample once again.
Moreover, in many practical scenarios, it is known that the partitioning of the data
was random. In that case, it is justified to simply sample an equal portion of each
partition. In our experiments, we used this last method.

5. Experiments

We carried out four sets of experiments. The first set tested D-sampling to see how
much faster it is to run the algorithm with the database split among n machines
than to run it on a single node. The second set compared D-sampling and FDM on
a range of MinFreq values. The third set checked scale-up: the change in runtime
when the number of machines is increased together with the size of the database.
The last one examined the number of redundant itemsets D-sampling generates and
compared it with FDM, which generates no redundant candidates.

We ran our experiments on two clusters: the first cluster, which was used for
the first, second and fourth sets of experiments, consisted of 15 Pentium computers
with dual 1.7-GHz processors. Each of the computers had at least 1 gigabyte of main
memory. The computers were connected via an Ethernet-100 network. The second
cluster, which we used for the scale-up experiments, was composed of 32 Pentium
computers with a dual 500-MHz processor. Each computer had 256 megabytes of
memory. The second cluster was also connected via an Ethernet-100 network.

All of the experiments were performed with synthetic databases produced by the
standard gen tool (Srikant 1993). The databases were built with the same parameters
that were used by Toivonen in Toivonen (1996). The only change we made was to
enlarge the databases to about 18 gigabytes each; had we used the original sizes,
the whole database would fit, when partitioned, into the memory of the computers.
The database T5.I2.D600M has 600 M transactions, each containing an average of
five items, and patterns of length two. T10.I4.D375M and T20.I6.D200M follow the
same encoding. When the database was to be partitioned, we divided it arbitrarily
by writing transaction TID into the TID%n partition.

5.1. Speed-up results

The speed-up experiments were designed to demonstrate that parallelization works
well for sampling. We thus ran D-sampling with n = 1 (with n = 1, D-sampling
reverts to sampling) on a large database. Then we tested how splitting the database
between n computers affects the algorithm’s performance.

As Fig. 3 shows, the basic speed-up of D-sampling is slightly sublinear. However,
when the number of candidates is large, the speed-up becomes superlinear. This is
because the global sample size increases with the number of computers. This larger
sample size translates into a higher low_ fr value and thus to a smaller number of
candidates than with n = 1.

A high-performance distributed algorithm for mining association rules 471

Fig. 3. D-sampling speed-up

Fig. 4. Runtime of D-sampling, DDM, and FDM for varying MinFreq

5.2. Dependency on MinFreq

The second set of experiments (Fig. 4) investigates D-sampling’s performance de-
pendency on MinFreq, which determines the number and size of the candidates. We
compared the D-sampling runtime with that of both DDM and FDM. D-sampling
turned out to be insensitive to the reduction in MinFreq; its runtime increased by
no more than 50% across the whole range. On the other hand, the runtime of DDM
and FDM increased rapidly as MinFreq decreased. This is because of the addi-
tional scans required as increasingly larger itemsets become frequent. Because it
performs just one database scan, D-sampling is expected to be superior to any lev-
elwise D-ARM algorithm, just as sampling is superior to all levelwise ARM algo-
rithms.

472 A. Schuster et al.

Fig. 5. D-sampling scale-up

5.3. Scale-up

The third set of tests was aimed at testing the scalability of D-sampling. Here the
partition size was fixed. We used a database of about 1.5 gigabytes on each computer.
A scalable algorithm should have the same runtime regardless of the number of
computers.

D-sampling creates the same communication load per candidate as DDM. How-
ever, because it generates more candidates, it uses more communication. As can be
seen from the graphs in Fig. 5, D-sampling is scalable in two of the tests. In fact,
for midrange numbers of computers, D-sampling runs even faster than with n = 1
due to the superlinear speed-up discussed earlier. The mild slowdown seen in Fig. 5c
is due to the smaller average pattern size and the smaller number of candidates in
T5.I2.D1200M. The larger the number of candidates, the greater the saving in can-
didates when the number of computers increases. If there are enough large patterns,
this saving will compensate for the increasing communication overhead. Such is not
the case, however, with T5.I2.D1200M.

5.4. Number of candidates

Because the main disadvantage of the sequential ing algorithm is the large number
of candidates it generates, our last set of experiments was aimed at testing how many
of the candidates are actually redundant. We first obtained the optimal number of
candidates by running FDM on a set of small databases and then ran D-sampling
on these databases. As before, we used samples of 80 K transactions and maximum
error probability δ = 0.001.

Figure 6 compares the number of candidates resulting from Chernoff and from
Hagerup error bounds in D-sampling, as opposed to the number of candidates in
FDM. It can be seen that the number of candidates in D-sampling is strongly tied
to the bound the algorithm used for calculating the probability of error. The Cher-
noff bound suggested by Toivonen in sequential sampling produces relatively many
candidates to satisfy the error probability condition. The Hagerup bound we use is

A high-performance distributed algorithm for mining association rules 473

Trans. No. MinFreq FDM D-Sampling D-Sampling
length items (%) Hagerup Chernoff

5 1000 0.5 66172 90803 (37%) 231080 (249%)

5 2000 0.5 72841 111868 (53%) 469169 (544%)

10 1000 0.75 104623 121864 (16%) 214164 (104%)

10 2000 0.75 122721 149220 (21%) 406376 (231%)

20 1000 1 170314 183348 (7%) 266502 (56%)

20 2000 1 248995 279910 (12%) too many

Fig. 6. The number of candidates produced by FDM and D-sampling using the Chernoff bound (as sug-
gested by Toivonen) and D-sampling using the Hagerup bound for various databases and when using eight
computers

tighter and produces significantly fewer candidates. The table summarizes the over-
head of candidates posed by D-sampling for some databases and values of MinFreq.
Our experiments show that D-sampling does not pose large candidate overhead when
compared with the number of candidates generated by FDM.

6. Conclusions and future research

We presented a new D-ARM algorithm that uses the communication efficiency of
the DDM algorithm to parallelize the single-scan sampling algorithm. Experiments
prove that the new algorithm has superlinear speed-up and outperforms FDM with
any MinFreq value. The exact improvement in relation to FDM or DDM depends on
the number of database scans they require. Experiments demonstrate good scalability,
provided the database scan is the major bottleneck of the algorithm.

Some open questions still remain. First, it would be interesting to continue par-
titioning the database until every partition becomes memory resident. This approach
may lead to a D-ARM algorithm that mines a database by loading it into the mem-
ory of a large number of computers and then runs with no disk-I/O at all. Second,
it would be interesting to have a parallelized version of the other single-scan ARM

474 A. Schuster et al.

algorithm—DIC—on a share-nothing cluster, or of the two-scans partition algorithm.
Finally, we feel that the full potential of the M-Max algorithm has not yet been re-
alized; we intend to research additional applications for this algorithm.

Acknowledgements. We thank Intel (Israel) and the Israeli ministry of defence (Mafaat) for
their generous support of this research.

References

Agrawal R, Imielinski T, Swami AN (1993) Mining association rules between sets of items in large databases.
In: Proceedings of the 1993 ACM SIGMOD international conference on management of data, Wash-
ington, DC, pp 207–216

Agrawal R, Shafer J (1996) Parallel mining of association rules. IEEE Trans Knowl Data Eng 8:962–969
Agrawal R, Srikant R (1994) Fast algorithms for mining association rules. In: Proceedings of the 20th inter-

national conference on very large databases (VLDB’94), Santiago, Chile, pp 487–499
Ananthanarayana VS, Subramanian DK, Murty MN (2000) Scalable, distributed and dynamic mining of

association rules. In: Proceedings of HiPC’00, Bangalore, India, pp 559–566
Brin S, Motwani R, Ullman J, Tsur S (1997) Dynamic itemset counting and implication rules for market

basket data. SIGMOD Rec 6:255–264
Cheung D, Han J, Ng V, Fu A, Fu Y (1996) A fast distributed algorithm for mining association rules. In:

Proceedings of the 1996 international conference on parallel and distributed information systems, Miami
Beach, Florida, pp 31–44

Cheung D, Xiao Y (1998) Effect of data skewness in parallel mining of association rules. In: 12th Pacific-Asia
conference on knowledge discovery and data mining, Melbourne, Australia, pp 48–60

Hagerup T, Rub C (1989/90) A guided tour of Chernoff bounds. Inf Process Lett 33:305–308
Han E-HS, Karypis G, Kumar V (2000) Scalable parallel data mining for association rules. IEEE Trans Knowl

Data Eng 12:352–377
Han J, Fu Y (1995) Discovery of multiple-level association rules from large databases. In: Proceedings of

the 21st international conference on very large data bases (VLDB’95), Zurich, Switzerland, pp 420–431
Han J, Pei J, Yin Y (1999) Mining frequent patterns without candidate generation. Technical Report 99-12,

Simon Fraser University
Iko P, Kitsuregawa M (2003) Parallel fp-growth on PC cluster. In: Seventh Pacific-Asia conference of know-

ledge discovery and data mining (PAKDD03)
Jarai Z, Virmani A, Iftode L (1998) Towards a cost-effective parallel data mining approach. Orlando, Florida
Lin D-I, Kedem ZM (1998) Pincer search: a new algorithm for discovering the maximum frequent set. In:

Extending database technology, pp 105–119
Park JS, Chen M-S, Yu PS (1995a) An effective hash-based algorithm for mining association rules. In: Pro-

ceedings of ACM SIGMOD international conference on management of data, San Jose, CA, pp 175–186
Park JS, Chen M-S, Yu PS (1995b) Efficient parallel data mining for association rules. In: Proceedings of the

ACM international conference on information and knowledge management, Baltimore, MD, pp 31–36
Pei J, Han J (2000) Can we push more constraints into frequent pattern mining? In: Proceedings of the ACM

SIGKDD conference on knowledge discovery and data mining, Boston, MA, pp 350–354
Savasere A, Omiecinski E, Navathe SB (1995) An efficient algorithm for mining association rules in large

databases. In: Proceedings of the 21st international conference on very large databases (VLDB’95),
pp 432–444

Schuster A, Wolff R (2001) Communication-efficient distributed mining of association rules. In: Proceed-
ings of the 2001 ACM SIGMOD international conference on management of data, Santa Barbara, CA,
pp 473–484

Srikant R (1993) Synthetic data generation code for association and sequential patterns. Available from the
IBM Quest web site at http://www.almaden.ibm.com/cs/quest/

Srikant R, Agrawal R (1994) Mining generalized association rules. In: Proceedings of the 20th international
conference on very large databases (VLDB’94), Santiago, Chile, pp 407–419

Srikant R, Agrawal R (1996) Mining quantitative association rules in large relational tables. In: Jagadish HV,
Mumick IS (eds) Proceedings of the 1996 ACM SIGMOD international conference on management of
data, Montreal, Quebec, Canada, pp 1–12

Srikant R, Vu Q, Agrawal R (1997) Mining association rules with item constraints. In: Heckerman D, Man-
nila H, Pregibon D, Uthurusamy R (eds) Proceedings of the ACM SIGKDD conference on knowledge
discovery and data mining. AAAI Press, pp 67–73

A high-performance distributed algorithm for mining association rules 475

Thomas S, Chakravarthy S (2000) Incremental mining of constrained associations. In: Proceedings of
HiPC’00, Bangalore, India, pp 547–558

Toivonen H (1996) Sampling large databases for association rules. In: Proceedings of the 22nd international
conference on very large databases (VLDB’96), pp 134–145

Zaiane OR, El-Hajj M, Lu P (2001) Fast parallel association rules mining without candidacy generation. In:
IEEE 2001 international conference on data mining (ICDM’2001), pp 665–668

Zaki MJ, Ogihara M, Parthasarathy S, Li W (1996) Parallel data mining for association rules on shared-
memory multi-processors. In: Proceedings of the Supercomputing’96, Pittsburg, PA, pp 17–22

Zaki MJ, Parthasarathy S, Ogihara M, Li W (1997a) New algorithms for fast discovery of association rules.
Technical Report TR651, Rensselaer Polytechnic Institute

Zaki MJ, Parthasarathy S, Ogihara M, Li W (1997b) Parallel algorithms for discovery of association rules.
Data Min Knowl Discov 1:343–373

Author biographies

Professor Assaf Schuster (http://www.cs.technion.ac.il/˜assaf) received his
B.Sc., M.Sc. and Ph.D. degrees in mathematics and computer science from
the Hebrew University of Jerusalem. Since being awarded his Ph.D. degree in
1991, he has been with the Computer Science Department at the Technion—
The Israel Institute of Technology. His interests include all aspects of parallel
and distributed computing.

Ran Wolff (http://www.cs.technion.ac.il/˜ranw) received his B.A. in com-
puter science from the Technion—Israel Institute of Technology—and is cur-
rently studying toward a Ph.D. in computer science at that same institute. Ran
has expertise in large-scale and high-performance data mining. He has au-
thored several papers on data mining in Grid and other distributed environ-
ments, including publications in SIGMOD, ICDM and CCGRID.

Dan Trock received his B.S. in physics and M.Sc. in electrical engineering
from the Technion—Israel Institute of Technology. He is currently a senior
networking and communications systems design engineer at Motorola Semi-
conductor (Israel).

Correspondence and offprint requests to: Ran Wolff, Department of Computer Science, Technion—Israel
Institute of Technology, Haifa, 32000, Israel. Email: ranw@cs.technion.ac.il

