
Springer-Verlag London Ltd.  2004
Knowledge and Information Systems (2005) 7: 415–437

DOI 10.1007/s10115-004-0174-5

Reliable detection of episodes in event sequences

Robert Gwadera��, Mikhail J. Atallah�, Wojciech Szpankowski��

Department of Computer Science, Purdue University, W. Lafayette, IN

Abstract. Suppose one wants to detect bad or suspicious subsequences in event sequences.
Whether an observed pattern of activity (in the form of a particular subsequence) is significant
and should be a cause for alarm depends on how likely it is to occur fortuitously. A long-enough
sequence of observed events will almost certainly contain any subsequence, and setting thresh-
olds for alarm is an important issue in a monitoring system that seeks to avoid false alarms.
Suppose a long sequence, T , of observed events contains a suspicious subsequence pattern, S,
within it, where the suspicious subsequence S consists of m events and spans a window of size
w within T . We address the fundamental problem: Is a certain number of occurrences of a par-
ticular subsequence unlikely to be generated by randomness itself (i.e. indicative of suspicious
activity)? If the probability of an occurrence generated by randomness is high and an automated
monitoring system flags it as suspicious anyway, then such a system will suffer from generat-
ing too many false alarms. This paper quantifies the probability of such an S occurring in T
within a window of size w, the number of distinct windows containing S as a subsequence, the
expected number of such occurrences, its variance, and establishes its limiting distribution that
allows setting up an alarm threshold so that the probability of false alarms is very small. We
report on experiments confirming the theory and showing that we can detect bad subsequences
with low false alarm rate.

Keywords: Data mining; Episode pattern matching; Hidden pattern matching; Overrepresented
and Underrepresented patterns; Probabilistic analysis

1. Introduction

Detecting subsequence patterns in event sequences is important in many applica-
tions, including intrusion detection, monitoring for suspicious activities and molecu-

� Portions of this work were supported by Grants EIA-9903545, IIS-0325345, IIS-0219560, IIS-0312357,
and IIS-0242421 from the National Science Foundation, Contract N00014-02-1-0364 from the Office of
Naval Research, by sponsors of the Center for Education and Research in Information Assurance and Secu-
rity, and by Purdue Discovery Park’s e-enterprise Center.

�� The work of this author was supported by the NSF Grant CCR-0208709 and NIH R01 GM068959-01.
Received 19 November 2003
Revised 16 January 2004
Accepted 16 February 2004
Published online 5 October 2004

416 R. Gwadera et al.

lar biology (e.g. see Kumar and Spafford (1994), Pevzner (2000), Waterman (1995),
Wespi et al. (2000)). Whether an observed pattern of activity is significant or not (i.e.
whether it should be a cause for alarm) depends on how likely it is to occur fortu-
itously. A long-enough sequence of observed events will almost certainly contain any
subsequence, and setting thresholds for alarm is an important issue in a monitoring
system that seeks to avoid false alarms.

The basic question is then: When is a certain number of occurrences of a particu-
lar subsequence unlikely to be generated by randomness (i.e. indicative of suspicious
activity)? A quantitative analysis of this question helps one to set a threshold so that
real intrusions are detected and false alarms are avoided. Setting the threshold too
low will lead to too many false alarms, whereas setting the threshold too high can
result in failure to detect. By knowing the most likely number of occurrences and the
probability of deviating from it, we can set a threshold such that the probability of
missing real suspicious activities is small. Such a quantitative analysis can also help
to choose the size of the sliding window of observation. Finally, even in a court case
one cannot consider certain observed bad activity as a convincing evidence against
somebody if that activity is quite likely to occur under given circumstances. There-
fore, it is very important to quantify such probabilities and present a universal and
reliable framework for analyzing a variety of event sources.

Let T be an ordered sequence of events (time-ordered events in a computer sys-
tem, transactions in a database, purchases made, web sites visited, phone calls made
or combinations of these). Systems designed to detect bad things in T usually do
not look at the whole of T , they usually involve a sliding window of observation
(of size, say, w) within which the analysis is confined. This is done for two rea-
sons: (i) T is usually too long, and without a limited window approach, it would
involve having to save too much state and (ii) T can be so long (e.g. in a contin-
uously monitoring system) that any subsequence (bad or good) would likely occur
within it. As an example of the need to confine the analysis to such a limited sliding
window, note that three failed login attempts (with failure due to wrong password)
are significant if they occur in rapid succession, but quite innocuous if they occur
within a 1-month interval. In this study, we do not use the notion of real calendar
time such as a 1-month interval; instead, we use the number of events as a proxy
for time. This is why our interval length w is not the difference between two time
stamps, but rather the size of a (contiguous) substring of T .

More formally, consider an alphabet A of cardinality |A|, an infinite event se-
quence T = t1t2, . . . over A and an episode over A in one of the following forms:
either a sequential pattern S = s1s2, . . . sm of length m, or a set of patterns S =
{S1, S2, . . . , S|S|}, or the set of all distinct permutations of S; this last case captures
situations where the ordering of the events within the window of observation does not
matter, e.g. for the two events bought a large number of bullets and bought an assault
rifle, it may not matter which one occurred first. We use a positive integer w ≥ m
to represent the length of the window of observation. We assume that an episode
is given while the event sequence T is generated by a memoryless (Bernoulli) or
Markov source. However, in this paper, we focus on the case of the single pattern
episode S and we assume T is a memoryless source.

In Mannila et al. (1997), Mannila et al. introduced the problem of discovering
frequent episodes in event sequences, where an episode was defined as a collection
of events occurring together within a certain time interval. In the terminology of
Mannila et al. (1997), an episode in the form of a sequential pattern S was defined
as a serial episode and the set of all permutations of an episode S was defined as
a parallel episode.

Reliable detection of episodes in event sequences 417

Our interest is in finding Ω∃(n, w, m) that represents the number of windows
containing at least one occurrence of S when sliding the window along n consecu-
tive events of T . Based on the observed value of Ω∃(n, w, m), our task is to decide
whether a suspicious activity took place or not. The main thrust of our approach
is based on the observation that, when searching for unusual patterns (e.g. over-
represented or underrepresented patterns), we must assure that such patterns are not
generated by randomness itself in order to avoid too many false positives. Therefore,
as the first step, we study the probabilistic behaviour of Ω∃(n, w, m). We compute
the expected value of Ω∃(n, w, m), its variance, and then show that appropriately
normalized Ω∃(n, w, m) converges in distribution to the standard normal distribu-
tion. This allows us to set either an upper threshold, τu(w, m) (for overrepresented
patterns), or a lower threshold, τ�(w, m) (for underrepresented patterns), depending
on the definition of unusual activity. More precisely, for a given level β, we have

either P
(

Ω∃(n,w,m)
n ≥ τu(w, m)

)
≤ β or P

(
Ω∃(n,w,m)

n ≤ τ�(w, m)
)

≤ β, respectively.

That is, if one observes more than τu(w, m) · n occurrences (upper threshold) or
fewer than τ�(w, m) · n occurrences (lower threshold) of windows with suspicious
subsequences, it is highly unlikely that such a number is generated by randomness
(i.e. its probability is smaller than β). We also show how to select the window size,
w, so that suspicious subsequences do not occur almost surely in a window. This is
necessary to reliably set up the threshold.

In Mannila et al. (1997), the frequency of an episode, α fr(α, s, win), was defined
as the fraction of windows of length win in which the episode occurs in an event
sequence s. Given a frequency threshold, min_ fr, they considered an episode to be
frequent if fr(α, s, win) ≥ min_ fr. In the framework of Mannila’s work, our prob-
lem can be stated as follows. Given an episode α, what window size, win, and what
frequency threshold, min_ fr, should we choose to ensure that the discovered fre-
quent episodes are meaningful, because, for an appropriately low frequency, min_ fr,
and large window, size, win, the episode will certainly occur in random data.

We verify our theoretical results by running an extensive series of experiments.
One set of experiments is performed on an on-line version of War and Peace,
as an example of English text source. In another experiment, we use web-logs
obtained from http://www.cs.washington.edu/ai/adaptive-data/
that contains user accesses to the music machines web site (currently at
http://machines.hyperreal.org) from 1/01/99 through 4/30/99. We first
show that our formula for the probability approximates very well the experimental
one. Then we insert randomly some sequences, defined as suspicious, and detect
them through our threshold mechanism.

Our problem can be rephrased in terms of pattern matching as the subsequence
pattern matching or hidden pattern matching (Flajolet et al. 2001). In particular, we
consider the windowed subsequence pattern matching where by an occurrence we
mean a string of the following form: s1g1s2g2, . . . gm−1sm , where g1 . . . gm−1 ∈ A∗
such that the total length of s1g1s2g2 . . . gm−1sm is at most w. Kumar and Spafford
(1994) applied subsequence pattern matching to intrusion detection. Apostolico and
Atallah (2002) designed a fast algorithm to detect subsequences in a text, while Fla-
jolet et al. (2001) presented a precise statistical analysis of the subsequence problem.
In Boasson et al. (1999), Boasson et al. introduced the Window-Accumulated Subse-
quence Matching Problem (WASP) as finding the number of size w windows of text
t of length n that contain pattern p = p1 . . . pk of length k ≤ w as a subsequence,
where t and p are from an alphabet A. Our work builds on the above-mentioned
research and provides the first probabilistic analysis that quantifies Ω∃(n, w, m).

418 R. Gwadera et al.

The paper is organized as follows. In Sect. 2, we present our main results con-
taining theoretical foundation. Section 3 contains experimental results demonstrating
applicability of the derived formulas. Derivations of theoretical results are presented
in Sect. 4 using analytic tools of analysis of algorithms such as generating functions
and complex asymptotic (cf. Sedgewick and Flajolet (1995), Szpankowski (2001)).

2. Main results

Given an alphabet A = {a1, a2, . . . , a|A|} and a pattern S = s1s2, . . . sm of length m,
we are interested in occurrences of S as a subsequence within a window of size w in
another sequence known as the event sequence T = t1t2 A valid occurrence of S
in T corresponds to a set of integers i1, i2, . . . , im such that the following conditions
hold:

1. 1 ≤ i1 < i2 < . . . < im .
2. ti1 = s1, ti2 = s2, . . . , tim = sm .
3. im − i1 < w.

The first two conditions above state that S is a subsequence of T , while the last
condition guarantees that S is a subsequence of T within a window of length w. In
various applications, it is of interest to estimate the number of windows of length w
containing at least one occurrence of S when sliding the window along n consecutive
events in the event sequence T ; we use Ω∃(n, w, m, S,A) to denote this number,
which can range from 0 to n.

Notation: Throughout the paper, because S and A are always implied, we sim-
plify our notation by dropping S and A in the notation Ω∃(n, w, m, S,A) denoting
Ω∃(n, w, m) instead (S and A are understood). We use the same notational simpli-
fication for all other variables that depend on S and A. We also occasionally use
index m − k to mean dropping the last k symbols of S, e.g. P∃(w, m − k) implies
a pattern that is the prefix of S of length m − k.

Based on the observed value of Ω∃(n, w, m), our task is to decide whether a sus-
picious activity took place or not. In terms of Ω∃(n, w, m), we can define a threshold
in two ways depending on what we consider to be the unusual activity. Thus, for
a given level β (e.g. β = 10−5) we define

1. Upper threshold (τu(w, m)): When S is overrepresented in T , we quantify it by
setting

P

(
Ω∃(n, w, m)

n
≥ τu(w, m)

)
≤ β.

2. Lower threshold (τ�(w, m)): When S is underrepresented in T , we quantify it by
setting

P

(
Ω∃(n, w, m)

n
≤ τ�(w, m)

)
≤ β.

The case number 2 above corresponds to a situation when for a normal behaviour
of T we must see at least a certain number of windows containing S and, if that
number drops suddenly, then it can suggest an intentional suppression of S.

Reliable detection of episodes in event sequences 419

Another interesting problem is the selection of monitoring system parameters, in
particular, the size of the window so one can properly design the system. We select
w to avoid S being almost surely in every window for the upper threshold τu(w, m)
or to avoid S being almost surely in none of the windows for the lower threshold
τ�(w, m).

In order to find a reliable threshold that minimizes the number of false positives,
we compare the observed value of Ω∃(n, w, m) to a threshold that was computed for
the probabilistic model. Throughout the paper, we assume that the event sequence
is generated by a memoryless (Bernoulli) source, i.e. symbols are generated inde-
pendently of each others with probability P(ai) for any ai ∈ A, i = 1, 2, . . . , |A|.

We need to analyze Ω∃(n, w, m) in order to find the threshold. We will prove here
that appropriately normalized Ω∃(n, w, m) is normally distributed. We also find the
mean and the variance of Ω∃(n, w, m). In our windowing method, we start monitor-
ing T by positioning the right end of the first window on an event in T corresponding
to position 1 and, while sliding the window n consecutive events to position n, we
update Ω∃(n, w, m). By assuming that T is infinite, we mean that no matter what
window size w we select, there is enough past events available for n consecutive
windows.

We start with computing the mean value E[Ω∃(n, w, m)]. Clearly, it is equal to

E[Ω∃(n, w, m)] = nP∃(w, m),

where P∃(w, m) is the probability that a window of size w contains at least one
occurrence of the episode S of size m as a subsequence. The probability of existence
P∃(w, m) satisfies the following recurrence:




P∃(w, m) = (1− pm)P∃(w−1, m)+ pm P∃(w−1, m −1) w > 0, m > 0,

P∃(w, 0) = 1 w > 0,

P∃(0, m) = 0 m > 0,

P∃(0, 0) = 1.

Indeed, consider a window of size w. Observe that either the last symbol of the
pattern, sm , does not occur at the w-th position of the window or it does occur. In
the former situation, S must occur within the window of size w − 1 leading to the
term (1 − pm)P∃(w − 1, m) of the above recurrence. The latter situation provides
the second term of the recurrence.

In Sect. 4, we solve the above recurrence using generating functions. Then we
apply Cauchy’s residue theorem to obtain an asymptotic expansion of P∃(w, m) for
fixed m and large w. We summarize our results in the next theorem.

Theorem 1. Consider a memoryless source with pi being the probability of gener-
ating the ith symbol of S and qi = 1 − pi . Let also

P(S) =
m∏

i=1

pi.

• Then for all m and w ≥ m, we have

P∃(w, m) = P(S)

w−m∑
i=0

∑
∑m

k=1 nk=i

m∏
k=1

qnk
k . (1)

420 R. Gwadera et al.

• Let now m be fixed and assume i �= j implies pi �= p j . Then, as w → ∞,

P∃(w, m) = 1 − P(S)

m∑
i=1

(1 − pi)
w

pi

m∏
j �=i

1

p j − pi
+ O(r−w), (2)

where r > (1 − pmax)
−1.

Notice that the asymptotic approximation reveals the anticipated fact about the
behaviour of P∃(w, m), i.e. that P∃(w, m) = 1 as w → ∞, and the rate of conver-
gence is exponential. Furthermore, Theorem 1 can be used to identify the maximum
value wmax of the window size. It seems reasonable to select wmax so that the pattern
S does not occur in such a window almost surely or with high probability. Therefore,
for a given δ ∈ (0, 1) we find wmax so that P∃(w, m) < 1−δ. Because 0 < δ < 1, we
can use our asymptotic formula (2). We first approximate P∃(w, m) by its leading
term, pmin = min0≤i≤m {pi}, that is,

P∃(w, m) ∼ 1 − P(S)
(1 − pmin)

w

pmin

m∏
j �= jmin

1

p j − pmin
.

This leads to

wmax ≈
log(δ) − log

(
P(S)
pmin

∏m
j �=min

1
p j −pmin

)

log(1 − pmin)
,

which can be estimated from observed data.
When establishing the above formulas for P∃(w, m), we also solved two related

combinatorial problems on strings that are of independent interest. Namely, given
A, w and S:

1. Construct the set W∃(w, m) of all windows as strings of length w over A con-
taining all possible occurrences of S as a subsequence. In Theorem 3, we show
the enumeration formula.

2. Find the cardinality of W∃(w, m), which we denote as C∃(w, m). In Theorem 4,
we prove that

C∃(w, m) =
w−m∑
k=0

(
k + m − 1

k

)
(|A| − 1)k|A|w−m−k.

We refer to Sect. 4 for the solution for those problems.
Now we derive variance and normal limiting distribution of Ω∃(n, w, m). Observe

that

Ω∃(n, w, m) =
n∑

i=1

I∃
i .

where

I∃
i =




1 if S occurs at least once as a subsequence in the window
ending at position i in T ,

0 otherwise,

where i is the relative position with respect to the first position (i = 1). Thus, we
easily have

Reliable detection of episodes in event sequences 421

E
[
I∃
i

] = P∃(w, m),

Var
[
I∃
i

] = P∃(w, m) − (P∃(w, m))2.

In order to compute variance of Ω∃(n, w, m), we need P∃
(I∃

i ∩I∃
j)
(w, m, k), defined

as the probability that two overlapping windows at respective position i and j for
|i − j| < w have Ii = 1 and I j = 1. The variance can be expressed as follows:

Var[Ω∃(n, w, m)] = nVar
[
I∃
1

] + 2
n∑

1≤i< j≤n

Cov
[
I∃
i , I∃

j

]

= n · [P∃(w, m) − (P∃(w, m))2]

+ 2(n − w + 1)

w−1∑
k=1

[
P∃

(I∃
i ∩I∃

j)
(w, m, k) − (P∃(w, m))2

]

+ 2
w−1∑
q=2

w−1∑
k=q

[
P∃

(I∃
i ∩I∃

j)
(w, m, k) − (P∃(w, m))2

]
.

The two terms involving P∃
(I∃

i ∩I∃
j)
(w, m, k) in the above formula represent correlation

between windows (with 2(w − 1) neighborhood), where k = w − |i − j| represents
the length of the overlap between windows at position i and j . P∃

(I∃
i ∩I∃

j)
(w, m, k) can

be computed from Theorem 3.
One concludes, however, that Var[Ω∃(n, w, m)] ∼ nσ for some σ > 0. In view

of the above and using the fact that Ω∃(n, w, m) is the so-called w−1-dependent se-
quence (i.e. Ω∃(n, w, m) depends on the last w−1 windows), we may apply Theorem
27.5 of Billingsley (1986) to establish the Central Limit Theorem for Ω∃(n, w, m).

Theorem 2. The random variable Ω∃(n, w, m) obeys the Central Limit Theorem in
the sense that its distribution is asymptotically normal. More precisely, for a, b =
O(1), we have

lim
n→∞ P

{
a ≤ Ω∃(n, w, m) − E[Ω∃(n, w, m)]√

Var[Ω∃(n, w, m)] ≤ b

}
= 1√

2π

∫ b

a
e

−t2
2 dt

for m and w fixed.

The above findings are foundations for establishing reliable thresholds τu(w, m)
or τ�(w, m) for n large. Let




P
(

Ω∃(n,w,m)
n ≥ τu(w, m)

)
= y(b,∞)

P
(

Ω∃(n,w,m)
n ≤ τ�(w, m)

)
= y(−∞, a)

τu(w, m) = P∃(w, m) + b
√

Var[Ω∃(n,w,m)]
n

τ�(w, m) = P∃(w, m) + a
√

Var[Ω∃(n,w,m)]
n

y(a, b) = 1√
2π

∫ b
a e

−t2
2 dt .

Thus, for a given β, we can compute τu(w, m) or τ�(w, m) by selecting either b0
such that β = y(b0,∞) or by selecting a0 such that β = y(−∞, a0), respectively.
Observe that, when a and b are large (say on the order of 10), the above probability

422 R. Gwadera et al.

is small enough to be qualified as a moderately large deviation. This captures the
nature of unusual episodes, as needed.

3. Experimental results

The purpose of our experiments was to test the applicability of the analytical results
we derived for sources that are apparently not memoryless, i.e. they do not satisfy the
assumptions under which the formulas for memoryless source were derived. We of
course do not need to test the formulas for memoryless sources because we already
know the equations hold in such cases. Therefore, we ran the experiments for an
English text source and also for web access data.

An English text is, of course, not memoryless. As an example, consider the string
“th,” which occurs more frequently than “tz” or “ts”. So, in this example, the letter
“h” will more likely occur if the previous letter was “t.” However, English text can
be modelled well by a Markov source.

The web accesses are also not memoryless, not only because of hierarchical struc-
ture but also because of correlations between links. For example, a person looking
for a product in an on-line store will most likely visit all manufacturers of the search
product.

We divided our sources into training sets and testing sets. Training sets are data
sets, which we consider to constitute normal behaviour for the environment from
which the data were drawn. Once the training data has been characterized, which
in our case means our probability model has been built, we can start monitoring
unknown data called testing data. During the monitoring process, the testing data
are compared with expectations generated by the training data.

Thus, the main focus of our experiments was to test how well the formula for
P∃(w, m) works for apparently nonmemoryless sources. To accomplish this, we es-
timated the actual probability of existence based on the actual number of windows

Ω∃(n, w, m) as P∃
e (w, m) = Ω∃(n,w,m)

n and compared its value with the computed
P∃(w, m) for different values of w. We used the following error metric d:

d =
[

1

r

r∑
i=1

∣∣P∃
e (wi, m) − P∃(wi , m)

∣∣
P∃

e (wi , m)

]
100%,

where w1 < w2 < . . .wr are the tested window sizes.
We used an algorithm, based on dynamic programming, for finding windowed

subsequences. We also implement the dynamic programming solution to P∃(w, m)
given in Chap. 2. We converted the sources appropriately to a special text file format
that was used by the algorithm implemented in C++ and run under Linux.

3.1. English text source

The text source we used is an on-line version of War and Peace by Leo Tolstoy from
www.friends-partners.org/newfriends/culture/literature/war
_and_peace/war-peace_intro.html. The work consists of 15 books. Each
book has over 20 chapters, each of which consists of over 5,000 letters. We pre-
processed the chapters in order to remove all symbols but 26 letters of the English
alphabet without distinguishing between upper- and lowercase letters.

Reliable detection of episodes in event sequences 423

Fig. 1. P∃
e (w, 7) = Ω∃(6881,w,7)

n and P∃(w, 7) for S = gwadera

In the first experiment, we compared the analytically computed P∃(w, m) (cf.

Theorem 1) with its estimator P∃
e (w, m) = Ω∃(n,w,m)

n . We used Chaps. 1–5 as a train-
ing set for estimation of p1, p2, . . . pm based on the symbol frequencies. We set
S = gwadera and, for selected values of w ∈ [13,600], we ran the algorithm for
finding Ω∃(n, w, m) in Chap. 6 of length n = 6,881 as the testing source. Figures 1
and 2 illustrate the results showing two main facts: P∃(w, m) approaches 1 as w
goes to infinity and P∃(w, m) very closely approximates the actual P∃

e (w, m) (d is
of order 12%).

In the next experiment, we demonstrated the application of τu(w, m). To ac-
complish it, we estimated variance of Ω∃(n, w, m), denoted V̂ar[Ω∃(n, w, m)]. For
this purpose, we randomly chose 8 chapters and shortened them to the same length
n = 8,000 letters creating 8 training sources, denoted T1, T2, . . . , T8, and one testing
source, T9. We used the following sample variance estimator:

√
V̂ar[Ω∃(n, w, m)] =

√∑8
i=1(Ω

∃(n, w, m)i − E[Ω∃(n, w, m)])2

8

for S = wojciech and w = 100. In particular, we set τu(w, m) = P∃(w, m) +
5
√

V̂ar[Ω∃(n,w,m)]
n . We used such a trained model to monitor T9 as the testing set. To

verify our threshold experimentally, we artificially kept injecting S = wojciech as

424 R. Gwadera et al.

Fig. 2. Ω∃(6881, w, 7) and E[Ω∃(6881, w, 7)] for S = gwadera

a subsequence into different places in T9. After each insertion, we ran the algorithm
for finding Ω∃(n, w, m) and checked whether we exceeded τu(w, m). To make it
more interesting, we considered two values of gaps between inserted symbols of S:
gap = 0 and gap = 11. In other words, we injected S as s1ggaps2ggap . . . ggapsm ,
where g ∈ A+. The results are shown in Fig. 3. The horizontal dash-dot line shows
P∃(100, 8) = 3·10−3 for no insertions. The solid line shows τu(100, 8) = 1.45·10−2.
Clearly, if gap = 0, then we need only two episodes to exceed τu(100, 8) versus
three if gap = 11. This makes sense if we notice that, if the episode is stretched
to the window boundaries (gap = 11), then it is more noise-like compared with the
case when gap = 0, which suggests an intentional action (attack) and should be
detected early.

3.2. Web access data

We used logs of user accesses to the music machines web site (currently at http:
//machines.hyperreal.org), which records accesses from 1/01/99 through
4/30/99. The logs have been anonymized with respect to originating machines. That
is, in each hit, the IP address of the machine generating the server request has
been converted to a random-looking number. All hits from one machine on a par-
ticular day are labeled with the same number. In the experiments, we focused on
http://machines.hyperreal.org/manufacturers/ web page contain-

Reliable detection of episodes in event sequences 425

Fig. 3. Detection of artificially inserted pattern wojciech

ing links to manufacturers of music instruments. Each link corresponds to an alphabet
symbol and the alphabet size was |A| = 81. The training and testing sequences were
created by considering only unique accesses made by the same originating machine.
If a given host made many accesses to the same manufacturer per session then we
treated it as one access and considered the first access only.

In the first experiment, we compared the computed P∃(w, m) with its estima-

tor P∃
e (w, m) = Ω∃(n,w,m)

n . We created three sources, T1, T2, T3, each of length n =
22,000. The training set established T1, T2 and the testing source was T3. We set
S = {Akai, ARP, Korg, Moog, Yamaha, Casio, Sequential} and, for selected values
of w ∈ [25, 500], we ran the algorithm for finding Ω∃(n, w, m) on T3. Figures 4
and 5 illustrate the results. P∃(w, m) still provides a good approximation of P∃

e (w, m)
(d = 14%). The reason the value of d is bigger than for the text source is the
fact that the web accesses are a more memory-dependent source than English
text. Therefore, the Markov model seems to be more suitable for the web access
source.

4. Derivations of analytical results

In this section, we provide derivations and proofs of the findings we claimed in
Sect. 2. We also present some new results.

426 R. Gwadera et al.

Fig. 4. P∃
e (w, 7) = Ω∃(22,000,w,7)

22,000 and computed P∃(w, 7) for the web access data

4.1. Set of windows containing S as a subsequence

Let W∃(w, m) be the set of all distinct windows of length w containing S as a sub-
sequence. P∃(w, m) is therefore equal to the sum of the probabilities of all the
elements of W∃(w, m), as follows:

P∃(w, m) =
∑

x∈W∃(w,m)

P(x) . (3)

For 1 ≤ i ≤ |W∃(w, m)|, let W∃(w, m)[i] denote the ith lexicographically smallest
element of W∃(w, m). Then formula (3) can be equivalently written as

P∃(w, m) =
|W∃(w,m)|∑

i=1

P(W∃(w, m)[i]) . (4)

We will now show that a recursive formula for enumerating the elements of
W∃(w, m) has the form below. Recall that the notation W∃(a, b), when b < m,
means the set of windows of size a that contain the b-prefix of S (= the string
consisting of the first b symbols of S).

Reliable detection of episodes in event sequences 427

Fig. 5. Ω∃(22,000, w, 7) and E[Ω∃(22,000, w, 7)] number of occurrences for the web access data




W∃(w, m) = (A − {sm}) × W∃(w − 1, m) ∪
{sm} × W∃(w − 1, m − 1) w > 0 ∩ m > 0,

W∃(w, 0) = Aw w > 0,

W∃(0, m) = 0 m > 0,

W∃(0, 0) = 1.

That the elements generated at each level of the recursion are distinct can be
seen by noting that we divide W∃(w, m) into two subsets: Strings that have sm as
their last symbol and strings that have symbols other than sm as their last symbol.
We now turn our attention to showing that we do generate all strings of W∃(w, m).
Consider all (

w

m) positions of a window where S may occur as a subsequence. We
claim that the recursion considers all positions where the m respective symbols of
S can occur, and that it considers these m-tuples of positions in a particular order:
Decreasing lexicographic order of those tuples, that is, tuple (i1, i2, . . . , im) is con-
sidered before tuple (i

′
1, i

′
2, . . . , i

′
m) if the former is lexicographically larger than the

latter.
Simply observe that W∃(w, m) can be split into two disjoint subsets:

• Windows having sm at their last position. Because the last window symbol is fixed
as sm for all of them, their enumeration effectively becomes that of the windows

428 R. Gwadera et al.

of size w − 1 that contain the (m − 1)-prefix of S (= the string consisting of
the first m − 1 symbols of S). This latter enumeration is what we mean by the
notation W∃(w − 1, m − 1).

• Windows not having sm at their last position. Because the last symbol cannot
be considered part of an occurrence of S, their enumeration effectively becomes
that of the windows of size w−1 that contain S. This latter enumeration is what
we mean by the notation W∃(w − 1, m).

From the above, it is straightforward to obtain the following (we omit the details
of the derivation).

Theorem 3. The set of all distinct windows of length w that contain a string S of
length m as a subsequence can be enumerated as follows:

W∃(w, m) =
⋃

∑m+1
k=1 nk=w−m

(A − s1)
n1 × {s1} × (A − s2)

n2 × {s2} × . . .

×(A − sm)nm × {sm} × Anm+1 .

To visualize the set W∃(w, m), we can use a graph. In Fig. 6, the members of
W∃(w, m) are strings consisting of edge symbols of all unique (at least one edge
different) paths of length w from the start state, 0, to the ending state, m.

Fig. 6. Graphical interpretation of the solution to W∃(w, m)

Based on Theorem 3, we can divide the elements of W∃(w, m) into equivalence
classes, V∃, with respect to the ordered sequences of (n1, n2, . . . , nm+1) for which∑m+1

i=1 ni = w − m. The number of such ordered partitions is
(

w−m+m+1−1
w−m

)
= (

w

m

)
.

It is equivalent to the number of positions of S as a subsequence in the window of
length w. Thus, |V∃| = (

w

m

)
.

Example. Let A = {a, b}, S = ba, and w = 3. We generate W∃(3, 2) in Table 1
and compute P∃(w, m). From (4), we obtain P∃(3, 2) = P(S)(pa + pb + pb + pa) =
2P(S).

4.2. Evaluation of C∃(w, m)

Recall that C∃(w, m) denotes the cardinality of W∃(w, m).
The recurrence for C∃(w, m) follows directly from the one for W∃(w, m). Namely,




C∃(w, m) = (|A| − 1)C∃(w − 1, m) + C∃(w − 1, m − 1) w > 0 ∩ m > 0,

C∃(w, 0) = |A|w w > 0,

C∃(0, m) = 0 m > 0,

C∃(0, 0) = 1.

Reliable detection of episodes in event sequences 429

Table 1. Enumeration of W(3, 2) for A = {a, b} and S = ba using Theorem 3

i W(3, 2)[i] n1 n2 n3

2 baa 0 0 1
3 bab 0 0 1
4 bba 0 1 0
1 aba 1 0 0

We use the method of generating functions to find the solution for C∃(w, m).
For an in-depth discussion of generating functions, see, for example, Szpankowski
(2001). We leave m as a free variable and define the following family of generating
functions:

Wm(x) =
∑
w=0

C∃(w, m)xw,

where x is a complex number. From the above recurrence, we obtain



Wm(x) = (|A| − 1)
∑

w=1 C∃(w − 1, m)xw + ∑
w=1 C∃(w − 1, m − 1)xw

m > 0,

W0(x) = ∑
w=0 C∃(w, 0)xw m = 0.

We now work with Wm(x) for m > 0.

Wm(x) = (|A| − 1)
∑
w=1

C∃(w − 1, m)xw +
∑
w=1

C∃(w − 1, m − 1)xw

= (|A| − 1)x
∑
w=1

C∃(w − 1, m)xw−1 + x
∑
w=1

C∃(w − 1, m − 1)xw−1

= (|A| − 1)x
∑
w=0

C∃(w, m)xw + x
∑
w=0

C∃(w, m − 1)xw

= (|A| − 1)xWm(x) + xWm−1(x).

We represent Wm(x) in the form of a first-order recurrence with respect to m.

Wm(x)(1 − (|A| − 1)x) = xWm−1(x)

Wm(x) = x

(1 − (|A| − 1)x)
Wm−1(x)

= xm 1

(1 − (|A| − 1)x)m W0(x).

Using the fact that

W0(x) =
∑
w=0

|A|wxw = 1

(1 − |A|x)
,

we obtain

Wm(x) = xm 1

(1 − (|A| − 1)x)m

1

(1 − |A|x)
.

430 R. Gwadera et al.

Denoting by [xw] f(x) the coefficient at xw of f(x), we find

C∃(w, m) = [xw]Wm(x).

Because

[xw] 1

(1 − (|A| − 1)x)m =
(

w + m − 1

w

)
(|A| − 1)w

and

[xw] 1

(1 − (|A| − 1)x)m

1

(1 − |A|x)
=

w∑
k=0

(
k + m − 1

k

)
(|A| − 1)k|A|w−k,

we finally obtain

[xw]Wm(x) =
w−m∑
k=0

(
k + m − 1

k

)
(|A| − 1)k|A|w−m−k.

Theorem 4. The number of all windows of length w over an alphabet A, which
contains at least one occurrence of a pattern of length m, does not depend on the
symbols of the pattern and is equal to

C∃(w, m) =
w−m∑
k=0

(
k + m − 1

k

)
(|A| − 1)k|A|w−m−k.

4.3. Evaluation of P∃(w, m)

Recall that P∃(w, m) is the probability that a window of size w contains at least
one occurrence of the episode S of size m as a subsequence. The recurrence for
P∃(w, m) follows directly from the one for W∃(w, m). In particular,




P∃(w, m) = (1− pm)P∃(w−1, m)+ pm P∃(w−1, m −1) w > 0 ∩ m > 0,

P∃(w, 0) = 1 w > 0,

P∃(0, m) = 0 m > 0,

P∃(0, 0) = 1.

As before, we use the method of generating functions to find the solution for
P∃(w, m). Let

Wm(x) =
∑
w=0

P∃(w, m)xw.

From the above recurrence, we find

{
Wm(x) = qm

∑
w=1 P∃(w−1, m)xw + pm

∑
w=1 P∃(w−1, m −1)xw m > 0,

W0(x) = ∑
w=0 P∃(w, 0)xw m = 0,

Reliable detection of episodes in event sequences 431

where qm = 1 − pm . We now work with Wm(x) for m > 0.

Wm(x) = qm

∑
w=1

P∃(w − 1, m)xw + pm

∑
w=1

P∃(w − 1, m − 1)xw

= qm x
∑
w=1

P∃(w − 1, m)xw−1 + pmx
∑
w=1

P∃(w − 1, m − 1)xw−1

= qm x
∑
w=0

P∃(w, m)xw + pmx
∑
w=0

P∃(w, m − 1)xw

= qm xWm(x) + pm xWm−1(x).

We represent Wm(x) in the form of the first-order recurrence with respect to m,

Wm(x)(1 − qmx) = pmxWm−1(x)

Wm(x) = pm x

(1 − qmx)
Wm−1(x)

=
m∏

i=1

pix
m

m∏
i=1

1

(1 − qi x)
W0(x).

Using the fact that

∑
w=0

xw = 1

(1 − x)
,

we obtain

Wm(x) =
m∏

i=1

pi x
m

m∏
i=1

1

(1 − qi x)

1

(1 − x)

= P(S)xm
m∏

i=1

1

(1 − qi x)

1

(1 − x)
.

But P∃(w, m) = [xw]Wm(x), and because

m∏
i=1

1

(1 − qix)
=

m∏
i=1

∑
w=0

qw
i xw

and

[xw]
m∏

i=1

∑
w=0

qw
i xw =

∑
∑m

k=1 nk=w

qn1
1 qn2

2 . . . qnm
m

=
∑

∑m
k=1 nk=w

m∏
k=1

qnk
k ,

we use the partial sum property to derive the following:

[xw]
m∏

i=1

∑
w=0

qw
i xw 1

(1 − x)
=

w∑
i=0

∑
∑m

k=1 nk=i

m∏
k=1

qnk
k .

432 R. Gwadera et al.

We finally obtain

[xw]Wm(x) = P(S)[xw−m]
m∏

i=1

∑
w=0

qw
i xw 1

(1 − x)

= P(S)

w−m∑
i=0

∑
∑m

k=1 nk=i

m∏
k=1

qnk
k .

This proves formula (1) in Theorem 1.

4.3.1. Asymptotic approximation of P∃(w, m)

Now we estimate P∃(w, m) asymptotically as w → ∞ and m fixed, that is, we
prove (2) of Theorem 1. In our previous derivations, we obtained

Wm(z) = P(S)zm
m∏

i=1

1

(1 − qiz)

1

(1 − z)
.

Observe that the exact value of P∃(w, m) is equal to the coefficient of Wm(x) at
xw which—we recall—we denote as [xw]Wm(x). By the Cauchy coefficient theorem
(cf. Szpankowski (2001)), we know that

P∃(w, m) = [zw]Wm(z) = 1

2πi

∮
Wm(z)z−w−1dz,

where z is a complex variable and the integration is over a small circle around z = 0.
To evaluate this integral, we use another Cauchy result known as the Cauchy residue
theorem (Szpankowski 2001). For this, we enlarge the circle around z = 0 so that
it contains all singularities Wm(z). In our case, the radius r of such a circle must
satisfy r > (1 − pmax)

−1. Then

P∃(w, m) = −
∑

p

Res
[
Wm(z)z−w−1, z = p

]+ O(r−w),

where Res[f(z), z = a] is the residue of f(z) at z = a. We recall that, if f(z) = φ(z)
ϕ(z) ,

where φ(z) and ϕ(z) are analytic functions in z = a subject to ϕ(z) = 0, ϕ
′
(z) �= 0

and φ(z) �= 0, then a is a pole of f(z) and

Res

[
φ(z)

ϕ(z)
, z = a

]
= φ(a)

ϕ
′
(a)

.

Therefore,

Res
[
Wm(z)z−w−1, z = 1

] = −P(S)1m−w−1
m∏

i=1

1

(1 − qi)
= −1.

Reliable detection of episodes in event sequences 433

Similarly, for z = 1
qi

, we have

Res

[
Wm(z)z−w−1, z = 1

qi

]
= (−1)

1

qi
P(S)

(
1

qi

)m−w−1 m∏
j �=i

1(
1 − q j

qi

) 1

1 − 1
qi

= P(S)
(1 − pi)

w

pi

m∏
j �=i

1

p j − pi
.

Putting everything together, we obtain

P∃(w, m) = −Res
[
Wm(z)z−w−1, z = 1

]−
m∑

i=0

Res

[
Wm(z)z−w−1, z = 1

qi

]

= 1 − P(S)

m∑
i=1

(1 − pi)
w

pi

m∏
j �=i

1

p j − pi
+ O(r−w).

Finally, we propose a dynamic programming algorithm for computing P∃(w, m).
Let Q[i, j] denote the product

∏ j
k=1 qnk

k such that
∑ j

k=1 nk = i, then



Q[i, j] = ∑i
k=0 Q[i − k, j − 1] · qk

j 1 < j ≤ m, 1 < i ≤ w − m

Q[i, 1] = qi
1

Q[0, j] = 1 1 ≤ j ≤ m

P∃(w, m) = P(S)
∑w−m

i=0 Q[i, m].
The time complexity of the algorithm is O((w − m)2 · m) and is equal to the space
required to build the table Q[w−m, m]. Let v[a : b] denote the substring of a string
v between indexes a and b such that a < b and 1 ≤ a, b ≤ w. Let p[1 : m] be an
array with probabilities p1, p2, . . . , pm of the symbols in S.

Algorithm 1: Computation of P∃(w, m)

input : w, m, p[1 : m]
output: P∃(w, m)

begin
for j = 1 to m do

Q[0, j] = 1;

P∃(w, m) = 1;
for i = 1 to w − m do

Q[i, 1] = (1 − p[1])i;
for j = 2 to m do

Q[i, j] = 0;
for k = 0 to i do

Q[i, j] = Q[i, j] + Q[i − k, j − 1] ∗ (1 − p[j])k;

P∃(w, m) = P∃(w, m) + Q[i, m];
P∃(w, m) = P(S) ∗ P∃(w, m);

end

434 R. Gwadera et al.

4.4. Variance

We need to establish a precise formula for variance, Var[Ω∃(n, w, m)]. First, observe
that

Var
[
Ω∃(n, w, m)

] =
n∑

i=1

Var
[
I∃
i

] + 2
n∑

1≤i< j≤n

Cov
[
I∃
i , I∃

j

]
,

where trivially

Cov
[
I∃
i , I∃

j

] = E
[
I∃
i , I∃

j

] − E
[
I∃
i

] · E
[
I∃
i

]

and

E
[
I∃
i , I∃

j

] =
{

0 if |i − j| ≥ w

P∃
(I∃

i ∩I∃
j)
(w, m, k) if |i − j| < w.

This leads to

Var
[
Ω∃(n, w, m)

] = n
[
P∃(w, m) − (P∃(w, m))2]

+ 2(n − w + 1)

w−1∑
k=1

[
P∃

(I∃
i ∩I∃

j)
(w, m, k) − (P∃(w, m))2

]

+ 2
w−1∑
q=2

w−1∑
k=q

[
P∃

(I∃
i ∩I∃

j)
(w, m, k) − (P∃(w, m))2

]
.

Note that the formula for variance depends on a windowing method, i.e. on all pos-
sible configurations of overlaps of considered windows. To compute P∃

(I∃
i ∩I∃

j)
(w, m, k),

we define W∃(w, m, k)(I∃
i ∩I∃

j) as the set of all possible pairwise overlapping windows

on k = w − |i − j| symbols such that I∃
i = 1, I∃

j = 1 for i < j and |i − j| < w.
In other words, W∃(w, m, k)(I∃

i ∩I∃
j) can be enumerated as all 2w − k-length strings

consisting of two windows, W∃(w, m)[r] and W∃(w, m)[q], of length w, that over-
lap on k positions. The overlap is between the last k symbols of W∃(w, m)[r] and
the first k symbols of W∃(w, m)[q] for 1 ≤ q, r ≤ C∃(w, m).

Let W∃(w, m, k)(I∃
i ∩I∃

j)[l] be the l-th string of W∃(w, m, k)(I∃
i ∩I∃

j). Then we can

express P∃
(I∃

i ∩I∃
j)
(w, m, k) as follows:

P∃
(I∃

i ∩I∃
j)
(w, m, k) =

|W∃(w,m,k)|∑
l=1

P
(
W∃(w, m, k)(I∃

i ∩I∃
j)[l]

)
. (5)

Now we present an exact algorithm for computing P∃
(I∃

i ∩I∃
j)
(w, m, k). The idea of

the algorithm is to enumerate all pairs of sets of windows that overlap on k symbols,
i.e. the last k symbols of the first set of windows are equal to the first k symbols
of the second set of windows. From Theorem 3, it is known that all elements in
W∃(w, m) can be divided into a set of equivalence classes V∃. Let V∃[i] be the ith

Reliable detection of episodes in event sequences 435

element of V∃. Our algorithm generates elements in V∃ and finds all overlaps on k
symbols between them.

Let V∃[i] and V∃[j] be candidates for the overlap, then

V∃[i] = s1
ni

1 × s1 × s2
ni

2 × s2 . . . sm
ni

m × sm × Ani
m+1,

V∃[j] = s1
n j

1 × s1 × s2
n j

2 × s2 . . . sm
n j

m × sm × An j
m+1,

where si = A − si , i, j ≤ |V∃|, ∑m+1
r=1 ni

r = w − m and
∑m+1

r=1 n j
r = w − m.

Algorithm 2: Computation of P∃
(I∃

i ∩I∃
j)
(w, m, k) for Var[Ω∃(n, w, m)]

input : w, m, k, P(a1), P(a2), . . . , P(a|A|)
output: P∃

(I∃
i ∩I∃

j)
(w, m, k)

begin
for i = 1 to

(
w

m

)
do

for j = 1 to
(

w

m

)
do

Overlap[1 : k] = V∃[i][w − k + 1 : w] ∩ V∃[j][1 : k];
if Overlap[1 : k] �= ∅ then

P∃
(I∃

i ∩I∃
j)
(w, m, k)+ = P(V∃[i][1 : w − k]) ∗ P(Overlap[1 : k])

∗P(V∃[j][k + 1 : w]));

end

Note that, unlike algorithm 1 for P∃(w, m), which is fast even for large w, al-
gorithm 2 is not practical for large w. When w is large, we use the sample variance
estimator. An alternative approach for large w is to improve algorithm 2 by cutting
the search space (through elimination of certain pairs of sets of windows).

5. Conclusions and extensions

We presented an exact formula for P∃(w, m), the probability that an episode S of
length m occurs in a window of length w in an event sequence T over the alpha-
bet A for the memoryless model. In addition, we gave an asymptotic approximation
of P∃(w, m), which shows that, for appropriately large w, P∃(w, m) asymptotically
tends to one as expected. By providing an efficient dynamic programming method for
computing P∃(w, m), we showed its applicability to real-time monitoring systems.
In the experiments, we chose two apparently nonmemoryless sources (the English
alphabet and the web access data) and showed that, even for these cases, P∃(w, m)
closely approximated the estimated P∃

e (w, m). This seems to be yet another one of
those intriguing situations where an equation derived under a certain set of assump-
tions holds in practical examples for which those assumptions are clearly violated.
Based on the formula for P∃(w, m), we proposed a reliable episode detection method,
where, as a measure of normal behaviour, we used Ω∃(n, w, m), the number of win-
dows that contain at least one occurrence of a defined bad episode. Reliability of

436 R. Gwadera et al.

Ω∃(n, w, m) as a normal-behaviour measure stems from the fact that, for a given S
and A, we can analytically select the window length w to minimize false alarms.
We proved that Ω∃(n, w, m) has a Gaussian distribution. Knowing E[Ω∃(n, w, m)],
Var[Ω∃(n, w, m)] or their estimates, and for a given level β, we showed how to
set the upper threshold τu(w, m) and the lower threshold τ�(w, m). In experiments,
we tested τu(w, m) by artificially injecting bad episodes into the testing source and
observed that τu(w, m) did indeed provide a sharp detection of intentional (bad)
episodes.

An obvious extension of this work is to use Theorem 3 to compute P∃(w, m) for
Markov source of any order. Let W∃(w, m)[i][j] be the jth symbol in W∃(w, m)[i],
where j = 1, 2, . . . , w. Then, for the first-order source, the probability that a window
of length w contains at least one occurrence of a pattern S of length m is equal to

P∃(w, m) =
|W∃(w,m)|∑

i=1

P(W∃(w, m)[i][1])P(W∃(w, m)[i][2]|W∃(w, m)[i][1]) . . .

P(W∃(w, m)[i][w]|W∃(w, m)[i][w − 1]),
where W∃(w, m)[i][l] is the lth symbol of the ith member of W∃(w, m) in lexico-
graphic order and P(W∃(w, m)[i][2]|W∃(w, m)[i][1]) is the conditional probability.
This approach is, however, not very computationally efficient.

References

Aho A, Corasick M (1975) Efficient string matching: An aid to biblographic search. Programming techniques
Apostolico A, Atallah M (2002) Compact recognizers of episode sequences. Inform Comput 174:180–192
Billingsley P (1986) Probability and measure. Wiley, New York
Boasson L, Cegielski P, Guessarian I, Matiyasevich Y (1999) Window-accumulated subsequence matching

problem is linear. Proc PODS pp 327–336
Crochemore M, Rytter W (1994) Text algorithms. Oxford University Press, New York
Das G, Fleischer R, Gasieniec L, Gunopulos D, Kärkkäinen J (1997) Episode matching. In: Combinatorial

pattern matching, 8th annual symposium. Lecture Notes in Computer Science 1264, pp 12–27
Flajolet P, Guivarc’h Y, Szpankowski W, Vallée B (2001) Hidden pattern statistics. ICALP 2001, Crete,

Greece, LNCS 2076, pp 152–165
Kucherov G, Rusinowitch M (1997) Matching a set of strings with variable length don’t cares. Theor Comput

Sci 178:129–154
Kumar S, Spafford EH (1994) A pattern-matching model for intrusion detection. Proceedings of the National

Computer Security Conference, pp 11–21
Mannila H, Toivonen H, Verkamo A (1997) Discovery of frequent episodes in event sequences. Data Min

Knowl Discov 1:241–258
Nicodème P, Salvy B, Flajolet P (1999) Motif statistics. European symposium on algorithms. Lecture Notes

in Computer Science 1643, pp 194–211
Pevzner P (2000) Computational molecular biology: an algorithmic approach. MIT Press
Régnier M, Szpankowski W (1998) On pattern frequency occurrences in a Markovian sequence. Algorithmica

22:631–649
Rigoutsos I, Floratos A, Parida L, Gao Y, Platt D (2000) The emergence of pattern discovery techniques in

computational biology. Metabol Eng 2:159–177
Sedgewick R, Flajolet P (1995) An introduction to the analysis of algorithms. Addison-Wesley, Reading, MA
Szpankowski W (2001) Average case analysis of algorithms on sequence. Wiley, New York
Waterman M (1995) Introduction to computational biology. Chapman and Hall, London
Wespi A, Debar H, Dacier M, Nassehi M (2000) Fixed vs variable-length patterns for detecting suspicious

process behavior. J Comput Secur 8:159–181
Wu S, Manber U (1995) Fast text searching allowing errors. Comm ACM 35:83–91

Reliable detection of episodes in event sequences 437

Author biographies

Robert Gwadera received the M.S. degree in electrical and computer engin-
eering from Technical University of Gdansk, Poland in 1995. In 2003, he re-
ceived the M.S. in computer sciences from Purdue University. He is currently
working toward a Ph.D. in computer science at Purdue University. His re-
search interests are data mining, databases and information security.

Mikhail (“Mike”) Atallah obtained his Ph.D. from the Johns Hopkins Uni-
versity in 1982 and joined the Purdue University Computer Science Depart-
ment, where he was promoted to associate professor in 1986, to professor in
1989, and to distinguished professor in 2004. His current research interests are
in information security (in particular, software security, secure protocols, and
watermarking). He received a Presidential Young Investigator Award from the
National Science Foundation in 1985. A Fellow of the IEEE, he has served
on the editorial boards of SIAM Journal on Computing, IEEE Transactions
on Computers, and many other journals and has also served on the program
committees of many conferences and workshops. He was Keynote and Invited
Speaker at many national and international meetings. In June 2001, he co-
founded Arxan Technologies Inc., a startup in the software security products
space, that has secured funding from top-tier venture capital firms.

Wojciech Szpankowski received the M.S. degree and the Ph.D. degree in
electrical and computer engineering from Technical University of Gdansk,
Poland in 1976 and 1980, respectively. Currently, he is professor of computer
science at Purdue University. During 1992/1993 he was a Professeur Invite
INRIA, France; in the fall of 1999, he was a visiting professor at Stanford Uni-
versity. His research interests cover design and analysis of algorithms, bioin-
formatics and multimedia compression (information theory). He has published
over 170 papers on these topics. In 2001, he published his book Average Case
Analysis of Algorithms on Sequences, Wiley. He has been a guest editor for
several journals. He is managing editor of Theoretical Computer Science and
Discrete Mathematics, and he is on the editorial boards of Theoretical Com-
puter Science and Foundation and Trends in Communications and Informa-
tion Theory. In 2003, he chaired NSF Workshop on Information Theory and

Computer Science Interface, Chicago. He is a Fellow of the IEEE.

Correspondence and offprint requests to: Robert Gwadera, Department of Computer Science, Purdue Uni-
versity, W. Lafayette, IN 47907, USA. Email: gwadera@cs.purdue.edu

