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Abstract. We propose a new ensemble algorithm called Convex Hull Ensemble Machine
(CHEM). CHEM in Hilbert space is first developed and modified for regression and classifi-
cation problems. We prove that the ensemble model converges to the optimal model in Hilbert
space under regularity conditions. Empirical studies reveal that, for classification problems,
CHEM has a prediction accuracy similar to that of boosting, but CHEM is much more robust
with respect to output noise and never overfits datasets even when boosting does. For regres-
sion problems, CHEM is competitive with other ensemble methods such as gradient boosting
and bagging.
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1. Introduction

Ensemble methods, which construct many classifiers (called “base learners”) and
combine them to make a final decision, have shown great success in statistics and
machine learning areas for their significant improvement in classification accuracy.
Examples of ensemble algorithms include bagging (Breiman 1996), boosting (Freund
and Schapire 1997), arcing (Breiman 1998), and random forest (Breiman 2001). Of
these, bagging and boosting are the two most popular ensemble methods. A number
of empirical studies have compared bagging and boosting, including the studies by
Quinlan (1996), Bauer and Kohavi (1999), Opitz and Maclin (1999), and Dietterich
(2000), to name a few. Their results indicated that while boosting is more accurate
than bagging in most cases, boosting can overfit highly noisy dataets, thus decreas-
ing its performance. Ridgeway (2000) gives a simple example in which boosting
seriously overfits the data, and Breiman (2001) demonstrates the vulnerability of
boosting to output noise.
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In this paper, we propose a new ensemble algorithm called Convex Hull Ensemble
Machine (CHEM), which combines the advantages of bagging and boosting. The
classification accuracy of CHEM for low-noise cases compares favorably to that of
boosting, but CHEM is more robust to output noise.

We begin by investigating the instability that exists in decision trees. In Sect. 2,
we argue that instability arises in decision trees when there are many different de-
cision trees that explain the data similarly. Furthermore, we argue that the existence
of many such decision trees occurs when the true model is located not inside the
set of decision trees but inside the convex hull of the set of decision trees. Then we
devise a simple geometry to explain this situation.

Once we construct the geometry for the instability of decision trees, we develop
a hypothetical algorithm for CHEM in Hilbert space, which constructs a sequence of
convex combinations of base learners (decision trees) that converges to the optimal
model located inside the convex hull of the set of base learners. Although hypothet-
ical, the CHEM in Hilbert space provides useful insight into the aim of CHEM and
how CHEM accomplishes it in regression and classification problems.

After establishing CHEM in Hilbert space, CHEM algorithms for regression and
classification problems are developed. For regression problems, we develop a CHEM
algorithm that simply replaces the inner product used in CHEM in Hilbert space
with its empirical counterpart. For classification problems, we embed the problem
into a function estimation problem in Hilbert space based on the symmetric logistic
regression model and modify the CHEM algorithm in Hilbert space in the same way
as for the regression problems.

CHEM unifies regression and classification problems into a function estimation
problem in Hilbert space and performs well for both problems. Boosting can also be
explained as a way of estimating the optimal function by using the gradient descent
method or a Newton-like method (Schapire and Singer 1999; Friedman et al. 2000;
Friedman 2001; Mason et al. 2000). However, this interpretation results in overfitting
in regression problems (Bühlman and Yu 2000).

Empirical results are given in Sect. 6. Fourteen real datasets used for classification
problems from the UC-Irvine machine learning archive are analyzed, and five datasets
(two from the UC-Irvine machine learning archive and three synthetic models) are
used for regression problems. The empirical results for the classification problems
indicate that the classification accuracy of CHEM compare favorably with that of
boosting, that CHEM is much more robust to output noise, and that CHEM never
overfits. In regression problems, the performance of CHEM is competitive with other
ensemble methods such as gradient boosting and bagging.

This paper is organized as follows. Section 2 studies the instability of decision
trees. In Sect. 3, the CHEM algorithm in Hilbert space is proposed. CHEM algo-
rithms for regression and classification problems are proposed in Sects. 4 and 5,
respectively. Empirical results are presented in Sect. 6, and a discussion follows in
Sect. 7.

2. Instability in Decision Trees

Figure 1 shows an example of instability in decision trees. The two regression trees
in the figure are constructed from two bootstrap samples of the same dataset. The
structures of the two trees are completely different, although the two bootstrap sam-
ples are thought to be similar. In particular, the split variables of the two trees are
completely different. In this section, we explain why decision trees are unstable.
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Fig. 1. Two regression trees constructed from two bootstrap samples of the same dataset “Boston Housing”.

Based on this explanation, we devise a simple geometry that is used extensively in
the following sections.

Let L = {(x1, y1), . . . , (xn, yn)} be n input-output pairs of the training dataset,
which is a random sample of a random vector (X, Y ) whose probability measure is
P(x, y). Here X ∈ Rp and Y ∈ R. The true regression model f ∗(x) is defined by
f ∗(x) = E(Y |X = x), and the objective of the regression problem is to estimate f ∗
based on the training dataset L. For a given class of models F , a typical procedure
for estimating f ∗ is to choose a model f̂ in F that minimizes the square error loss,
that is,

f̂ = arg min f ∈F

n∑

i=1

(yi − f(xi))
2.

Consider the following example. Suppose X ∼ N(0, 1) and Y = I(|X| < c),
where c is chosen so that Pr(|X| < c) = 0.5. In this setting, f ∗(x) = I(|x| < c).
Now suppose the class of models F consists of all stumps (decision trees with only
two terminal nodes). That is, F is given by

{
fθ(x) = aL I(x ≤ η) + aR I(x > η) : θ = (aL, aR, η) ∈ R3}.

It is easy to see that η̂, the least square estimator of η, is given by
{
η̂ = c if nR > nL

η̂ = −c if nR < nL ,

where nR = ∑n
i=1 I(xi > c) and nL = ∑n

i=1 I(xi < −c). Note that η̂ is a very unsta-
ble estimator of η. For example, suppose nR = nL − 1. Then η̂ = c. However, only
two additional observations less than −c make η̂ move from c to −c. Furthermore,
this instability persists regardless of the size of n.

One explanation for the instability in this example is that there are two models
f1(x) = I(x < c) and f2(x) = I(x > −c) in F that are equally close to the true
model f ∗(x). In fact, we have

∫
(y − f1(x))2 P(dx, dy) =

∫
(y − f2(x))2 P(dx, dy).
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Fig. 2. Assumed geometry.

With finite samples, we compare
∫
(y− f1(x))2 Pn(dx, dy) and

∫
(y− f2(x))2 Pn(dx, dy)

and choose the model with the smaller value. Here, Pn(x, y) = ∑n
i=1 I((x, y) =

(xi, yi))/n. Since Pn is a close approximation of P,
∫
(y − f1(x))2 Pn(dx, dy) and∫

(y − f2(x))2 Pn(dx, dy) are expected to be close to each other. Hence the choice
of the final model depends entirely on the small deviation of Pn from P, which is
mainly due to random noise.

Based on these arguments, we conclude that instability arises in decision trees
when many models explain a given dataset similarly. The next question is why there
are many such models in F . We claim that many such models exist when F is not
convex and the true model is not located inside F . Figure 2 describes this situation.
The shaded area in the figure is F , and the distances of f1, f2, and f3 from f ∗ are
all equal. Suppose the data are given as f ∗ + ε, where ε is noise. Then the optimal
model from the data (i.e., the model closest to f ∗ + ε) depends entirely on ε, and
thus instability emerges.

In what follows, the geometry depicted in Fig. 2 is always assumed. That is,
the class of models F is a nonconvex set and the true model is not in F . More
importantly, the geometry in Fig. 2 assumes that the true model is located inside the
convex hull of F . That is, f ∗ can be represented by

f ∗ =
∞∑

i=1

wi fi/

∞∑

i=1

wi

for some sequences of models f1, f2, . . . in F and weights w1, w2, . . . . Suppose
that F is a subset of Hilbert space equipped with the inner product <,>. Then, an
assumption equivalent to the geometry in Fig. 2 is:

A1. f ∗ is located inside the convex hull of F ;
A2. for any g in the convex hull of F , F (g) is a nonempty set where

F (g) = { f :< g − f ∗, f − f ∗ >= 0, f ∈ F };
A3. there exists a positive constant ρ such that inf ‖ f ‖ < ρ on f ∈ F (g) and for

all g, where ‖ f ‖2 =< f, f >.
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A1 is the fundamental assumption. A2 means that the shaded area in Fig. 2 (i.e., F )
encompasses f ∗ completely. A3 implies that the distance from f ∗ to F at any angle
is bounded by ρ. In Sect. 3, we develop an algorithm that constructs a sequence of
convex combinations of models in F that converges to f ∗ under the assumptions
A1, A2, and A3.

Let f̂ = argmin f ∈F ‖ f −( f ∗+ε)‖. For a given F to satisfy the assumed geometry
in Fig. 2, f̂ should have a small bias (and hence a large variance) since the average
of f1, f2, and f3 is exactly the same as f ∗. One such class of models is the set of
unpruned decision trees, which is used in the empirical study in Sect. 6.

Hereafter a model in F is called a “base learner” and any convex combination
of finite base learners is called an “ensemble model”.

3. CHEM in Hilbert Space

In this section, we explain how CHEM constructs a sequence of ensemble models
in Hilbert space under the assumed geometry shown in Fig. 2. Suppose the m-th
ensemble model Hm is given. Then CHEM updates the ensemble model Hm to Hm+1
as follows. First, CHEM finds the model fm+1 in F where

fm+1 = argmin f ∈F m
‖ f − f ∗‖

and F m = { f ∈ F : f − f ∗ ⊥ f − Hm}. That is, fm+1 is the closest model to f ∗
satisfying f − f ∗ ⊥ f − Hm . After constructing fm+1, CHEM updates the ensemble
model by

Hm+1 = um Hm + wm+1 fm+1

um + wm+1
,

where um and wm+1 are chosen so that ‖Hm+1 − f ∗‖ is minimized.
The step-by-step description of CHEM is as follows. We construct the first base

learner f1 by

f1 = argmin f ∈F ‖ f − f ∗‖,
and we let H1 = f1. This procedure is depicted in Fig. 3. There, d1 = ‖ f1 − f ∗‖.
The second base learner is the closest one to f ∗ satisfying f2 − f ∗ ⊥ H1 − f ∗.
Then, the second ensemble model H2 is given by

H2 = u1 H1 + w2 f2

u1 + w2
,

choosing u1 and w2 to minimize the distance between H2 and f ∗. Simple algebra
yields u1 = 1/d1

1 and w2 = 1/d2
2, where d2 = ‖ f2 − f ∗‖. Hence H2 becomes

H2 = w1 f1 + w2 f2

w1 + w2
,

where wi = 1/d2
i for i = 1, 2. This procedure is summarized in Fig. 4.

The third base learner is constructed similarly, and direct calculation shows that
the third ensemble model H3 is given by
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Fig. 3. Construction of the first ensemble model.

Fig. 4. Construction of the second ensemble model.

H3 = w1 f1 + w2 f2 + w3 f3

w1 + w2 + w3
,

where wi = 1/d2
i for i = 1, 2, 3. This step is described in Fig. 5.

In this way, we can keep constructing base learners f4, f5, . . . and ensemble
models H4, H5, . . . by

Hm =
∑m

i=1 wi fi∑m
i=1 wi

,

where wi = 1/d2
i and di = ‖ fi − f ∗‖.

The following theorem proves that the sequence of the ensemble models Hm
constructed by CHEM in Hilbert space converges to f ∗ under the assumed geometry.
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Fig. 5. Construction of the third ensemble model.

Fig. 6. Construction of the sequence of ensemble models.

Theorem 3.1. Under the assumptions A1, A2, and A3,

‖Hm − f ∗‖ → 0

as m → ∞.

Proof. Suppose that lim infm ‖Hm − f ∗‖ > ε > 0. For a given Hm, by the definition
of fm we have ‖ fm+1 − f ∗‖ ≤ ‖ f − f ∗‖ for all f ∈ F (Hm). Hence we have

‖Hm+1 − f ∗‖ ≤ inf
0≤α≤1

‖αHm + (1 − α) f − f ∗‖. (1)

Since ‖Hm+1 − f ∗‖ ≤ ‖Hm − f ∗‖, lim infm ‖Hm − f ∗‖ > ε is equivalent to ‖Hm −
f ∗‖ > ε for all m. With ‖ f − f ∗‖ ≤ ‖ f ‖ + ‖ f ‖∗ ≤ ρ + ‖ f ∗‖, simple calculations
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yield

inf
0≤α≤1

‖αHm + (1 − α) f − f ∗‖ =‖Hm − f ∗‖
√

‖ f − f ∗‖2

‖Hm − f ∗‖2 + ‖ f − f ∗‖2

≤‖Hm − f ∗‖
√

(ρ + ‖ f ∗‖)2

ε2 + (ρ + ‖ f ∗‖)2
. (2)

Hence combining (1) and (2), we have

‖Hm+1 − f ∗‖ ≤ τ‖Hm − f ∗‖,
where

τ =
√

(ρ + ‖ f ∗‖)2

ε2 + (ρ + ‖ f ∗‖)2
.

Since τ < 1, we have ‖Hm − f ∗‖ ≤ τn‖H1 − f ∗‖ → 0, which contradicts the
assumption lim infm ‖Hm − f ∗‖ > ε > 0, and the proof is done. �

4. CHEM for Regression

In this section, we present the CHEM algorithm for regression. Recall that the train-
ing dataset consists of n I/O pairs {(x1, y1), . . . , (xn, yn)}, which is a random sam-
ple of (X, Y ) distributed according to an unknown joint distribution P(x, y). Here
X ∈ Rp and Y ∈ R. We assume that

Y = f ∗(X) + ε,

where E(ε) = 0 and Var(ε) = σ2 > 0. For regression problems, the objective of
CHEM is to estimate f ∗ based on the sample {(x1, y1), . . . , (xn, yn)}.

To apply CHEM in Hilbert space to regression problems, we need two devices:
(i) to measure the distance of a given base learner to the true model (i.e., ‖ f − f ∗‖
for a given f ∈ F ) and (ii) to construct fn+1 for a given Hn. For (i), for the square
error loss function l(y, a) = (y − a)2, define the deviance of base learner f by

d( f ) =
n∑

i=1

l(yi, f(xi))/n.

Then we use d( f ) as a measure of ‖ f − f ∗‖2 on L2(P) – the Hilbert space whose
inner product is defined by < f, g >= ∫

f(x)g(x)P(dx). This is a reasonable choice
because d( f ) converges to ‖ f − f ∗‖2 + σ2 under regularity conditions and σ2 is
smaller than ‖ f − f ∗‖2 for unstable base learners.

For (ii), we construct the model φ based on the residuals of Hn and project the
data onto the direction φ. That is, we set

fn+1 = argmin f ∈F n
d( f ),

where F n = {ηφ : η ∈ R}. Since the data are considered an approximation of f ∗,
we have approximately < fn+1 − f ∗, Hm − f ∗ >= 0. That is, we first find the
appropriate direction φ and construct the optimal model for that direction.

Using these two devices, we propose the following CHEM algorithm for regres-
sion problems. Recall that F is a set of base learners.
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Algorithm 1. CHEM algorithm for the regression model.

1. Initialization: Set zi = yi for i = 1, . . . , n.
2. Repeat m = 1, . . . , M

(a) Fit a regression model φ in F with output variables zi and input variables xi .
(b) Calculate the correction factor η by

η = argminδd(δφ).

(c) Set fm(x) = ηφ(x).
(d) Update the ensemble model

Hm(x) =
∑m

i=1 wi fi(x)∑m
i=1 wi

,

where wi = 1/d( fi).
(e) Update the new response zi = yi − Hm(xi).

3. For a given new data with input x, predict the output as HM(x).

5. CHEM for Classification

First, we consider a two-class problem (i.e., Y ∈ {−1, 1}). We assume the symmetric
logistic model

Pr(Y = 1|X = x) = exp( f(x))

exp(− f(x)) + exp( f(x))

and embed the classification problem into the function estimation problem (i.e., es-
timation of f ). With this setup, the CHEM algorithm for regression given in Sect. 4
will be modified. First, we use the negative log-likelihood of the binomial distri-
bution as a loss function instead of the squared error loss. Then, the deviance of
a function f is

d( f ) =
n∑

i=1

log(1 + exp(−2yi f(xi)))/n.

Second, for residuals for the given ensemble model Hm, we use the Pearson residual
defined by

ri = y∗
i − Pm(xi)√

Pm(xi)(1 − Pm(xi))
,

where y∗
i = 2yi −1, Pm(x) = exp(Hm(x))/(exp(−Hm(x))+exp(Hm(x))), and Hm(x)

is the m-th ensemble model. However, we do not use the residuals {ri} as a response
variable. Instead, we use |ri | as a weight for the i-th observation and construct φ
on a weighted bootstrap sample of the original sample {(x1, y1), . . . , (xn, yn)} with
weights {|r1|, . . . , |rn |}. In summary, the algorithm of CHEM for the two-class prob-
lem is given below.
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Algorithm 2. CHEM algorithm for two-class classification problem.

1. Initialization: let the weights vi = 1/n for i = 1, . . . , n.
2. Repeat m = 1, . . . , M

(a) Make a bootstrap sample LB with weights {vi}.
(b) Estimate p(x) = P̂(Y = 1|X = x) using LB with a given class of base

learners.
(c) Let φ(x) = 1

2 log(p(x)/(1 − p(x))).
(d) Calculate the correction factor η by

η = argminδd(δφ).

(e) Let fm(x) = η fm(x).
(f) Update the ensemble model Hm(x) = ∑m

i=1 wi fi(x)/
∑m

i=1 wi , where wi =
1/d( fi).

(g) Update the weights {vi} by

vi =
∣∣∣∣

y∗
i − Pm(xi)√

Pm(xi)(1 − Pm(xi))

∣∣∣∣ ,

where Pm(x) = exp(Hm(x))/(exp(−Hm(x)) + exp(Hm(x))).
3. For a new input x, assign it to class 1 if HM(x) > 0 and to class −1 otherwise.

For multiclass problems (i.e., Y ∈ {1, . . . , J}, J > 2), we assume the symmetric
logistic model:

Pr(Y = k|X = x) = exp( fk(x))
∑J

j=1 exp( f j(x))
.

To extend the CHEM algorithm for two-class problems to multiclass problems, we
mimic the algorithm of the multiclass LogitBoost (Friedman et al. 2000). Consider
J many two-class classification problems. The j-th base learner f j(x) is constructed
from the j-th two-class problems in which new response variables {y∗

ij = I(yi = j),
i = 1, . . . , n} are used. Then, f j ’s are centered by

f j(x) = f j(x) −
J∑

k=1

fk(x)/J. (3)

Then the correction factor η is obtained by using the negative log-likelihood of the
multinomial distribution as a loss function, and f = ( f1, . . . , f J ) is updated accord-
ingly. In this setup, the deviance of f is given by

d( f ) = −
n∑

i=1

[
fyi (xi) − log

(
J∑

k=1

exp( fk(xi))

)]
.

To summarize, we obtained the following CHEM algorithm for multiclass problems.
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Algorithm 3. CHEM algorithm for J class classification problem.

1. Initialization
(a) Set weights {vij} by vij = 1/n for i = 1, . . . , n and j = 1, . . . , J .
(b) Set y∗

ij = I(yi = j) for i = 1, . . . , n and j = 1, . . . , J .
2. Repeat m = 1, . . . , M

(a) Repeat j = 1, . . . , J
i. Make a bootstrap sample LB

j from {(y∗
1 j, x1), . . . , (y∗

n j , xn)} with weights
{v1 j , . . . , vn j}.

ii. Estimate p j(x) = P̂(Y∗
j = 1|X = x) using LB

j with a given class of base
learners.

iii. Set φ j(x) = 1
2 log(p j(x)/(1 − p j(x))).

(b) Set φ j(x) = φ j(x) − ∑J
k=1 φk(x)/J for j = 1, . . . , J .

(c) Calculate the correction factor η by

η = argminδd(δφ),

where φ = (φ1, . . . , φJ).
(d) Let f

m
(x) = ηφ(x).

(e) Update the ensemble model Hm(x) = ∑m
i=1 wi f

i
(x)/

∑m
i=1 wi , where wi =

1/d( f
i
).

(f) For j = 1, . . . , J, update the weights {vij} by

vij =
∣∣∣∣∣

y∗
ij − Pm j(xi)√

Pm j(xi)(1 − Pm j(xi))

∣∣∣∣∣ ,

where Pm j(x) = exp(Hm j(x))/(
∑J

k=1 exp(Hmk(x))).
3. Assign a new datum with input variable x to class argmax j HM j(x).

Remark. Friedman et al. (2000) proposed using

f j(x) = J − 1

J

(
f j(x) −

J∑

k=1

fk(x)/J

)
(4)

instead of (3). The only difference between (3) and (4) is the constant term
(J − 1)/J . In CHEM, this constant term is replaced by the correction factor η.

6. Empirical Studies

In this section, we present empirical results for comparing various aspects of CHEM
with boosting and bagging. We focus mainly on classification problems and consider
regression problems briefly in the last subsection.
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Table 1. Datasets used for classification. CV = cross validation.

ID Dataset Training Test Class

1 Breast cancer 699 CV 2
2 Pime-Indian-Diabetes 768 CV 2
3 German 1000 CV 2
4 Glass 214 CV 7
5 House-vote-84 435 CV 2
6 Image 210 2100 7
7 Ionosphere 351 CV 2
8 kr-vs-kp 3196 CV 2
9 Letter 16000 4000 26
10 Satimage 4435 2000 6
11 Sonar 210 CV 2
12 Vehicle 846 CV 2
13 Vowel 528 462 11
14 Waveform 300 5000 3

6.1. Setup for Classification

For base learners, CHEM and bagging use unpruned trees (the largest of the trees
whose terminal ] nodes have no less than five instances), while boosting uses best-
first trees (Friedman et al. 2000) with eight terminal nodes. For the final ensemble
model, 50 base learners are combined in bagging and 500 base learners are combined
in CHEM and boosting. We analyzed 14 benchmark datasets from the UC-Irvine
machine learning archive. Table 1 summarizes the characteristics of the datasets.
For datasets without test samples, the generalization errors (test set misclassification
errors) are calculated using ten repetitions of ten-fold cross validation.

6.2. Generalization Error

Table 2 presents the generalization errors. The generalization errors of CHEM com-
pare favorably with those of boosting. For exactly half of the datasets (7 out of 14
datasets), CHEM has lower generalization errors than boosting, and vice versa. In
comparison with bagging, CHEM has lower generalization errors in most cases (10
out of 14 datasets). These results are summarized in Fig. 7, which compares the
improvement rates of CHEM and boosting over bagging. The improvement rate of
CHEM over bagging (x-axis) is defined by the difference of generalization errors of
bagging and CHEM divided by the generalization error of bagging. The improve-
ment rate of boosting over bagging (y-axis) is defined similarly. Most of the datasets
locate in the first and third quadrants, which means that CHEM and boosting either
improve or are poorer than the performance of bagging simultaneously. However,
note that most of the datasets in the third quadrant locate under the 45◦ line, which
implies that when the prediction accuracy of CHEM and boosting is inferior to that
of bagging, boosting loses more accuracy than CHEM does. That is, the performance
of CHEM is more stable than boosting.

6.3. Robustness to Output Noise

Another important advantage of CHEM over boosting is that CHEM is much more
robust to output noise than boosting. To see this, the class labels of a random 10%
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Table 2. Generalization errors.

Dataset ID CHEM Boosting Bagging

1 0.0333 0.0310 0.0315
2 0.2411 0.2764 0.2358
3 0.2299 0.2650 0.2361
4 0.2238 0.2104 0.2386
5 0.0572 0.0649 0.0469
6 0.0671 0.0881 0.0667
7 0.0665 0.0662 0.0782
8 0.0036 0.0050 0.0123
9 0.0485 0.0290 0.0975

10 0.0880 0.0885 0.1075
11 0.1515 0.1195 0.1798
12 0.2420 0.2194 0.2540
13 0.4372 0.4805 0.5562
14 0.1664 0.1592 0.1866
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Fig. 7. Improvement rates (IR) of CHEM and boosting over bagging. The numbers plotted are the ID numbers
of the datasets in Table 1.

of the training samples were changed at random and the three ensemble methods
compared. Table 3 presents the generalization errors and increases in error rates due
to noise (%). In most cases, increases in error rates of boosting due to noise are
much larger than those of CHEM while bagging is least affected by noise. Many re-
searchers have noted the vulnerability of boosting to output noise, including Breiman
(2001) and Rätsch et al. (2001). They explain that the main source of this vulner-
ability to output noise is the way in which boosting updates the weights. Boosting
keeps increasing the weights on most frequently misclassified observations, and in-
stances having incorrect class labels tend to persist in being misclassified. Hence
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Table 3. Generalization errors with 10% output noise (increases in error rates).

Dataset ID CHEM Boosting Bagging

1 0.0438 (31.53) 0.0945 (204.83) 0.0373 (18.41)
2 0.2570 (6.59) 0.3135 (13.42) 0.2470 (4.74)
3 0.2452 ( 6.65) 0.3098 (16.90) 0.2479 (4.99)
4 0.2566 (14.65) 0.2542 (20.81) 0.2586 (8.38)
5 0.0615 ( 7.51) 0.1236 (90.44) 0.0458 (−2.34)
6 0.0776 (15.64) 0.0900 (2.15) 0.0790 (18.44)
7 0.0808 (21.50) 0.1034 (56.19) 0.0777 (−0.63)
8 0.0313 (769.44) 0.0808 (1516.00) 0.0084 (−31.70)
9 0.0830 (71.13) 0.1057 (264.48) 0.0947 (−2.87)

10 0.0960 (9.09) 0.1065 (20.33) 0.1110 (3.25)
11 0.1820 (20.13) 0.1650 (38.07) 0.1851 (2.94)
12 0.2432 (0.49) 0.2338 ( 6.56) 0.2598 (2.28)
13 0.4956 (13.35) 0.5303 (10.36) 0.5346 (−3.88)
14 0.1598 (−3.96) 0.1650 (3.64) 0.1956 (4.82)

boosting concentrates the weights mistakenly on these noisy instances. In contrast,
the weights of CHEM (|ri| in Algorithm 2) are not dominated by a few larger ones.
This is partly because the weights are adjusted by using the normalized ensemble
model (i.e.,

∑m
i=1 wi fi(x)/

∑m
i=1 wi in (f) of Algorithm 2). This is explained further

in Sect. 7.

6.4. Overfitting

In the late 1990s, it was found that one interesting property of boosting was that it
seldom overfits the data, no matter how many base learners are combined. In particu-
lar, the generalization error keeps decreasing even after the training error reaches 0.
Schapire et al. (1998) explained this phenomenon using the margin. They provided
the upper bound of the generalization error, which is proportional to the margin.
Then they showed that boosting keeps increasing the margin as more base learners
are combined even after the training error becomes 0.

In recent studies (Quinlan 1996; Ridgeway 2000; Rätsch et al. 2001; Jiang 2002),
however, much empirical evidence that contradicts the resistance of boosting to ov-
efitting is reported. In particular, Ridgeway (2000) provides a simple synthetic ex-
ample that demonstrates that it is possible for boosting to result in serious overfitting
when the decision trees used as base learners are too large. Rätsch et al. (2001) ar-
gue that overfitting in boosting arises when outliers exist, and they propose various
regularized boosting algorithms resistant to outliers and hence to overfitting.

In contrast to boosting, CHEM never overfits the data. To see this, we first
repeated the experiment of Ridgeway (2000). Generate n = 1000 observations as
x ∼ N(0, 1), F(x) = −x2/2 + 1, and y|x ∼ Bernoulli(p(x)), where

p(x) = exp(2F(x))

1 + exp(2F(x))
.

The ensemble models of CHEM and boosting are constructed in this simulated
dataset, and the generalization errors are calculated with an additional 10,000 gen-
erated samples. The results are given in Fig. 8. Boosting results in very serious
overfitting. The generalization error keeps growing as more base learners are added.
Conversely, the generalization error of CHEM does not appear unusual.
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Fig. 8. Generalization errors for Ridgeway’s example. The bold line is for boosting and the dotted line is for
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Fig. 9. Examples of overfitting of boosting: the bold line is for boosting and the dotted line is for CHEM.

In the empirical studies, overfitting of boosting is observed in the two datasets
“Pima-Indian-Diabetes” and “House-vote-84”, which are presented in Fig. 9. Note
that overfitting never happens in CHEM.

6.5. Regression Problems

This section presents the empirical results for regression problems. Two datasets from
the UC-Irvine machine learning archive and three synthetic datasets were analyzed.
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Table 4. Summary of datasets used for regression problems. CV = cross validation.

Dataset Training Test Inputs

Boston Housing 506 CV 12
Servo 330 CV 8

Friedman 1 200 2000 10
Friedman 2 200 2000 4
Friedman 3 200 2000 4

Table 5. Mean-squared test set errors for the regression problems.

Dataset CHEM Gradient boosting Bagging

Boston housing 6.1553 5.6529 7.5654
Servo 0.1801 0.1978 0.3788

Friedman 1 5.9930 4.3621 6.7511
Friedman 2 549.5285 546.3978 467.0340
Friedman 3 0.0414 0.0401 0.0411

Detailed descriptions of the three synthetic datasets can be found in Friedman (1991).
Table 4 summarizes the characteristics of the datasets.

Three ensemble methods are compared: CHEM, gradient boosting (Friedman
2001), and bagging. For gradient boosting, the squared error loss is used and the
regularization procedure through shrinkage with the shrinkage parameter 0.1 is ap-
plied. As in the classification problems, decision trees with eight terminal nodes are
used as base learners in gradient boosting and unpruned tress are used in CHEM and
bagging. Also, the generalization errors (test sample mean squared errors) are cal-
culated using the averages of ten repetitions of tenfold cross validation errors when
test samples are not available.

Table 5 presents the generalization errors. The performance of the three ensemble
methods for the regression problems is data dependent. For the two real datasets and
Friedman 1, both CHEM and gradient boosting improve on bagging while bagging
beats the other two ensemble methods significantly for Friedman 2. Note that the
regularization procedure through shrinkage is used in gradient boosting. The per-
formance of CHEM may be improved further by similar regularization.

7. Discussion

In this paper, we proposed a new ensemble algorithm called CHEM. CHEM has sev-
eral advantages over bagging and boosting. It has a prediction accuracy similar to that
of boosting and at the same time is as robust to output noise as bagging. Moreover,
it never overfits and has lower generalization errors for regression problems, too.

In CHEM, unpruned decision trees are used as base learners. The performance
of CHEM with smaller trees tends to deteriorate. This phenomenon can be partially
explained as follows. CHEM constructs a sequence of ensemble models that con-
verges to the true model inside the convex hull of the set of base learners. Hence
the size of the convex hull of the set of base learners is an important ingredient in
the success of CHEM, and the convex hull of the set of unpruned decision trees is
the largest.

A comparison of the algorithms of CHEM and boosting gives interesting insights.
The boosting algorithm (Real Adaboost, Schapire and Singer 1999) is given in Al-
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gorithm 4. Boosting is similar to CHEM in the sense that it constructs a base learner
based on residuals. In fact,

wi = wi exp(−yi fm(xi))

= exp

(
−yi

m∑

k=1

fk(xi)

)

=
∣∣∣∣

y∗
i − Pm(xi)√

Pm(xi)(1 − Pm(xi))

∣∣∣∣ ,

where Pm(x) = exp(Hm(x))/(exp(−Hm(x))+ exp(Hm(x)) and Hm(x) = ∑m
k=1 fk(x).

However, there is a fundamental difference between CHEM and boosting. CHEM
uses the normalized ensemble model (i.e., Hm(x) = ∑m

k=1 wk fk(x)/
∑m

k=1 wk) to
obtain the residuals, while boosting uses the unnormalized ensemble model (i.e.,
Hm(x) = ∑m

k=1 fk(x)). This seemingly minor difference results in qualitative dif-
ferences in their performance. First, the ensemble model Hm in CHEM is a good
estimator of the probability, while that in boosting is not. Figure 10 compares the
deviances of CHEM and boosting based on the negative binomial log-likelihood loss
for two arbitrarily chosen datasets. The results with the other datasets are similar. The
results presented in Fig. 10 show that the ensemble models in CHEM becomes sta-
bilized as more base learners are combined while the values of the ensemble models
in boosting keep growing their values and consequently give more and more masses
on extreme data points as more base learners are combined. This partially explains
why CHEM is resistant to output noise and boosting is not.

Algorithm 4. Real boosting.

1. Start with weights wi = 1/n, i = 1, . . . , n.
2. Repeat for m = 1, . . . , M

(a) Fit the classifier to obtain a class probability estimate pm(x) = P̂w(y = 1|x)
using weights wi on the training data.

(b) Set fm(x) = 1
2 log pm(x)/(1 − pm(x)).

(c) Update wi = wi exp(−yi fm(xi)), i = 1, . . . , n and renormalize so that∑
i wi = 1.

3. Output the classifier sign(
∑M

m=1 fm(x)).

The role of base learners in CHEM and boosting differs. To explain the role of
base learners in boosting, Friedman et al. (2000) proposed that the complexity of
base learners determines the level of the dominant interaction in the final ensemble
model. They argued that boosting is an additive model, and only the final ensemble
model has the meaning of approximating the decision boundary and indicates that the
complexity of base learners controls the level of dominant interactions. Hence if the
base learners are too complicated, overfitting may result. The role of base learners
in CHEM is different. In CHEM, each base learner is the best model (minimizing
the deviance) for a given direction (based on residuals). This means that base learn-
ers in CHEM are not merely weak learners as in boosting but are strong learners
from various directions. Hence each base learner has useful information about the
data from a different angle, and we can use this information to understand the final
decision. In this paper, we used unpruned decision trees. A better approach might
be to let the tree size of the base learners vary.
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Fig. 10. Deviances in boostring and CHEM: the bold line is for boosting and the dotted line is for CHEM.
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