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Abstract. Collaborative filtering (CF) employing a consumer preference database to
make personal product recommendations is achieving widespread success in E-commerce.
However, it does not scale well to the ever-growing number of consumers. The quality
of the recommendation also needs to be improved in order to gain more trust from
consumers. This paper attempts to improve the accuracy and efficiency of collaborative
filtering. We present a unified information-theoretic approach to measure the relevance of
features and instances. Feature weighting and instance selection methods are proposed for
collaborative filtering. The proposed methods are evaluated on the well-known EachMovie
data set and the experimental results demonstrate a significant improvement in accuracy
and efficiency.
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1. Introduction

The tremendous growth of information gathered in E-commerce has motivated
the use of information filtering and personalization technology. A major problem
consumers face is how to find the desired product from the millions of products
available. It is crucial for the vendor to find the consumer’s preferences for
products. Collaborative filtering (CF)-based recommender systems have emerged
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in response to these problems (Resnick et al., 1994; Shardanand and Maes, 1995;
Billsus and Pazzani, 1998; Breese et al., 1998).
CF-based recommender systems accumulate a database of consumer

preferences, and use it to predict a particular consumer’s preference for target
products like music CDs, books, web pages, and movies. The consumer’s
preference can be recorded through either explicit votes or implicit usage/purchase
history. Collaborative filtering can help E-commerce in converting web surfers
into buyers by personalization of the web interface. It can also improve cross-sales
by suggesting other products in which the consumer might be interested. In a
world where an E-commerce site’s competitors are only one or two clicks away,
gaining consumer loyalty is an essential business strategy. Collaborative filtering
can improve loyalty by creating a value-added relationship between supplier and
consumer.
Collaborative filtering has been very successful in both research and practice.

However, important research issues remain to be addressed in order to overcome
two fundamental challenges in collaborative filtering (Sarwar, 2000).
(1) Scalability: existing collaborative filtering algorithms can deal with thousands
of consumers in a reasonable amount of time, but modern E-commerce systems
need to handle millions of consumers efficiently; (2) accuracy: consumers need
recommendations they can trust to help them find products they will like. If a
consumer trusts a recommender system, purchases a product, but finds he or she
does not like the product, the consumer will be unlikely to use the recommender
system again.
This paper addresses these two challenges from a novel perspective by studying

the problems of feature relevance and instance relevance in a unified information-
theoretic framework. In order to improve the accuracy and scalability, a feature
relevance measure and an instance relevance measure are applied to weight the
features and select relevant instances. Empirical analysis shows that the proposed
method is successful.
In Section 2, we briefly review related work in collaborative filtering and

instance-based learning (IBL). In Sections 3 and 4, we study feature relevance
and instance relevance respectively. Feature weighting and instance selection are
integrated in a unified framework to improve the performance of collaborative
filtering in Section 5. Section 6 reports an empirical evaluation of the proposed
method. The paper ends with a summary and a discussion of some interesting
future work.

2. Related Work

In this section, we review related work in collaborative filtering. We focus on
instance-based collaborative filtering algorithms which belong to a class of
instance-based learning algorithms (IBL). Therefore, we also give some
background on IBL including the use of feature weighting, instance weighting
and instance selection to improve the performance of IBL.

2.1. Collaborative Filtering

The task in collaborative filtering is to predict the preference of an active consumer
for a given product based on a consumer preference database, which is normally
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represented as a consumer–product matrix with each entry vu,i indicating the
vote of consumer u for product i. There are two general classes of collaborative
filtering algorithms: instance-based methods and model-based methods.
The instance-based algorithm (Resnick et al., 1994; Shardanand and Maes,

1995) is the most popular prediction technique in collaborative filtering
applications. The basic idea is to compute the active consumer’s rating of a
product as a similarity-weighted average of the ratings given to that product by
other consumers. Specifically, the prediction Pa,i of active consumer a’s ratings of
product i is given by:

Pa,i = va + k
∑

b∈ neighborhood(a,Ti)

r(a, b)(vb,i − v̄b) (1)

whereTi, the training set for product i, includes all the consumers who have rated
product i, and neighborhood(a,Ti) returns all the neighbors of active consumer
a in Ti, where neighbors can be defined as all the consumers in Ti (Breese et
al., 1998), or the results of k-nearest neighbor query (Herlocker et al., 1999) or
range query Shardanand and Maes (1995). v̄a is the mean vote for consumer a,
vb,i is consumer b’s rating of i, r(a, b) is the similarity measure between consumer
a and b, and k is a normalizing factor such that the absolute values of the weights
sum to unity. The Pearson correlation coefficient is the most popular similarity
measure, which is defined as (Resnick et al., 1994):

r(a, b) =

∑
j∈overlap(a,b)

(va,j − v̄a)(vb,j − v̄b)√∑
j∈overlap(a,b)

(va,j − v̄a)2
∑

j∈overlap(a,b) (vb,j − v̄b)2
(2)

where overlap(a, b) indicates that the similarity between two consumers is
computed over the products which they both rated. Shardanand and Maes
(1995) claimed better performance by computing similarity using a constrained
Pearson correlation coefficient, where the consumer’s mean votes are replaced by
a constant, the midpoint of the rating scale.
Instance-based methods have the advantages of being able to rapidly

incorporate the most up-to-date information and provide relatively accurate
predictions (Breese et al., 1998), but they suffer from poor scalability for large
numbers of consumers. This is because the search for all similar consumers is
slow in large databases.
Model-based collaborative filtering, in contrast, uses the consumer preference

database to learn a model, which is then used for predications. The model
can be built off-line over several hours or days. The resulting model is very
small, very fast, and essentially as accurate as instance-based methods (Breese et
al., 1998). Model-based methods may prove practical for environments in which
consumer preferences change slowly with respect to the time needed to build
the model. Model-based methods, however, are not suitable for environments in
which consumer preference models must be updated rapidly or frequently.

2.2. Instance-Based Learning

IBL algorithms (Aha et al., 1991) compute a similarity (distance) between a new
instance and stored instances when generalizing. One of the most straightforward
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IBL algorithms is the nearest neighbor algorithm (Cover and Hart, 1967; Hart,
1968). During generalization, instance-based learning algorithms use a distance
function to determine how close a new instance is to each stored instance,
and use the nearest instance or instances to predict the target. Other instance-
based machine learning paradigms include instance-based reasoning (Stanfill and
Waltz, 1986), exemplar-based generalization (Saltzberg, 1991; Wettschereck et
al., 1995), and case-based reasoning (CBR) (Kolodner, 1993).
The prediction accuracy of many IBL algorithms is highly sensitive to

the definition of the distance function. Many feature weighting methods have
been proposed to reduce this sensitivity by parameterizing the distance function
with feature weights. Wettschereck et al. (1995) review and empirically compare
some feature weighting methods. Feature weighting and feature selection have
also received wide attention in the machine learning community (Blum and
Langley, 1997). In applications of vector similarity in information retrieval, word
frequencies are typically modified by the inverse document frequency (Saloton
and McGill, 1983). The idea is to reduce weights for commonly occurring words,
capturing the intuition that they are not useful in identifying the topic of a
document, while words that occur less frequently are more indicative of the
topic. Breese et al. (1998) applied an analogous transformation to votes in a
collaborative filtering database, which is termed inverse user frequency. The idea
is that universally liked products are not as useful in capturing similarity as less
common products. So inverse user frequency weight is defined as follows:

wj = log
n

nj
(3)

where nj is the number of consumers who have voted for product j, and n is the
total number of consumers in the database. Note that if everyone has voted on
product j, then the weight of j is zero.
The accuracy of IBL algorithms can be further improved by instance weighing.

The idea is to weight each instance based on its ability to reliably predict the
target of an unseen instance (Saltzberg, 1990, 1991). The weight of an instance
defines an area within the feature space. A reliable instance is assigned to a
bigger area. An unreliable instance represents either noise or an ‘exception’ –
thus, it will receive a smaller area. For the instance to be used in prediction,
the target instance must fall within its area. Anand et al. (1998) introduced
a generalization of exception spaces. The resulting exception spaces are called
Knowledge INtensive exception Spaces or KINS. KINS removes the restriction
on the geometric shape of exception spaces.
Since IBL algorithms search through all available instances to classify (or

predict) a new instance, it is also necessary to decide what instances to store
for generalization in order to reduce excessive storage and time complexity,
and to possibly even improve accuracy. Therefore instance selection has become
an important topic in IBL and data mining (Pradhan and Wu, 1999; Wilson
and Martinez, 2000; Liu and Motoda, 2001). Some algorithms seek to select
representative instances, which could be border points (Aha et al., 1991) or
central points (Zhang, 1992). The intuition behind retaining border points is that
internal points do not affect the decision boundaries as much as border points, and
thus can be removed. However, noisy points are prone to be judged as border
points and added to the training set. As for central points, selection should
be carefully done since the decision boundary lies halfway between two nearest
instances of different classes. Another class of algorithms attempts to remove noisy
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points before selecting representative instances (Wilson and Martinez, 2000). For
example, DROP3 uses a simple noise-filtering pass: any instance misclassified by
its k nearest neighbors is removed (Wilson and Martinez, 2000). For almost all the
algorithms mentioned above, classification has to be performed at least once in
each step of removing or adding an instance, so it has a rather high computational
complexity. Recently, Smyth and Mckenna (1999) proposed an instance selection
method for CBR. They introduce the concept of competence groups and show
that every case-base is organized into a unique set of competence groups, each
of which makes its own contribution to competence. They devise a number of
strategies to select a footprint set (a union of a highly competent subsets of cases in
each group). Patterson et al. (2002) presented a clustering-based instance selection
method for CBR. They use the k-means clustering algorithm to group cases based
on their degree of similarity. When a new case is presented, the closest cluster is
identified and the generalization is performed only on the selected cluster.
In IBL paradigm, the purpose of feature or instance weighting is to improve

the accuracy, while instance selection is used to reduce the storage and speed
up the generalization. We propose using feature weighting and instance selection
for collaborative filtering. Many studies have investigated feature weighting and
instance selection independently. However, these two topics seem closely related.
Blum and Langley (1997) pointed out that more studies need to be conducted
to increase the understanding of this relationship. Our work is unique in that we
study this relationship in a unified information-theoretic framework.

3. Feature Weighting Methods

Collaborative filtering is built on the assumption that a good way to predict the
preference of an active consumer for a target product is to find other consumers
who have similar preferences and use their votes for that product to make a
prediction. The similarity measure is based on preference patterns of consumers.
A consumer’s votes on the product set not including the target product can be
regarded as features of this consumer. The introduction of feature weighting
into collaborative filtering may improve the accuracy of prediction since it can
enhance the role of relevant products while reducing the impact of irrelevant
products. We define the feature-weighted constrained Pearson coefficient as:

(a, b) =

∑
j∈overlap(a,b)

W 2
i,j(va,j − v0)(vb,j − v0)√∑

j∈overlap(a,b)
W 2
i,j(va,j − v0)2

∑
j∈overlap(a,b)

W 2
i,j(vb,j − v0)2

(4)

where Wi,j represents the weight of product j with respect to the target product i,
and v0 is a constant representing the midpoint of votes. WhenWi,j = 1 equation (4)
is equal to the constrained Pearson coefficient. In this paper v0 is set at 3 since
analysis of the database used shows that it is the most frequent rating in the
6-point scale from 0 to 5.

3.1. Feature Relevance

The idea of instance-based CF is to predict the target (vote) based on the
knowledge of some other features (votes). So some kind of mutual correlation
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(a) (b)

Fig. 1. Distribution of consumer votes on two movies in Example 3.1.

between features and the target should be investigated. If the vote for the target
product i is found to be highly dependent on the vote for some product j, clearly
a larger weight should be assigned to j. For a better understanding, let us consider
the next example.

Example 3.1. As shown in Fig. 1, if 50 consumers give votes for movie i and
movie j, let us consider two different situations, case 1 and case 2. In case 1, we
find consumers are nearly uniformly distributed in the movie–movie vote space.
If A and B are two arbitrary consumers who have similar ratings for movie j, it
does not necessarily indicate that they also have similar ratings for movie i. In
case 2, however, we find that those consumers who dislike movie j always like
movie i, while those consumers who like movie j always rate the other one just
above average. This indicates that in case 2 movie j should play an important role
in inferring consumer preference for movie i, while in case 1 it is not so useful.

The dependence of product i on product j can be formally defined by the following
conditional probability:

p (|vA,i − vB,i| < e | |vA,j − vB,j | < e) (5)

where A and B represent two arbitrary consumers and e is a threshold. If the
difference between two votes is less than e, then the two votes are considered
close. The above conditional probability indicates the probability of two arbitrary
consumers having close preference for product i given the condition that the two
consumers have close preference for product j.
We develop an information-theoretic measure that is equivalent to the above

probabilistic dependence definition in the case of discrete voting. First we
introduce the concept of mutual information. In information theory, mutual
information represents a measure of statistical dependence between two random
variables X and Y with associated probability distributions p(x) and p(y)
respectively. Following Shannon theory (Shannon, 1948) the mutual information
between X and Y is defined as:

I(X;Y ) =
∑
x

∑
y

p(x, y) log

(
p(x, y)

p(x)p(y)

)
(6)

Furthermore, mutual information can be equivalently transformed into the
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following formulas:

I(X;Y ) = H(X)−H(X|Y )
= H(Y )−H(Y |X)
= H(X) +H(Y )−H(X,Y ) (7)

where H(X) is the entropy of X, H(X|Y ) is the conditional entropy of X given
Y and H(X,Y ) is the joint entropy of two random variables. The definition of
the conditional entropy, the joint entropy and the proof of the above equations
can be found in Deco and Obradovic (1996). The equations above indicate that
mutual information also represents a reduction of entropy (uncertainty) of one
variable given information about the other variable. In the following theorem, we
will show that when the voting scale is discrete, mutual information is equivalent
to the probabilistic definition of dependence.

Theorem 3.1. Let P (Vi), P (Vj), and P (Vi, Vj) be the margin and joint distributions
of votes for two products i, j, and e = 1 the interval of discrete vote value,
0, 1, . . . , N; assume that P (Vi) and P (Vj) are fixed, if A and B are two arbitrary
consumers who have voted for both products, then I(Vi;Vj) increases as
dependence increases, which means the differential of dependence defined by
equation (5) with respect to the mutual information I(Vi;Vj) is always positive.

d[p(|vA,i − vB,i| < e | |vA,j − vB,j | < e)]
d[I(Vi;Vj)]

> 0 (8)

Proof. (See Appendix) �

The above theorem shows that large mutual information between the votes for
two products reflects a high dependence between them. Therefore, the analysis
encourages us to apply mutual information in computing the weighted similarity
measure equation (4) between consumers, where the weight of product j with
respect to the target product i is given by the following:

Wi,j = I(Vi;Vj) (9)

If there is a total m products in the data set, the computation results in an m×m
matrix.

3.2. Estimation of Mutual Information

We use the following equation to estimate the mutual information between two
products:

I(Vi;Vj) = H(Vi) +H(Vj)−H(Vi, Vj) (10)

where

H(Vi) = −
N∑
k=0

p(vi = k) log2 p(vi = k)

H(Vj) = −
N∑
k=0

p(vj = k) log2 p(vj = k)

H(Vi;Vj) = −
N∑
k=0

N∑
l=0

p(vj = l, vi = k) log2 p(vj = l, vi = k)
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In the above equations, H(Vi, Vj) is the joint entropy between two products. k
and l are possible vote values (in our experiment, k, l = 0, 1, 2, 3, 4, 5). Since not
all the consumers have voted for the two products, in equation (10) the entropy
is calculated using the consumers who rated the corresponding product, while
the joint entropy is calculated using the consumers who rated both products.
The calculation involves probability estimation, which has been a crucial task
in machine learning (Cestnik, 1990). One important characteristic of consumer
preference databases is that they contain many missing values. A straightforward
approach to probability estimation might be unreliable. When observations of
a random event are limited, a Bayesian approach to estimate the unknown
probability is m-Estimation (Cestnik, 1990), which has proven effective and been
widely used in machine learning (Mitchell, 1997). Suppose that out of n examples
the event whose probability we are attempting to estimate occurs r times. Then
the m-Estimation is given by

p =
r + m · P
n+ m

(11)

Here P is our prior estimate of the probability that we wish to determine,
and m is a constant, which determines how heavily to weight P relative to the
observed data. When the number of observations n is very small, the estimated
probability will be close to the prior value. The best value for m can be determined
experimentally. However, if the product set is large, too many experiments are
required, making this method impractical. In this paper we used a very simplified
method, setting m =

√
n (Cussens, 1993). Therefore the probabilities are estimated

as follows:

p(vi = k) =
rki +

√
ni · P (v = k)
ni +

√
ni

(12)

p(vj = l) =
rlj +

√
nj · P (v = k)
nj +

√
nj

(13)

p(vj = l, vi = k) =
r
k,l
i,j +

√
ni,j · p(vi = k) · p(vj = l)
ni,j +

√
ni,j

(14)

where k, l = 0, 1, . . . , N. In equation (12), ni denotes the number of consumers
who rated product i, and rki the number of consumers who rated product i by
value k, while the a priori probability P (v = k) is derived from the whole data set
regardless of any specific product. In equation (14), ni,j denotes the number of

consumers who rated both product i and j, rk,li,j denotes the number of consumers
who rated product i by value k and meanwhile rated product j by value l. We
determine the a priori joint probability assuming that the probabilities of votes on
two products are independent. If the average number of overlapping consumers
between two products is n, and there is a total of m products in the training data
set, the computational complexity for calculating the mutual information between
all pairs of products is O(nm2).

4. Selecting Relevant Instances

The collaborative filtering algorithms first compute the correlation coefficient
between the active consumer a and all other consumers; then all consumers
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whose coefficient is greater than a certain threshold (which is set to 0 in our
work) are identified and the weighted average of their votes for the target
product is calculated. Obviously the computational complexity is linear to the
number of advisory consumers, who cast a vote for the predicted product (size
of Ti in equation (1)). One way to speed up recommendation determination is
to reduce the number of advisory consumers. This can be done through random
sampling or data focusing techniques (Ester et al., 1995); however, the use of
these methods includes the risk of sacrificing quality through information loss. In
response to this challenge, we propose a method for reducing the training data
set by selecting a highly relevant instance set Si ⊆ Ti, and rewriting equation (1)
as the following:

Pa,i = v̄a + k
∑

b∈neighborhood(a,Si)
r(a, b)(vb,i − v̄b) (15)

4.1. Relevance of Instances

In this section, we study the relevance of instances (or consumers) in an
information-theoretical framework and try to remove the irrelevant ones to
improve the quality and salability of collaborative filtering. Our basic idea is
that for an advisory consumer with his or her preference records, if the votes
on other products cannot provide enough information to support why he or she
cast the vote on the target product, then this consumer will not be useful in
aiding the learner to search the hypothesis space. In the rest of this section, we
suppose we are attempting to predict consumer votes on a target product i, and
hence the instance set Ti we consider only contains the consumers who have
voted on product i. Note that in collaborative filtering the target product to be
predicted can be any one in the data set. If a consumer u ∈ Ti, then u is called
an instance with respect to target product i, and his or her rating of the target
product is called the instance’s value, denoted by vu,i, while his or her ratings of
the rest of the voted product set Fu,i, denoted by du,i, are called the instance
description with respect to target product i, and Fu,i is called the instance feature
set with respect to target product i. A consumer preference database always has
a large proportion of missing values (e.g. up to 98% in the EachMovie data
set) and each consumer rated a unique list of products; therefore in the learning
task of collaborative filtering, different instances have different feature sets. In
the following, we introduce a measure of instance relevance, and interpret it from
Bayesian learning’s point of view.

Definition 4.1. (Rationality of instance) Given an instance u ∈ Ti represented by
its description du,i over its feature set Fu,i and a target value vu,i, the rationality
of instance u with respect to target product i, denoted by Ru,i, is the uncertainty
reduction of instance value vu,i given knowledge of description du,i, which can be
encoded into bits:

Ru,i = H(vi = vu,i)−H(vi = vu,i|vu,Fu,i
= du,i)

= − log2 p(vi = vu,i) + log2 p(vi = vu,i|vu,Fu,i
= du,i) (16)

A typical method for deciding a priori uncertainty H(vi = vu,i) is to assume
uniform priors; that is, if the instance value has N possible values we set H(vi =
vu,i) = −log21/N. If a large number of instances are given, then a statistical
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approach can be applied. For example, given a consumer with a score 4 for
the target movie i, we set the a priori uncertainty to be 1 bit if 50% of the
consumers who rated the movie give it a score of 4. Furthermore, if it is inferred
that the consumer has a probability of 75% to vote 4 for the target movie
after we know his or her votes on other movies – the instance description – then
according to equation (16) the consumer’s rationality with respect to movie i
is −log20.5 + log20.75 = 0.59 bit. From an intuitive perspective, the definition
of rationality measures the relation between an instance’s description and its
value. In the following paragraph, we interpret rationality from the perspective
of Bayesian learning and show how this relation will play an important role in
evaluating an instance’s relevance for learning.
In a Bayesian learning scenario for predicting consumer ratings of the target

product i, the learner considers some set of candidate hypotheses Hi and wants
to finding a maximum a posteriori (MAP) hypothesis hi ∈ Hi given the observed
instance set Ti:

hMAPi = argmax
hi∈Hi

p(hi | Ti) = argmax
hi∈Hi

p(Ti |hi )p(hi)
p(Ti)

(17)

Suppose hreali is the real function that the learner is looking for. The instance
selection problem can then be interpreted as finding an optimal subset of instances
Si ⊆ Ti to maximize the a posteriori probability of h

real
i :

Sopt
i = argmax

Si⊆Ti

p(hreali |Si )

= argmin
Si⊆Ti

H(Si | hreali )−H(Si) +H(h
real
i )

= argmax
Si⊆Ti

H(Si)−H(Si | hreali ) (18)

It is reasonable to assume that each instance is drawn independently and each
instance value is independent of its description when the hypothesis is absent;
this give us:

Sopt
i = argmax

Si⊆Ti

∑
u∈Si

H[(vu,i, vu,F(u,i))−H(vu,i, vu,F(u,i) | hreali )]

= argmax
Si⊆Ti

∑
u∈Si

[H(vu,i | vu,F(u,i))−H(vu,F(u,i))

−H(vu,i | hreali , vu,F(u,i)) +H(vu,F(u,i))]

= argmax
Si⊆Ti

∑
u∈Si

[H(vu,i)−H(vu,i | hreali , vu,F(u,i))] (19)

hreali is the underlying function which bridges the gap between the instance
description and the instance value, and thus can be dropped from the equations.
Then the instance rationality (in Definition 4.1) surprisingly is expressed as:

S
opt
i = argmax

Si⊆Ti

∑
u∈Si

[H(vu,i)−H(vu,i | vu,Fu,i
)] = argmax

Si∈Ti

∑
u∈Si

Ru,i (20)

The above equation clearly shows that the instance rationality plays an important
role in machine learning. Namely, an instance with higher rationality contributes
more to increasing the a posteriori probability of the real hypothesis, and
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accordingly decreases other hypotheses’ a posteriori probabilities, while an
instance with lower or even negative rationality contributes little to or even
reduces the a posteriori probability of the real hypothesis, and therefore is
identified as irrelevant or noisy instance. The calculation of the instance rationality
needs estimates the a posteriori probability of the instance value, since hreali is
unknown in practice. Theoretically any learning approach explicitly addressing
probabilities, such as naive Bayesian method (Mitchell, 1997) can be applied.
However, collaborative filtering is a special learning task, in which the target
product may be any in the product list. For example, in the EachMovie data set
there are 1628 movies to be predicted. Considering each vote has N = 6 possible
values, naive Bayesian method needs to calculate 1628 ∗ 1628 ∗ 6 ∗ 6 probabilities
and maintain them in the memory, which requires almost 380Mbytes if each
probability needs 4 bytes. Furthermore, it is required to run the leave-one-out
learning approach for each of the millions of entries in the data set. To avoid
excessive computation, we further introduce a weaker definition for the instance
rationality and greatly simplify its estimation. An important advantage of the new
definition is that it only involves the mutual information introduced in Section 3.1
and thus enables us to treat feature relevance and instance relevance in a unified
information-theoretic framework.

Definition 4.2. (General rationality of instance) Given an instance u ∈ Ti with
its feature (product) set Fu,i and the target product i, if entropy H(Vi) is a priori
uncertainty of the votes on the product i, then general rationality of instance u
with respect to target product i, denoted by R∗

u,i, is the uncertainty reduction of
Vi given knowledge of VFu,i

, which are the votes on feature set Fu,i. It can be
encoded into bits:

R∗
u,i = H(Vi)−H(Vi |VFu,i

) = I(Vi;VFu,i
) (21)

General rationality is derived from the rationality Definition 4.1 by removing the
specification of vote values. Note that the instance relevance in the new definition
only depends on which products the consumer rated, but has nothing to do with
the vote values. This point is useful in collaborative filtering since each consumer
rated a different set of products. R∗

u,i is a generalization of Ru,i. If R
∗
u,i is high

then Ru,i is very likely to be high. Therefore, general rationality can be viewed as
a rough approximation of the former one and also provides a quality measure
to the instance relevance. The following theorem shows that the computation of
general rationality can be greatly simplified under some assumptions.

Theorem 4.1. Given an instance u ∈ Ti with its feature (product) set Fu,i, if each
feature j ∈ Fu,i is independent of the other features whether given Vi or not, then
the following conclusion holds:

R∗
u,i =

∑
j∈F(u,i)

I(Vi;Vj) (22)

Proof. (See the Appendix.) �

Theorem 4.1 provides an easy way to calculate the general rationality of an
instance under some assumptions. A very interesting point is that Theorem 4.1
shows that instance relevance is intimately related to feature relevance. The
mutual information matrix in equation (9) for feature weighting can be used
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Fig. 2. An NN classifier biased by an irrelevant feature Y .

directly here. The assumption of feature independence given the instance value
(or label) has been widely adopted in many literatures, like naive Bayesian
classifier (Mitchell, 1997) and expectation maximum (EM) clustering (Witten
and Frank, 1999). It has been reported that the naive Bayesian classifier under
this assumption outperforms many other learning methods in many applications
(Domingos and Pazzani, 1996). However, the assumption that the features are
independent without being given the instance value seems to conflict with our
work on measuring the relevance between products. In our experiment, we found
that the mutual information between products is always close to zero, indicating
the relevance between products is rather weak.
Instance-based learning (IBL) methods always suffer from the effect of

irrelevant attributes, as does instance-based collaborative filtering. As shown
in Fig. 2, let us consider an example of nearest neighbor (NN) classifier, where
there are two independent attributes X and Y such that H(C|X) = 0 and
H(C|Y ) = H(C). If only X is applied for classification, the instances can be well
classified. But once X and Y are considered together the accuracy will degrade.
In both cases the general rationality R∗

1 and R
∗
2 are the same:

R∗
1 = I(C;X) = H(C), R

∗
2 = I(C;X,Y ) = I(C;X) + I(C;Y ) = H(C)

This example shows that we should consider other issues besides rationality.
Existence of irrelevant features might not decrease the rationality of an instance
but still might mislead the distance measure in IBL. Accordingly instance-based
collaborative filtering has a similar problem. Suppose two consumers with the
same rationality are given; we argue that the one with fewer voted products
should be preferred. The reasons are: (1) since each instance can be viewed as
a specific rule (Domingos, 1996), we should prefer the shorter one, following
Occam’s razor (Mitchell, 1997); (2) it is indicated in Theorem 4.1 that each
feature contributes a little to the rationality; therefore the instance with more
voted products is likely to have more irrelevant features. Here we applied a simple
heuristic to penalize the instances that have a complex description. The rationality
strength of an instance is defined as follows:

R
strength
u,i =

1

|Fu,i|
R∗
u,i (23)

where |Fu,i| is the number of features in Fu,i. R
strength
u,i can be interpreted as

the average feature relevance of instance u. In this sense it is interesting that a
relevant instance is one with many relevant features. Given a pool of instances
Ti, we will select a subset Si ⊆ Ti such that each instance u ∈ Si has a high
general rationality and a high rationality strength.
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5. Feature Weighting and Instance Selection for Collaborative
Filtering

5.1. Feature Relevance and Instance Relevance in an
Information-Theoretic Framework

Using Sections 3 and 4 as a basis, we can interpret feature relevance and instance
relevance in an information-theoretic framework. In particular, we investigate
four related issues: feature selection and weighting, as well as instance selection
and weighting. We also come to explain why we choose feature weighting and
instance selection for collaborative filtering. We still suppose we are attempting
to predict consumer votes on a target product i.

Feature relevance. As described in Section 3, the relevance of feature Vi (votes on
product j) with respect to Vi (votes on target product i) is the mutual information
between them:

Wi,j = I(Vi;Vj) (24)

As described in equation (4), the relevance measure can serve as a feature
weighting method and can be applied to feature selection. However, although a
preference data set has a long product list, each consumer normally rated a rather
small portion of it. For example, each consumer rated an average of about 30 of
the 1628 movies in the EachMovie data set. In such a situation further reducing
the feature number might lead to poor prediction quality. On the other hand, our
investigation on the EachMovie data set showed that there was not a dramatic
difference in feature relevance. This indicates that it is difficult to distinguish
relevant from irrelevant features and accuracy might decrease if feature selection
is performed. Therefore we chose feature weighting to improve the accuracy of
collaborative filtering.

Instance relevance. As described in Section 4, the relevance of instance (consumer)
u with respect to Vi is described by the general rationality and the rationality
strength. Both are in the form of mutual information:

R∗
u,i =

∑
j∈Fu,i

I(Vi;Vj) (25)

R
strength
u,i =

1

|Fu,i|
∑
j∈Fu,i

I(Vi;Vj) (26)

Similarly there are two possibilities: instance weighting and instance selection.
Instance weighting normally aims at improving the accuracy. In CF, the number of
consumers increases explosively while the number of products remains relatively
stable and is much lower than that of consumers. For instance, there are 72,916
consumers and 1623 movies in the EachMovie dataset. Therefore we argue that
it is more desirable to reduce the number of consumers to improve the scalability
and efficiency of collaborative filtering, while maintaining or improving upon a
certain level of accuracy.
Interestingly, feature relevance and instance relevance demonstrate a very close

relationship: an instance is relevant if its features are relevant. This conclusion is
useful in collaborative filtering since the data set is very sparse and each consumer
has a unique feature (product) set.
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5.2. Proposed Approach to Feature Weighting and Instance Selection in
Collaborative Filtering

According to Section 4, we should select consumers with enough general
rationality and pick out the consumers with a higher strength from those selected.
This approach is complex to apply in practice. Since most consumers in our
experiment give some tens of votes, roughly speaking, if a consumer’s general
rationality is low, he or she cannot be of a high rationality strength. Thus we
select consumers based only on the strength. As a result of instance selection,
in addition to the original consumer preference database, we maintain an index
table of selected consumers for every target product. During the prediction phase,
we use feature weighting and instance selection to improve the accuracy, efficiency
and scalability of collaborative filtering. In summary, our algorithm proceeds in
the following steps:

1. Based on the training database, estimate the mutual information between votes
on each pair of products and produce a matrix described by equation (9) or
(24).

2. For each target product i, sort all the consumers u ∈ Ti in descending order
with respect to rationality strength and select the top min(MIN SIZE,Ti × r)
consumers according to a sampling rate r, where MIN SIZE is set to 150
to avoid over-reduction. This results in an index table of the selected training
consumer set Si.

3. As described in equations (4) and (15), in the prediction phase we calculate the
weighted constrained Pearson correlation between query consumer a and every
selected consumer u ∈ Si, then search a’s neighbors whose similarity to a is
greater than zero. Finally a weighted average of the votes of similar consumers
is calculated.

If we have n consumers and m products in the original training data set, the
computational complexity of the training phase (step 1 and 2) is O(nm2) +
O(nm) + O(nlogn). With a sampling rate r, the speed-up factor of prediction is
expected to be 1/r.

6. Empirical Analysis

In this section, we report results of an experimental evaluation of our proposed
feature weighting and instance selection techniques for collaborative filtering.
We describe the data set used, the experimental methodology, as well as the
performance improvement compared with collaborative filtering without feature
weighting and instance selection.

6.1. The EachMovie Database

We ran experiments using the well-known EachMovie1 data set, which was
part of a research project at the Systems Research Center of Digital Equipment
Corporation. The database contains votes from 72,916 consumers on 1628 movies.

1 For more information see http://www.research.digital.com/SRC/EachMovie/.
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Consumer votes were recorded on a numeric six-point scale (we transfer it to
0, 1, 2, 3, 4, and 5). Although 72,916 consumers are available, we restrict our
analysis to 35,527 consumers who gave at least 20 ratings.2 Moreover, to speed up
our experiments, we randomly select 10,000 consumers from 35,527 consumers
and divide them into a training set (8000 consumers) and a test set (2000
consumers).

6.2. Metrics and Methodology

As applied in Breese et al. (1998), we also employ two protocols: All but One, and
Given K. In the first protocol, we randomly hide an existing vote for each test
consumer, and try to predict its value given all the other votes that the consumer
has given. The All but One experiments are indicative of what might be expected
of the algorithms under steady state usage where the database has accumulated
a fair amount of data about a particular consumer. In the second protocol, Given
K, we randomly select K votes from each test consumer as the observed votes,
and then attempt to predict the remaining votes. It allows us to determine the
performance when a consumer is new to a particular recommender system.
We use mean absolute error (MAE) and e-accuracy to evaluate the accuracy

of prediction. MAE is the average difference between the actual votes and the
predicted votes. This metric has been widely used in previous work (Resnick et
al., 1994; Shardanand and Maes, 1995; Breese et al., 1998; Herlocker et al., 1999).
e-accuracy is the percentage of tests whose absolute error is less than e. We
believe it provides more knowledge about the distribution of error. In particular,
when e is set to 0.5 the rounded value of the prediction exactly equals the
actual vote. In addition, Shardanand and Maes (1995) argue that CF accuracy
is most crucial when predicting extreme ratings (very high or very low) for
products. Intuitively, since the goal is to provide recommendations, high accuracy
on the high-rated and low-rated products is most preferred. Therefore we also
investigate the accuracy in predicting extreme votes (Extremes), where the actual
vote is 0, 1, 2, or 5. (Our study shows more than 50% of votes are 3 or 4.)
For efficiency measurement, we use the average prediction time per vote, which
should be linearly related to the size of the selected instance set. To get a reliable
efficiency measurement, each test was repeated 10 times and then the mean
calculated. We applied movie average and constrained Pearson for comparison.
In movie average, we use the mean vote received by the target movie i as our
prediction result. In constrained Pearson we set the mean vote to 3. The Pearson
correlation coefficient between the active consumer a and all the other consumers
in the instance set is calculated. All consumers whose coefficients are above 0
are then identified as neighbor consumers. Finally a weighted average of the
votes on movie i is computed. In addition, for our empirical study on feature
weighting and instance selection, we applied several other feature weighting and
instance selection methods for comparison, whose details are described in the
next subsections.

2 This is because we want to evaluate our methods for the protocol of Given K (see Section 6.2) with
k in the range of 10–20.
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Table 1. Performance of feature weighting methods.

Method All Extremes

(Feature weighting) MAE 0.5 Accu. 1.0 Accu. MAE 0.5 Accu. 1.0 Accu.

Movie average 1.10 27.1% 52.5% 1.59 6.51% 24.5%

All but One Con. Pearson 0.982 31.3% 58.4% 1.40 10.0% 31.6%
Inv. user freq. 0.994 31.3% 58.8% 1.41 9.93% 32.5%
Entropy 0.979 31.6% 58.9% 1.39 10.3% 32.6%
Mutual info. 0.938 34.1% 61.2% 1.30 12.8% 39.7%

Given 10 Con. Pearson 1.02 30.2% 56.0% 1.46 9.10% 28.1%
Inv. user freq. 1.03 29.6% 56.3% 1.47 7.96% 28.1%
Entropy 1.02 30.0% 56.3% 1.46 9.00% 28.6%
Mutual info. 1.01 30.8% 56.8% 1.43 9.93% 30.6%

Given 20 Con. Pearson 1.00 30.8% 57.7% 1.43 9.82% 30.8%
Inv. user freq. 1.02 30.1% 57.7% 1.44 9.41% 31.1%
Entropy 1.00 31.3% 57.9% 1.43 10.1% 31.2%
Mutual info. 0.982 32.6% 59.2% 1.37 12.4% 36.0%

6.3. Performance of Feature Weighting

We tested the proposed feature weighting method introduced in Section 3, as
well as two other feature weighting approaches: inverse user frequency-based and
entropy-based weighting. The inverse user frequency method (Breese et al., 1998)
is described by equation (3). The idea is that popular movies are not as useful in
capturing consumer preference as less popular movies. Here we applied entropy
as another weighting method, because a movie receiving very diverse votes should
be much more useful in capturing consumer preference than a movie receiving
only similar votes. The weight of a movie j is calculated by:

Wi,j = H(Vj) (27)

Our experimental results are shown in Table 1. The mutual information-based
weighting method outperforms other methods in terms of accuracy. Compared
with the constrained Pearson method, the MAE error in All but One protocol
was reduced from 0.982 to 0.938 by a factor of 4.5%; the 0.5 accuracy was
improved from 31.3% to 34.1% by a factor of 8.9%; while in predicting extreme
votes (Extremes) the improvement is more impressive: the MAE was reduced
by a factor of 7.1%, 0.5 accuracy improved by 28% and 1.0 accuracy improved
by 26%. While entropy-based weighting only slightly improved the accuracy, the
inverse user frequency method resulted in worse quality than the constrained
Pearson method. In the other two protocols, Given 10 and Given 20, we obtained
similar results. The improvement of Given 10 is not as significant as that of the
other two, which indicates that consumers with limited available information are
hard to predict. A serious problem is that the accuracy achieved in predicting
extreme votes (Extremes) is still much worse than that achieved in predicting other
votes. Further improvement is obviously needed. In Section 6.5, it will be shown
that feature weighting combined with instance selection can further improve the
accuracy of extreme vote (Extremes) prediction (the 1.0 accuracy is improved by
45.2%!).
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Table 2. Performance of instance selection methods.

Method All Extremes Time

(Instance Selection) MAE 0.5 Accu. 1.0 Accu. MAE 0.5 Accu. 1.0 Accu. (ms)

Movie average 1.10 27.1% 52.5% 1.59 6.51% 24.5%

All but Con. Pearson 0.982 31.3% 58.4% 1.40 10.0% 31.6% 48.2
One Modified IB2 0.959 33.5% 59.4% 1.35 13.2% 34.5% 31.6

Rand. r = 0.0625 1.02 30.5% 58.1% 1.42 9.33% 31.3% 3.2
Rand. r = 0.125 1.01 31.0% 58.2% 1.41 9.63% 31.5% 6.1
Rand. r = 0.25 0.989 31.2% 58.5% 1.41 9.81% 32.0% 11.8
Info. r = 0.0625 0.960 32.7% 59.5% 1.38 11.4% 34.5% 5.8
Info. r = 0.125 0.959 32.4% 60.1% 1.36 11.7% 35.7% 8.2
Info. r = 0.25 0.962 32.7% 59.9% 1.37 11.4% 35.5% 13.5

Given Con. Pearson 1.02 30.2% 56.0% 1.46 9.10% 28.1% 30.4
10 Modified IB2 1.01 31.5% 56.6% 1.42 11.5% 30.1% 21.6

Rand. r = 0.0625 1.05 29.4% 56.0% 1.48 9.03% 27.0% 2.1
Rand. r = 0.125 1.04 30.3% 56.6% 1.47 9.10% 27.9% 4.1
Rand. r = 0.25 1.03 30.5% 56.2% 1.47 9.12% 28.2% 7.9
Info. r = 0.0625 1.02 30.2% 56.8% 1.45 10.0% 29.2% 3.6
Info. r = 0.125 1.01 30.4% 56.9% 1.43 10.6% 31.0% 6.3
Info. r = 0.25 1.01 31.3% 57.5% 1.43 10.6% 30.7% 8.2

Given Con. Pearson 1.00 30.8% 57.7% 1.43 9.82% 30.8% 35.6
20 Modified IB2 0.988 32.0% 58.6% 1.38 13.3% 33.5% 23.7

Rand. r = 0.0625 1.04 30.5% 56.8% 1.46 9.42% 29.5% 2.4
Rand. r = 0.125 1.02 30.9% 57.4% 1.46 10.7% 29.9% 5.0
Rand. r = 0.25 1.01 30.7% 57.5% 1.45 9.60% 30.7% 9.3
Info. r = 0.0625 0.987 31.5% 58.6% 1.41 10.8% 32.8% 4.4
Info. r = 0.125 0.985 31.9% 58.9% 1.40 11.4% 33.9% 7.2
Info. r = 0.25 0.987 32.2% 58.9% 1.42 11.0% 33.5% 10.8

6.4. Empirical Analysis of Instance Selection

We investigated three instance selection algorithms including random sampling,
modified IB2 algorithm and the proposed information-theoretic instance selection
algorithm. The first algorithm randomly samples consumers according to a
selection rate r from the entire consumer data set. The prediction is generated
by applying the constrained Pearson algorithm to the selected data set. For every
selection rate the random sampling was repeated 10 times and the results averaged.
IB2 is a well-known instance selection method (Aha et al., 1991), which is used to
reduce the storage of nearest neighbor classifiers. The algorithm selects incorrectly
classified instances in order to put more strength on border instances and hard
instances. We modified it to consumer selection in instance-based collaborative
filtering, which is not classification but regression. For a target movie i, modified
IB2 randomly selects 150 consumers Si from Ti, and incrementally processes
the remaining consumers in Ti following a simple rule: if the absolute prediction
error of vu,i is greater than 0.5 by using the current instance set Si, then consumer
u is added into Si. In the prediction phase constrained Pearson method is then
performed on the selected consumer set Ti.
The experimental results are shown in Table 2. We evaluate the algorithms

in terms of accuracy and efficiency in the prediction phase. As pointed out in
Section 4, the speed-up reflects the reduction of the instance set because the run
time is linear to the size of instance set. In summary, random sampling approaches
lead to a dramatic increase of efficiency, but at the expense of accuracy. Modified
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Fig. 3. MAE performance using different selection rates (All but One).

IB2 slightly speeds up the run time by a factor of roughly 3/2. This is because
the 0.5 accuracy is always about 30% and hence modified IB2 removes 1/3
of instances from the original instance set. Moreover, it results in a significant
improvement of accuracy. Our analysis shows that modified IB2 maintains nearly
all the instances with extreme votes (Extremes) while removing relatively more
instances with vote value 3 or 4. This may reduce the bias caused by instances with
vote value 3 or 4 who are the consumers without a clear preference. Finally, the
proposed instance selection based on an information-theoretic relevance measure
achieved the best overall performance in terms of accuracy and efficiency. Its
accuracy is comparable to modified IB2 while the efficiency is greatly improved.
For example, the overall MAE was reduced from 0.982 to 0.960 by a factor of
2.2%, while the prediction time was reduced from 48.2 to 5.8 by a factor of 8.3
in the case of All but One and with r = 0.0625. The 1.0 accuracy of predicting
extreme votes (Extremes) was also improved from 31.6% to 35.5% by a factor of
12.3%. The selection rate of 0.0625 did not result in a speed-up factor of 16. This
is because the minimal size of instance set is chosen to avoid the over-reduction
of instance set, as described in Section 5.2.
It is of interest to study the accuracy of the proposed instance selection

method using different selection rates. As shown in Fig. 3, the MAE continually
decreases as the selection rate is decreased until sampling rate reaches 0.125.
This result shows that over-reduction of the instance set will degrade the quality.
Therefore, an optimal selection rate should be determined. This problem can be
resolved through experiment (e.g. cross-validation). Here we attempt to give an
automatic solution. Figure 4 shows the case when the target movie is Dances
with Wolves. In Fig. 4(a) the rationality strengths of consumers are sorted in
ascending order (a total of 6474 of 8000 consumers rated this movie). The quality
of MAE using different r is given in Fig. 4(b). The optimal selection rate shown
in Fig. 4(b) corresponds to the marked cut point in Fig. 4(a) where the consumers
with higher strength are selected. It can be seen in Fig. 4(a) that rationality
strength begins to dramatically increase at the right side of the cut point. A
similar phenomenon is seen when other movies are analyzed, which inspired us
to treat the instance selection problem as a classification problem: an instance
whose rationality strength is greater than a threshold is classified as a relevant
instance and is otherwise classified as an irrelevant instance. To find the cut point,
we performed a simple 2-class expectation maximization (EM) clustering (Witten
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(a) (b)

Fig. 4. (a) Consumer rationality strengths sorted in ascending order. (b) Prediction MAE at different
selection rates (the target movie is Dances with Wolves).

and Frank, 1999) in a one-dimensional space-rationality strength. The algorithm
attempts to maximize the likelihood of the clustering model under the assumption
that each cluster follows a Gaussian distribution. At first the instances are sorted
in ascending order by strength, and the mid point is selected for cutting. So half
of the consumers are classified as irrelevant ones, and the others are relevant.
Based on the above division the mean and standard deviation of each cluster are
calculated. Then an iterative process begins:

1. Expectation step. Based on the calculated means and deviations each instance is
reclassified into one of the two clusters according to its a posteriori probability
of membership.

2. Maximization step. The mean and standard deviation of each cluster are
calculated based on the classification in step 1.

The iteration continues until the clustering remains unchanged. The algorithm
is fast since it is in a one-dimensional space and the convergence is reached
in very few steps. Due to space limitations we will skip the details of the EM
algorithm, which can be found in Witten and Frank (1999). Another advantage
of this automatic determination of selection rate is that the resulting selection
rate is optimal for the given target (product). Therefore, an optimal selection
rate is determined for each product instead of one selection rate being used
for all products. This improvement is confirmed by our experimental results:
automatic instance selection performed better than the use of single selection
rate r = 0.125 for every product. Detail results are given in the next subsection
(Table 3). Figures 3 and 4(b) also show that feature weighting further improves
the accuracy of collaborative filtering after the instance selection is performed,
indicating that the two approaches can be combined together in order to get
optimal performance in terms of accuracy and efficiency.

6.5. Combining Feature Weighting and Instance Selection

Finally, as proposed in Section 5.2, we combined the information-theoretic feature
weighting and instance selection to reach a maximal level of performance. The
empirical results (Table 3) show that the advantages of the two approaches are
additive: the prediction accuracy was significantly better than the traditional
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Table 3. The performance of different approaches combining feature weighting and instance selection.

Method All Extremes Time

(Instance Selection) MAE 0.5 Accu. 1.0 Accu. MAE 0.5 Accu. 1.0 Accu. (ms)

Movie average 1.10 27.1% 52.5% 1.59 6.51% 24.5%

All but Con. Pearson 0.982 31.3% 58.4% 1.40 10.0% 31.6% 48.2
One Info. r = 0.0625 0.927 33.6% 62.3% 1.26 13.4% 44.4% 6.0

Info. r = 0.125 0.924 34.2% 63.2% 1.27 13.5% 44.7% 8.5
Info. Auto. 0.920 34.0% 63.6% 1.20 14.7% 45.2% 8.1

Given Con. Pearson 1.02 30.2% 56.0% 1.46 9.10% 28.1% 30.4
10 Info. r = 0.0625 1.00 30.3% 58.1% 1.40 11.0% 34.1% 3.6

Info. r = 0.125 1.00 31.1% 58.4% 1.40 11.6% 34.2% 6.5
Info. Auto. 1.00 31.5% 58.1% 1.40 11.7% 34.5% 5.2

Given Con. Pearson 1.00 30.8% 57.7% 1.43 9.82% 30.8% 35.6
20 Info. r = 0.0625 0.970 32.5% 60.0% 1.34 11.9% 39.5% 4.6

Info. r = 0.125 0.967 33.3% 60.2% 1.33 12.8% 39.4% 7.2
Info. Auto. 0.968 32.5% 60.1% 1.32 13.1% 40.2% 6.0

constrained Pearson method, while the efficiency was also greatly improved.
The results also indicate that the combined approach even outperformed the
feature weighting approach in terms of accuracy. For example, in the All but
One protocol, feature weighting combined with instance selection (r = 0.0625)
reduced the overall MAE from 0.982 to 0.927 by a factor of 5.6%. The quality in
predicting extreme votes (Extremes) is still more impressive: MAE was reduced
from 1.40 to 1.26 by a factor of 10%, 0.5 accuracy improved from 10% to 13.4%
by a factor of 34%, and 1.0 accuracy improved from 31.6% to 44.4% by a
factor of 40.5%. The run time sped up by a factor of 8.0. Feature weighting
caused a small increase in computational cost, but it is negligible compared to
the speed-up caused by instance selection. Furthermore the combined approach
using automatic instance selection performs very well in terms of accuracy and
efficiency. It is even better than the best case hitherto when selection rate of 0.125
is used for all products. This result shows that EM clustering can be used to
automatically distinguish relevant instances from irrelevant ones.

7. Conclusion

In this paper, feature relevance and instance relevance for collaborative filtering
are studied in a unified information-theoretic framework. Our work shows that the
two perspectives are intimately related: from a probabilistic relevance analysis,
mutual information was proposed to measure the relevance of features with
respect to the target product; the Bayes learning then inspired our definition
of instance rationality. After some simplification the general rationality and its
strength, both in form of mutual information, were proposed to serve as a measure
of instance relevance. It was argued that the combination of feature weighting
and instance selection based on relevance analysis can improve the collaborative
filtering in terms of accuracy and efficiency. The empirical results have shown that
mutual information-based feature selection achieves a good accuracy. Instance
selection not only dramatically speed up the prediction but also improved the
accuracy. Further experiments showed that the combination of feature weighting
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and instance selection reaches an optimal performance. For instance, the accuracy
(1.0 accuracy) was improved by a factor of about 40%, while the run time was
reduced by a factor 8 (in the All but One protocol).
Our experimental results demonstrate that feature weighting and instance

selection can be successfully applied to collaborative filtering-based recommender
systems. Relevance is an important topic in machine-learning and data-mining
research. We believe that more work needs to be done in order to reveal the
role of feature relevance and instance relevance in mining large databases. The
relationship between feature relevance and instance relevance also needs further
study.
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Appendix

A.1. Proof of Theorem 3.1

Proof. Since P (Vi) and P (Vj) are fixed, inequation (8) can be rewritten as:

[p(|vA,i − vB,i| < e | |vA,j − vB,j | < e)]
d[H(Vi) +H(Vj)−H(Vi, Vj)]

=
d[p(|vA,i − vB,i| < e | |vA,j − vB,j | < e)]

d[−H(Vi, Vj)]
> 0

(28)

Next, we have

−H(Vi, Vj) =
N∑
k=0

N∑
l=0

p(vi = k, vj = l) log2 p(vi = k, vj = l)

=

N∑
k=0

N∑
l=0

pk,l log2 pk,l (29)

where pk,l = p(vi = k, vj = l). Since consumer A and consumer B are drawn
independently, we have

p(|vA,i − vB,i| < e | |vA,j − vB,j | < e) (30)

=

∑N

k=0

∑N

l=0
p(vA,i = vB,i = k, vA,j = vB,j = l)∑N

l=0
p(vA,j = vB,j = l)

=

∑N

k=0

∑N

l=0
p2k,l∑N

l=0
p(vj = l)

2
=
1

K

N∑
k=0

N∑
l=0

p2k,l (31)
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where K = 1/
∑N

l=0 p(vj = l)
2. Consider the conditions that P (Vi) and P (Vj)

are fixed and
∑N

k=0

∑N
l=0 pk,l = 1, both first terms of equations (29) and (30)

can be seen as functions with respect to N×N − 2N + 1 independent variables,
pk,l , k, l �= N. Then we perform partial differentiations:

∂[−H(Vi, Vj)]
∂(pk,l)

= log2 pk,l − log2 pk,N (32)

∂[p(|vA,i − vB,i| < e | |vA,j − vB,j | < e)]
∂(pk,l)

= 2K(pk,l − pk,N) (33)

where k, l = 0, 1, . . . , N − 1. In the above two equations, pk,l − pk,N and log2 pk,l −
log2 pk,N always have the same sign, therefore the inequations (28) and (8)
hold. �

A.2. Proof of Theorem 4.1

Proof. According to Definition 4.2, we have :

R∗
u,i = I(Vi;VFu,i

)

= H(Vi)−H(Vi|VFu,i
)

= H(VFu,i
)−H(VFu,i

|Vi) (34)

Since each product j ∈ Fu,i is independent of the others whether given Vi or not,
then

R∗
u,i =

∑
j∈Fu,i

H(Vj)−
∑
j∈Fu,i

H(Vj |Vi)

=
∑
j∈Fu,i

I(Vi;Vj) (35)

Therefore the conclusion equation (35) holds. �
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