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Abstract In this paper, we study the boundedness and compactness of composition operator C' on

the Bloch space �(
), 
 being a bounded homogeneous domain. For 
 = Bn, we give the necessary

and su�cient conditions for a composition operator C' to be compact on �(Bn) or �0(Bn).
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1 Introduction

Let 
 be a bounded homogeneous domain in Cn. By H(
) we denote the class of functions

holomorphic in 
. Let ' : 
 ! 
 be a holomorphic self-map of 
; for f 2 H(
), denote

the composition f � ' by C'f and call C' the composition operator induced by '. We are

concerned here with the question of when C' will be a bounded or compact operator on Bloch

space �(
) or little Bloch space �0(
).

More recently, Madigan and Matheson [1] studied the same problem on the Bloch space

�(U) and little Bloch space �0(U) on the unit disc U . They proved that C' is always bounded

on �(U) and bounded on �0(U) if and only if ' 2 �0(U). They also gave the su�cient and

necessary conditions that C' is compact on �(U) or �0(U).

In this paper, we prove that C' is always bounded on �(
)(Theorem 1), where 
 is a

bounded homogeneous domain in Cn.

Let Bn be the unit ball of Cn, ' = ('1; : : : ; 'n) : Bn ! Bn be the self-map of Bn. We

prove that C' is bounded on �0(Bn) if and only if 'j 2 �0(Bn); j = 1; : : : ; n (Theorem 2). We
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also give the su�cient and necessary conditions that C' is compact on �(Bn) (Theorem 4) or

�0(Bn) (Theorem 7).

In what follows, 
 always denotes a bounded homogeneous domain in Cn, and Bn the

unit ball of Cn. ' denotes a holomorphic self-map of 
 or Bn, and C a positive constant not

necessarily the same on each occasion.

2 The Boundedness of C'

Let K(z; z) be the Bergman kernel function of 
; the Bergman metric Hz(u; u) on 
 is de�ned

by

Hz(u; u) =

nX
j;k=1

@2 logK(z; z)

@zj@zk
ujuk;

where z 2 
 and u = (u1; : : : ; un) 2 Cn.

Following Timoney [2], we say that f 2 H(
) is in the Bloch space �(
), if k f k�(
) =
supz2
Qf (z) < 1; where Qf (z) = sup

�
jrf(z)uj
Hz(u;u)

1
2
: u 2 Cn � f0g

�
; and rf(z) = (@f(z)

@z1
; : : : ;

@f(z)
@zn

), (rf(z))u =
Pn

j=1
@f(z)
@zj

uj .

Our �rst result is the following

Theorem 1 For every holomorphic self-map ' of 
; C' is bounded on �(
).

To prove this theorem, we need two lemmas.

Lemma 1 [2, Theorem 2.12] Let 
 be a bounded homogeneous domain in Cn and Hz(u; u)

denote the Bergman metric on 
. ' : 
 ! 
 is a holomorphic self-map. Then there exists a

constant C depending only on 
, such that H'(z)(J'(z)u; J'(z)u) � CHz(u; u) for each z 2 
,

where J'(z) =
�
@'j(z)
@zk

�
1�j;k�n

denotes the Jacobian matrix of ', and J'(z)u denotes a vector,

whose jth component is (J'(z)u)j =
Pn

k=1
@'j(z)
@zk

uk:

Lemma 2 Let 
 be a bounded homogeneous domain in Cn, f 2 H(
). ' : 
 ! 
 is a

holomorphic self-map. Then there exists a constant C depending only on 
, such that Qf�'(z) �
CQf ('(z)) for each z 2 
.

Proof Using the chain rule, we get

r(f � ')(z) = (rf)('(z)) � J'(z) : (1)

For u 2 Cn � f0g and J'(z)u 6= 0,

r(f � ')(z)u
Hz(u; u)

1
2

=
(rf)('(z)) � J'(z)u

[H'(z)(J'(z)u; J'(z)u)]
1
2

�
�
H'(z)(J'(z)u; J'(z)u)

Hz(u; u)

� 1
2

:

From Lemma 1, we obtain

jr(f � ')(z)uj
Hz(u; u)

1
2

� C � j(rf)('(z)) � J'(z)uj
[H'(z)(J'(z)u; J'(z)u)]

1
2

: (2)
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If u 2 Cn�f0g, but J'(z)u = 0, then r(f �')(z)u = 0 by (1). Thus the inequality (2) implies

Qf (z) = sup

� jr(f � ')(z)uj
Hz(u; u)

1
2

: u 2 Cn � f0g
�

= sup

� jr(f � ')(z)uj
Hz(u; u)

1
2

: u 2 Cn � f0g; J'(z)u 6= 0

�

� C sup

(
j(rf)('(z)) � J'(z)uj

[H'(z)(J'(z)u; J'(z)u)]
1
2

: u 2 Cn � f0g; J'(z)u 6= 0

)

� CQf ('(z)) :

The lemma is proved.

Now Theorem 1 is a simple corollary of Lemma 2.

Proof of Theorem 1 Let f 2 �(
); by Lemma 2, we have

jjC'(f)jj�(
) = jjf � 'jj�(
) = sup
z2


Qf�'(z) � C � sup
z2


Qf ('(z)) � C � jjf jj�(
):

This means that C' is bounded on �(
). This completes the proof.

In [2], Timoney proved that for f 2 H(Bn) and z 2 Bn, Qf (z) � (1 � jzj2)jrf(z)j: This
means that there exist two positive constants A and B, such that

AQf (z) � (1� jzj2)jrf(z)j � BQf (z) (3)

for every z 2 Bn.

Thus, f 2 H(Bn) is in �(Bn) if and only if

sup
z2Bn

(1� jzj2)jrf(z)j <1 :

In [3], Timoney de�ned that f 2 H(Bn) is in �0(Bn), called the little Bloch space, if

limjzj!1Qf (z) = 0, namely

lim
jzj!1

(1� jzj2)jrf(z)j = 0 : (4)

He also proved the following result in [3]: Let D be a bounded symmetric domain in Cn

and not holomorphically equivalent to Bn. If f 2 �(D) and Qf (z)! 0 as z ! @D, then f is a

constant.

Due to this reason, for any bounded symmetric domain D in Cn, Timoney de�ned the little

Bloch space �0(D) as follows : �0(D) is the closure in the Banach space �(D) of the polynomial

functions on D. But when D = Bn, this de�nition is equivalent to (4) (see [3], p. 8).

The following theorem gives the characterization of ' that C' is bounded on �0(Bn).

Theorem 2 Let ' = ('1; : : : ; 'n) be a holomorphic self-map of Bn. Then C' is bounded on

�0(Bn) if and only if 'j 2 �0(Bn), j = 1; : : : ; n.

Proof Let C' be bounded on �0(Bn). It is easy to see that for every j = 1; : : : ; n, the functions

fj(z) = zj belong to �0(Bn). Therefore 'j = fj � ' = C'fj 2 �0(Bn). This proves that the

condition is necessary.
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Conversely, let 'j 2 �0(Bn) for every j = 1; : : : ; n and f 2 �0(Bn). By the de�nition of

�0(Bn), for a given � > 0, there exists a � > 0, such that Qf (z) < � if jzj2 > 1 � �. It follows

from Lemma 2 that Qf�'(z) � C� if j'(z)j2 > 1� �. Thus inequality (3) gives

(1� jzj2)jr(f � ')(z)j � C� (5)

if j'(z)j2 > 1� � :

On the other hand, if j'(z)j2 � 1� �, applying chain rule and Cauchy inequality,

(1� jzj2)jr(f � ')(z)j �(1� jzj2)j(rf)('(z))j � (jr'1(z)j+ � � � + jr'n(z)j)

<
(1� j'(z)j2)j(rf)('(z))j

�
� (1� jzj2)(jr'1(z)j+ � � �+ jr'n(z)j)

�k f k�(
)
�

(1� jzj2)(jr'1(z)j+ � � � + jr'n(z)j):

Since 'j 2 �0(Bn); j = 1; : : : ; n, the right side of the above inequality tends to 0 as jzj ! 1.

Combining the above statements together, we get (1� jzj2)jr(f � ')(z)j ! 0 as jzj ! 1: This

completes the proof of Theorem 2.

3 The Compactness of C'

In this section, we �rst give a su�cient condition that C' is a compact composition operator

on �(
), then we will prove that this su�cient condition is also necessary for �(Bn). To do

this, we need the following useful lemma.

Lemma 3 C' is compact on �(
) if and only if for any bounded sequence ffkg in �(
) which

converges to 0 uniformly on compact subset of 
, we have k fk � ' k�(
) ! 0; as k !1.

Proof Let B denote the closed unit ball in �(
) and suppose ffkg is a sequence of functions

in B. We wish to show that the image sequence fC'fkg has a convergent subsequence.

Fix z0 2 
, without loss of generality, suppose fk(z0) = 0; k fk k�(
) � 1; k = 1; 2; : : : :

For given r > 0, take z 2 
 with �(z; z0) � r, where �(z; z0) denotes the Bergman distance

between z0 and z. Let 
 : [0; 1]! 
 be a geodesic (in the Bergman metric) with 
(0) = z0 and


(1) = z. Then

jfk(z)j = jfk(z)� fk(z0)j = jfk(
(1))� fk(
(0))j

�
Z 1

0

j(fk � 
)
0

(t)jdt =
Z 1

0

j(rfk)(
(t))

0

(t)jdt

�
Z 1

0

Qfk(
(t))H
(t)(

0(t); 
0(t))

1
2 dt �

Z 1

0

H
(t)(

0(t); 
0(t))

1
2 dt

= �(z; z0) � r :

Since every compact subset K of 
 is contained in fz 2 
 : �(z; z0) � rg for some r > 0, it

follows that the sequence ffkg is uniformly bounded on every compact subset of 
. Montel's
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theorem picks out a subsequence ffklg that converges uniformly on compact subsets of 
 to a

holomorphic function g. We claim that g 2 �(
). Indeed, for each z 2 
,

Qg(z) = lim
l!1

Qfkl
(z) � sup k fkl k� � 1 :

By the de�nition of �(
), we get g 2 �(
) and k g k�(
) � 1. Thus the sequence ffkl � gg is

bounded in �(
) and fkl � g ! 0 uniformly on compact subset of 
. The hypothesis of the

lemma ensures that k C'(fkl � g) k�(
)! 0 as desired.

Conversely we assume that C' is compact, which means that C'(B) is a relatively compact

subset of �(
). We are further given a sequence ffkg that lies in rB(the ball of radius r) and

converges to zero uniformly on compact subsets of 
. We have to show that k C'fk k�(
)! 0,

and for this it su�ces to show that the zero function is the unique limit point of the sequence

fC'fkg (for the Bloch norm). Since the set fC'fkg is relatively compact, there must be a

function f0 2 �(
) with limk!1 k C'fk � f0 k�(
)= 0: Fix z0 2 
, for each z 2 
 with

�(z; z0) � r; without loss of generality, suppose f0(z0) = 0: Using the same method as in the

proof of the su�ciency, we get

jC'fk(z)� f0(z)� (C'fk(z0)� f0(z0))j � k C'fk � f0 k�(
) � r :

Therefore

jC'fk(z)� f0(z)j � k C'fk � f0 k�(
) � r + jC'fk(z0)j ;
but C'fk ! 0 uniformly on compact subsets of 
. Therefore, f0(z) = 0 for each z 2 
. We

�nish the proof.

The following theorem gives a su�cient condition that C' is compact on �(
).

Theorem 3 If ' : 
! 
 is a holomorphic self-map, then C' is compact on �(
) if for every

� > 0, there exists a � > 0, such that
H'(z)(J'(z)u;J'(z)u)

Hz(u;u)
< � for all u 2 Cn � f0g whenever

dist('(z); @
) < �.

Proof By Lemma 3, it is enough to show that if ffkg is a bounded sequence in �(
) which

converges to 0 uniformly on compact subsets of 
, then k fk � ' k�(
) ! 0.

Let M = supkk fk k�(
): For given � > 0, there exists a � > 0, such that
H'(z)(J'(z)u;J'(z)u)

Hz(u;u)

<
�
�
M

�2
for all u 2 Cn � f0g if dist('(z); @
) < �. By Lemma 2,

Qfk�'(z) � Qfk('(z)) � sup
(�

H'(z)(J'(z)u; J'(z)u)

Hz(u; u)

� 1
2

: u 2 Cn � f0g
)
:

It follows that Qfk�'(z) < �, if dist('(z); @
) < �.

On the other hand, it is easy to see that

inf
n
(Hw(u; u))

1
2 : juj = 1; dist(w; @
) � �

o
= m > 0 :

So j(rfk)(w)uj
(Hw(u; u))

1
2

� j(rfk)(w)j � juj
(Hw(u; u))

1
2

=
j(rfk)(w)j

(Hw(
u
juj ;

u
juj ))

1
2

� j(rfk)(w)j
m
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if dist(w; @
) � �. Now the hypothesis that ffkg converges to zero uniformly on any compact

subset of 
 implies Qfk(w) ! 0 uniformly for dist(w; @
) � � as k ! 1. From this and

Lemma 1, for large enough k, Qfk�'(z) < � if dist('(z); @
) � �. Hence, k fk � ' k�(
) < � for

large k. The proof ends.

The following theorem shows that if 
 = Bn, the condition of Theorem 3 is also necessary.

We conjecture that for a general bounded homogeneous domain 
, the condition of Theorem 3

is still necessary and su�cient, but the proof of necessity is so di�cult that we cannot give it.

Theorem 4 Let ' : Bn ! Bn be a holomorphic self-map. Then C' is compact on �(Bn) if

and only if for every � > 0, there exists a � > 0, whenever dist('(z); @Bn) < �, such that

H'(z)(J'(z)u; J'(z)u)

Hz(u; u)
< � (6)

for all u 2 Cn � f0g.
Proof We only need to prove that condition (6) is necessary.

Now assume that condition (6) fails, then there exists a sequence fzjgin Bn with j'(zj)j ! 1

as j !1, uj 2 Cn � f0g, and an �0 > 0, such that

H'(zj)(J'(z
j)uj ; J'(zj)uj)

Hzj (uj ; uj)
� �0 (7)

for all j = 1; 2; : : :.

Using the condition (7), we will construct a sequence function ffjg satisfying the following

three conditions:

(i) ffjg is a bounded sequence in �(Bn);

(ii) ffjg tends to zero uniformly on any compact subset of Bn;

(iii) jjC'fj jj� 6! 0, as j !1.

This contradicts the compactness of C' by Lemma 3.

To construct the sequence of functions ffjg, we �rst assume that

'(zj) = rje1; j = 1; 2; : : : : (8)

where e1 = (1; 0; : : : ; 0) 2 Cn. Denote J'(zj)uj = wj and write wj = (wj
1; ~w

j) where ~wj =

(wj
2; : : : ; w

j
n) 2 Cn�1. We will construct the functions according to two di�erent cases:

1� If for some j, j ~wj jp
1�r2

j

� jwj

1j
1�r2

j

, then set

fj(z) = log(1� e�a(1�rj)z1)� log(1� z1) ; (9)

where a > 0 is any positive number.

2� If for some j, j ~wj jp
1�r2

j

>
jwj

1j
1�r2

j

, then set

fj(z) = (e�i�
j

2z2 + � � �+ e�i�
j
nzn)

n
(1� e�a(1�rj)z1)�

1
2 � (1� z1)

� 1
2

o
; (10)

where a > 0 and �
j
k = argwj

k; k = 2; : : : ; n. If wj
k = 0 for some k, replace the corresponding

term e�i�
j

kzk by 0.
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For the functions de�ned by (9), it is easy to check that fjjfj jj�g is bounded and ffjg
converges to 0 uniformly on compact subsets of Bn. We now prove that jjC'fj jj� 6! 0. In fact,

by (7)

jjC'fj jj� = jjfj � 'jj� � Qfj�'(z
j) � jr(f � ')(zj)uj j

[Hzj (uj ; uj)]
1
2

=
j(rfj)('(zj))J'(zj)uj j�

H'(zj)(J'(zj)uj ; J'(zj)uj)
	 1

2

�
�
H'(zj)(J'(z

j)uj ; J'(zj)uj)

Hzj (uj ; uj)

� 1
2

� p
�0 � j(rfj)(rje1)w

j j
(Hrje1(w

j; wj))
1
2

: (11)

It is well known that the Bergman metric of Bn is

Hz(u; u) =
(1� jzj2)juj2 + jhz; uij2

(1� jzj2)2 :

Therefore

Hrje1(w
j ; wj) =

(1� r2j )(jwj
1j2 + j ~wj j2) + r2j jwj

1j2]
(1� r2j )

2
=

j ~wjj2
1� r2j

+
jwj

1j2
(1� r2j )

2
:

So

H
1
2
rje1(w

j; wj) � j ~wj jq
1� r2j

+
jwj

1j
1� r2j

� 2jwj
1j

1� r2j
:

Now (11) gives

jjC'fj jj� � p
�0 �

1� r2j

jwj
1j

� j(rfj)(rje1)wj j

=

p
�0

2
� (1� r2j )

����@fj(rje1)@z1

����
=

p
�0

2
� (1� r2j )

���� 1

1� rj
� e�a(1�rj)

1� e�a(1�rj)rj

����
�
p
�0

2
�
����1� (1� rj)e

�a(1�rj)

1� e�a(1�rj)rj

���� :
Since

lim
j!1

�
1� (1� rj)e

�a(1�rj)

1� e�a(1�rj)rj

�
=

a

1 + a
6= 0 ;

so jjC'fj jj� 6! 0 and ffjg satisfy the conditions (i),(ii) and (iii).

For the functions de�ned by (10), since

@fj(z)

@z1
=

1

2
(e�i�

j

2z2 + � � � + e�i�
j
nzn)

�
e�a(1�rj)

(1� e�a(1�rj)z1)
3
2

+
1

(1� z1)
3
2

�
;

@fj(z)

@zk
= e�i�

j

k

�
1

(1� e�a(1�rj)z1)
1
2

� 1

(1� z1)
1
2

�
; k = 2; : : : ; n ;
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hence

(1� jzj2)
����@fj(z)@z1

���� � C(1� jzj2)(jz2j+ � � �+ jznj) � 1

(1� jz1j) 32
� C(1� jzj2)(1� jz1j2) 12 � 1

(1� jz1j) 32
� C

and

(1� jzj2)
����@fj(z)@zk

���� � C(1� jzj2) � 1

(1� jz1j) 12
� C; k = 2; : : : ; n :

This proves that fjjfj jj�g is bounded. It is clear that ffjg converges to 0 uniformly on compact

subsets of Bn. Finally we prove that jjC'fj jj� 6! 0 as j !1. Now

jjC'fj jj� �
p
�0 � j(rfj)(rje1)w

jj
(Hrje1(w

j ; wj))
1
2

�
p
�0

2
�

q
1� r2j

j ~wj j � j(rfj)(rje1)wj j

=

p
�0

2
�

q
1� r2j

j ~wj j �
����@fj(rje1)@z2

w
j
2 + � � �+ @fj(rje1)

@zn
wj
n

����
=

p
�0

2
�

q
1� r2j

j ~wj j �
���(1� e�a(1�rj)rj)�

1
2 � (1� rj)

� 1
2

��� (jwj
2j+ � � �+ jwj

nj)

�
p
�0

2
�
�����1�

�
1� rj

1� e�a(1�rj)rj

� 1
2

����� :
Since limj!1

�
1�rj

1�e�a(1�rj )rj

� 1
2

= 1p
1+a

; so jjC'fj jj� 6! 0 .

In a general situation, if '(zj) 6= rje1, we use the unitary transformation Uj to make

'(zj) = rje1Uj , for j = 1; 2; : : :. A direct computation gives

r(f � U)(z) = (rf)(zU)U 0

; HzU (w;w) = Hz(U
0

w;U
0

w);

jrgj('(zj))wjj
(H'(zj)(wj; wj))

1
2

=
jr(gj � Uj)(rje1)U 0

jw
j j

Hrje1(U
0

wj; U
0

wj)
:

Now gj = fj � U�1j , j = 1; 2; : : :, is the desired function sequence. The proof is completed.

When n = 1; the Bergman metric of the unit disc U is Hz(u; u) =
juj2

(1�jzj2)2 , z 2 U; u 2 C.

Hence
H'(z)('

0

(z)u; '
0

(z)u)

Hz(u; u)
=

�
1� jzj2

1� j'(z)j2
�2

j'0

(z)j2;

where ' is a holomorphic self-map from U to U . Thus, from Theorem 4 we obtain Theorem 2

in [1].

Theorem 4 gives the su�cient and necessary condition that C' is compact on �(Bn). But

Condition (6) is expressed by the Bergman metric of Bn, and is not convenient for application.

The following su�cient conditions or necessary conditions are perhaps more convenient for

application.
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Theorem 5 Let ' : Bn ! Bn be a holomorphic self-map and ' = ('1; : : : ; 'n): If for every

� > 0, there exists a � > 0, such that

1� jzj2
1� j'(z)j2 (jr'1(z)j+ � � �+ jr'n(z)j) < �

whenever j'(z)j > �, then C' is compact on �(Bn).

Proof Using the chain rule, we get

(1� jzj2)r(f � ')(z) = (1� jzj2)(rf)('(z)) � J'(z):

Using the Cauchy inequality on the right side of the above equality, we obtain

(1� jzj2)jr(f � ')(z)j �(1� jzj2)
p
(jr'1(z)j2 + � � �+ jr'n(z)j2)j(rf)('(z))j

� (1� jzj2)(jr'1j+ � � � + jr'nj)
1� j'(z)j2 � [(1� j'(z)j2)j(rf)('(z))j]:

The remaining proof is similar to that of Theorem 3, and we omit it. This completes the proof.

Theorem 6 Let ' : Bn ! Bn be a holomorphic self-map and ' = ('1; : : : ; 'n): If C' is

compact on �(Bn), then for every � > 0, there exists a � > 0, such that

(1� jzj2)
� jr'1(z)j
1� j'1(z)j2 + � � �+ jr'n(z)j

1� j'n(z)j2
�
< � (12)

whenever j'(z)j > �.

Proof Assume (12) is false, then there exist a sequence fzkg � Bn and some �0 > 0, such that

(1� jzkj2)
� jr'1(zk)j
1� j'1(zk)j2 + � � � + jr'n(zk)j

1� j'n(zk)j2
�
� �0; (13)

for all k and as k !1; wk = '(zk)! � 2 @Bn. Let � = (�1; � � � ; �n). We �rst prove that there

exists some index j with j�j j = 1 and �k = 0; k 6= j. In fact, if j�ij < 1 for all i = 1; : : : ; n, since

Hz(u; u) � juj2
(1� jzj2)2 ; H'(z)(J'(z)u; J'(z)u) � jJ'(z)uj2

1� j'(z)j2 ;

by Lemma 1, we get (1�jzj2)2j(J'(z))uj2
(1�j'(z)j2)juj2 � C for all u 2 Cn�f0g. Set ui = ei = (0; : : : ; 1; : : : ; 0),

the ith coordinate being 1 and the others 0, i = 1; : : : ; n: Then (1 � jzj2)jr'i(z)j � C �p
1� j'(z)j2 ; i = 1; : : : ; n: This implies that

(1� jzkj2)jr'i(zk)j
1� j'i(zk)j2 � C �

p
1� j'(zk)j2

1� j'i(zk)j2 ! 0 (14)

as k !1, i = 1; : : : ; n. This contradicts (13).

Without loss of generality, we now assume that � = (�1; : : : ; �n) = (1; 0; : : : ; 0). Since

�2 = � � � = �n = 0, it follows from (14) that

(1� jzkj2)jr'i(zk)j
1� j'i(zk)j2 ! 0; as k !1; i = 2; : : : ; n ;
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and for large k, (1�jzkj2)jr'1(z
k)j

1�j'1(zk)j2 > �0
2 : Let fk(z) = log 1

1�wk
1z1

. Then fk(z) converges to

f0 = log 1
1�z1 uniformly on compact subsets of Bn and k fk k� is bounded. But

kC'fk � C'f0k� =






log 1

1� wk
1'1

� log
1

1� '1







�

� (1� jzkj2)jr'1(zk)j �
����� wk

1

1� jwk
1 j2

� 1

1� wk
1

�����
=

(1� jzkj2)jr'1(zk)j
1� jwk

1 j2
>

�0

2
:

This contradicts the compactness of C' by Lemma 3. This completes the proof.

For n = 1, from Theorems 5 and 6, we obtain Theorem 2 in [1] again.

Now we turn to the discussion of the compactness of C' on �0(Bn). First we introduce a

useful lemma.

Lemma 4 A closed set K in �0(Bn) is compact if and only if K is bounded and satis�es

lim
jzj!1�

sup
f2K

(1� jzj2)jrf(z)j = 0 : (15)

Proof Assume K is compact on �0(Bn). Then for every � > 0, there exist �nite open sets of

�0(Bn),

U(fi; �) =
n
f 2 �0(Bn) : kfi � fk� <

�

2

o
; i = 1; : : : ; l;

such that K � Sl

i=1 U(fi; �). Since fi 2 �0(Bn); i = 1; : : : ; l, it implies that there exists an r,

0 < r < 1, whenever jzj > r, such that (1 � jzj2)jrfi(z)j < �
2 for i = 1; : : : ; l. If f 2 K, then

for some fi0 , 1 � i0 � l, with kf � fi0k� < �
2 : Therefore, when jzj > r,

(1� jzj2)jrf(z)j � kf � fi0k� + (1� jzj2)jrfi0(z)j < � :

This establishes (15).

Consider the other side, if K is a bounded set on �0(Bn) and satis�es (15). Let ffkg be

a function sequence in K. By the Montel theorem, there exists a subsequence ffklg of ffkg
which converges to some holomorphic function f uniformly on compact subset of Bn. Due to

the same reason
n
@fkl
@zi

o
, i = 1; : : : ; n, converges to @f

@zi
uniformly on compact subset of Bn.

By (15), for every � > 0, there exists an r, 0 < r < 1, whenever jzj > r, such that for all

g 2 K, (1 � jzj2)jrg(z)j < �
2 : It follows that (1 � jzj2)jrf(z)j < �

2 if jzj > r: Since ffklg
converges to f uniformly on jzj � r and

n
@fkl
@zi

o
(i = 1; : : : ; n) converges to @f

@zi
uniformly on

jzj � r, therefore, for enough large l, supjzj�r(1� jzj2)(jrf(z)�rfkl(z)j) � �
2 : Combining the

discussions together, we get liml!1 kfkl � fk� = 0 and so K is compact on �0(Bn). The proof

ends.

Similarly to Theorem 4, we have

Theorem 7 Let ' : Bn ! Bn be a holomorphic self-map. Then C' is compact on �0(Bn)

if and only if

lim
jzj!1�

H'(z)(J'(z)u; J'(z)u)

Hz(u; u)
= 0 (16)
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for all u 2 Cn � f0g uniformly.

Proof We �rst prove that Condition (16) is su�cient. Since

H'(z)(J'(z)u; J'(z)u)

Hz(u; u)
� (1� jzj2)2

1� j'(z)j2 �
jJ'(z)uj2
juj2 � (1� jzj2)2jJ'(z)�j2;

where � = u
juj 2 @Bn; it follows from (16) that limjzj!1�(1�jzj2)2jJ'(z)�j2 = 0 for all � 2 @Bn

uniformly. Let � = ej . We obtain limjzj!1�(1 � jzj2)jr'j(z)j = 0: Namely 'j 2 �0(Bn),

j = 1; : : : ; n. Here 'j is the jth component of '. Thus C'f 2 �0(Bn) for each f 2 �0(Bn) by

Theorem 2. Let

A = ff 2 �0(Bn) : jjf jj� � 1g ; K = fC'f : f 2 Ag :

Then K is a closed set in �0(Bn). By Lemma 4, we only need to prove

lim
jzj!1�

sup
jjf jj��1

(1� jzj2)jr(f � ')(z)j = 0 : (17)

By (16), for given �, there exists an r; 0 < r < 1, such that

r(f � ')(z)u
Hz(u; u)

1
2

� �
j(rf)('(z)) � J'(z)uj

[H'(z)(J'(z)u; J'(z)u)]
1
2

for all u 2 Cn � f0g, whenever jzj > r. Thus Qf�'(z) < �Qf ('(z)) � �jjf jj� : Now (17) follows

from (3) immediately.

Conversely, if C' is compact on �0(Bn), but (16) fails, then there exist sequences fzjg � Bn,

fujg � Cn � f0g and an �0 > 0, such that jzj j ! 1 and

H'(zj)(J'(z
j)uj ; J'(zj)uj)

Hzj (uj ; uj)
� �0 (18)

for all j = 1; 2; : : : :

We will use (18) to construct a sequence functions ffjg, such that

(i) fj 2 �0(Bn), j = 1; 2; : : :.

(ii) jjfj jj� � 1, j = 1; 2; : : :.

(iii) (1� jzj j2)jr(fj � ')(zj)j � �0, j = 1; 2; : : :.

This means that C' is not compact on �0(Bn) by Lemma 4.

Similarly to the proof of Theorem 4, we may assume that '(zj) = rje1; j = 1; 2; : : :, and

denote wj = J'(zj)uj , j = 1; 2; : : :. The following two cases will be considered.

Case 1 j'(zj)j � � < 1, as jzj j ! 1�.

Let fj(z) = e�i�
j

1z1+ � � �+e�i�
j
nzn; j = 1; 2; : : : ; where �jk = argwj

k; k = 1; : : : ; n. If wj
k = 0

for some k, replace the corresponding term e�i�
j

kzk by 0.

It is easy to see that Conditions (i) and (ii) are satis�ed. To prove (iii), we note that

Hrje1(w
j; wj) =

j ~wj j2
1� r2j

+
jwj

1j2
(1� r2j )

2
� 1

(1� �2)2
� jwj j2 :
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Here wj = (wj
1; ~w

j), ~wj = (wj
2; : : : ; w

j
n) 2 Cn�1. Thus

(1� jzj j2)jr(fj � ')(zj)j � CQfj�'(z
j)

� C
jr(f � ')(zj)uj j
[Hzj (uj ; uj)]

1
2

� C
p
�0

j(rfj)('(zj))J'(zj)uj j�
H'(zj)(J'(zj)uj ; J'(zj)uj)

	 1
2

= C
p
�0 � j(rfj)(rje1)w

jj
(Hrje1(w

j; wj))
1
2

� C
p
�0
1� �2

jwjj �
����@fj(rje1)@z1

w
j
1 + � � �+ @fj(rje1)

@zn
wj
n

����
= C

p
�0(1� �2) � 1

jwj j (jw
j
1j+ � � �+ jwj

nj)

� C
p
�0(1� �2) :

This proves (iii).

Case 2 j'(zj)j ! 1 as jzj j ! 1 .

Similarly to Theorem 4, we construct ffjg according to the following two di�erent situations:
1� If for some j, j ~wj jp

1�r2
j

� jwj

1j
1�r2

j

, then we let fj(z) =
1
2 log(1� e�a(1�rj)z1); a > 0: For �xed

j,

(1� jzj2)jrfj(z)j = 1

2
(1� jzj2)

���� e�a(1�rj)

1� e�a(1�rj)rj

���� � 1

2
(1� jzj2) 1

1� e�a(1�rj)rj
! 0; jzj ! 1�:

So fj 2 �0(Bn) for each j: On the other hand,

(1� jzj2)jrfj(z)j � 1

2
(1� jzj2) � 1

1� jz1j � 1 :

So jjfj jj�(Bn) � 1. Thus ffjg satis�es (i) and (ii). The proof of (iii) is similar to that of Theorem

4, we omit it here.

2� If for some j; j ~wj jp
1�r2

j

>
jwj

1j
1�r2

j

, then we let

fj(z) =
4p
n
(e�i�

j

2z2 + � � �+ e�i�
j
nzn)(1� e�a(1�rj)z1)�

1
2 ;

where �jk; k = 2; : : : ; n, are the same as in Case 1. The proof that fj satis�es (i), (ii) and (iii)

is similar to that in 1� and Theorem 4, we omit the details. The proof is completed.

Similarly to Theorems 5 and 6, we also have two theorems which are convenient for con-

�rming or negating the compactness of C' on �0(Bn).

Theorem 8 Let ' : Bn ! Bn is a holomorphic self-map and ' = ('1; : : : ; 'n), Then C'

is compact on �0(Bn) if

lim
jzj!1�

1� jzj2
1� j'(z)j2 (jr'1(z)j+ � � �+ jr'n(z)j) = 0 : (19)
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Proof It is easy to see from (19) that 'j 2 �0(Bn) for every j = 1; : : : ; n. Hence C'f 2 �0(Bn)

for each f 2 �0(Bn). Let A, K be the sets as in Theorem 7. Then

sup
jjf jj��1

(1� jzj2)jr(f � ')(z)j

� (1� jzj2)(jr'1j+ � � �+ jr'nj)
1� j'(z)j2 sup

jjf jj��1
f(1� j'(z)j2)j(rf)('(z))jg

� (1� jzj2)(jr'1j+ � � �+ jr'nj)
1� j'(z)j2 ! 0 ; jzj ! 1� :

Now Lemma 4 gives the desired result. This completes the proof.

Theorem 9 Let ' : Bn ! Bn be a holomorphic self-map and ' = ('1; : : : ; 'n). If C' is

compact on �0(Bn), then

lim
jzj!1�

(1� jzj2)
� jr'1(z)j
1� j'1(z)j2 + � � �+ jr'n(z)j

1� j'n(z)j2
�
= 0: (20)

Proof Let C' be compact on �0(Bn), but (20) fail. This means that there exist a sequence

zj � Bn and an �0 > 0, such that jzj j ! 1� as j !1 and

(1� jzj j2)
� jr'1(zj)j
1� j'1(zj)j2 + � � �+ jr'n(zj)j

1� j'n(zj)j2
�
� �0 : (21)

We �rst prove that j'(zj)j ! 1� as jzj j ! 1�; j ! 1. If not, there exists a � < 1 with

j'(zj)j � �; j = 1; 2; : : :. Thus (21) yields

(1� jzj j2) �jr'1(zj)j+ � � � + jrn(z
j)j� � �0(1� �2) : (22)

Since C'f 2 �0(Bn) for every f 2 �0(Bn), this implies 'j 2 �0(Bn) by Theorem 2. This is a

contradiction to (22). Let '(zj)! � 2 @Bn, as jzj j ! 1�. We have proved in Theorem 6 that

� = ei�ek for some k; without loss of generality, we assume that � = ei�e1. Now (21) implies

(1� jzj j2)jr'1(zj)j
1� j'1(zj)j2 >

�0

2
(23)

for large enough j.

Denote '1(z
j) = w

j
1 and let fj(z) =

1
2 log (1� w

j
1z1); j = 1; 2; : : : : It is easy to check that

every fj 2 �0(Bn) and jjfj jj� � 1 ; j = 1; 2; : : :. A direct computation gives

r(fj � ')(zj) = 1

2
� �wj

1

1� j'1(zj)j2r'1(z
j) : (24)

It follows from (23), (24) and jwj
1j ! 1� as j !1 that

(1� jzj j2)jr(fj � ')(zj)j = jwj
1j
2

� (1� jzj j2)jr'1(zj)j
1� j'1(zj)j2 >

�0

5

for large enough j. This shows that C' is not compact on �0(Bn) by Lemma 4. The theorem

is proved.
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It is easy to see that (19) implies (20), but the two conditions are not equivalent. For

example, let

'(z) = ('1(z); '2(z)) =

�
1

2

�
z1 +

1p
2

�
;
1

2

�
z2 +

1p
2

��
:

It is easy to check that ' is a holomorphic self-map of B2, r'1(z) = ( 12 ; 0), r'2(z) = (0; 12 )

and

j'1(z)j2 = 1

4

����z1 + 1p
2

����
2

� 3

4
; j'2(z)j2 = 1

4

����z2 + 1p
2

����
2

� 3

4
:

So

(1� jzj2)
� jr'1(z)j
1� j'1(z)j2 +

jr'2(z)j
1� j'2(z)j2

�
� 2(1� jzj2)! 0 ; jzj ! 1�:

Condition (20) is satis�ed.

On the other hand, letting z1 = z2 =
1p
2
r, then

1� jzj2
1� j'(z)j2 (jr'1(z)j+ jr'2(z)j)

=
1

2
(1� jzj2) �

"
1� 1

4

 ����z1 + 1p
2

����
2

+

����z2 + 1p
2

����
2
!#�1

=
2(1� r2)

(1� r)(3 + r)
! 1; r ! 1�:

This shows that Condition (19) fails.
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