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1 Introduction

Calderon—Zygmund operators and their generalizations on the Euclidean space R™ have been ex-
tensively studied [1-6]. In particular, Yabuta [6] introduced certain 6-type Calderén-Zygmund
operators to facilitate his study of certain classes of pseudo-differential operators (cf Coifman
and Meyer [1]). The results in this paper are of three kinds. First, Theorem 1 gives sev-
eral equivalent conditions for a §-type Calderén—Zygmund operator to be bounded on L?(R™).
Second, we show that our #-type Calderon—Zygmund operators are bounded on spaces like
L? (R™), weighted weak Lebesgue spaces, weighted Hardy spaces and weighted weak Hardy
spaces (see Theorems 2-5). We note that our results are closely related to others recent work

on weighted weak Hardy spaces [7-12]. Third, we weaken 6-type Calderén-Zygmund operators
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to semi-(6, pp)-type Calderén—-Zygmund operators and prove in Theorem 6 that such opera-
tors are bounded on the power-weighted LP(R™). In Theorem 7, we prove that our operators
are even bounded on the power-weighted Hardy space and the power-weighted weak Hardy
space. The Sharpness of our results is also discussed in this theorem. The boundedness of other

generalizations of Calderén—Zygmund operators is given in Theorems 8 and 9.

2 Preliminary Results

Let 1 < p < oo. Following [2,3], a weight w > 0 is a Muckenhoupt A,(R™) weight if

(o) G e

where c is a constant independent of the cube @), and where, and in what follows, all the cubes

have their sides parallel to the axes. The class A;(R™) is defined by letting p — 1, namely,
1 .
—/ w(z)dzr < cessinf,cqw(x),
Rl Jo

where ¢ is independent of Q. The smallest value of ¢ is called the A,(R™)-constant of w. We
also define Ao (R") = J 5, 4p(R") and for w € A (R™), we set

o =inf{g>1: we A,(R")}

and call g, the critical index of w (see [2]).
Let 0 < p < oo and let w be a locally integrable non-negative function. We denote the
weighted space LP(R™,w(z)dz) by LP(R"™) and set

» 1/p
Pleeer = ([ 1f@P(a) do)
RTL
We also denote the weak LP(R™) by WLE(R™) and set
Ifllwes @) = ilipo/\[w({l‘ ER™: |f(z)| > AN,

where, and in what follows, w(E) = [, w(z) dz.

Let S(R™) be the class of Schwartz functions and let S'(R™) be its dual space. We now
introduce the weighted Hardy space.
Definition 1  Let w € A(R™) and p € (0,1]. The weighted Hardy space HE(R™) is defined
by

HER")={feS'R"): ¢"(f)(z) = j‘ilgl@ * f(x)] € LE(R™)},

where ¢ € S(R™) is a fized function with [, ¢(x)dz # 0 and ¢,(y) =t~ "¢(y/t) for any t > 0.
Moreover, we define ||f| gz @y = 16" (f)llzr,@n)-

It is well known that Definition 1 does not depend on the choice of ¢ (see [2] and [13]).
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In what follows, if w(z) = 1, we will denote LP (R™), WLP (R"™) and HP(R™) simply by
LP(R™), WLP(R™) and HP(R™).

Definition 2 Let p € (0,1] and w € Ao (R™). A p-atom with respect to w is a function a
supported in a cube Q such that

llall oo (2r) < w(Q)7HP (2.1)

Jin a(@)z® dz = 0 for every multi-index o with |a| < [n(q,/p— 1)], where, and in what follows,

[s] denotes the greatest integer less than or equal to s. (2.2)
The following lemma is Proposition 1.5 in [2] (see also [3]).

Lemma 1 Let w € Ao (R") and p € (0,1]. Let f € S'(R™). Then f € HE(R™) if and only if

f can be written as a series

=S 23
J
in 8'(R™), where each a; is a p-atom with respect to w and the coefficients \; satisfy

Z AP < 0. (2.4)

Moreover, the infimum of the sums in (2.4) over all decompositions (2.3) is equivalent to
1 ez em -

It is well known that the Lebesgue space LP(R™) for all p € (1,00) and the Hardy space
HP(R™) for all p € (0,1] are both special cases of homogeneous Triebel-Lizorkin spaces (see
[14], p. 244). However, this is not true for the weak Lebesgue space and the weak Hardy space.

We now turn to the weighted weak Hardy space, which is a good substitute for the weighted
Hardy spaces in the study of the boundedness of operators. Also, the weak Lebesgue space and
the weak Hardy space arise naturally as intermediate spaces of the real method of interpolation
between the HP(R"™) or LP(R™) spaces (see [7,8,10,12,14]).

Let p € (0,1] and w € Ao (R™). Define

Ay =3¢ €SR): sup sup (1 + |z|)I"(@/P=DIH"H Dg(2) < 00 ¢,
la|<[n(qw /p—1)]+1 z€ER™
where a = (a1, ..., a,) € (NU{0})” and D* = (8/0z1)** - -+ (8/0z,)*". Moreover, we set
I¢]l.a,. = sup sup (1+ |x‘)[n(qw/P*1)]+n+1|Da¢(x)|.

2€R" |a|<[n(qw/p—1)]+1

For f € S'(R™), we define

Gpuf@)=  sup sup |(f * 61)(y)]-

PEAp,0; Bllay,. <1 lz—y|<t

Gy, f is usually called the grand maximal function of f (see [5], p. 90).
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Definition 3 Letw € A (R"™) and p € (0,1]. Then the weighted weak Hardy space W HE(R™)
s defined by

WHE(R") = {f € S'(R") : Gy f € WIL(R™)}.
Moreover, we define ||f||WH5(Rn) = ||Gp7wf||WL5(Rn).

If w(z) = 1, the weak Hardy space WH!(R") = WH](R") was introduced by Fefferman
and Soria in [7]. WHP(R") first appeared in [8] (see also [10]). In [9], Zhang introduced the
space WHE(R™) for w € A;(R™) and established its atomic decomposition. We now generalize
Zhang’s result to weight w € Ao (R™).

Lemma 2 Let p € (0,1] and w € A (R™). For f € WHE(R™), there exists a sequence
{fr}2_., of bounded measurable functions such that

f=Y0r o frinS'(R"). (2.5)

Each fi, can be further decomposed into fr(xz) =, bri(z), where the sequence {by;}; satis-
fies
supp bg; C Qri, and Qp; is a cube (2.6)

Z (ka <2 kp ZXQ;“ < ci, (26)1

i
Xg being the characteristic function of the set E, c1 a constant and c1 < c||f|y, o (&)
bl oo () < c2* and f]R" bi(z)z* dx = 0, for |a| < [n(qw/p —1)]. (2.6)2

Conversely, if f € S'(R™) has a decomposition satisfying (2.5) and (2.6), then f € W HE(R™)

and ”fHWHP (B) < ccy, where ¢ is a constant.

In what follows, ¢ always denotes a constant which is independent of the main parameters,
but may vary from line to line.

To prove the lemma, we need the following weak-type summable principle (see [7] and [8]).

Lemma 3  Let (X,p) be any measurable space and p € (0,1). Let {fr}r be a sequence of

measurable functions such that for any A > 0 and all k € Z, we have
u(fo e X o |fu@)] > X)) <A77,

If 374 lex|P < oo, then Y-, e fr(x) is absolutely convergent almost everywhere and

u({meX: 3 crfi(a) >/\}> <f—p<zkjckp>xp.

k
Proof of Lemma 2 The proof is motivated by the atomic decomposition for HP(R™) (see [5]).

Let f € WHE(R™). Following the same argument as in the proof of Theorem 4.1 in [9], we
obtain an atomic decomposition of f satisfying (2.5) and (2.6).



Generalized Calderén—Zygmund Operators 145

Conversely, let f € S'(R") satisfy (2.5) and (2.6). For any given A > 0, we choose kg € Z
such that 2F0 < X < 2Fo+1 Now write

[e%) ko o)
o =D ft Y, h=F+F.

k=—oc0 k=—oc0 k=ko+1

Then G, ., f(z) < G, Fi(x) + Gp o Fa(x). Since

GpuwFi(z Z Gpwfrl(z) <c Z 2 < o),

k=—o0 k=—oc0
we have
{z eR": Gpuf(x)>(co+1)A} C{zeR": GpuFi(z) > coA}
U{z e R*: G, Fo(z) > A}
={zeR": G, F>(z) > A}
Set Ay, = Ulziko—&-l U, Qy;, where Q5 is the cube with the same center as Q; and side length
2,/n+ 1 times the side length of Qy;. Noting that w € A, 1(R™) for any € > 0 (if g, = 1, then

€ can be 0), we have

qute
w(Ar,) Z S (@) < Z 3 (@) <|ka|)

k= ko+1 i k= k0+1 i
<c Z Z (Qui) < ccq Z 27k < e NP,
k=ko+1 i k=ko+1

We now estimate w{x ¢ Ag, : GpFa(x) > A}. We first have
Gras@) < Y 3 Gpubuta
k=ko+1 1

Choose any ¢ € S(R™) such that [[¢[|4, , < 1. Let x3; be the center of Qx; and P,(y) be the
[n(qw/p — 1)]-order Taylor expansion of qﬁ(%) in y with respect to y = x;. Then, if z ¢ Ay,
|bri * ¢ ()| = —

= / o) [6(5Y) - P
T x| oo

t
18|=[r(gw /p—1)]+1
‘y — T [n(qw/p—1)]+1

we have

1

dy
[n(qw/p—1)]+n+1

< 02k< (le)

- |

)
T — Tp]

where 6 € (0,1) depends on z, xy; and y, I(Qy;) is the side length of Qy; and c is independent
of k, ¢ and ¢. Thus for z ¢ Ay,, we have

Z(Qki) > [n(qw /p—1)]+n+1

|:ZI—$]“"

prwbki(m) S Czk (
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Now choose g € (W, p) and 0 < € < ¢([n(gu/p —1)]+n+1)/n — qo. Then

N [r(aw/p=1D)]+n+1
w({mgéQZl (M> “ > A

ol ([n(qw/p—1)]+n+1)
. q\|nqew/P— n

S = < l(QkZ—) > w(z)dzx

A B\Qp, |z — kil
<< Z / (2 ) alln(au /p=Dl4n4)
TN 2 e <o sl <van@u)p e \JT = 2

w(z)dzx

< £ 3 elBlow VAIQu)P)

pY 27a([n(ge /p—1)]4+n+1)

i=
< MZQJ{TM]W+TLE q([n(qw /p—1)]+n+1)}
7=0

< w(@Qk)
< \a

where ¢ is a constant independent of k, i and A, and B(z,7) ={y € R* : |y —z| < r}. Thus,

by Lemma 3, we have

CCl > _ CcC1
w{z ¢ Ar, 0 GpuFa(z) > A}) < Z YoM < 51 Y 2k < -
k ko+1 ¢ k=ko+1

This completes the proof of Lemma 2.

3 0-Type Calder6n—Zygmund Operators

Following Yabuta [6], we generalize the Calderén—-Zygmund operator to its 6-type.

Definition 4  Let 6 be a non-negative non-decreasing function on R = (0, 00) with fo -1

dt < oco. A measurable function K on R* X R" \ {(z,z) : « € R"} is said to be a O-type kemel
iof it satisfies

(i) [K(z,y)| <c/lx —y|" forz #y,

(ii) |K(z,y) = K(z + h,y)| + |K(y,2) = K(y,z + h)| < cO(|hl/|z —yl) /| —y|" for [h] <
|z —y|/2.
Definition 5 Let T be a linear operator from S(R™) into its dual S'(R™). We say T is a
0-type Calderon—Zygmund operator if

(i) T can be extended to a bounded linear operator from L*(R™) into weak L?(R"™),

(ii) There is a O-type kernel K(xz,y) such that Tf(z) = fsupp f K(z,y)f(y) dy for all
f € CX(R™) and for all x ¢ supp f, where C°(R™) is the space of all infinitely differentiable

functions on R™ with compact supports.

The following theorem is motivated by the result in ([4], p. 49) and is of interest in itself.
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Theorem 1 Let 6 be a non-negative non-decreasing function on Rt with fol O(t)t~' dt < oo.

Let T be a linear operator associated with a @-type kernel. Then the following conditions are

equivalent:
fQ |Ta(x)| dx < cl|al| g ) |@Q] for a € L>(R™) with supp a C Q, a cube in R™; (3.1)
T is a bounded map from H'(R™) into L*(R™); (3.2)

T is a bounded map from LP(R™) = {f € L>(R™) : supp f is compact } into
BMO(R"™); (3
T is bounded from Li(R™) into WLZ(R"™) for some q € (1,00); (3
T is bounded on LI(R™) for some ¢ € (1,00); (3.
T is bounded on L?(R™). (3

oS Ut W
— — ~— —

To prove Theorem 1, we need the following interpolation of sublinear operators in ([4], p.
43).

Lemma 4 Let T be a sublinear operator which is bounded from L3°(R™) to BMO(R") and
from HY*(R™) to L*(R™). Then T is bounded on LP(R™) for all p € (1,0).

Proof of Theorem 1 The equivalence of (3.1), (3.2) and (3.3) is a simple consequence of the
theorem in ([4], p. 49) and (2.3), (2.4) and (2.5) in ([6], p. 21). Now, suppose (3.1) holds; then
(3.2) and (3.3) also hold. Therefore, by Lemma 4, we know that 7" is bounded on L?(R™) for all
€ (1,00). Thus, (3.6), (3.5) and (3.4) all hold. Obviously, (3.6) implies (3.5) and (3.5) implies
(3.4). Now we need to show that (3.4) implies (3.1). To do so, we first prove that if T" satisfies
(3.4), then T is bounded from L!(R") into WL*(R"). Let f € L*(R™) and A > 0. Using the
Calder6n—Zygmund decomposition (see [3], p. 140; or [5], p. 17), we know that f = g + b,
where b= )", bj, and there exists a sequence of non-overlapping cubes {Qy}, so that
lg(z)| < e, for a.e. z € R™. (3.7)
Each by, is supported in Qy,

/ |br ()| dz < cA|Qk|, and / bi(z) dx = 0; (3.8)
Rn Rn
Z |Qr| < A7 fllL (@) (3.9)
k

Thus,
{z eR": |Tf(z)|> A} C{x eR": |Tg(zx) > A2} U{z e R*: |Tb(x)| > A/2} =1\ UII,.
Since T is bounded from L%(R™) into W LZ(R™) for some g € (1,0), we have
T3] < 2 gl ) < A la o,

where in the last inequality we use (3.7), (3.9) and the fact that if ¢ Qy, then g(z) = f(z).

This gives our desired estimate for |I,].
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Now set Ey = Uy Q}, where @, denotes the cube with the same centre as @ and side length
2y/n + 1 times the side length of Q. It is clear that

|II,\| :|II)\0E,\|+|II)\\E)\|

< |E\ + 2/\71/ |Tb(x)| dz
]R"\E)\
<A Y fllprmny + 2271 / |Tb(x)| d.
TR"\E)\

Suppose that zj is the centre of Q) and I(Q}) is the side length of Q. Since ka bi(y)dy =0
we have
B, = / |Tb(z)| dx
Rn \E)\
< K (w,y)bi(y) dy| da
w/R" \E)\ Z

kY Qk

5 2k:/"\m/,c |K(z,y) — K(z,z1)||be (y)| dy dz
= 1
: czk:/Qk ‘bk(y”{ /R"\EA 0<||z - m:|> |z — x| dm} dy
{0} [ il
= k QK

c{/o @dt},\; Q]

< el fllzr(mny-

IN

IN

It follows that |II| < c/\_1||f||L1(Rn). It now follows from our estimates of |I,| and |II,| that
T is bounded from L!(R") into WL!(R"). By our hypothesis (3.4) and the Marcinkiewicz
interpolation theorem, we conclude that T is bounded on LP(R™) for any p € (1, q). Therefore,

for a as in (3.1), we have
/Q |Ta(z)|dz < c|Tall Lo @) Q"7 < ¢llall o @n) Q1P < ellall L= (2n) Q-

Thus (3.1) holds and the proof of Theorem 1 is complete.
The following theorem follows from Theorem 1 and ([6], Theorem 2.4).

Theorem 2 Let 0 be a non-negative non-decreasing function on RT with fol O(t)t 1dt < co.
Let T be a linear operator associated with a 0-type kernel and let T satisfy any one of (3.1)—(3.6)
in Theorem 1. Then

For any weight w € A,(R™) with p € (1,00),

NTfllLe )y < ell fllLe@nys (3.10)

where ¢ depends only on n, p and the A,(R™)-constant of w.
For any weight w € A1(R™),

T fllwey @y < el flly@ny, (3.11)
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where ¢ depends only on n and the A (R™)-constant of w.

(3.11) and (3.12) also hold for the truncated mazimal operator Ty of T, where

T f(x) = sup
€>0

[ Kews. (3.12)

We do not know whether all f-type Calderé6n—Zygmund operators are bounded on HE(R™)
or WHP(R"™). However, we shall prove in Theorems 3 and 4 that the answer is affirmative for

the following special case of 6-type operators.

Definition 6  Let § € (0,1]. A linear operator T' from S(R™) into its dual S'(R™) is said to be
a 0-type Calderén—Zygmund operator if T satisfies any one of (3.1)~(3.6) and there is a kernel
K(z,y) on R* x R" \ {(z,z) : € R"} such that for all f € C*(R™) and all x ¢ supp f, we

have

Tf(x) =/ K(z,y)f(y) dy, (3.13)
supp f
where K satisfies
K (z,y)| < ¢/|z —y|" forz #y, (3.13)1
K (2,9) — K2,y + )| < cll?/lo — g™, if |h] < |0 — yI/2, (3.13);
K (y,2) = K(y + b, )| < c|h|*/|x = y["*, if |h] < |z —yl/2. (3.13)s

As a consequence of Theorem 1 and ([2], Theorem 2.8) we have the following result.

Lemma 5 Letd € (0,1] and let T be a §-type Calderdn-Zygmund operator. We have:
Ifpe (1,00) and w € A,(R"), then T can be extended to a bounded operator on

Lr (R™); (3.14)
Ifpe (n/(n+90),1] and w € Ay(R™) with ¢ € [1,(1+ 6/n)p), then T can be extended to a
bounded operator from HP(R™) into LP(R™). (3.15)

In all cases, the operator norm of T depends only on the constants for the kernel and the

weight.

Definition 7  Let T be a Calderén-Zygmund operator of 0-type (see Definition 5) or of
semi-(0, p)-type (see Definition 8 in Section 4). We say T*1 = 0 if [, Ta(x)dz = 0 for all
a € L>(R™) with compact support and [, a(z)dz = 0.

Theorem 3  Let § € (0,1] and let T be a §-type Calderdn—-Zygmund operator. If T*1 = 0,
n/(n+6) <p<1andw € Ay(R"™) with g € [1, (14 6/n)p), then T is bounded on HE(R™).

Proof Fix ¢ € S(R™) and fRn ¢(z)dz # 0. By Lemma 1, we only need to show that for any
p-atom a with respect to w, [|(Ta)*||pz @) < ¢ with ¢ independent of a. Suppose supp a C
B(xo,r). Let w € A,(R™) with ¢ € [1,(1 + §/n)p). We choose py € (g, (1 + §/n)p), and write

I70) ey = [ e @t i+ / o T @) dr = Ly L
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By Lemma 5, we have

P/Po
Ly < (/ [(Ta)*(z)]P°w(z) dz w(B(zq, 4r))=P/ro
B(zo,4r)

p/Po
<c (/B(a:o,r) la(x)|Pow(x) da:) w(B(x(),r))l—p/po

<c

— )

where c is independent of a.

To estimate Lo, we first estimate (T'a)*(z) when z ¢ B(xzq, 4r). In fact, we have
1 T—y
Ta(y)—-o (=) d
/ CTaw)mel— y‘

[ (s(75) - o(25))

Tax pi(a) =

1 ] T — xo
< y_modrlTa(y)lso( ; )—w( ; )‘dy
1 N 1/
" Jar<ly—aq| <2570l t" Jy—ao|> Lzzol
=E, + E; + Es.

By the mean value theorem and Holder’s inequality, we have

( ) 9 1/2
z—x9—v(y—=
( - t 0)‘ v 0|2dy>

1
By < —|Tal|z2(@n) /
t +1 ly—xo| <27
,r.n—',-l

<
= “To — o] w(B(wo, 7)) /7’

where v € (0,1) depends on z, y and zg, and V = (8/0xy,...,0/0x,). Here, we use the

inequalities

|z — 2o —v(y — zo)|" !

tTL+1

ozl

and |z —zo —¥(y — zo)| > |z — 20| — |y — 20| > |z — 20|/2. Using the same inequalities, we have

1
E, = n+1/ / a(2)(K (y, 2) — K(y, 0)) dz
t 2T§‘y,zo‘<@ B(zo,7)

X V<p<m_x0_:(y_x0))‘lywoldy
pntd 1
>¢ 1 1/ nto—1 dy
|z — @o|" T w(B(x0,7))P Jor<ly o) <lzzzol |y — @0l
rntl |z — o]
1 ( ) if6=1,
_ “lz — zo|" w(B(zo,r)) /P "\ 4r '
= n+d
r if § € (0,1).

‘o — o[ F3w( Bz, 1) /P’



Generalized Calderén—Zygmund Operators 151

Now consider E3. We have

1
Es St—n

. / a(z) (K(y,z) — K(y,z0)) dz
ly—z0|> =5 |/ B(zo,r)

< (o) + e (7))
pntd 1

< (w—y) n (x—wg) d

C—————————————— -

= (B0, ) gzt fy— o[\ AN v
,,,,n+5 -

< .
= T2 = ao|"F5w (B0, 7)) /P

Let z ¢ B(zg,4r). If 6 =1 then

,,,n+e
* < 3.16
(Ta)"(z) < c€|ac — zg|"tew(B(zo,r))1/P ( )
holds for any € € (0,1). If § € (0,1), then
n+4§
(Ta)*(z) < cs - (3.17)

|z = @o|"Hw(B(wo, 7)) /P

Note that ¢ < (1+d/n)p. If § = 1 we choose € € (0, 1) such that ¢ < (1+¢€/n)p;if § € (0,1)

we choose € = 4. Then, in all cases, we have (n + €)p > ng and

I < / r(n+e)p (2)d
Ce w(x)dzx
2= R\ B(wo,ar) |2 — 0| "FIPW(B(x0, 7))
rntan & / w@
=Ce——— ——  _dx
(U(B(CL‘(), T)) 1—p V2! 2r<|z—xo <237 ‘ZC - $0|(n+€)p
= 1
S e IZ; 2l[(n+e)p—nq]

< Cey
where ¢, is independent of a.
This completes the proof of Theorem 3.

Theorem 4 Let § € (0,1] and let T be a §-type Calderdn-Zygmund operator. If T*1 = 0,
n/(n+6) <p<1andw € Ay(R") with g € [1,(1 +6/n)p), then T is bounded on W HE(R™).

Proof For any given A > 0, let ky € 7 such that 2k < X\ < 2koFl Let w € A,(R") and
f € WHP(R™). Then by Lemma 2, we write

k=—oc0 k=—o0 1 k=—oc0c 1 k=ko+1 ¢

where by, ;’s are as in Lemma 2. We choose pg € (¢,(1+6/n)p). By Lemma 5, T is bounded on
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LPo(R™). Then,

w{z €R™ : Gp o (TF1)(z) > A})

| /\

||GP7 (TF1)| LPO(]R")

IN

7 )

ko 1/po
ol [Zw@m]

k=—oc0 [

Po

IN

C”f“f;VHg(Rn)
AP ’

IN

which is our desired estimate.
Now set Ay, = Upey,+1 U; @ri> where Qj; is the cube with the same centre as Q; and side
length 2/n + 1 times the side length of Qg;. Noting that w € A,(R™), we easily obtain

Ako = Z Z ka <C Z Z ka 7>\p||f||WHP(Rn

k=ko+1 < k=ko+1 <

To finish the proof, we still need to estimate w({z ¢ Ak, : Gpw(TFz)(x) > A}). Note that

G TF2 Z ZGp, Tbkz )

k=ko+1 ¢
Choose ¢; such that ng/(n+6) < g1 =n/(n+§—¢€) < pandlet ¢ € A,,. Let yi; be the
centre of Q;. Arguing as in the proofs of (3.16) and (3.17) we have, for = ¢ Q5;,
2k|Qki‘q/q1

P, ‘x — yki|nQ/Q1 !

[ Tr,i + ()] < cl[4]| 4

Therefore, for = ¢ Q3.,
2¥| Qi 2/

Gpw(Tbyi)(z) < “To = ym|malas

(3.18)

We claim that for any A > 0,

Apy - Qi Ab) < © 3.19
wlqz ¢ A, - w(Qri) /1 |z — ypg| e/ > SV (3.19)

where c is independent of k and :. Note that if z ¢ Ay, then |z — yg;| > /nlg;, where ly; is
half the side length of Qj;. Thus, for A > w(Qki)_l/ql(\/ﬁ)_"Q/ql, we have

_ |Qki|q/q1 B c
w <{$ ¢ Ako : W(Qki)l/ql‘x _ yki|nq/‘h > A = W((b) < N

1/n
For \ < W(Qki)—l/m(\/ﬁ)—nq/ql, choose r = (%) so that r > y/nly;. Then,

A, - @/ AL < w(By,r) = —
w z ¢ ko - w(Qki)l/q1|x _ yki\”q/ql > < w(B(yri, 7)) = N
Thus (3.19) holds. By (3.19) and Lemmas 3 and 5, we have

f b (n
w({e ¢ Av,: Gpu(TF)(@) > M) < 5o Z 3 2krw(Qp) M,

k=ko+1 1
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where c is independent of A and f. This completes the proof of Theorem 4.
When p € [n/(n+1),1) and § = n(1/p — 1), we have the following theorem on the bound-
edness of §-type Calderén—Zygmund operators.

Theorem 5 Letp € [n/(n+1),1) and § =n(1/p—1). If T is a §-type Calderén—Zygmund
operator, T*1 =0 and w € A;(R"™), then T is bounded from HE(R™) into W HP(R™).

Proof By Lemma 1, it suffices to show that for any p-atom a with respect to w and for any
A > 0, we have
w{z e R" : Gpo(Ta)(z) > A}) < )\p (3.20)

where c is independent of a.
Suppose supp a C @ and let @* be defined as in the proof of Theorem 4. By (3.14) in
Lemma 5, we have that T is bounded for any py € (1,00) and w € A, (R™). Therefore,

w{z € Q"+ Gpu(Ta)(z) > A}) < g Gy o(Ta)(@)]w(x) da
{z€Q*: Gp o (Ta)(z)>A}

S ||aHLP0 ]Rn)w(Q )1 p/po S F (321)
where c is independent of a.

On the other hand, note that p = n/(n + 1) implies that fR" Yz®dz = 0 for any a €
(NU{0})™ and |a| = 1. As in the proofs of (3.16), (3.17) and (3.18), we have

Q|7

Gpw(Ta)(z) < cw(Q)l/Plx — zo[n/P

for © ¢ Q*, where zg is the centre of Q. Following the proof of (3.19), we obtain

w({z ¢ Q" Gpu(Ta)(z) > A}) < )\p (3.22)

Combining (3.21) and (3.22), we establish (3.20) and this completes the proof of Theorem 5.

4 Other Generalizations of Calder6n—Zygmund Operators

We now further weaken our 6-type operators to the following semi-(6, po)-type operators. We

shall prove in Theorem 6 the boundedness of these weaker operators on certain LP (R™) spaces.

Definition 8 Let 1 < py < oo and 0 be a non-negative non-decreasing function on RT with
f01 O(t)t~1dt < co. A linear operator T from S(R™) into S'(R") is said to be a semi-(6,py)-type
Calderon—Zygmund operator if T satisfies the following two properties:

(1) T can be extended to a bounded linear operator from LP°(R™) into W LFe(R™);

(2) There is a kernel K(z,y) on R xR™\ {(z,z) : € R"} such that for all f € C°(R™)
and all ¢ supp f, we have T f(z) = fsupp f K(z,y)f(y) dy, where K satisfies the following

two conditions:

2h [K(z,y)| <c/lz —y[" for allz #y;
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(2)2 [K(z,y) — K(z,2)] < |y — z|/|z — 2[) /e — 2", if [y — 2| <[z — z[/2.
Our next theorem complements Theorem 2.

Theorem 6 Let § be a non-negative non-decreasing function on Rt such that

/la(t)/tdt<oo

and 1 < pg < co. Let T be a semi-(6,po)-type Calderén—Zygmund operator. Then T is bounded
on LE(R™) for 1 < p < po, where w € A,(R") satisfies

w(z), ke (4.1)

Proof As in the proof of Theorem 1, T is bounded from L!(R™) into W L*(R™). By hypothesis,
T is bounded from LP°(R™) into W LPe(R™). It follows from the Marcinkiewicz interpolation
theorem that 7' is bounded on LP(R™) for any p € (1,pp). Now Theorem 6 is a simple conse-
quence of Theorem 1 in [15].

Note that the power weight obviously satisfies restriction (4.1) above. Some other examples
of weights satisfying (4.1) can be found in [15].

In what follows, we say a semi-(6,pg)-type Calderén-Zygmund operator is a semi-(d, pg)-
type Calderé6n—Zygmund operator if # = t°. The following theorem shows that Theorems 3, 4
and 5 can be improved for weights satisfying (4.1).

Theorem 7 Letd € (0,1] and py € (1,00) and let T be a semi~(8, po)-type Calderén—Zygmund
operator.

(1) IfT*1=0and n/(n+46) < p <1, then T is bounded on HE(R™) and W HE(R™)
separately, where w € Ay(R™) satisfies (4.1) with 1 < ¢ < min{po, (1 + §/n)p},

(2) Ifn/(n+1)<p<1l,éd=n(l/p—1) and T*1 =0, then T is bounded from HP(R™)
into W HP(R™), where w € A;(R™) satisfies (4.1),

(3) Forn/(n+1) < p < 1, there exists a semi-(8,po)-type Calderén—Zygmund operator
satisfying T*1 =0 and T is not bounded on HP(R™), where § =n(1/p —1).

Proof With Theorem 6 replacing Lemma 5 in the proofs of Theorems 3, 4 and 5 we can prove
(1) and (2). We omit the details.

We now prove (3) for n = 1. The other cases are similar. For £k = 0,1,2, ..., let I;' be the
interval [k, (2k + 1)/2) and I, be the interval [(2k + 1)/2,k + 1). Note that (2k + 1)/2 is the
midpoint of the interval [k, k + 1]. Now we define the kernel K(z,y) on R X R as follows:

y' /P ([2] + )Y, i 0 < [y] < [z], @ € I} for some k € N,
K(z,y) = _yl/p—l/([m] + l)l/p7 if 0 <[y] <[z], z € I}, for some k € N,
0, otherwise.
Define T' on L%(R) by
Tf(@) = p.v. [ Ke)f) ds
R
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We first claim that 7*1 = 0. Let a be a p-atom. Then Ta(z) = 0 if z < 0. Note that for
each x > 0 with = € [k, (k + 1)/2] for some k € NU {0}, there exists & = x 4+ 1/2 such that
Ta(z) = —Ta(Z). Thus [, Ta(z) dz = 0.

We next show that T is bounded from LP°(R) into WLP°(R). Let f € LP°(R) with compact
support J. Then for x € R we have

llflleeo ()

z[1/po

15 = | [ Kles)fw) d] < 1K s g sy ooy <

where 1/py + 1/p, = 1. Hence T is bounded from L?°(R) into W LF°(R).

Note that K(x,y) obviously satisfies (2); of Definition 8. To see that K(x,y) satisfies (2),
of Definition 8, we first assume that 0 < z < y. Let 0 < [y] < [z] be such that 2|y — z| < |z — 2.
Then we have 0 < z < y < z. Hence

ly|t/P—1 2|/

K - K < -

| (m,y) (w,z)| = ([$]+1)1/p ([$]+1)1/p
where the last inequality follows from 0 < z < 2 which implies that 2 — z < [z] + 1. Hence (2)
of Definition 8 is also valid. For z < 0 < y and 0 < [y] < [z], we have

D e E e T e
I+ Tla—zp

ly|/P!
]+ 1)i/p

ly — z[t/P 1

K (w,y) = K (2,2)| < |

= |z —z|tP

for |z — z| > 2|y — z|. Note that the last inequality above follows because z < 0 and 0 < z,y
imply that |z — z| = « + |2| and |y — z| = y + |z|. Hence |z — z| > 2|y — z| implies that
x + |z| > 2(y + |2|), i.e. © > 2y +|z|. Thus 2([z] + 1) > = + |2z| = |z — z|. Hence (2)y of
Definition 8 is also valid.

Finally, we give an example to show that 7" is not bounded on H?(R). Let a = x[1 3] —2X[1,2]-

Then a is a p-atom. For 3 < x we have

1/p—1 2 Yy 1/p—1
e =| [ e [ e @
13] ‘ +1| [1,2] |[$]+1|
> s (| [ Wity [ 2ty
2‘x|1/p <‘/[1,3] [1,2]
_c
= el

where ¢ is a constant independent of z. Thus, we have (Ta)*(z) > ¢/|z|'/? if 3 < x. Conse-
quently Ta ¢ HP(R). Hence the theorem is established.
In the next theorem we consider the boundedness of another generalization of Calderén—

Zygmund operators.

Theorem 8 Let 6 be a non-negative non-decreasing function on Rt and let K be a measurable
function on R™ X R™ such that

(a) |K(z,y)| <c/le—y|" forallz#y,

(b) 1K (2,) — K(2,2)| < cblly — 2l/le — 2) /|2 — 217, if |y — 2| < |o — 2|/2.

Let p € [1,00) and let w € A5(R™). We then have:
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(i) Let T be bounded from LP°(R™) into W LPe(R™) with po > p and po # 1 such that
Tf(z)=p.v. | K(z,y)f(y)dy.
RTL
If fl OO Intl gt < 0o, then T is bounded from W HE(R™) to WLE,(R™) for 0 < p < 1.

t(—p)nt1l

(ii) Let T be bounded on LP°(R™) with po > p and po # 1 such that

Tf(z)=p.v. | K(z,y)f(y)dy.

Rn

If T*1 = 0 and fl ()|t gy < oo for some € > 0, then T is bounded on W HE(R™) for

t(P—p)n/p+1
n/(n+1)<p<1andpell,(1+1/n)p).
Proof (i) For any given A > 0, we choose ky € Z such that 2k < X\ < 2ko+1 Let f € WHE(R™).
We write f = Fy + F5 as in the proof of Theorem 4.
By Lemma 2 and the fact that T is bounded from LP°(R™) into W LP°(R™), we easily obtain

C||f||€VHg(Rn)
AP )

Now let us estimate TFy(z). Let By, = UZOZkO_H U, @;ﬂ-, where @ki is the cube with the
same centre as Q; and side length (3/2)(~k0)?/("P) /n times the side length of Qp;. Since
w € A5(R"), Lemma 2 implies that

B < 3 Se@ace S Yotan (124)

k=ko+1 1 k=ko+1 1<

w{z eR": |TFi(z)| > A}) < (4.2)

(oo}

k—ko)p
_ 3 0 _
<l X 2 (3) S e
k=ko+1

On the other hand, let [;; be half the side length of Q; and let yi; be the centre of Qy;.
Then

/ _ |Thy(z)|Pw(z) de
R\ Qg

_ [K(z,y) — K(2, Yk )|br,i(y) dy
R\ Qi 1Y Qi

i\ 1
< 62’“1’|Qki|1’ 0 < v/l ) w(z)dz
]R" \ka

T — Yl |z — yri|™P

p

w(z)dz

\/_lkz>

) (k=k0)p/(nP) \/nly,; <|@—yp; | <291 (2) (k=k0)p/(nB) \/nl,,; <|$—ykz|

< e2M|QpilP x Z/

j=1 2 E
1
&g yk~\”pw($) dz
< c2kp Z9(273'(2/3)(kfko)p/(nﬁ))pg*jnp(2/3)(kfko)pz/ﬁw(Qkij)
] 1
< c2kp (2 2 3 (k—ko)p/(nP)\pg—inp (9 /3)(k—ka)p®/p <|ka>
c Z (2/3) ) (2/3)" w(Qri) O]

(oo}

< e2"0(Qus) Z —3(2/3)(k=ko)p/(nP))poin(p—p) (9 /3)(k—ko)(P—P)p/P



Generalized Calderén—Zygmund Operators 157

where Qr;; denotes the cube with side length 2j+2(3/2)(k’k°)p/(”f’) v/nly; and centre y;. Thus,
/ |TFo(z)|Pw(z) da
R» \Bko

< Z Z/ _ | Thyi(2)Pw(z) dx

k=hotl i "\ Qi

<ec Z 2’“”2 (Qri) Zg 7(2/3)(k=ko)p/(np)ypoin(p=p) (2 /3)(k=Fko)(P=P)r/P
k=ko+1 j=1

§C||f||€VHP(Rn Z 29(2 i(2/3)(k=ko)p/(np)poin(p=p) (9 /3)(k=ko)(p—P)p/P
k=ko+1j=1

> 2/3 (k— kD)P/("P))

21]
TS <2/3“°”P/Pz R

=ko+
1
( )P|Int|
< el Wy oy /0 s

< C”fHWHg(Rn)-

Hence we have

C”f”%/]{f}(]gn)

w({z €R™: [TFy(z)| > A}) < ¥

(4.3)

Thus (i) follows from (4.2) and (4.3).

(ii) Routine arguments as in (i) above show that

ll F1y e zn
A} < W HE (R™)

w{z e R" : Gpu(TF1)(z) > 7

cllf Il gz o
and w(By,) < T‘“().

Let us now estimate |, Gpo(TFy)(2)|Pw(x) dx. We assume for the time being that for
R”\ By, P, g
°0

z ¢ @ki, we have
Gpow(Thyi) (@) < 2¥QualP/Ple — yia| "P/P| In(|2 — yral |Qual /™) 72/P 7, (4.4)

where c is independent of ¢ and k. We then have

[ GrtrmsE ety

o0

. P
< k %:H; /}R \5kl[Gp,w(Tbkyl)(x)] w(z) dz
<ec Z QkPZ\Qk P
k=ko+1

1
x]z_;/2 ‘nﬁ

3 (2)(k=ko)p/(nP) \/nly; <|z—yp; | <29 T1 () (k=ko)p/(nP) \/nly; |z — Yri
x| In(|@ — ygil |Qril /™) 72 Pw(z) d
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<ec i (2/3 (k—ko)p ZZQ Jpn <M ]) 76pw(Qkij)

k=ko+1 v j=1

k=ko+1 j=1

co oo —2—€p
<WMWWZ§X-H)
k=1 =1

< el F Iy g (e
Thus (ii) is proved once we establish (4.4). We now prove (4.4). Let # ¢ Qy; and choose
any ¢ € A, . As in the proofs of (3.16) and (3.17), we have

[ o5
/n Tbk,i(y)tin {90 (x - y) -9 <%>} dy

1 z—y T — Ygi
<L ol o (7Y = (252 aw
ly—yri| <2k

1 1 /
U ol <ly—yril <|lm—yril /2 " J|y—yri| > o —yril /2
=Q1+ Q2+ Qs.

By the mean value theorem and Holder’s inequality, we have

/ 1/po
1 T —yri — (Y — i) \ |7 /
Q1 < WHTbk,iHLvo(Rn) (/ Vo < ( ) ly — yri|™ dy
ki

t

Ui | Qui|V/Po | Qi T/
T Sc2 1

T — ypi|"T T — yp|"F

M

S|

|Tbk’i * (pt(il,‘)| =

< c2F|Qpi|H/Po

< e2¥QuilP/Pla — yril PP\ In(|@ — yuil |Quil ™) 7P,
since p < (1+ 1/n)p. Here v € (0,1), 1/po + 1/p;, = 1 and we have used the fact that

sup |z|" T Ve(z)| < 0o
TER™

and |@ — yri — Y(Y — Yki)| > |& — yri|/2. Using the same fact, we have

1
P ([ @) - Kol a:)
2 <|y—yril <|z—yril /2 ki

T —Yki — VY — Yki
ch( t( )>‘y—ykidy

2! |Z — yki| 1
W/ / 0<| —o) e 4
T — Yki 2 <|y—yri|<|z—yri|/2 Y Qri Y — Yki Y — Yi

== Ykil
c2k e 0(r)
S T et — — .
T e - ykz|”+1 /,c </Zzyk| 2 dr) |z — yri| dz

B i (r)|lnr|2/p+€|lnr|_2/1’_€d 14
|a:—y,c [ g, \ 2 el n(p—p)/p+1 pi—n(o-p)/p & |z = ykil dz.

X

IN
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|Inr|~2/P—¢
rl—n(p—p)/p

0 <2 / In <72|Z _y’”'>
o=yl PP J g, | — Yril

< 2%|Qui PP — yrs| TP In(|z — ypal| Qi ~/ )| 2P

Note that if r is sufficiently small, then is non-increasing on r, and we have

—2/p—e B
o = g7/ d

For Q3, we have

0 <L (/MmAmmm@—Kmmmw)

U Jly—ypi| > |z —yri| /2
r—Yy

T —y T — Yki
—_— d
{le ()] [ (52) o
2" — Yk 1 — ki
o UL o (o) o= e e (552
tn ly—yril >|z—yril/2 Qi |y — Yl |y — Yri|™ t

k
— 1
tr ly—yri| >|z—yril /2 Qri |y - ykl| ‘y - yki|n
= Q31 + Q3.

For Q31, we have

2k 2|z — yu; 1
On <2 {/9<ﬁ_ﬂgd% |,
" Sy le—vil/2 W \ |2 — Yl Y — Yl

ok lri 2
< —j — / 0 <7_T : > r"Ldr
‘J? ?sz| 0 |J? ykn‘

! 2/pte
:c2k/‘z wil O(r)|Inr|?/P r”ﬁ/p|lnr|_2/p_e dr
0

r(P—p)n/p+1

< e2%|QuilP/P |2 — yai| PP In(|2 — yai||Qpa| T2,

where we use the fact that r"ﬁ/”| 1n7“|_2/p_6 is increasing on r when r is small. Using this fact

for @32, we have

2k — Yki 1
Qs <07/ {/ 0<M> dz}idy
— n n
‘SC - yk1| ly—yri| >z —yKi|/2 Qri ‘y - yk1| |y - ykl|

k ki 2/pte
= / /‘y it /p—Tnp/p“nT\_Q/p_e dr dy
ly—yri|>|z—yril/2 /O

- ‘x — ykl|” r(P—p)n/p+1
_ _9/p—
c2k / |QurilP/P In (Iy _yki|> [p=e dy
T = yril™ Sy g3 e 2 1Y — YRl PP Q| /™
c2k

In <|SC - ykz|> _2/10_6/ \Qki|ﬁ/p_ dw
B ‘CE _yki|n |ka|1/n |w|>|z—yril/2 |w|nﬁ/p

c2*|QuilP/P|z — yral PP (|2 — yral|Qual M)/

IN

Thus (4.4) is established and this completes the proof of (ii).
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Combining Theorem 6 with Theorem 8, we easily obtain the following boundedness theorem

for semi-(0, py)-type Calderé6n—Zygmund operators.

Theorem 9 Let py € (1,00) and 6 be a non-negative non-decreasing function on R*. Let T
be a semi-(8, po)-type Calderdn—Zygmund operator. Let p € [1,pg) and let w € Az(R™) satisfy
). Then we have:

() If f, S gt < oo, then T is bounded from W HE(R™) to WLE(R™) for 0 <p < 1;

il) IfT*1 =0 and 1Milz/]ﬁ'edt<ooforsomee>0 then T is bounded on W HP (R™
) If ; 5

0 tE—p)n/p+1

forn/(n+1)<p<1landpe(l,(1+1/n)p).
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