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1 Introduction

Calder�on{Zygmund operators and their generalizations on the Euclidean space Rn have been ex-

tensively studied [1{6]. In particular, Yabuta [6] introduced certain �-type Calder�on{Zygmund

operators to facilitate his study of certain classes of pseudo-di�erential operators (cf Coifman

and Meyer [1]). The results in this paper are of three kinds. First, Theorem 1 gives sev-

eral equivalent conditions for a �-type Calder�on{Zygmund operator to be bounded on L2(Rn).

Second, we show that our �-type Calder�on{Zygmund operators are bounded on spaces like

Lp!(R
n), weighted weak Lebesgue spaces, weighted Hardy spaces and weighted weak Hardy

spaces (see Theorems 2{5). We note that our results are closely related to others recent work

on weighted weak Hardy spaces [7{12]. Third, we weaken �-type Calder�on{Zygmund operators
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to semi-(�; p0)-type Calder�on{Zygmund operators and prove in Theorem 6 that such opera-

tors are bounded on the power-weighted Lp(Rn). In Theorem 7, we prove that our operators

are even bounded on the power-weighted Hardy space and the power-weighted weak Hardy

space. The Sharpness of our results is also discussed in this theorem. The boundedness of other

generalizations of Calder�on{Zygmund operators is given in Theorems 8 and 9.

2 Preliminary Results

Let 1 < p <1. Following [2,3], a weight ! � 0 is a Muckenhoupt Ap(R
n) weight if�

1

jQj
Z
Q

!(x) dx

��
1

jQj
Z
Q

!(x)�1=(p�1) dx

�p�1

� c;

where c is a constant independent of the cube Q; and where, and in what follows, all the cubes

have their sides parallel to the axes. The class A1(R
n) is de�ned by letting p! 1; namely,

1

jQj
Z
Q

!(x) dx � c essinfx2Q !(x);

where c is independent of Q: The smallest value of c is called the Ap(R
n)-constant of !: We

also de�ne A1(Rn) =
S
p�1Ap(R

n) and for ! 2 A1(Rn); we set

q! = inffq � 1 : ! 2 Aq(R
n)g

and call q! the critical index of ! (see [2]).

Let 0 < p < 1 and let ! be a locally integrable non-negative function. We denote the

weighted space Lp(Rn ; !(x)dx) by Lp!(R
n) and set

kfkLp
!(Rn ) =

�Z
Rn

jf(x)jp!(x) dx
�1=p

:

We also denote the weak Lp!(R
n) by WLp!(R

n) and set

kfkWLp
!(Rn ) = sup

�>0
�[!(fx 2 R

n : jf(x)j > �g)]1=p;

where, and in what follows, !(E) =
R
E
!(x) dx:

Let S(Rn) be the class of Schwartz functions and let S 0(Rn) be its dual space. We now

introduce the weighted Hardy space.

De�nition 1 Let ! 2 A1(Rn) and p 2 (0; 1]: The weighted Hardy space Hp
!(R

n) is de�ned

by

Hp
!(R

n) = ff 2 S 0(Rn) : ��(f)(x) � sup
t>0

j�t � f(x)j 2 Lp!(R
n)g;

where � 2 S(Rn) is a �xed function with
R
Rn

�(x) dx 6= 0 and �t(y) = t�n�(y=t) for any t > 0:

Moreover, we de�ne kfkHp
!(Rn ) = k��(f)kLp

!(Rn ):

It is well known that De�nition 1 does not depend on the choice of � (see [2] and [13]).
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In what follows, if !(x) � 1; we will denote Lp!(R
n); WLp!(R

n) and Hp
!(R

n) simply by

Lp(Rn); WLp(Rn) and Hp(Rn):

De�nition 2 Let p 2 (0; 1] and ! 2 A1(Rn): A p-atom with respect to ! is a function a

supported in a cube Q such that

kakL1(Rn ) � !(Q)�1=p (2:1)R
Rn

a(x)x� dx = 0 for every multi-index � with j�j � [n(q!=p� 1)]; where, and in what follows,

[s] denotes the greatest integer less than or equal to s. (2.2)

The following lemma is Proposition 1.5 in [2] (see also [3]).

Lemma 1 Let ! 2 A1(Rn) and p 2 (0; 1]: Let f 2 S 0(Rn). Then f 2 Hp
!(R

n) if and only if

f can be written as a series

f =
X
j

�jaj (2:3)

in S 0(Rn); where each aj is a p-atom with respect to ! and the coe�cients �j satisfyX
j

j�j jp <1: (2:4)

Moreover, the in�mum of the sums in (2:4) over all decompositions (2:3) is equivalent to

kfkp
Hp
!(Rn )

:

It is well known that the Lebesgue space Lp(Rn) for all p 2 (1;1) and the Hardy space

Hp(Rn) for all p 2 (0; 1] are both special cases of homogeneous Triebel{Lizorkin spaces (see

[14], p. 244). However, this is not true for the weak Lebesgue space and the weak Hardy space.

We now turn to the weighted weak Hardy space, which is a good substitute for the weighted

Hardy spaces in the study of the boundedness of operators. Also, the weak Lebesgue space and

the weak Hardy space arise naturally as intermediate spaces of the real method of interpolation

between the Hp(Rn) or Lp(Rn) spaces (see [7,8,10,12,14]).

Let p 2 (0; 1] and ! 2 A1(Rn): De�ne

Ap;! =

(
� 2 S(Rn) : sup

j�j�[n(q!=p�1)]+1

sup
x2Rn

(1 + jxj)[n(q!=p�1)]+n+1jD��(x)j <1
)
;

where � = (�1; : : : ; �n) 2 (N [ f0g)n and D� = (@=@x1)
�1 � � � (@=@xn)�n : Moreover, we set

k�kAp;! � sup
x2Rn

sup
j�j�[n(q!=p�1)]+1

(1 + jxj)[n(q!=p�1)]+n+1jD��(x)j:

For f 2 S 0(Rn); we de�ne

Gp;!f(x) = sup
�2Ap;! ; k�kAp;!�1

sup
jx�yj<t

j(f � �t)(y)j:

Gp;!f is usually called the grand maximal function of f (see [5], p. 90).
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De�nition 3 Let ! 2 A1(Rn) and p 2 (0; 1]: Then the weighted weak Hardy space WHp
!(R

n)

is de�ned by

WHp
!(R

n) = ff 2 S 0(Rn) : Gp;!f 2WLp!(R
n)g:

Moreover, we de�ne kfkWHp
!(Rn ) = kGp;!fkWLp

!(Rn ):

If !(x) � 1; the weak Hardy space WH1(Rn) � WH1
!(R

n) was introduced by Fe�erman

and Soria in [7]. WHp(Rn) �rst appeared in [8] (see also [10]). In [9], Zhang introduced the

space WHp
!(R

n) for ! 2 A1(R
n) and established its atomic decomposition. We now generalize

Zhang's result to weight ! 2 A1(Rn):

Lemma 2 Let p 2 (0; 1] and ! 2 A1(Rn): For f 2 WHp
!(R

n); there exists a sequence

ffkg1k=�1 of bounded measurable functions such that

f =
P1

k=�1 fk in S 0(Rn): (2:5)

Each fk can be further decomposed into fk(x) =
P

i bki(x); where the sequence fbkigi satis-
�es

supp bki � Qki; and Qki is a cube (2:6)X
i

!(Qki) � c12
�kp;

X
i

�Qki
(x) � c1; (2:6)1

�E being the characteristic function of the set E; c1 a constant and c1 � ckfkp
WHp

!(Rn )
;

kbkikL1(Rn ) � c2k and
R
Rn

bki(x)x
� dx = 0; for j�j � [n(q!=p� 1)]: (2:6)2

Conversely, if f 2 S 0(Rn) has a decomposition satisfying (2:5) and (2:6), then f 2WHp
!(R

n)

and kfkp
WHp

!(Rn )
� cc1; where c is a constant.

In what follows, c always denotes a constant which is independent of the main parameters,

but may vary from line to line.

To prove the lemma, we need the following weak-type summable principle (see [7] and [8]).

Lemma 3 Let (X;�) be any measurable space and p 2 (0; 1): Let ffkgk be a sequence of

measurable functions such that for any � > 0 and all k 2 Z, we have

�(fx 2 X : jfk(x)j > �g) � ��p:

If
P

k jckjp <1; then
P

k ckfk(x) is absolutely convergent almost everywhere and

�

 (
x 2 X :

�����X
k

ckfk(x)

����� > �

)!
� 2� p

1� p

�X
k

jckjp
�
��p:

Proof of Lemma 2 The proof is motivated by the atomic decomposition for Hp(Rn) (see [5]).

Let f 2 WHp
!(R

n): Following the same argument as in the proof of Theorem 4.1 in [9], we

obtain an atomic decomposition of f satisfying (2.5) and (2.6).
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Conversely, let f 2 S 0(Rn) satisfy (2.5) and (2.6). For any given � > 0; we choose k0 2 Z

such that 2k0 � � < 2k0+1: Now write

f =

1X
k=�1

fk =

k0X
k=�1

fk +

1X
k=k0+1

fk � F1 + F2:

Then Gp;!f(x) � Gp;!F1(x) +Gp;!F2(x): Since

Gp;!F1(x) �
k0X

k=�1
Gp;!fk(x) � c

k0X
k=�1

2k � c0�;

we have

fx 2 R
n : Gp;!f(x) > (c0 + 1)�g � fx 2 R

n : Gp;!F1(x) > c0�gSfx 2 R
n : Gp;!F2(x) > �g

= fx 2 R
n : Gp;!F2(x) > �g:

Set Ak0 =
S1
k=k0+1

S
iQ

�
ki; where Q

�
ki is the cube with the same center as Qki and side length

2
p
n+1 times the side length of Qki: Noting that ! 2 Aq!+�(R

n) for any � > 0 (if q! = 1; then

� can be 0), we have

!(Ak0) �
1X

k=k0+1

X
i

!(Q�
ki) � c

1X
k=k0+1

X
i

!(Qki)

� jQ�
kij

jQkij
�q!+�

� c

1X
k=k0+1

X
i

!(Qki) � cc1

1X
k=k0+1

2�kp � cc1�
�p:

We now estimate !fx =2 Ak0 : Gp;!F2(x) > �g: We �rst have

Gp;!F2(x) �
1X

k=k0+1

X
i

Gp;!bki(x):

Choose any � 2 S(Rn) such that k�kAp;! � 1: Let xki be the center of Qki and Px(y) be the

[n(q!=p� 1)]-order Taylor expansion of �
�
x�y
t

�
in y with respect to y = xki: Then, if x =2 Ak0 ;

we have

jbki � �t(x)j =
1

tn

��� Z
Rn

bki(y)
h
�
�x� y

t

�
� Px(y)

i
dy
���

� c2k

tn

X
j�j=[n(q!=p�1)]+1

Z
Qki

���(D��)
hx� xki + �(xki � y)

t

i���
�
���y � xki

t

���[n(q!=p�1)]+1

dy

� c2k
�

l(Qki)

jx� xkij
�[n(q!=p�1)]+n+1

;

where � 2 (0; 1) depends on x; xki and y; l(Qki) is the side length of Qki and c is independent

of k; i and �: Thus for x =2 Ak0 ; we have

Gp;!bki(x) � c2k
�

l(Qki)

jx� xkij
�[n(q!=p�1)]+n+1

:
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Now choose q 2
�

nq!
[n(q!=p�1)]+n+1 ; p

�
and 0 < � < q([n(q!=p� 1)] + n+ 1)=n� q!: Then

!

��
x =2 Q�

ki :

�
l(Qki)

jx� xkij
�[n(q!=p�1)]+n+1

> �

��
� 1

�q

Z
RnnQ�

ki

�
l(Qki)

jx� xkij
�q([n(q!=p�1)]+n+1)

!(x) dx

� c

�q

1X
j=0

Z
p
nl(Qki)2j�jx�xkij<

p
nl(Qki)2j+1

�
l(Qki)

jx� xkij
�q([n(q!=p�1)]+n+1)

�!(x) dx
� c

�q

1X
j=0

!(B(xki;
p
nl(Qki)2

j+1))

2jq([n(q!=p�1)]+n+1)

� c!(Qki)

�q

1X
j=0

2jfnq!+n��q([n(q!=p�1)]+n+1)g

� c2!(Qki)

�q
;

where c2 is a constant independent of k; i and �; and B(x; r) � fy 2 R
n : jy � xj < rg: Thus,

by Lemma 3, we have

!(fx =2 Ak0 : Gp;!F2(x) > �g) � 2� q

1� q

c

�q

1X
k=k0+1

X
i

2kq!(Qki) � cc1
�q

1X
k=k0+1

2k(q�p) � cc1
�p

:

This completes the proof of Lemma 2.

3 �-Type Calder�on{Zygmund Operators

Following Yabuta [6], we generalize the Calder�on{Zygmund operator to its �-type.

De�nition 4 Let � be a non-negative non-decreasing function on R
+ � (0;1) with

R 1

0
�(t)t�1

dt <1. A measurable function K on R
n � R

n n f(x; x) : x 2 R
ng is said to be a �-type kernel

if it satis�es

(i) jK(x; y)j � c=jx� yjn for x 6= y;

(ii) jK(x; y)�K(x+ h; y)j+ jK(y; x)�K(y; x+ h)j � c�(jhj=jx� yj)=jx� yjn for jhj <
jx� yj=2:

De�nition 5 Let T be a linear operator from S(Rn) into its dual S 0(Rn). We say T is a

�-type Calder�on{Zygmund operator if

(i) T can be extended to a bounded linear operator from L2(Rn) into weak L2(Rn),

(ii) There is a �-type kernel K(x; y) such that Tf(x) =
R

supp f
K(x; y)f(y) dy for all

f 2 C1
c (Rn) and for all x =2 supp f , where C1

c (Rn) is the space of all in�nitely di�erentiable

functions on R
n with compact supports.

The following theorem is motivated by the result in ([4], p. 49) and is of interest in itself.
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Theorem 1 Let � be a non-negative non-decreasing function on R
+ with

R 1
0
�(t)t�1 dt <1.

Let T be a linear operator associated with a �-type kernel. Then the following conditions are

equivalent:R
Q
jTa(x)j dx � ckakL1(Rn )jQj for a 2 L1(Rn) with supp a � Q; a cube in R

n ; (3.1)

T is a bounded map from H1(Rn) into L1(Rn); (3.2)

T is a bounded map from L1c (Rn) � ff 2 L1(Rn) : supp f is compact g into

BMO(Rn); (3.3)

T is bounded from Lq(Rn) into WLq(Rn) for some q 2 (1;1); (3.4)

T is bounded on Lq(Rn) for some q 2 (1;1); (3.5)

T is bounded on L2(Rn): (3.6)

To prove Theorem 1, we need the following interpolation of sublinear operators in ([4], p.

43).

Lemma 4 Let T be a sublinear operator which is bounded from L1c (Rn) to BMO(Rn) and

from H1(Rn) to L1(Rn): Then T is bounded on Lp(Rn) for all p 2 (1;1):

Proof of Theorem 1 The equivalence of (3.1), (3.2) and (3.3) is a simple consequence of the

theorem in ([4], p. 49) and (2.3), (2.4) and (2.5) in ([6], p. 21). Now, suppose (3.1) holds; then

(3.2) and (3.3) also hold. Therefore, by Lemma 4, we know that T is bounded on Lq(Rn) for all

q 2 (1;1): Thus, (3.6), (3.5) and (3.4) all hold. Obviously, (3.6) implies (3.5) and (3.5) implies

(3.4). Now we need to show that (3.4) implies (3.1). To do so, we �rst prove that if T satis�es

(3.4), then T is bounded from L1(Rn) into WL1(Rn): Let f 2 L1(Rn) and � > 0: Using the

Calder�on{Zygmund decomposition (see [3], p. 140; or [5], p. 17), we know that f = g + b;

where b =
P

k bk and there exists a sequence of non-overlapping cubes fQkgk; so that

jg(x)j � c�; for a. e. x 2 R
n : (3.7)

Each bk is supported in Qk;Z
Rn

jbk(x)j dx � c�jQkj; and
Z
Rn

bk(x) dx = 0; (3:8)

X
k

jQkj � c��1kfkL1(Rn ): (3:9)

Thus,

fx 2 R
n : jTf(x)j > �g � fx 2 R

n : jTg(x)j > �=2g [ fx 2 R
n : jTb(x)j > �=2g � I� [ II�:

Since T is bounded from Lq(Rn) into WLq(Rn) for some q 2 (1;1); we have

jI�j � c2q��qkgkqLq(Rn ) � c��1kfkL1(Rn );

where in the last inequality we use (3.7), (3.9) and the fact that if x =2 Qk; then g(x) = f(x):

This gives our desired estimate for jI�j:
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Now set E� = [kQ�
k; where Q

�
k denotes the cube with the same centre as Qk and side length

2
p
n+ 1 times the side length of Qk: It is clear that

jII�j = jII� \E�j+ jII� n E�j
� jE�j+ 2��1

Z
RnnE�

jTb(x)j dx

� c��1kfkL1(Rn ) + 2��1

Z
RnnE�

jTb(x)j dx:

Suppose that xk is the centre of Qk and l(Qk) is the side length of Qk: Since
R
Qk

bk(y) dy = 0

we have

F� �
Z
RnnE�

jTb(x)j dx

�
Z
RnnE�

���X
k

Z
Qk

K(x; y)bk(y) dy
��� dx

�
X
k

Z
RnnE�

Z
Qk

jK(x; y)�K(x; xk)jjbk(y)j dy dx

� c
X
k

Z
Qk

jbk(y)j
nZ

RnnE�

�
� jy � xkj
jx� xkj

� 1

jx� xkjn dx
o
dy

� c
n 1X
l=0

�(2�l)
oX

k

Z
Qk

jbk(y)j dy

� c
nZ 1

0

�(t)

t
dt
o
�
X
k

jQkj

� ckfkL1(Rn ):

It follows that jII�j � c��1kfkL1(Rn ): It now follows from our estimates of jI�j and jII�j that
T is bounded from L1(Rn) into WL1(Rn). By our hypothesis (3.4) and the Marcinkiewicz

interpolation theorem, we conclude that T is bounded on Lp(Rn) for any p 2 (1; q): Therefore,

for a as in (3.1), we haveZ
Q

jTa(x)j dx � ckTakLp(Rn )jQj1�1=p � ckakLp(Rn )jQj1�1=p � ckakL1(Rn )jQj:

Thus (3.1) holds and the proof of Theorem 1 is complete.

The following theorem follows from Theorem 1 and ([6], Theorem 2.4).

Theorem 2 Let � be a non-negative non-decreasing function on R
+ with

R 1
0
�(t)t�1 dt <1.

Let T be a linear operator associated with a �-type kernel and let T satisfy any one of (3:1){(3:6)

in Theorem 1. Then

For any weight ! 2 Ap(R
n) with p 2 (1;1);

kTfkLp
!(Rn ) � ckfkLp

!(Rn ); (3:10)

where c depends only on n; p and the Ap(R
n)-constant of !:

For any weight ! 2 A1(R
n);

kTfkWL1
!(R

n ) � ckfkL1
!(R

n ); (3:11)
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where c depends only on n and the A1(R
n)-constant of !:

(3:11) and (3:12) also hold for the truncated maximal operator T� of T; where

T�f(x) = sup
�>0

�����
Z
jx�yj>�

K(x; y)f(y) dy

����� : (3:12)

We do not know whether all �-type Calder�on{Zygmund operators are bounded on Hp
!(R

n)

or WHp
!(R

n). However, we shall prove in Theorems 3 and 4 that the answer is a�rmative for

the following special case of �-type operators.

De�nition 6 Let � 2 (0; 1]: A linear operator T from S(Rn) into its dual S 0(Rn) is said to be

a �-type Calder�on{Zygmund operator if T satis�es any one of (3:1){(3:6) and there is a kernel

K(x; y) on R
n � R

n n f(x; x) : x 2 R
ng such that for all f 2 C1

c (Rn) and all x =2 supp f , we

have

Tf(x) =

Z
supp f

K(x; y)f(y) dy; (3:13)

where K satis�es

jK(x; y)j � c=jx� yjn for x 6= y; (3.13)1

jK(x; y)�K(x; y + h)j � cjhj�=jx� yjn+�, if jhj < jx� yj=2, (3.13)2

jK(y; x)�K(y + h; x)j � cjhj�=jx� yjn+�, if jhj < jx� yj=2. (3.13)3

As a consequence of Theorem 1 and ([2], Theorem 2.8) we have the following result.

Lemma 5 Let � 2 (0; 1] and let T be a �-type Calder�on{Zygmund operator. We have:

If p 2 (1;1) and ! 2 Ap(R
n); then T can be extended to a bounded operator on

Lp!(R
n); (3.14)

If p 2 (n=(n + �); 1] and ! 2 Aq(R
n) with q 2 [1; (1 + �=n)p); then T can be extended to a

bounded operator from Hp
!(R

n) into Lp!(R
n): (3.15)

In all cases, the operator norm of T depends only on the constants for the kernel and the

weight.

De�nition 7 Let T be a Calder�on{Zygmund operator of �-type (see De�nition 5) or of

semi-(�; p)-type (see De�nition 8 in Section 4). We say T �1 = 0 if
R
Rn

Ta(x) dx = 0 for all

a 2 L1(Rn) with compact support and
R
Rn

a(x) dx = 0:

Theorem 3 Let � 2 (0; 1] and let T be a �-type Calder�on{Zygmund operator. If T �1 = 0;

n=(n+ �) < p � 1 and ! 2 Aq(R
n) with q 2 [1; (1 + �=n)p); then T is bounded on Hp

!(R
n).

Proof Fix ' 2 S(Rn) and R
Rn

'(x) dx 6= 0: By Lemma 1, we only need to show that for any

p-atom a with respect to !; k(Ta)�kLp
!(Rn ) � c with c independent of a: Suppose supp a �

B(x0; r): Let ! 2 Aq(R
n) with q 2 [1; (1 + �=n)p): We choose p0 2 (q; (1 + �=n)p); and write

k(Ta)�kp
Lp
!(Rn )

=

Z
B(x0;4r)

[(Ta)�(x)]p!(x) dx+
Z
RnnB(x0;4r)

[(Ta)�(x)]p!(x) dx � L1 + L2:
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By Lemma 5, we have

L1 �
 Z

B(x0;4r)

[(Ta)�(x)]p0!(x) dx

!p=p0

!(B(x0; 4r))
1�p=p0

� c

 Z
B(x0;r)

ja(x)jp0!(x) dx
!p=p0

!(B(x0; r))
1�p=p0

� c;

where c is independent of a:

To estimate L2, we �rst estimate (Ta)�(x) when x =2 B(x0; 4r): In fact, we have

jTa � 't(x)j =

����Z
Rn

Ta(y)
1

tn
'
�x� y

t

�
dy

����
=

����Z
Rn

Ta(y)
1

tn

�
'
�x� y

t

�
� '

�x� x0
t

��
dy

����
� 1

tn

Z
jy�x0j<2r

jTa(y)j
����'�x� y

t

�
� '

�x� x0
t

����� dy
+

1

tn

Z
2r�jy�x0j< jx�x0j

2

� � � + 1

tn

Z
jy�x0j� jx�x0j

2

� � �

� E1 + E2 +E3:

By the mean value theorem and H�older's inequality, we have

E1 � 1

tn+1
kTakL2(Rn )

 Z
jy�x0j<2r

����r'�x� x0 � (y � x0)

t

�����2 jy � x0j2 dy
!1=2

� c
rn+1

jx� x0jn+1!(B(x0; r))1=p
;

where  2 (0; 1) depends on x; y and x0, and r = (@=@x1; : : : ; @=@xn): Here, we use the

inequalities

jx� x0 � (y � x0)jn+1

tn+1

����r'�x� x0 � (y � x0)

t

����� � c

and jx�x0 � (y�x0)j � jx�x0j � jy�x0j � jx�x0j=2: Using the same inequalities, we have

E2 =
1

tn+1

Z
2r�jy�x0j< jx�x0j

2

�����
Z
B(x0;r)

a(z)(K(y; z)�K(y; x0)) dz

�����
�
����r'�x� x0 � (y � x0)

t

����� jy � x0j dy

� c
rn+�

jx� x0jn+1!(B(x0; r))1=p

Z
2r�jy�x0j< jx�x0j

2

1

jy � x0jn+��1
dy

�

8>><>>:
c

rn+1

jx� x0jn+1!(B(x0; r))1=p
ln
� jx� x0j

4r

�
; if � = 1;

c
rn+�

jx� x0jn+�!(B(x0; r))1=p ; if � 2 (0; 1):
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Now consider E3. We have

E3 � 1

tn

Z
jy�x0j� jx�x0j

2

�����
Z
B(x0;r)

a(z) (K(y; z)�K(y; x0)) dz

�����
�
�����'�x� y

t

�����+ ����'�x� x0
t

������ dy

� c
rn+�

tn!(B(x0; r))1=p

Z
jy�x0j� jx�x0j

2

1

jy � x0jn+�
�����'�x� y

t

�����+ ����'�x� x0
t

������ dy

� c
rn+�

jx� x0jn+�!(B(x0; r))1=p :

Let x =2 B(x0; 4r): If � = 1 then

(Ta)�(x) � c�
rn+�

jx� x0jn+�!(B(x0; r))1=p (3:16)

holds for any � 2 (0; 1): If � 2 (0; 1); then

(Ta)�(x) � c�
rn+�

jx� x0jn+�!(B(x0; r))1=p : (3:17)

Note that q < (1+ �=n)p: If � = 1 we choose � 2 (0; 1) such that q < (1+ �=n)p; if � 2 (0; 1)

we choose � = �: Then, in all cases, we have (n+ �)p > nq and

L2 � c�

Z
RnnB(x0;4r)

r(n+�)p

jx� x0j(n+�)p!(B(x0; r))!(x) dx

= c�
r(n+�)p

!(B(x0; r))

1X
l=0

Z
2l+2r�jx�x0j<2l+3r

!(x)

jx� x0j(n+�)p dx

� c�

1X
l=0

1

2l[(n+�)p�nq]

� c�;

where c� is independent of a:

This completes the proof of Theorem 3.

Theorem 4 Let � 2 (0; 1] and let T be a �-type Calder�on{Zygmund operator. If T �1 = 0;

n=(n+ �) < p � 1 and ! 2 Aq(R
n) with q 2 [1; (1 + �=n)p); then T is bounded on WHp

!(R
n):

Proof For any given � > 0; let k0 2 Z such that 2k0 � � < 2k0+1: Let ! 2 Aq(R
n) and

f 2WHp
!(R

n): Then by Lemma 2, we write

f =

1X
k=�1

fk =

1X
k=�1

X
i

bk;i =

k0X
k=�1

X
i

� � � +
1X

k=k0+1

X
i

� � � � F1 + F2;

where bk;i's are as in Lemma 2. We choose p0 2 (q; (1 + �=n)p): By Lemma 5, T is bounded on
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Lp0! (Rn): Then,

!(fx 2 R
n : Gp;!(TF1)(x) > �g) � 1

�p0
kGp;!(TF1)kp0Lp0

! (Rn )

� c

�p0
kF1kp0Lp0

! (Rn )

� c

�p0

0@ k0X
k=�1

2k

"X
i

!(Qki)

#1=p01Ap0

�
ckfkp

WHp
!(Rn )

�p
;

which is our desired estimate.

Now set Ak0 =
S1
k=k0+1

S
iQ

�
ki; where Q

�
ki is the cube with the same centre as Qki and side

length 2
p
n+ 1 times the side length of Qki: Noting that ! 2 Aq(R

n); we easily obtain

!(Ak0) �
1X

k=k0+1

X
i

!(Q�
ki) � c

1X
k=k0+1

X
i

!(Qki) � c

�p
kfkp

WHp
!(Rn )

:

To �nish the proof, we still need to estimate !(fx =2 Ak0 : Gp;!(TF2)(x) > �g): Note that

Gp;!(TF2)(x) �
1X

k=k0+1

X
i

Gp;!(Tbk;i)(x):

Choose q1 such that nq=(n + �) < q1 = n=(n + � � �) < p and let � 2 Ap;!: Let yk;i be the

centre of Qki: Arguing as in the proofs of (3.16) and (3.17) we have, for x =2 Q�
ki;

jTbk;i � �t(x)j � ck�kAp;!

2kjQkijq=q1
jx� ykijnq=q1 :

Therefore, for x =2 Q�
ki;

Gp;!(Tbk;i)(x) � c
2kjQkijq=q1
jx� ykijnq=q1 : (3:18)

We claim that for any � > 0;

!

��
x =2 Ak0 :

jQkijq=q1
!(Qki)1=q1 jx� ykijnq=q1 > �

��
� c

�q1
; (3:19)

where c is independent of k and i: Note that if x =2 Ak0 ; then jx � ykij >
p
nlki; where lki is

half the side length of Qki: Thus, for � � !(Qki)
�1=q1(

p
n)�nq=q1 ; we have

!

��
x =2 Ak0 :

jQkijq=q1
!(Qki)1=q1 jx� ykijnq=q1 > �

��
= !(;) � c

�q1
:

For � < !(Qki)
�1=q1(

p
n)�nq=q1 ; choose r =

�
jQkij

�q1=q!(Qki)1=q

�1=n
so that r � p

nlki: Then,

!

��
x =2 Ak0 :

jQkijq=q1
!(Qki)1=q1 jx� ykijnq=q1 > �

��
� !(B(yki; r)) =

c

�q1
:

Thus (3.19) holds. By (3.19) and Lemmas 3 and 5, we have

!(fx =2 Ak0 : Gp;!(TF2)(x) > �g) � c

�q1

1X
k=k0+1

X
i

2kq1!(Qki) �
ckfkp

WHp
!(Rn )

�p
;
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where c is independent of � and f: This completes the proof of Theorem 4.

When p 2 [n=(n + 1); 1) and � = n(1=p� 1); we have the following theorem on the bound-

edness of �-type Calder�on{Zygmund operators.

Theorem 5 Let p 2 [n=(n + 1); 1) and � = n(1=p � 1): If T is a �-type Calder�on{Zygmund

operator, T �1 = 0 and ! 2 A1(R
n); then T is bounded from Hp

!(R
n) into WHp

!(R
n):

Proof By Lemma 1, it su�ces to show that for any p-atom a with respect to ! and for any

� > 0; we have

!(fx 2 R
n : Gp;!(Ta)(x) > �g) � c

�p
; (3:20)

where c is independent of a:

Suppose supp a � Q and let Q� be de�ned as in the proof of Theorem 4. By (3.14) in

Lemma 5, we have that T is bounded for any p0 2 (1;1) and ! 2 Ap0(R
n): Therefore,

!(fx 2 Q� : Gp;!(Ta)(x) > �g) � c

�p

Z
fx2Q�:Gp;!(Ta)(x)>�g

[Gp;!(Ta)(x)]
p!(x) dx

� c

�p
kakp

L
p0
! (Rn )

!(Q�)1�p=p0 � c

�p
; (3.21)

where c is independent of a:

On the other hand, note that p = n=(n + 1) implies that
R
Rn

a(x)x� dx = 0 for any � 2
(N [ f0g)n and j�j = 1: As in the proofs of (3.16), (3.17) and (3.18), we have

Gp;!(Ta)(x) � c
jQjn=p

!(Q)1=pjx� x0jn=p

for x =2 Q�; where x0 is the centre of Q: Following the proof of (3.19), we obtain

!(fx =2 Q� : Gp;!(Ta)(x) > �g) � c

�p
: (3:22)

Combining (3.21) and (3.22), we establish (3.20) and this completes the proof of Theorem 5.

4 Other Generalizations of Calder�on{Zygmund Operators

We now further weaken our �-type operators to the following semi-(�; p0)-type operators. We

shall prove in Theorem 6 the boundedness of these weaker operators on certain Lp!(R
n) spaces.

De�nition 8 Let 1 < p0 < 1 and � be a non-negative non-decreasing function on R
+ withR 1

0
�(t)t�1 dt <1: A linear operator T from S(Rn) into S 0(Rn) is said to be a semi-(�; p0)-type

Calder�on{Zygmund operator if T satis�es the following two properties:

(1) T can be extended to a bounded linear operator from Lp0(Rn) into WLp0(Rn);

(2) There is a kernel K(x; y) on R
n �R

n nf(x; x) : x 2 R
ng such that for all f 2 C1

c (Rn)

and all x 62 supp f , we have Tf(x) =
R

supp f
K(x; y)f(y) dy; where K satis�es the following

two conditions:

(2)1 jK(x; y)j � c=jx� yjn for all x 6= y;
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(2)2 jK(x; y)�K(x; z)j � c�(jy � zj=jx� zj)=jx� zjn, if jy � zj < jx� zj=2.
Our next theorem complements Theorem 2.

Theorem 6 Let � be a non-negative non-decreasing function on R
+ such thatZ 1

0

�(t)=t dt <1

and 1 < p0 <1: Let T be a semi-(�; p0)-type Calder�on{Zygmund operator. Then T is bounded

on Lp!(R
n) for 1 < p < p0; where ! 2 Ap(R

n) satis�es

sup
2k�2�jxj�2k+1

!(x) � c1 inf
2k�2�jxj�2k+1

!(x); k 2 Z: (4:1)

Proof As in the proof of Theorem 1, T is bounded from L1(Rn) intoWL1(Rn). By hypothesis,

T is bounded from Lp0(Rn) into WLp0(Rn). It follows from the Marcinkiewicz interpolation

theorem that T is bounded on Lp(Rn) for any p 2 (1; p0): Now Theorem 6 is a simple conse-

quence of Theorem 1 in [15].

Note that the power weight obviously satis�es restriction (4.1) above. Some other examples

of weights satisfying (4.1) can be found in [15].

In what follows, we say a semi-(�; p0)-type Calder�on{Zygmund operator is a semi-(�; p0)-

type Calder�on{Zygmund operator if � = t�. The following theorem shows that Theorems 3, 4

and 5 can be improved for weights satisfying (4.1).

Theorem 7 Let � 2 (0; 1] and p0 2 (1;1) and let T be a semi-(�; p0)-type Calder�on{Zygmund

operator.

(1) If T �1 = 0 and n=(n + �) < p � 1; then T is bounded on Hp
!(R

n) and WHp
!(R

n)

separately, where ! 2 Aq(R
n) satis�es (4:1) with 1 � q < minfp0; (1 + �=n)pg;

(2) If n=(n + 1) � p < 1; � = n(1=p � 1) and T �1 = 0; then T is bounded from Hp
!(R

n)

into WHp
!(R

n); where ! 2 A1(R
n) satis�es (4:1),

(3) For n=(n + 1) � p < 1; there exists a semi-(�; p0)-type Calder�on{Zygmund operator

satisfying T �1 = 0 and T is not bounded on Hp(Rn); where � = n(1=p� 1):

Proof With Theorem 6 replacing Lemma 5 in the proofs of Theorems 3, 4 and 5 we can prove

(1) and (2). We omit the details.

We now prove (3) for n = 1: The other cases are similar. For k = 0; 1; 2; :::; let I+k be the

interval [k; (2k + 1)=2) and I�k be the interval [(2k + 1)=2; k + 1). Note that (2k + 1)=2 is the

midpoint of the interval [k; k + 1]. Now we de�ne the kernel K(x; y) on R � R as follows:

K(x; y) =

8><>:
y1=p�1=([x] + 1)1=p; if 0 � [y] � [x]; x 2 I+k for some k 2 N ;

�y1=p�1=([x] + 1)1=p; if 0 � [y] � [x]; x 2 I�k for some k 2 N ;

0; otherwise:

De�ne T on L2(R) by

Tf(x) � p: v:

Z
R

K(x; y)f(y) dy:



Generalized Calder�on{Zygmund Operators 155

We �rst claim that T �1 = 0: Let a be a p-atom. Then Ta(x) = 0 if x � 0. Note that for

each x > 0 with x 2 [k; (k + 1)=2] for some k 2 N [ f0g, there exists ~x = x + 1=2 such that

Ta(x) = �Ta(~x). Thus R
R
Ta(x) dx = 0.

We next show that T is bounded from Lp0(R) into WLp0(R). Let f 2 Lp0(R) with compact

support J . Then for x 2 R we have

jTf(x)j =
��� Z

J

K(x; y)f(y) dy
��� � kK(x; �)�J\R+ kLp0

0 (R)
kfkLp0 (R ) �

ckfkLp0 (G)

jxj1=p0 ;

where 1=p0 + 1=p00 = 1: Hence T is bounded from Lp0(R) into WLp0(R).

Note that K(x; y) obviously satis�es (2)1 of De�nition 8. To see that K(x; y) satis�es (2)2

of De�nition 8, we �rst assume that 0 � z < y. Let 0 < [y] � [x] be such that 2jy� zj < jx� zj.
Then we have 0 � z < y < x. Hence

jK(x; y)�K(x; z)j �
��� jyj1=p�1

([x] + 1)1=p
� jzj1=p�1

([x] + 1)1=p

��� � jyj1=p�1 � jzj1=p�1

([x] + 1)1=p
= c

jy � zj1=p�1

jx� zj1=p ;

where the last inequality follows from 0 � z < x which implies that x� z < [x] + 1. Hence (2)2

of De�nition 8 is also valid. For z < 0 � y and 0 � [y] � [x], we have

jK(x; y)�K(x; z)j �
��� jyj1=p�1

([x] + 1)1=p

��� � jy � zj1=p�1

jx� zj1=p

for jx � zj > 2jy � zj: Note that the last inequality above follows because z < 0 and 0 � x; y

imply that jx � zj = x + jzj and jy � zj = y + jzj. Hence jx � zj > 2jy � zj implies that

x + jzj > 2(y + jzj), i. e. x > 2y + jzj. Thus 2([x] + 1) > x + jzj = jx � zj. Hence (2)2 of

De�nition 8 is also valid.

Finally, we give an example to show that T is not bounded on Hp(R). Let a = �[1;3]�2�[1;2].

Then a is a p-atom. For 3 < x we have

jTa(x)j =
��� Z

[1;3]

jyj1=p�1

j[x] + 1j1=p dy �
Z
[1;2]

2jyj1=p�1

j[x] + 1j1=p dy
���

� 1

2jxj1=p
 ��� Z

[1;3]

jyj1=p�1 dy �
Z
[1;2]

2jyj1=p�1 dy
���!

=
c

jxj1=p ;

where c is a constant independent of x. Thus, we have (Ta)�(x) � c=jxj1=p if 3 < x. Conse-

quently Ta =2 Hp(R). Hence the theorem is established.

In the next theorem we consider the boundedness of another generalization of Calder�on{

Zygmund operators.

Theorem 8 Let � be a non-negative non-decreasing function on R+ and let K be a measurable

function on R
n � R

n such that

(a) jK(x; y)j � c=jx� yjn for all x 6= y,

(b) jK(x; y)�K(x; z)j � c�(jy � zj=jx � zj)=jx� zjn, if jy � zj < jx� zj=2.
Let �p 2 [1;1) and let ! 2 A�p(R

n): We then have:
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(i) Let T be bounded from Lp0! (Rn) into WLp0! (Rn) with p0 � �p and p0 6= 1 such that

Tf(x) = p: v:

Z
Rn

K(x; y)f(y) dy:

If
R 1
0

�(t)pj ln tj
t(�p�p)n+1 dt <1; then T is bounded from WHp

!(R
n) to WLp!(R

n) for 0 < p � 1:

(ii) Let T be bounded on Lp0! (Rn) with p0 � �p and p0 6= 1 such that

Tf(x) = p: v:

Z
Rn

K(x; y)f(y) dy:

If T �1 = 0 and
R 1
0

�(t)j ln tj2=p+�
t(�p�p)n=p+1 dt < 1 for some � > 0; then T is bounded on WHp

!(R
n) for

n=(n+ 1) < p � 1 and �p 2 [1; (1 + 1=n)p):

Proof (i) For any given � > 0; we choose k0 2 Z such that 2k0 � � < 2k0+1: Let f 2WHp
!(R

n):

We write f � F1 + F2 as in the proof of Theorem 4.

By Lemma 2 and the fact that T is bounded from Lp0! (Rn) intoWLp0! (Rn); we easily obtain

!(fx 2 R
n : jTF1(x)j > �g) �

ckfkp
WHp

!(Rn )

�p
: (4:2)

Now let us estimate TF2(x): Let Bk0 =
S1
k=k0+1

S
i
eQki; where eQki is the cube with the

same centre as Qki and side length (3=2)(k�k0)p=(n�p)
p
n times the side length of Qki: Since

! 2 A�p(R
n); Lemma 2 implies that

!(Bk0) �
1X

k=k0+1

X
i

!( eQki) � c
1X

k=k0+1

X
i

!(Qki)

 
j eQkij
jQkij

!�p

� ckfkp
WHp

!(Rn )

1X
k=k0+1

2�kp
�
3

2

�(k�k0)p
� c��pkfkp

WHp
!(Rn )

:

On the other hand, let lki be half the side length of Qki and let yki be the centre of Qki.

ThenZ
RnneQki

jTbk;i(x)jp!(x) dx

=

Z
RnneQki

����Z
Qki

[K(x; y)�K(x; yki)]bk;i(y) dy

����p !(x) dx
� c2kpjQkijp

Z
RnneQki

�

� p
nlki

jx� ykij
�p

1

jx� ykijnp!(x) dx

� c2kpjQkijp �
1X
j=1

Z
2j( 32 )

(k�k0)p=(n�p)
p
nlki�jx�ykij<2j+1( 32 )

(k�k0)p=(n�p)
p
nlki

�

� p
nlki

jx� ykij
�p

� 1

jx� ykijnp!(x) dx

� c2kp
1X
j=1

�(2�j(2=3)(k�k0)p=(n�p))p2�jnp(2=3)(k�k0)p
2=�p!(Qkij)

� c2kp
1X
j=1

�(2�j(2=3)(k�k0)p=(n�p))p2�jnp(2=3)(k�k0)p
2=�p!(Qki)

� jQkij j
jQkij

��p

� c2kp!(Qki)

1X
j=1

�(2�j(2=3)(k�k0)p=(n�p))p2jn(�p�p)(2=3)(k�k0)(p��p)p=�p;
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where Qkij denotes the cube with side length 2j+2(3=2)(k�k0)p=(n�p)
p
nlki and centre yki: Thus,Z

RnnBk0

jTF2(x)jp!(x) dx

�
1X

k=k0+1

X
i

Z
RnneQki

jTbk;i(x)jp!(x) dx

� c

1X
k=k0+1

2kp
X
i

!(Qki)

1X
j=1

�(2�j(2=3)(k�k0)p=(n�p))p2jn(�p�p)(2=3)(k�k0)(p��p)p=�p

� ckfkp
WHp

!(Rn )

1X
k=k0+1

1X
j=1

�(2�j(2=3)(k�k0)p=(n�p))p2jn(�p�p)(2=3)(k�k0)(p��p)p=�p

� ckfkp
WHp

!(Rn )

1X
k=k0+1

(2=3)(k�k0)(p��p)p=�p
1X
j=1

Z 21�j

2�j

�(t(2=3)(k�k0)p=(n�p))p

tn(�p�p)+1
dt

� ckfkp
WHp

!(Rn )

Z 1

0

�(t)pj ln tj
tn(�p�p)+1

dt

� ckfkp
WHp

!(Rn )
:

Hence we have

!(fx 2 R
n : jTF2(x)j > �g) �

ckfkp
WHp

!(Rn )

�p
: (4:3)

Thus (i) follows from (4.2) and (4.3).

(ii) Routine arguments as in (i) above show that

!(fx 2 R
n : Gp;!(TF1)(x) > �g) �

ckfkp
WHp

!(Rn )

�p

and !(Bk0) �
ckfkp

WHp
!(Rn )

�p
:

Let us now estimate
R
RnnBk0

[Gp;!(TF2)(x)]
p!(x) dx: We assume for the time being that for

x =2 eQki; we have

Gp;!(Tbk;i)(x) � c2kjQkij�p=pjx� ykij�n�p=pj ln(jx� ykijjQkij�1=n)j�2=p��; (4:4)

where c is independent of i and k: We then haveZ
RnnBk0

[Gp;!(TF2)(x)]
p!(x) dx

�
1X

k=k0+1

X
i

Z
RnneQki

[Gp;!(Tbk;i)(x)]
p!(x) dx

� c

1X
k=k0+1

2kp
X
i

jQkij�p

�
1X
j=1

Z
2j( 32 )

(k�k0)p=(n�p)
p
nlki�jx�ykij<2j+1( 32 )

(k�k0)p=(n�p)
p
nlki

1

jx� ykijn�p
�j ln(jx� ykijjQkij�1=n)j�2��p!(x) dx
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� c

1X
k=k0+1

2kp(2=3)(k�k0)p
X
i

1X
j=1

2�j�pn
�
k � k0
n

+ j

��2��p
!(Qkij)

� c

1X
k=k0+1

2kp
X
i

!(Qki)

1X
j=1

�
k � k0
n

+ j

��2��p

� ckfkp
WHp

!(Rn )

1X
k=1

1X
j=1

�
k

n
+ j

��2��p

� ckfkp
WHp

!(Rn )
:

Thus (ii) is proved once we establish (4.4). We now prove (4.4). Let x =2 eQki and choose

any ' 2 Ap;!: As in the proofs of (3.16) and (3.17), we have

jTbk;i � 't(x)j =

����Z
Rn

Tbk;i(y)
1

tn
'

�
x� y

t

�
dy

����
=

����Z
Rn

Tbk;i(y)
1

tn

�
'

�
x� y

t

�
� '

�
x� yki

t

��
dy

����
� 1

tn

Z
jy�ykij<2lki

jTbk;i(y)j
����'�x� y

t

�
� '

�
x� yki

t

����� dy
+

1

tn

Z
2lki�jy�ykij<jx�ykij=2

� � � + 1

tn

Z
jy�ykij�jx�ykij=2

� � �

� Q1 +Q2 +Q3:

By the mean value theorem and H�older's inequality, we have

Q1 � 1

tn+1
kTbk;ikLp0 (Rn )

 Z
Qki

����r'�x� yki � (y � yki)

t

�����p
0
0

jy � ykijp
0
0 dy

!1=p00

� c2kjQkij1=p0 lkijQkij1=p00
jx� ykijn+1

� c2k
jQkij1+1=n

jx� ykijn+1

� c2kjQkij�p=pjx� ykij�n�p=pj ln(jx� ykijjQkij�1=n)j�2=p��;

since �p < (1 + 1=n)p: Here  2 (0; 1); 1=p0 + 1=p00 = 1 and we have used the fact that

sup
x2Rn

jxjn+1jr'(x)j <1

and jx� yki � (y � yki)j > jx� ykij=2: Using the same fact, we have

Q2 � 1

tn+1

Z
2lki�jy�ykij<jx�ykij=2

�Z
Qki

jbki(z)jjK(y; z)�K(y; yki)j dz
�

�
����r'�x� yki � (y � yki)

t

����� jy � ykij dy

� c2k

jx� ykijn+1

Z
2lki�jy�ykij<jx�ykij=2

Z
Qki

�

� jz � ykij
jy � ykij

�
1

jy � ykijn�1
dz dy

� c2k

jx� ykijn+1

Z
Qki

 Z jz�ykij

2lki

2jz�ykij

jx�ykij

�(r)

r2
dr

!
jz � ykij dz

=
c2k

jx� ykijn+1

Z
Qki

 Z jz�ykij

2lki

2jz�ykij

jx�ykij

�(r)j ln rj2=p+�
rn(�p�p)=p+1

j ln rj�2=p��

r1�n(�p�p)=p
dr

!
jz � ykij dz:
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Note that if r is su�ciently small, then j ln rj�2=p��

r1�n(�p�p)=p is non-increasing on r, and we have

Q2 � c2k

jx� ykijn�p=p
Z
Qki

����ln�2jz � ykij
jx� ykij

������2=p��
jz � ykijn�p=p�n dz

� c2kjQkij�p=pjx� ykij�n�p=pj ln(jx� ykijjQkij�1=n)j�2=p��:

For Q3; we have

Q3 � 1

tn

Z
jy�ykij�jx�ykij=2

�Z
Qki

jbk;i(z)jjK(y; z)�K(y; yki)j dz
�

�
�����'�x� y

t

�����+ ����'�x� yki
t

������ dy

� c2k

tn

Z
jy�ykij�jx�ykij=2

�Z
Qki

�

� jz � ykij
jy � ykij

�
dz

�
1

jy � ykijn
����'�x� y

t

����� dy
+
c2k

tn

Z
jy�ykij�jx�ykij=2

�Z
Qki

�

� jz � ykij
jy � ykij

�
dz

�
1

jy � ykijn
����'�x� yki

t

����� dy
� Q31 +Q32:

For Q31; we have

Q31 � c2k

tn

Z
jy�ykij�jx�ykij=2

�Z
Qki

�

�
2jz � ykij
jx� ykij

�
dz

�
1

jy � ykijn
����'�x� y

t

����� dy
� c2k

jx� ykijn
Z lki

0

�

�
2r

jx� ykij
�
rn�1 dr

= c2k
Z 2lki

jx�ykij

0

�(r)rn�1 dr

= c2k
Z 2lki

jx�ykij

0

�(r)j ln rj2=p+�
r(�p�p)n=p+1

rn�p=pj ln rj�2=p�� dr

� c2kjQkij�p=pjx� ykij�n�p=pj ln(jx� ykijjQkij�1=n)j�2=p��;

where we use the fact that rn�p=pj ln rj�2=p�� is increasing on r when r is small. Using this fact

for Q32; we have

Q32 � c2k

jx� ykijn
Z
jy�ykij�jx�ykij=2

�Z
Qki

�

� jz � ykij
jy � ykij

�
dz

�
1

jy � ykijn dy

� c2k

jx� ykijn
Z
jy�ykij�jx�ykij=2

Z lki
jy�ykij

0

�(r)j ln rj2=p+�
r(�p�p)n=p+1

rn�p=pj ln rj�2=p�� dr dy

� c2k

jx� ykijn
Z
jy�ykij�jx�ykij=2

jQkij�p=p
jy � ykijn�p=p

����ln� jy � ykij
jQkij1=n

������2=p��
dy

� c2k

jx� ykijn
����ln� jx� ykij

jQkij1=n
������2=p�� Z

jwj�jx�ykij=2

jQkij�p=p
jwjn�p=p dw

� c2kjQkij�p=pjx� ykij�n�p=pj ln(jx� ykijjQkij�1=n)j�2=p��:

Thus (4.4) is established and this completes the proof of (ii).
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Combining Theorem 6 with Theorem 8, we easily obtain the following boundedness theorem

for semi-(�; p0)-type Calder�on{Zygmund operators.

Theorem 9 Let p0 2 (1;1) and � be a non-negative non-decreasing function on R
+ . Let T

be a semi-(�; p0)-type Calder�on{Zygmund operator. Let �p 2 [1; p0) and let ! 2 A�p(R
n) satisfy

(4:1). Then we have:

(i) If
R 1
0

�(t)pj ln tj
t(�p�p)n+1 dt <1; then T is bounded from WHp

!(R
n) to WLp!(R

n) for 0 < p � 1;

(ii) If T �1 = 0 and
R 1
0

�(t)j ln tj2=p+�
t(�p�p)n=p+1 dt <1 for some � > 0; then T is bounded onWHp

!(R
n)

for n=(n+ 1) < p � 1 and �p 2 [1; (1 + 1=n)p):
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