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Abstract A surface ¥ is a graph in R* if there is a unit constant 2-form w on R* such that
(e1 A e2,w) > vy > 0 where {e1,e2} is an orthonormal frame on ¥. We prove that, if vo > % on the
initial surface, then the mean curvature flow has a global solution and the scaled surfaces converge to
a self-similar solution. A surface X is a graph in My X M2 where M; and My are Riemann surfaces,
if {(e1 A e2,w1) > vo > 0 where w; is a Kéahler form on M;. We prove that, if M is a Ké&hler-Einstein
surface with scalar curvature R, vg > % on the initial surface, then the mean curvature flow has a
global solution and it sub-converges to a minimal surface, if, in addition, R > 0 it converges to a totally
geodesic surface which is holomorphic.

Keywords Mean curvature flow, 2-dimensional graphs in R*, Self-similar solution
2000 MR Subject Classification 53C44, 53C21

1 Introduction

For the classical solution of the mean curvature flow of hypersurfaces, Huisken showed in [1]
and [2] that if the initial hypersurface is compact and uniformly convex in a complete manifold
with bounded geometry then it converges to a single point under the mean curvature flow in a
finite time and the normalized flow (area is fixed) converges to a sphere of that area in infinite
(rescaled) time. Ecker and Huisken [3] proved that, if the initial hypersurface is an entire

graph, the mean curvature has a long time solution and the solution of the normalized equation
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converges to a self-similar solution as time goes to infinity. For the higher co-dimensional
case, Altschuler [4] and Altschuler-Grayson [5] studied the curvature flow of curves in R3, they
showed (in [5]) that, if the initial curve is a ramp, then the flow has a long time solution which
converges to a line at infinity.

We consider the motion of an immersed surface in a 4-dimensional manifold M, Fy : ¥ — M,
moving by its mean curvature in M. That is, we consider a one-parameter family F; = F(-,?)

of surfaces with corresponding images ¥; = F;(X) such that

SR 1) = H(,1),

F(z,0) = Fo(x),

(1.1)

where H(x,t) is the mean curvature vector of ¥; at F(z,t). The area element of the induced
metric g;; = (V,;F, V,;F) on ¥, is det(g;;)dzdy. It is well known that

d
T det(gi;) = —[H|* det(g;).

Logarithmic integration implies that F remains immersed as long as the solution of (1.1) exists.
Let ¥ be a 2-dimensional oriented surface and let Fy : ¥ — R* be an immersion, and denote

Yo = Fo(X). We say that X is a graph, if there exists a unit constant 2-form w in R* such that
v={e1 Aeg,w) > vy >0,

for some constant vy, where {e1,e2} is an orthonormal frame on 3.

Let w be a unit constant 2-form in R* with respect to which Xy is a graph. Let v =
(e1 Nea,w), where e, ey is a normal frame on ¥;. Suppose that ¥y has bounded curvature. We
prove in this paper that if v(z,0) > vg > % for all z, then Equation (1.1) has a global solution
F. We then consider the rescaled surface X5 defined by

- 1
F(.,s)= Wi

where s = %log(2t +1), 0 < s < oo. We prove that, if in addition to the above assumption on

F(',t),

Vo,
[FH? <o+ [F)?

on the initial surface Xy for some C > 0, § > 0, then the normalized flow is converges to a
self-similar solution as s — oco.
Let M = M, x M5 be a Kéhler-Einstein manifold, M; and M> be Riemann surfaces. Let
w; be a unit Kéahler form on M; for ¢ = 1,2. Let X be a 2-dimensional oriented surface and let
Fy: ¥ — M be an immersion, and denote Xy = F(X). In this case, we say that X is a graph
in M, if
v={(e1 Aeg,w1) > vg >0,

for some constant vg, where {ej,e2} is an orthonormal frame on Y.



Two-Dimensional Graphs 211

We also prove in this paper that, if v(z,0) > vy > % for all x, then Equation (1.1) has
a global solution F and it sub-converges to a minimal surface, if the scalar curvature of M is
nonnegative it converges to a totally geodesic surface which is holomorphic.

Throughout this paper, summation is taken for all repeated indices.

2 Global Existence in R*

We assume that F(z,t) satisfies the mean curvature flow equation (1.1). Suppose that H is
the mean curvature vector of the surface F(X,t) in M, A is the second fundamental form and
denote the Riemannian metric on M by (-,-). In normal coordinates around a point in X, the
induced metric on ¥; from (-,-) is given by ¢;; = (0;F, 0;F) where 0; (i = 1,2) are the partial
derivatives with respect to the local coordinates. Let A and V be the Laplace operator and
the covariant derivative for the induced metric on ¥, respectively. We choose an orthonormal
frame ey, e, v, vy of M such that ep, es is a frame of ¥; = F(X,t), and vy, v is a frame of

the normal bundle over ¥;. We can write:
A = A%,, H=—-H%,.

Let A% = (hg;), where (h;) is a matrix, the trace and the norm of the second fundamental
form are
H® = g"hg = 1, AP = 1A% = g"g"hihs, = hihi.
e
The standard parabolic theory implies that (1.1) has a smooth solution for a short time.

We state it in the following theorem:

Theorem 2.1  Suppose that the initial surface 3y has bounded curvature. There exists T > 0
such that (1.1) has a smooth solution in the time interval [0,T). If maxs, |A|? is bounded near
T, the solution can be extended to [0,T + €) for some € > 0.

However, in general maxy, |A|*> becomes unbounded as ¢t — 7T'. In this section, we will give
a condition to guarantee the global existence of the mean curvature flow (1.1).

In this and the following section, we consider the case where M = R*.

Let H(X, Xy,t) be the backward heat kernel on R*. Define

CX- x0|2>

p(X,t) = 4 (ty — t)H(X, X, 1) = m xp ( Ato —t)

for t < to. We prove a monotonicity inequality, which was essentially proved by Huisken [6]
(also see [3]).

Proposition 2.2  Suppose that F satisfies Equation (1.1), and that f(x,t) is a smooth func-
tion defined ¥ x RT. We have

0 - (F — Xo)*+|?
5/; fo(F,t)dp, = /E (E —Af>p(F,t)d,Ut - fp(F,t)‘H—&— dpg. (2.1)

2(to — 1)
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Proof Tt is clear that

0 0 0
S ro(®,ydu, = / 91V o® tydpe + [ £ p(®, 1)y — / Fo(F, D) H P,
at )M pO 3t poM 8t hoR

— /Z ( (% - A) f)p(F,t)dut - /Z f(% + A)p(F,t)dm
_ /Z p(F, )| H|2dps.

A straight forward computation leads to

d (1 1 X — X2
%) = (o g (X - Xo) = B ) o)
and
X — X2\ X — X[\ (X — Xo, VX)
vexp<_ -1 ) e (‘ 1 -1 ) Top
and
X=X —exn [ — X = Xo* [ (X = Xp, VX)[?
Ae’“’( ito — 1) ) - ( 4(to — 1) >( A(to —1)?
(X —Xo,AX)  |VX[?
O 2Ate—t) 2(t0—t)>'

Note that in the induced metric on ¥, [VF|> = 2 and AF = H, so we have

_ o yLp2
(02 o= (S 25+ g T ) e 22

Then the proposition follows.
Using Proposition 2.2, one can show the following maximum principle as Ecker-Huisken did
for Corollary 1.1 in [3]:

Proposition 2.3  Suppose that f(z,t) is a smooth function defined by X x R™, which satisfies
the inequality
of

ZJ <a-
ot Af<a-Vf,

for some vector field a on . If ag = sups (o4, |al < oo for some t1 > 0, then

sup f < sup f,
poM o

for allt € [0,t1].

Note that the function f does not need to be non-negative.

Let w be a unit constant 2-form in R%. As before, we set v = (e; A ez, w).
Lemma 2.4 We have
0
(5 -2)v= 3 (@ + 20% + (15:7) o
a=1,2
— (2h11h¥y — 2031 his + 2h31h3s — 2h51 has) (V1 A v, w).
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Proof We first calculate %ei. We have

2e- ae e; )e; + 2e- Vg )V,
ot a ) ot/
ae e; e, — (e av v
ot iy €5 7 Zaat a feY

a « Y «

ETA ej — ViH%vo — HYCP v,
Therefore,

92 nenwyt{eanl

at’ ~ \att v ARG

= _ (VlH‘X +HWC’f‘7) (Vo N €2, W)

— (VoH* + H"CQO‘V) (e1 A\ Vg, w)

Recall that V;e; = —h%va. ‘We have
Viv = — (hf{va A €2,w) + his(e1 A va,w)),

Vav = — (hg‘1<va N 62,w> + h32<€1 A 'Uouw>) :

Then,
Viv = =Vih{) (va A e2,w) — h§1(Vive A ez, w) + Ay h 12<
— V1h1 <€1 N Vo, W > h(ll2<61 A V1Uq,w > + hllhl <
= —V1h{;{(va N e, w) — (AT ) (e1 N e, w) — h1101 (Vo N 2, w)
— Vih$y{er Ava,w) — (hy)*(e1 A ez, w) — h1,CT
+ 2091 By (va A vg, w)
and

/\Uﬁaw>
Vo A Vg, W)

€1 A\ Vg, w)

Viv = —Vah$) (va A ea,w) — (h3))*(e1 A ea,w) — h3; C5: (v A €, w)

— Vah3y(e1 A va,w) — (h32)2<€1 A e, w) — h;2037<
+ 2h§‘1h§2 (Vo Nvg,w).

Noticing that

Vihg, = Vahi) + h’IlCQa'y - hglc?w Vahiy = Vihg, + hg201ay -

we therefore obtain

(%—A)v= 3 (B85 + 2(h$y)? + (h35)?) (ex A ez, w)

- (thh% — 2R3, hiy + 2hy B3y — 2h§1@2) (v1 A vz, w).

€1 A\ Vg, w)

Y (o7
h1202'y7

213
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This proves the lemma.

Then by Proposition 2.3, we can show the following theorem:

Proposition 2.5  Let w be a unit constant 2-form on R*. If v(x,0) > vg > % for all x, then
v(z,t) > vo for allt >0 and z.

Proof 1Tt is clear that (e; A ez, w)? + (v A vg,w)? < 1. By Lemma 2.4, we have
0 202 -1
——AJv> AQ(v—\/l—UQ):Azi.

<8t > = 1Al | |v+\/1—1}2

Assume that ¢ is the first point where
infv=v;, — <wv <. (2.3)

It is clear that ¢; > 0. Hence we have

0
- _ >
<t A)v 0,

in 3 x [0,¢1]. Applying Proposition 2.3 to —v, we conclude that v > vy in X X [0,¢;], which
contradicts (2.3).

Theorem 2.6 Let w be a unit constant 2-form in R* with respect to which g is a graph.
Suppose that the curvature on X is bounded. If v(x,0) > vy > % for all x € X, then Equation
(1.1) has a global solution F.

Proof 1t suffices to show that maxsy, |A| is bounded for all ¢ > 0. For this purpose, we consider

the functions u; = (e1 A e, w + *w) and ug = (e1 A e, w — *w). By Lemma 2.4, we have

(%‘A) w = > ((h1)? + 2(hfy)? + (h2)?) wa

a=1,2
- (thh?z — 2h3,hiy + 2hy b3, — thlh%Z) U1,

and

(%—A) wp = 3 (B0 + 2(h5) + (h52)?) o

a=1,2
+ (2h11 A%y — 2k, hiy + 2R, by — 203, By ) us.
Applying Proposition 2.5 and the minimum principle, we get

1
wi(x,t) > ui(z,0) >vg— —= >0, i=1,2,

S

because

u; = {eg Aeg,w) + (—1) vy Avg,w).
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Setting u = uy - ug, we have

(2 —A) u = 2|A*u — 2Vu; - Vuy :2|A|2u—2m Vu +2|Vu1| “
ot Uy u?
Let ¢ = =, By Proposition 2.6 in [7], we have
) 1/ A2 |Vu\
— —AJp=—(=-A)AP-"=-(=-A 2 A2~ —2|A|P——
(at )¢ u<at ) I (8t ) +2ViAl Al
_ 2 2
< 2|V|A|| ey u+2¢Vu1_@ ¢|Vu1|
u u?
2 2 2
<. @—w Y50 Tu_p [0l Vo olv
u? 2¢ 2u2
< - — 2.4
<vo- T (2.4

By Proposition 2.3, we have maxy, ¢ < maxs, ¢. Therefore |A| is uniformly bounded for
all ¢, and this implies the desired result.
3 Asymptotic Behavior

In the following theorem, we give an estimation of the second fundamental form:

Theorem 3.1 Let w be a unit constant 2-form in R*. Suppose that the curvature on X is
bounded. If v(x,0) > vg > then maxy, t|A|> < C, where C > 0 depends on 3.

\/’;
Proof We set ¢ = , where u = u; - uy is as defined in the proof of Theorem 2.6. By (2.4),
we have
1 2 A2 9
9 AVt 2) <ifvs. +¢ 2|Vu| 2A2 |, Vur Vu 2|v21|.
ot u w2 ) w2 Zu

It follows that

(Q_A) <t¢+ 1) < @.v(t¢+ 1).
ot u u u

On the other hand, Theorem 2.6 asserts that at any finite time ¢; > 0 there exists a positive
constant C' which may depend on #; such that |A(z,¢;)]? < C for all z. Moreover, we have
seen in the proof of Lemma 2.4 that |Vu|? < 2|A|?, and from Theorem 2.5, we can see that
u > vy — ﬁ > 0. Therefore, at any finite time ¢; > 0, we have sup, [ 2%|(z,t;) < oo; and then,
we conclude the proof of the theorem in view of Proposition 2.3.

The theorem implies that, if the mean curvature flow converges at infinity, it converges to
a plane. However, it may move out to infinity. As in [3], we consider the rescaled surface is

defined by
~ 1

Flo) = o

where s = £ log(2t + 1), 0 < s < co. The normalized equation then becomes

F('vt)v

a~ -
5 F=H-F (3.1)
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It is clear that
Ba,s) = (@1 Aen,w) = v(, 1), AP (x,s) = (2t + DIAP(x,1) < C,

and it follows that

F(z,s) — |F(z,t) — F(x,0)] <

1 t
a \/2t+1/0

1 F(x.0) 1 OF
. F(z - - o9
V2t +1 ’ V2t +1 ot

1 t 1 ¢
< H< —— Al <C.
_\/2t+1/0| |_\/2t+1/0| <

So, F converges at infinity. In the rest of this section, we will study what equation the limiting

surface satisfies.

Theorem 3.2 Let w be a unit constant 2-form in R*. Suppose that the curvature on X is
bounded. Assume that on the initial surface v(x,0) > vy > %, and for some C > 0, § > 0,
|FL2 < C(1 4 |F|>)'7%. Then the rescaled surface Y, converges to a limiting surface Yoo as

s — 00, and f)oo satisfies the equation

F, = -H..

oo

We begin with some computations. Note that F+ = (F,v4)0q, where the summation is

taken over a.

Lemma 3.3 We have

(% - A) [(F, va)va|? = 2|A2|(F, v0)va|? — 4H® (F, vs) — 2|V ((F,v4)04)]?,

and
(5 = 5) B (8207l <2 (AP - 1) (14 (F. )7 2 — 209 + (F.7)7) 7).

where A is the Laplace operator on is, V is the covariant differentiation on Hom(Tf]S X
Tis, Noris) determined by the covariant differentiation on TS, and D on the normal bundle,

D is the normal connection for the immersion is C R4,
Proof By Lemma 2.2 in [7], we have

9 o
oy (Fova) = —H" + <F

Ovg

’W> = —H® 4+ (F,VH®) + H'C2 (F, e;) + b’ (F, vg).

It is clear that
vi<Fvva> = <F hq‘6j> + <Fv Ciﬁavﬁ>'

v %y
So,
A(F,vo) = H® — W1 (R, vg) + Cl Cl(F, v,)

+ O hE(F, e;) + VOl (F,ug) + (F, VihSe;).

' g
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Noting that
Vil = Vihi; + WOl — HOCl
we have
<3 - A> (F, v0) = —2H* + ho b (F, v5) — V,CP.(F, v3)
8t J )
— 207 W (F, e;) — Cih CTo(F,v,) + b2 (F, vg).

' Yig
It is clear that

IV(F,va)va) > = Vi(F, vg) - Vi(F,v5) + 200V (F,v5)(F, va)
+CLCL(F0,)(F,v,)

= Vi(F,vg) - Vi(F,vg) + 2h;CLL (F, e;)(F, vg)
—CP CP(F,ve)(F,v,).

o iy

Therefore,

(5~ &) 1 enl? =2(F 00} (5~ &) (Fue) = 290(F. ) VulF. 02)

= 2/ APP|(F, v0)va|? — 4H® (F,v5) — 2|V ((F, v)va)|%.

This proves the identity in the lemma.

Using Equation (3.1), we obtain
O X\ /&~ Fa L TaiB R sy S B R
55 A ) (F,va) = —2H® + hi b (F,vg) — V;C; (F, Ug)

— 20, (F.¢;) = CF,Cl5 (F.0) + b(F, T5) — (F. 7).
By an argument similar to the one used in the proof of Proposition 2.6 in [7], we can obtain:

0 AN\ 7o YL 1o 7y B Ao Y Yo o 1708 o 87 rro
(g —A) H® = —H "h}h + H'CJ Cy + H'V,C2, + 2V HP Coy — HObG + H.

The inequality in the lemma then follows from a straightforward computation (See the proof of

Proposition 2.6 in [7]).

Lemma 3.4  Suppose that ¥ satisfies the hypotheses in Theorem 3.2. On is, we have
|(F, ) Tal” < C(s)(1+ [F*)' 2,

where C(s) depends on s.

Proof Because we need only to show the lemma for a constant C'(s) depending on s, it suffices

to prove the inequality for [(F, v, )ve|?. We set n(z,t) = |F|? +4t + 1. We can easily verify that
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(% —A)n=0.Set g = |(F,v,)vs| and ns = n°~1. Applying Lemma 3.3 and using the fact that
|K\ < C, we obtain:
0 2 0 5 5 (0
(at A>g na—n5<at A)Q +97\ 5 A)ns —49Vg - Vns
2 2 1[0 —2 2
<C(@P+)ns+g°ns | — | 72— A ) ms +2n; % |Vns|
ns \ Ot
— 2V (g°ns) - Vlogns
<C (9> +1)ns +g%ns (6 — D0~ |Vnl*) — 2V (¢°ns) - Vg ns
< C(¢°ns +1) =2V (9°ns) - Vlogns,

where we assume that 0 < § < 1 without loss of generality.
Let f(x,t) = e~ “g?ns. Then

(% - A) f(z,t) < =2V f(x,t) - Viogns + Ce L.
From Proposition 2.3, we have
flz,t) = Ce™ " <sup(f(x,0) — O).
Therefore,

(F,va)val® = ¢° < (C + sup(f(,0) — C)e“Nyn; !

= (C +sup(f(x,0) — C)e“)(|F|* + 4t + 1) 2.

This completes the proof.
Proof of Theorem 3.2
1 ~ =~~~
¥ = E‘H + <F7va>va\2,
where @ = (€1 A €2, w + *w) - (€1 A €2,w — *w). It is clear that

9~ -~ Vau
- — < —.
(5‘3 A)@_&p-&-Vg@a

For 0 < € < 8, let G(z,s) = (n®(F))* e, where n*(F) = 1+ o|F|2. We have

Y X a _ w2
(63 A)n 2a(|F|* +2),

and

(ai _ z) G < (B+2(1-€)2a+1)G.

It follows that
0 0

— A ¢G§2¢G—G%@+¢ — —A)G-2VpVG.
Os U 0s
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Observing that

~ Vi  ~ ~ ~ Vi VG Vi VG \ ~
—GV@@ —2VpVG = V(eQ) @ + QV— + ¢ —g + 2V_ VG,
u U G u G

and |V < C|A[, and |%| < V/a, by choosing « and 3 sufficiently small, we have
d  ~ - Vi VG
9 R)pa< - ST AN
(85 > G < =V (¢Q) ( = + G )

By Proposition 2.3, we have

) ' —0s . 14

sup———=—— <e sup ———=—.

5. (L+alF[?)t=e 2 (1+alF[?)=e
Letting s — oo, we get FX = —H,,. This proves the theorem.

4 Global Existence in M; x M

Let M = My x M5 be a Kahler-Einstein surface, M; and M> be Riemann surfaces. Let w; be
a unit Kéhler form on M; for i = 1,2. In this section we consider the global existence of the
mean curvature flow (1.1) in M.

Let X be a 2-dimensional oriented surface and let Fy : ¥ — M be an immersion, and denote
Yo = Fo(X). We say that X is a graph in M, if v = (e A ea,w1) > vg > 0 for some constant
vo, where {e1,ea} is an orthonormal frame on X.

Let Xy = Fo(X,¢). Let

Ji = B3y + higl® 4 |h3y + hdy|® + [h3y — hiy|? + (B3, — hiy |,
and
J2 = B3} — hiol® + |h3; — hdo|* + |h3g + hiy|? + [R5y + hay .
Note that J; + Jo = 2|A|%. We set u; = (e1 A ez, w1 + ws) and ug = (e A e, w1 — wa).

Proposition 4.1 [8]  Assume that M = M; x My is a Kihler-Einstein surface with constant

scalar curvature R, My and Ms are Riemann surfaces. Then

(% — A)ul = Jiup + R(1 — ud)uy,

and

(% - A) U = J2U2 + R(l - U%)UQ

The first identity was proved in [7] (Proposition 3.2). Instead of considering the orientation
{e1, ea,v1,v2}, we consider the orientation {e1, ea,v1, —v2}, and using Proposition 3.2 in [7], we

obtain the second identity.
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As a consequence, we have:

Proposition 4.2 If v(x,0) > vg > —= for all ¥ € Xy, then u;(x,t) > e~ (vy — 2) for all
t>0,zeX, andi=1,2, where C = max{ R,0}, R is the scalar curvature of M.

Proof By Proposition 4.1, we have

0
(E - A)eCtuz =Y+ C+R(1—ud))u;, i=1,2.
Note that (J; + C + R(1 —u?)) > 0 for i = 1,2; applying the minimum principle, we conclude
that

eClui(z,t) > migui(:ﬂ,O) >0, i=1,2.

€

This proves the proposition.

Theorem 4.3  Assume that M = My X My is a Kdhler-Einstein surface with constant scalar
curvature R, My and My are Riemann surfaces, Yo is a graph. If v(z,0) > vy > % for all
x € X, then Equation (1.1) has a global solution F. If R > 0, |A| is uniformly bounded for all
t.

Proof Set u = u;j - ug, and by Proposition 4.2, « > 0. By Proposition 4.1, we have

(% - A> u > 2|A\2u —2Vu; - Vug — Cu

2
> 9APu— 2 gy VUl o
u

1 uy

where C' = max{—R, 0}, R is the scalar curvature of M. Let ¢ = %. By Proposition 2.6 in
[7], we have
0 170 |A|2 |Vu|
— —A)p=—=-A)|AP? - —- —fA 2 A2~— 2|A 2
(E)t )¢ u(at >| P g 8 )ur2vIAl [A]
—2|V|A|[?
< M+2v¢.@+2¢ﬂ Bl _2¢|Vu1| +Co
u uy
<2V @—w @+2¢—v“1 -%
|V7~t1|2 [Vg|? ¢|VU|2
—2¢ 5% 52 T Co

§V¢~7+C¢.

By the maximum principle, we have maxs, ¢ < e“* maxs, ¢. So |A| is bounded for all finite
time ¢, and Equation (1.1) has a global solution F. If C' = 0, |A] is uniformly bounded for all ¢.
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5 Convergence at Infinity

In this section, we consider the convergence of the mean curvature flow. We do not require the

ambient space M has a product structure in Theorem 5.2.

Theorem 5.1  Assume that M = My x My is a Kdahler-Einstein surface with nonnegative
scalar curvature R, My and My are Riemann surfaces, g is a graph. If v(xz,0) > vg > \%, then
the global solution F(-,t) of Equation (1.1) converges to Fo, in C? ast — 0o and Yoo = Foo (X)

18 totally geodesic.

Proof By Theorem 4.3, we know that |A| < C for all ¢ > 0 and = € X. It follows that F(-,t)

converges to F, in C? as t — 0o. Since
7!
— | du = —/ | dpse,

pe(S0) < (o) and. [ [ Pdpdt < po(o)
0 M

By Proposition 4.1, we have

0
—/ UldﬂtZ/ UlJldut—/ w1 [H2dpy,
ot s, Y oA

0
—/ Ugd/.ttZ/ ungd,ut—/ ug\H\Qd,ut.
ot 3 I p

Integration in ¢ implies that

we have

and

2p0(30) + 2/ / [H|?dpsdt > minui(az,O)/ / 2| A 2duydt,
0 Xy T 0 pof

/ /|A|2dutdt<oo.
0 PP

So, there is a sequence t; — oo, such that

and then

/ |A2dpus, — 0 as i — oo.
S,

Tt follows that |A| =0, that is, ¥ is totally geodesic. This proves the theorem.

Theorem 5.2  Let M be a Kahler-FEinstein surface. Suppose that the smooth solution of
the mean curvature flow (1.1) exists on [0,00). Then there is a sequence of t; — oo such
that 3;, converges to a minimal surface possibly with finitely many singularities. Outside the
singularity set of the minimal surface, the convergence is in C?. If the scalar curvature of M

s mon-negative, the minimal surface is a holomorphic curve.

Proof By the Gauss equation

Ri212 = K212 + (h{1h3y — hishiy),
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we get
(H™ — h$y)hgy — (hfy)? = —Ki212 + Ris1o,

and
(H* = hi)hy — (hf)? = —Ki212 + Rigia.

Adding the last two identities, one gets
|A]> = [H|* = 2R1215 + 2K1212.

We therefore have
/ |APdp, < / H|?dp: + Cpe () + 4g — 4,
P P

where g is the genus of the initial surface ¥y. Because ¥; is a continuous deformation of Xy, so

its genus is also g. Since

)
— | dw=— [ |H*d
b L = [ e
we have -
pe(S0) < (o) and. [ [ HPdpdt < po(So)
0 P
So,

[ 1P < [ P+ c.
P PN

and there is a sequence t; — oo, such that
/ [H|?dps, — 0 as i — oo. (5.1)
S,

It follows that
/ A 2dps, < C. (5.2)
S,

Suppose that 3;, blows up around a point p € M. We have

A= max |A]? — oo
EtinBr (p)

Assume that \; = |A(x;)| and that F(x;,t;) — p as i — oco. Considering the blow-up sequence

we can see that F; — F, as i — oo and F, is a minimal surface in R* with |A| < |A(0)] = 1.

Lemma 5.3  There is an absolute constant ey such that for all the minimal surfaces ¥ in R*

with |A| < ]A(0)| =1, we have
[, IAPdz
B4(0)NE
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Proof Otherwise, there are ¥* with |A*| < |A*(0)| = 1, H* = 0, and

/ |A¥|2dp — 0.
B(0)NT

By Proposition 2.6 in [7], we have
AJAF]? = —2| VAR 4 2| AR|* < 2]AF|2.
By the mean value inequality, we obtain

1:|Ak(0)\§0/ |Ak|2§C/ |A¥? = 0.
B%(0) B}(0)NT

This proves the lemma.

By Lemma 5.3, we have

€0 < / AT 2dp; = / A2d.
B1(0)N%; Bi_,(0)n%,

By (5.2), one can see that the blow-up set is at most a finite set of points. We can see from
(5.1) that ¥ is a minimal surface.

By Proposition 3.2 in [7], we have

Rsinzacosad,ut—/ cos o|H|*dps,

0
— cos adpy = / cos a|VMJt\2dut +
ot P 3t 3¢

¢

where
[VMJe? = |h3) + hial|® + |3y + hio|® + [h3y — hiy|* + [R5y — by |

for the second fundamental form h7; of ¥ in M. However,

/cosadut:/ w
pIP 3¢

is constant under the continuous deformation in ¢ since w is closed. Therefore, if R > 0 we have

/cosadutg/ cosa\H\Zdut.
2, =,

By (5.1), we then obtain
/ \VMJt1|2d,uti — 0 as i — oo.
S,

So, Y is a holomorphic curve. This proves the theorem.
If a minimal surface is a graph, we know that it is smooth (][9], Theorem 7.2, see also [10],

Theorem 4.2). So, we have the following corollary:

Corollary 5.4  Assume that M = My x My is a Kdhler-Einstein surface, My and My are
Riemann surfaces, ¥q is a graph. If v(x,0) > vy > %, then the global solution F(-,t) of the
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equation (1.1) sub-converges to Foo in C? ast — oo, possibly outside a finite set of points, and

Yoo = Foo(X) is a smooth minimal surface.
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