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It is known that the Keplerian orbits minimize the Lagrangian action of the two-body problem
(see [1, 2 and 3]), and in this short paper, we will show that the Lagrangian solutions [4] to the
three-body problem also minimize the action functional. Note the fact that circular Lagrangian
solutions minimize the action functional on the zero mean loop space has already been known
(see [5, 6]).

For a given choice of the masses (m1,mz, m3) € RY, the configuration space of the three-

body problem in C is given by

i=1

3
F = {(xl,xg,xg) € (C3;Zmixi =0, and x; # z;,1 ;éj} .
The loop space M we will deal with is the W12 completion of the following smooth loop space:

¢ = {qt) = (@), q(t),q(t)) € C*(R/TZ, F);
deg(q2 — q1) # 0,deg(gs — q2) # 0, and deg(q1 — g3) # 0},

Received February 1, 2000, Accepted July 18, 2000
The first author is partially supported by a grant of NNSFC.
The second author is partially supported by grants of MOSTC, NNSFC and QSSTF.




498 S. Q. Zhang and Q. Zhou

and the Lagrangian action is given by

1 (T3 ) m;m;
- 5/ Zmi|qi|2dt—|—/ > P — dt
0 =1 1< g q]
The solution to the three-body problem is a critical point of the Lagrangian f on 9t. The main

result in this paper is the following theorem:

Theorem 1  The minimal reqular solutions to the three-body problem in 9N are precisely the

Lagrangian elliptical solutions.

We start with a brief review of Keplerian orbits, Gordon’s result [2] and Lagrangian solu-
tions.

The Keplerian orbits are the regular periodic solutions to the equation

Z(t) = |;((t))|3, where z(t) € C*(R, C).

It is easy to verify that the energy F = 1|#|* — |z|~! and the angular momentum G = x x & are
constants of the motion (see [1] or [3]). In polar coordinates, the Kepler orbits can be written
as z(t) = r(t)exp(v/—1la(t)), and r(t) and «(t) satisfy the equation

G2
1+ V14 2EG? cos(a(t) — B)
The curve is an ellipse with eccentricity v/1 + 2EG?2, semimajor axis (—2FE)~!, and the period

of the close orbit is T = 2r(—2E)~3/2,
The Keplerian orbits are solutions to the two-body problem. Let 91 be the W12 completion

r(t) = , and G = r?(t)a(t).

of the loop space
{z(t) € C*(R/TZ,C),z(t) # 0 and degz # 0};

and the action functional is defined by

o= [ (HOE L

The critical point of the functional f; in 9t is called the solution to the two-body problem.

Gordon [2] proved the following theorem:

Theorem 2  The minimal regular solutions to the two-body problem in N are precisely the

Keplerian orbits, and the minimum of the action functional f equals A = (37)(T/27)/3.

For the three-body problem, there are well-known solutions which were discovered by La-
grange [4] in 1772. For three masses (m1, mg, m3) € RY (mq +mo+mg = 1), put the masses at
the vertices of an equilateral triangle {t1,ts,t3} C C of side 1 such that ), m;t; = 0, and pick a
Keplerian orbit x(t); then q(t) = z(t)(t1, t2,t3) is called a Lagrangian solution. To see that the

Lagrangian solution ¢(t) is a solution to the three-body problem, we have the following lemma:

Lemma 3  Lagrangian solutions to the three-body problem minimize the action functional f
in 9.
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Proof Since > m;q; = 0, then > m;¢; = 0 and then

. 1 .
> mimglai — ¢ = §Zmimj|Qi_Qj|2
i<j i#]
1 . . .
= §Zmimj(‘Qi‘2+|Qj|2_2<Qi7Qj>)
i#]
3 3
= > omildl?Y my =Y 0> mim;{di, ;)
i=1 i i=1 j£i

3
= Zmi|qi|22mj — <Z midi7zmj4j>
i=1 J i J
= MY mlgl> =Y milgl,
i %

where M = > m; =1 is the total mass. Thus

T /10 .2
ldi — djl 1
flg) = E mim-/ < + dt.
@ " Jo 2 |9i — ;]

i<j

For each ¢ < j, by Theorem 2, we have that

T s 2 1/3
/ ('q’ G, 1 )dt > 3 (3) :
0 2 i — g1 2

and the integral attains its minimum at Keplerian orbit g;(t) —¢;(¢t) = x(¢)(t; —¢;). This shows

that the action functional f attains its minimum 3m(7/27)"/? > icjmim; at the Lagrangian
solution ¢(t) = x(t)(t1,t2,t3), and thus we complete the proof of the lemma.
Now we are in a position to prove Theorem 1. To prove Theorem 1, we need to verify that

any regular minimal solution to the three-body problem is a Lagrangian solution.

Proof of Theorem 1 Suppose q(t) = (¢1(t), q2(¢), g3(t)) is a regular minimum solution to the
three-body problem. By Theorem 2 and the proof of Lemma 3, z1(t) = g2(t) — q3(¢), 22(t) =
q3(t) — q1(t) and z3(t) = q1(t) — q2(t) are Kepler orbits of period T'. So

Z; (t)

SO = R

It is clear that
This implies that & (t) + Z2(t) + &3(t) = 0, i.e.

l‘l(t) I’Q(t) l’3(t)

mOF | @F | n0F

If, for some to € R/TZ, the three points g1(to),g2(to) and ¢3(to) are not the vertices of an

equilateral triangle, it must be collinear, and then collinear for all ¢t € R/TZ.
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To see this, we assume that |z2(to)| # |x3(to)| and the real part of 1(tg) = 0. Then

i)‘ie(xg(to)) me(.l'g(t()))
|lz2(t0)]? |23 (to)[?

Re(za(to)) + Re(zs(to)) =0, and =0,

and so Re(za(to)) = Re(xs(to)) = 0.
In fact ¢1(t), ¢2(t) and ¢5(¢t) cannot be collinear, since we know that the three Kepler orbits
x1(t), x2(t) and x3(t) have the same semimajor axes.

So now we know that ¢(t) is of the following form:

q(t) = r(t)(q1(0), g2(0), ¢3(0)), degr # 0,

where (¢1(0),g2(0),g3(0)) are the vertices of an equilateral triangle and ). m;q;(0) = 0. The

action functional f must also attain its minimum of f at ¢(¢) on the space

{r<t>< 1(0):02(0)u(0)).degr # 0.3 (0 _0}.

Restricting f on this space, then we have

T Pt mim; 1
sy = [ | S mia o +Z|qz o) "

i )~ ai(

So r(t) is a Kepler orbit and then ¢(t) is a Lagrangian solution. This completes the proof of

the theorem.
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