Acta Mathematica Sinica, English Series July, 2001, Vol.17, No.3, pp. 497–500

Acta Mathematica Sinica, English Series © Springer-Verlag 2001

A Minimizing Property of Lagrangian Solutions

Shi Qing ZHANG *Department of Mathematics, Chongqing University, Chongqing* 400044*, P. R. China E-mail: abc*98*@cqu.edu.cn*

Qing ZHOU *Department of Mathematics, East China Normal University, Shanghai* 200062*, P. R. China E-mail: qzhou@math.ecnu.edu.cn*

Abstract In this paper, we prove that the Lagrangian solutions to the three-body problem minimize the action function.

Keywords Three-body problem, Lagrange solutions **2000 MR Subject Classification** 70F07

It is known that the Keplerian orbits minimize the Lagrangian action of the two-body problem (see [1, 2 and 3]), and in this short paper, we will show that the Lagrangian solutions [4] to the three-body problem also minimize the action functional. Note the fact that circular Lagrangian solutions minimize the action functional on the zero mean loop space has already been known (see [5, 6]).

For a given choice of the masses $(m_1, m_2, m_3) \in \mathbb{R}^3_+$, the configuration space of the threebody problem in $\mathbb C$ is given by

$$
F = \left\{ (x_1, x_2, x_3) \in \mathbb{C}^3; \sum_{i=1}^3 m_i x_i = 0, \text{ and } x_i \neq x_j, i \neq j \right\}.
$$

The loop space \mathfrak{M} we will deal with is the $W^{1,2}$ completion of the following smooth loop space:

$$
\mathfrak{C} = \{ q(t) = (q_1(t), q_2(t), q_3(t)) \in C^{\infty}(\mathbb{R}/T\mathbb{Z}, F);
$$

\n
$$
\deg(q_2 - q_1) \neq 0, \deg(q_3 - q_2) \neq 0, \text{ and } \deg(q_1 - q_3) \neq 0 \},
$$

Received February 1, 2000, Accepted July 18, 2000

The first author is partially supported by a grant of NNSFC.

The second author is partially supported by grants of MOSTC, NNSFC and QSSTF.

498 *S. Q. Zhang and Q. Zhou*

and the Lagrangian action is given by

$$
f(q) = \frac{1}{2} \int_0^T \sum_{i=1}^3 m_i |\dot{q}_i|^2 dt + \int_0^T \sum_{i < j} \frac{m_i m_j}{|q_i - q_j|} dt.
$$

The solution to the three-body problem is a critical point of the Lagrangian f on \mathfrak{M} . The main result in this paper is the following theorem:

Theorem 1 *The minimal regular solutions to the three-body problem in* ^M *are precisely the Lagrangian elliptical solutions.*

We start with a brief review of Keplerian orbits, Gordon's result [2] and Lagrangian solutions.

The Keplerian orbits are the regular periodic solutions to the equation

$$
\ddot{x}(t) = -\frac{x(t)}{|x(t)|^3}, \text{ where } x(t) \in C^{\infty}(\mathbb{R}, \mathbb{C}).
$$

It is easy to verify that the energy $E = \frac{1}{2}|\dot{x}|^2 - |x|^{-1}$ and the angular momentum $G = x \times \dot{x}$ are constants of the motion (see $[1]$ or $[3]$). In polar coordinates, the Kepler orbits can be written as $x(t) = r(t) \exp(\sqrt{-1}\alpha(t))$, and $r(t)$ and $\alpha(t)$ satisfy the equation

$$
r(t) = \frac{G^2}{1 + \sqrt{1 + 2EG^2} \cos(\alpha(t) - \beta)}, \text{ and } G = r^2(t)\dot{\alpha}(t).
$$

The curve is an ellipse with eccentricity $\sqrt{1+2EG^2}$, semimajor axis $(-2E)^{-1}$, and the period of the close orbit is $T = 2\pi(-2E)^{-3/2}$.

The Keplerian orbits are solutions to the two-body problem. Let \mathfrak{N} be the $W^{1,2}$ completion of the loop space

$$
\{x(t)\in C^\infty(\mathbb{R}/T\mathbb{Z},\mathbb{C}), x(t)\neq 0 \text{ and } \deg x\neq 0\};
$$

and the action functional is defined by

$$
f_1(x) = \int_0^T \left(\frac{|x(t)|^2}{2} + \frac{1}{|x(t)|} \right) dt.
$$

The critical point of the functional f_1 in \mathfrak{N} is called the solution to the two-body problem.

Gordon [2] proved the following theorem:

Theorem 2 *The minimal regular solutions to the two-body problem in* ^N *are precisely the Keplerian orbits, and the minimum of the action functional* f_1 *equals* $A = (3\pi)(T/2\pi)^{1/3}$.

For the three-body problem, there are well-known solutions which were discovered by Lagrange [4] in 1772. For three masses $(m_1, m_2, m_3) \in \mathbb{R}^3_+$ $(m_1 + m_2 + m_3 = 1)$, put the masses at the vertices of an equilateral triangle $\{t_1, t_2, t_3\} \subset \mathbb{C}$ of side 1 such that $\sum_i m_i t_i = 0$, and pick a Keplerian orbit $x(t)$; then $q(t) = x(t)(t_1, t_2, t_3)$ is called a Lagrangian solution. To see that the Lagrangian solution $q(t)$ is a solution to the three-body problem, we have the following lemma:

Lemma 3 *Lagrangian solutions to the three-body problem minimize the action functional* ^f *in* M*.*

Proof Since $\sum m_i q_i = 0$, then $\sum m_i \dot{q}_i = 0$ and then

$$
\sum_{i < j} m_i m_j |\dot{q}_i - \dot{q}_j|^2 = \frac{1}{2} \sum_{i \neq j} m_i m_j |\dot{q}_i - \dot{q}_j|^2
$$
\n
$$
= \frac{1}{2} \sum_{i \neq j} m_i m_j (|\dot{q}_i|^2 + |\dot{q}_j|^2 - 2 \langle \dot{q}_i, \dot{q}_j \rangle)
$$
\n
$$
= \sum_{i=1}^3 m_i |\dot{q}_i|^2 \sum_{j \neq i} m_j - \sum_{i=1}^3 \sum_{j \neq i} m_i m_j \langle \dot{q}_i, \dot{q}_j \rangle
$$
\n
$$
= \sum_{i=1}^3 m_i |\dot{q}_i|^2 \sum_j m_j - \left\langle \sum_i m_i \dot{q}_i, \sum_j m_j \dot{q}_j \right\rangle
$$
\n
$$
= M \sum_i m_i |\dot{q}_i|^2 = \sum_i m_i |\dot{q}_i|^2,
$$

where $M = \sum m_i = 1$ is the total mass. Thus

$$
f(q) = \sum_{i < j} m_i m_j \int_0^T \left(\frac{|\dot{q}_i - \dot{q}_j|^2}{2} + \frac{1}{|q_i - q_j|} \right) dt.
$$

For each $i < j$, by Theorem 2, we have that

$$
\int_0^T \left(\frac{|\dot{q}_i - \dot{q}_j|^2}{2} + \frac{1}{|q_i - q_j|} \right) dt \ge 3\pi \left(\frac{T}{2\pi} \right)^{1/3},
$$

and the integral attains its minimum at Keplerian orbit $q_i(t) - q_j(t) = x(t)(t_i - t_j)$. This shows that the action functional f attains its minimum $3\pi (T/2\pi)^{1/3} \sum_{i < j} m_i m_j$ at the Lagrangian solution $q(t) = x(t)(t_1, t_2, t_3)$, and thus we complete the proof of the lemma.

Now we are in a position to prove Theorem 1. To prove Theorem 1, we need to verify that any regular minimal solution to the three-body problem is a Lagrangian solution.

Proof of Theorem 1 Suppose $q(t)=(q_1(t), q_2(t), q_3(t))$ is a regular minimum solution to the three-body problem. By Theorem 2 and the proof of Lemma 3, $x_1(t) = q_2(t) - q_3(t), x_2(t) =$ $q_3(t) - q_1(t)$ and $x_3(t) = q_1(t) - q_2(t)$ are Kepler orbits of period T. So

$$
\ddot{x}_i(t) = -\frac{x_i(t)}{|x_i(t)|^3}.
$$

It is clear that

$$
x_1(t) + x_2(t) + x_3(t) = 0.
$$

This implies that $\ddot{x}_1(t) + \ddot{x}_2(t) + \ddot{x}_3(t) = 0$, i.e.

$$
\frac{x_1(t)}{|x_1(t)|^3} + \frac{x_2(t)}{|x_2(t)|^3} + \frac{x_3(t)}{|x_3(t)|^3} = 0.
$$

If, for some $t_0 \in \mathbb{R}/T\mathbb{Z}$, the three points $q_1(t_0), q_2(t_0)$ and $q_3(t_0)$ are not the vertices of an equilateral triangle, it must be collinear, and then collinear for all $t \in \mathbb{R}/T\mathbb{Z}$.

500 *S. Q. Zhang and Q. Zhou*

To see this, we assume that $|x_2(t_0)| \neq |x_3(t_0)|$ and the real part of $x_1(t_0) = 0$. Then

$$
\Re e(x_2(t_0)) + \Re e(x_3(t_0)) = 0
$$
, and $\frac{\Re e(x_2(t_0))}{|x_2(t_0)|^3} + \frac{\Re e(x_3(t_0))}{|x_3(t_0)|^3} = 0$,

and so $\Re e(x_2(t_0)) = \Re e(x_3(t_0)) = 0.$

In fact $q_1(t), q_2(t)$ and $q_3(t)$ cannot be collinear, since we know that the three Kepler orbits $x_1(t), x_2(t)$ and $x_3(t)$ have the same semimajor axes.

So now we know that $q(t)$ is of the following form:

$$
q(t) = r(t)(q_1(0), q_2(0), q_3(0)), \text{ deg } r \neq 0,
$$

where $(q_1(0), q_2(0), q_3(0))$ are the vertices of an equilateral triangle and $\sum_i m_i q_i(0) = 0$. The action functional f must also attain its minimum of f at $q(t)$ on the space

$$
\left\{ r(t)(q_1(0), q_2(0), q_3(0)), \deg r \neq 0, \sum_i m_i q_i(0) = 0 \right\}.
$$

Restricting f on this space, then we have

$$
f(r(t)) = \int_0^T \left(\sum_i m_i |q_i(0)|^2 \frac{|\dot{r}(t)|^2}{2} + \sum_{i < j} \frac{m_i m_j}{|q_i(0) - q_j(0)|} \frac{1}{|r(t)|} \right) dt.
$$

So $r(t)$ is a Kepler orbit and then $q(t)$ is a Lagrangian solution. This completes the proof of the theorem.

- [1] R. Abraham, J. E. Marsden, Foundations of Mechanics, Benjamin/Cummings, 1978.
- [2] W. Gordon, A minimizing property of Keplerian orbits, *Amer. J. of Math.*, 1977, **99**: 961–971.
- [3] H. Pollard, Celestial Mechanics, The Mathematical Association of America, 1976.
- [4] J. Lagrange, Essai sur le probléme des trois crops, 1772, Ouvers, 1783, 3: 229-331.
- [5] A. Chenciner, N. Desolneux, Minima de l'int´egrale d'action et ´equilibres relatifs de n corps, *C. R. Acad. Sci. Paris,* serie I, t.32, 1998, 1209–1212.
- [6] Y. Long, S. Q. Zhang, Geometric characterization for variational minimization solutions of the 3-body problem, *Chinese Sci. Bull.,* 1999, **44**: 1653–1655.
- [7] C. Siegel, J. Moser, Lectures on Celestial Mechanics, Berlin: Springer, 1971.