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1 Minimal Surfaces

Let M be a compact Kähler-Einstein surface and Σ an orientable compact surface without
boundary which is immersed in M . It is well known that one can define the so-called Kähler
angle α at each point of Σ, which carries fundamental geometric information of Σ in M . In
particular, Σ is a holomorphic curve if α ≡ 0, it is a Lagrangian curve if α ≡ π

2 and is a
symplectic curve if 0 ≤ α < π

2 . When Σ is a minimal surface in a Kähler-Einstein surface, this
angle α satisfies a nonlinear elliptic equation (cf. [1]). There are many consequences of this
nonlinear equation. For instance, by the maximum principle, we can easily show that if Σ is
a minimal and symplectic surface in a Kähler-Einstein surface with positive scalar curvature,
then Σ must be holomorphic. Moreover, in [1] Wolfson proved

Theorem 1.1 Let M be a Kähler-Einstein surface with scalar curvature R and Σ a compact
totally real branched minimal surface without boundary which is smoothly immersed in M . Then
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(1) Σ is Lagrangian when R < 0, (2) Σ is holomorphic with respect to some complex structure
of M when M is K3.

In [2], the authors obtain the following:

Theorem 1.2 Let Σ be an admissible minimal surface in a Kähler-Einstein surface with non-
positive scalar curvature. If c1(Σ) = χ(TΣ)+χ(NΣ) then Σ is either symplectic or Lagrangian.

In this paper, we study the behavior of the Kähler angle of immersed surfaces under the
mean curvature flow, and derive a few corollaries. In particular, we shall show that a symplectic
curve will remain symplectic with the evolution.

2 Moving Surfaces by the Mean Curvature Flow

Consider a smooth family of immersions F : Σ × [0, T ) → M . We would like to describe the
Kähler angle associated with each point of Σt = F (Σ, t). Let ω1 and ω2 be (1, 0)-forms on M

such that the Kähler metric of M is

ds2
M = ω1ω1 + ω2ω2. (2.1)

The induced metric ds2
Σt

on Σt is then

φφ = ω1ω1 + ω2ω2. (2.2)

Notice that (2.1) determines ω1 and ω2 up to unitary transformations. As in [3], we can choose
ω1 and ω2 such that

ω1 = s1φ, ω2 = s2φ, (2.3)

where s1 and s2 are complex-valued functions on Σt. Substituting (2.3) into (2.2) yields

|s1|2 + |s2|2 = 1. (2.4)

By unitary transformations, we may further assume that when restricted to Σt

ω1 = cos
α

2
φ, ω2 = sin

α

2
φ, (2.5)

where α is a continuous function on Σt with values between 0 and π. A point p on Σt is called
complex if α(p) = 0, anti-complex if α(p) = π and Lagrangian if α(p) = π

2 . The Kähler form of
M restricted on Σt is then

ωM =
√−1
2

(ω1 ∧ ω1 + ω2 ∧ ω2)|Σt =
√−1
2

cosαφ ∧ φ. (2.6)

Note that
√−1

2 φ ∧ φ is the area element of Σt.
To get the underlying Riemannian structure into the picture, we set

ψ1 = s1ω1 + s2ω2 = θ1 +
√−1θ2, (2.7)
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ψ2 = s2ω1 − s1ω2 = θ4 +
√−1θ3. (2.8)

Then θ1, . . . , θ4 form an orthonormal coframe of M . They define a positive orientation. One
can see this as follows:

ψ1 ∧ ψ1 ∧ ψ2 ∧ ψ2 = (s1s1 − s2s2)2ω1 ∧ ω1 ∧ ω2 ∧ ω2 = (s1s1 − s2s2)2dVM , (2.9)

where dVM is the volume form of M . On the other hand, in terms of θi, we have

ψ1 ∧ ψ1 ∧ ψ2 ∧ ψ2 = (−2√−1θ1 ∧ θ2) ∧ (−2√−1θ4 ∧ θ3) = 4 θ1 ∧ θ2 ∧ θ3 ∧ θ4. (2.10)

Let ei be the dual of θi in the tangent bundle TM along Σt. Therefore at each point p ∈ Σt,
ei form an orthonormal basis of TpM . Moreover, along Σt we have

s2 ω1 − s1ω2 = 0, (2.11)

which means that θ1, θ2 form an orthonormal basis of TpΣt and θ3, θ4 form an orthonormal
basis of the normal plane NpΣt. We therefore obtain a canonical basis e3, e4 of the normal
bundle at each point of Σt.

Now we consider a smooth family of mappings F : Σ × [0, T ) → M , 0 < T < ∞, which
satisfies the mean curvature flow equation

∂F

∂t
= H, (2.12)

where H = H1e3 +H2e4 is the mean curvature of Σt in M .
We first consider how the pull-back 2-form F ∗ω varies with time t where ω is the Kähler form

of M . Let v1, ..., v4 be the local coordinates of M near Σt which are determined by e1, ..., e4.
Hereinafter we use the summation convention for repeated indices and when no confusion with
the Kähler angle arises we also use α for the index. Write the Kähler form as

ω = ωαβdv
α ∧ dvβ . (2.13)

Note that ωαβ is antisymmetric
ωαβ + ωβα = 0, (2.14)

and ω being closed implies
ωαβ,γ + ωγα,β + ωβγ,α = 0. (2.15)

Lemma 2.1 Let F be a solution of the mean curvature flow equation (2.12). If x, y are local
coordinates on Σ, then

∂

∂t
F ∗ω

(
∂

∂x
,
∂

∂y

)
= F ∗dω(H, ·)

(
∂

∂x
,
∂

∂y

)
. (2.16)

Proof Differentiating

F ∗ω
(

∂

∂x
,
∂

∂y

)
= ωαβ

∂Fα

∂x

∂F β

∂y
(2.17)
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yields

∂

∂t
F ∗ω

(
∂

∂x
,
∂

∂y

)
= ωαβ,γH

γ ∂F
α

∂x

∂F β

∂y
+ ωαβ

(
∂Hα

∂x

∂F β

∂y
+

∂Hβ

∂y

∂Fα

∂x

)
. (2.18)

On the other hand, the interior product of H and ω defines a 1-form

ω(H, ·) = ωαβH
αdvβ . (2.19)

It follows that
dω(H, ·) = ωαβ,γH

αdvγ ∧ dvβ + ωαβ
∂Hα

∂vγ
dvγ ∧ dvβ . (2.20)

Then we have

F ∗dω(H, ·)
(

∂

∂x
,
∂

∂y

)
= Hα ∂F

γ

∂x

∂F β

∂y
(ωαβ,γ − ωαγ,β) + ωαβ

∂Hα

∂x

∂F β

∂y
− ωαβ

∂Hα

∂y

∂F β

∂x

= Hα ∂F
γ

∂x

∂F β

∂y
ωγβ,α + ωαβ

∂Hα

∂x

∂F β

∂y
+ ωβα

∂Hα

∂y

∂F β

∂x
(2.21)

by using (2.14) and (2.15) in the last equality. Now comparing (2.18) and (2.21) proves the
lemma.

Relative to ω1, ω2, a unitary connection ωαβ is uniquely determined by the equations

dωα = ωα1 ∧ ω1 + ωα2 ∧ ω2, (2.22)

ωαβ = −ωβα. (2.23)

Along the surface Σt, we have
sin

α

2
ω1 − cos

α

2
ω2 = 0. (2.24)

Taking the exterior derivative of the above equation and using Cartan’s equations leads to

1
2

(
dα+ sinα(ω11 + ω22)

)
= aφ+ bφ, (2.25)

ω12 = bφ+ cφ (2.26)

for some complex-valued functions a, b, c on Σt. Let {θij} be the connection forms in the coframe
θ1, ..., θ4. Then the second fundamental form of Σt is given by

Ik = αkθ
2
1 + 2βkθ1θ2 + γkθ

2
2, (2.27)

where
θk1 = αkθ1 + βkθ2, (2.28)

θk2 = βkθ1 + γkθ2, (2.29)

for k = 3, 4. It follows that the mean curvature normals are given by

H1 = α3 + γ3, (2.30)

H2 = α4 + γ4. (2.31)
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Recall that s2 ω1 − s1ω2 = θ4 +
√−1θ3. Comparing their covariant derivatives along Σt, we see

the following relations (cf. [4]):

2b+ a+ c = α4 +
√−1α3, (2.32)

2b− a− c = γ4 +
√−1γ3, (2.33)

√−1(a− c) = β4 −
√−1β3. (2.34)

Therefore, we have:

Lemma 2.2 Let b be defined as in (2.25) and (2.26). Then

H2 +
√−1H1 = 4b. (2.35)

In particular, b = 0 if and only if Σt is minimal.

To derive an evolution equation for α, we observe that α is real and ω11 + ω22 is purely
imaginary. Then by taking the summation of (2.25) with its complex conjugate, we have

dα = aφ+ bφ+ aφ+ bφ, (2.36)

and by taking the (0, 1)-part of both sides of the above equation, we have

∂α = (a+ b)φ. (2.37)

Then it follows from (2.37) and (2.25) that

∂∂α = d∂α

= d(aφ+ bφ) + d(bφ− bφ)

=
1
2
d(dα− sinα(ω11 + ω22)) + d(bφ− bφ)

= −1
2
cosαdα ∧ (ω11 + ω22)−

√−1
2

sinαRic + d(bφ− bφ), (2.38)

where Ric denotes the Ricci curvature of M pulled back to Σt by the immersion F (cf. [1]).
Using (2.25) again, we have

−cosα
2

dα ∧ (ω11 + ω22) = −cosα
sinα

dα ∧ (
aφ+ bφ

)

= −cosα
sinα

(
aφ+ bφ

) ∧ (
aφ+ bφ

)

= −cosα
sinα

(
∂α− bφ+ bφ

) ∧ (
∂α− bφ+ bφ

)

=
cosα
sinα

(
∂α ∧ ∂α− dα ∧ (bφ− bφ)

)
. (2.39)

Therefore, we obtain

∂∂α =
cosα
sinα

(
∂α ∧ ∂α− dα ∧ (bφ− bφ)

) −
√−1
2

sinαRic + d(bφ− bφ). (2.40)
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Lemma 2.3 If sinα �= 0, then

bφ− bφ =
√−1
2 sinα

F ∗ω(H, ·). (2.41)

Proof From (2.5), (2.6), (2.7) and (2.8), we can write

F ∗ω =
√−1
2

cosα
(
ψ1 ∧ ψ1 − ψ2 ∧ ψ2

)
+

√−1
2

sinα
(
ψ1 ∧ ψ2 + ψ2 ∧ ψ1

)
. (2.42)

Then it follows that

F ∗ω(H, ·) = sinα (θ1 ∧ θ3 − θ2 ∧ θ4) (H) = sinα
(
H1θ1 −H2θ2

)
. (2.43)

But from Lemma 2.2, we have

bφ− bφ =
√−1
2

(
H1θ1 −H2θ2

)
. (2.44)

Now (2.43) and (2.44) imply the lemma.

It is known (cf. [5]) that the area element
√−1

2 φ ∧ φ of Σt in the induced metric evolves
with the mean curvature flow by the formula

∂

∂t

(
φ ∧ φ

)
= −|H|2φ ∧ φ. (2.45)

By differentiating F ∗ω =
√−1

2 cosαφ ∧ φ in t, we conclude from (2.45) that

∂

∂t
F ∗ω =

√−1
2

∂ cosα
∂t

φ ∧ φ−
√−1
2

cosα|H|2φ ∧ φ. (2.46)

So far, we have only used the fact that M is Kähler. When M is a Kähler-Einstein surface
with scalar curvature R, the pulled back Ricci 2-form by the immersion F is

Ric =
√−1
2

R cosαφ ∧ φ. (2.47)

Now we go back to equation (2.40). It follows from Lemma 2.3 that

∂∂α =
cosα
sinα

(
∂α ∧ ∂α− dα ∧

√−1
2 sinα

F ∗ω(H, ·)
)

+
R

4
sinα cosαφ ∧ φ+

√−1
2 sinα

dF ∗ω(H, ·)

=
cosα
4 sinα

|∇α|2φ ∧ φ+
R

4
sinα cosαφ ∧ φ

−
√−1 cosα
sin2 α

dα ∧ F ∗ω(H, ·) +
√−1
2 sinα

dF ∗ω(H, ·)

=
cosα
4 sinα

|∇α|2φ ∧ φ+
R

4
sinα cosαφ ∧ φ−

√−1 cosα
sin2 α

dα ∧ F ∗ω(H, ·)

− 1
4 sinα

∂ cosα
∂t

φ ∧ φ+
cosα
4 sinα

|H|2φ ∧ φ. (2.48)
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We used Lemma 2.1 and (2.46) in the last step. On the other hand, we have

∆cosα = − sinα∆α− cosα|∇α|2 (2.49)

and
∆αφ ∧ φ = 4∂∂α. (2.50)

Hence, we obtain:

Theorem 2.4 If F : Σ × [0, T ) → M is a family of immersions which satisfies the mean
curvature flow equation, then the Kähler angle α of the immersed surfaces satisfies

∂ cosα
∂t

= ∆cosα+ 2cosα|∇α|2 +R sin2 α cosα+ |H|2 cosα

+
4
√−1 cosα
sin2 α

d cosα ∧ F ∗ω(H, ·)(φ∗ ∧ φ
∗
), (2.51)

where φ∗, φ
∗

stand for the dual vectors of the 1-forms φ, φ, provided α �= 0, π.

Theorem 2.4 and the minimum principle for parabolic equations lead to interesting applica-
tions. Recall that an immersed surface Σt in M is called symplectic if its Kähler angle satisfies
0 ≤ α < π/2 at every point.

Theorem 2.5 Let M be a Kähler-Einstein surface and let Σ be a compact orientable surface
without boundary. Suppose that F : Σ×[0, T ) → M is a family of immersions which satisfies the
mean curvature flow equations. If the initial surface is symplectic, then it will remain symplectic
for any t ∈ [0, T ).

Proof First we notice that if α is identically equal to zero on the initial surface, then the
initial surface is holomorphic hence automatically minimal. So the mean curvature flow keeps
every point still. In this case, the theorem is trivially true. Second, by assumption the initial
surface is symplectic hence there are no anti-complex points on it, i.e. α �= π. In particular, α
is smooth in a neighborhood of the points where cosα attains its minimum and the minimum
principle is applicable, provided α is not identically zero. Denote the scalar curvature of the
Kähler-Einstein metric on M by R. Let x(t) be a point on Σt such that

cosα(x(t)) = min
x(t)∈Σt

cosα(x(t)). (2.52)

Let t0 be any time such that cosα(x(t0)) > 0. By assumption, the initial surface Σ0 satisfies
this requirement. For any ε > 0, we have

∂eε(t−t0) cosα
∂t

= eε(t−t0)

(
∆cosα+ 2cosα|∇α|2 +R sin2 α cosα+ |H|2 cosα

+
4
√−1 cosα
sin2 α

d cosα ∧ F ∗ω(H, ·)(φ∗ ∧ φ
∗
)
)
+ εeε(t−t0) cosα. (2.53)

In particular, if R ≥ 0 the minimum principle asserts that

∂eε(t−t0) cosα
∂t

∣∣∣
x(t0)

≥ ε cosα(x(t0)) > 0. (2.54)
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This implies that
∂ cosα
∂t

∣∣∣
x(t0)

> −ε cosα(x(t0)). (2.55)

The left-hand side of (2.55) is independent of ε. So by letting ε go to zero we see that the
t-derivative of cosα is strictly positive in some neighborhood U × [t0, t0 + δ) where U is some
open neighborhood of x(t0) in Σt0 and δ is some positive number. For any t1 > t0 which is
sufficiently close to t0, there exists some point x(t1) ∈ U × [t0, t0 + δ). x(t1) is evolved from
some point y on Σt0 . Therefore

cosα(x(t1)) > cosα(y) ≥ cosα(x(t0)) > 0. (2.56)

Consequently, the minimum of cosα is strictly increasing on [0, T ). If R < 0, we consider

∂e−R(t−t0) cosα
∂t

= e−R(t−t0)

(
∆cosα+ 2cosα|∇α|2 +R sin2 α cosα

+ |H|2 cosα+
4
√−1 cosα
sin2 α

d cosα ∧ F ∗ω(H, ·)(φ∗ ∧ φ
∗
)
)

−Re−R(t−t0) cosα. (2.57)

At x(t0), the minimum principle implies

∂e−R(t−t0) cosα
∂t

∣∣∣
x(t0)

≥ −R cos3 α(x(t0)) > 0. (2.58)

Continuity then implies that in a neighborhood U ′ × [t0, t0 + δ′) of x(t0)

∂ cosα
∂t

−R cosα > 0, (2.59)

cosα > 0. (2.60)

Again by continuity, we may assume that cosα attains its minimum value at some x(t) in U ′

for all t ∈ [t0, t0 + δ′). Let y(t) be the point in U ′ × t0 which evolves to x(t). It follows that

cosα(x(t)) ≥ cosα(x(t))

> cosα(y(t))eR(t−t0)

≥ cosα(x(t0))eR(t−t0), (2.61)

and therefore cosα remains strictly positive for all t in [t0, t0 + δ′), hence in [t0, T ).
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