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Abstract Consider the nonlinear delay difference equation

Tnt1 = Tn+ O P;fi(@nr;) = 0.
j=1
We establish a linearized oscillation result of this equation, which is the extension of the result in the

paper [1].
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1 Main Results

Consider the following equation

m
Tnt1 —Tn + ijfj(xn—kj) =0, n 2 ng, (1)
i=1
and its linearized equation

m
Tn+l — Tp + ijzn—kj =0, n > ng, (2)
j=1
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where ng € {0,1,2,...}. A linearized oscillation result of Eq. (1) has been established by
Jurang Yan et al. [1], provided: for all j = 1,2,...,m

p;j € (0,+00) k; €{0,1,2,...}, (3)
fj € C(R’ R)v ufj(u) >0 (u ;é 0)7 (4)
fm 2 =1 2

For further research, we find only few functions satisfy Condition (4), so the application of this

theorem is limited. For this reason, condition (4) is transformed into
f; € C(R,R), 3Ja>0, ufj(u)>0u#0), ué€(-a,a). (4)'

This work is motivated by [3]. We obtain the following result:

Theorem If conditions (3), (4)' and (5) are satisfied, then Eq. (1) oscillates if and only if
Eq. (2) oscillates.

2 Proof of the Theorem

Before proving the theorem, we introduce the following lemmas.

Lemma 1 [2] Assume that (3) is satisfied. Then every solution of Eq. (2) oscillates if and
only if

m
Tntr — T+ ijfn—kj <0 (6)
j=1

has no eventually positive solution.

Lemma 2 [2] Every solution of Eq. (2) oscillates if and only f its characteristic equation
A=14) pia ™t =0 (7)
Jj=1

has no positive roots.

Lemma 3  Assume that (3), (4) and (5) are satisfied. If every solution of the following

equation oscillates:
m
Tnt1 —Tn+(1—¢) ijmn_kj =0, n>ng, (8)
=1
then every solution of Eq. (1) oscillates, where 0 < e < 1.

Proof Otherwise, there is a nonoscillatory solution z,, and without loss of generality we assume
that there is an eventually positive solution; we know there exists n; > ng such that n > n;; we
have zn,Zp-k; > 0,(j = 1,...,m). So Az, < 0 for n > ny, that is, z, is strictly decreasing.
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Then there must be 8 > 0, such that lim,_,« , = §, we easily prove 8 = 0 by condition (4)
and pj > 0.

Since limy_,o 22 ( L =1 G=1 ), there is 6 > 0 such that u € (0,6), we have
l-eu< filuy<(l+eu, j=12,...,m

(9)
Since z, is strictly decreasing on {ni,n; + 1

} and limp o 2, = 0, there is ny > ny such
that n > na, zn,zn_k; € (0,8)( = 1,...,m) hold. Hence by the positivity of solution z, of
Eq. (1) and inequality (9), we have

Tn4l — Tp +

m
1—-6 ijl‘n k;j < Zpp ——.’En+zpjfj Tn—k ) =0.
Jj=1
By Lemma. 1, we know this contradicts the fact that (8) oscillates
Lemma 4

Assume that (3), (4)' and (5) are satisfied. If every solution of the following
equation does not oscillate:

Tpyy — (L+¢€) ijxn k=0 n>ny, (10)
Jj=1
then every solution of Eq. (1) does not oscillate, where 0 < e <1
Proof By (5), we know there is § > 0 such that u € (0,6), so we have
Q-eu<filuy<d+eu j=12,...,m (11)
By Lemma 2, we know that the characteristic equation of Eq. (10)

m
A=1+ (146> pA™% =0
j=1
has a positive root n, that is, n satisfies

n-1+(1+€) pn ™ =0 (12)
j=1

Obviously, 0 < n < 1. Let £ = minjcj<m{k;}. We denote by X the Banach space of real
bounded continuous functions on {ng — k,np — k + 1

,...} with supremum norm. Suppose
S C X be made up of z,, with the following properties

(i) n >ng, T, is nonincreasing and z, = zon™ ™) ifn € {ng — k,no —k+1,...,n0},
(ii) 7 >mno, zon'"™™) < zp < TOn T,
(ili) n>ng, ok, < e,k j=1,...,m
where 23 = z,, and satisfies 0 < z¢ < dn

Define operator F on S :

zon(n=mo) no —k <n < no,
(Fz)(n) = gt

ST S
8=ng =1
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In the following, we will prove F'S C S. Obviously (Fz)(n) is nonincreasing and (Fz)(n) <
zon~*. By (11), (12) and the definition of F, we have

n—1

(Fa)(m) =20 [] [1- i L

s=ng
n—1 Lok
S— ks
2 o H [1 —(1+e) ZP:";S—J]
s=ng j=1
> o H [1—(1+e)2pm "J’]
s$=nyp
n-1
= o H n = zon""),
S=ng
and for each i = 1,2,...,m and n > ng, we have
(Fz)(n — ki) 1
- FilTa ;)
(Fa)(r) [0 [~ Ty py 2]
1
< R P
Hs k(1= (1 +€) 2000, pi =]
< R
Mookl - L+ T, pin~*)]
1 s

= o = n b
H‘::n—k‘- n
so, F'S C S. Obviously S is nonempty (since zon™~ "™ € §), close, convex, and we easily know
the operator F is continuous. In order to prove F'S is relative compact in X, we only prove
A(Fz)(n) is uniformly bounded. Since

m

O(Fz)(n) = Z (“" 4) (P (),

SO

!A(Fz)(n)[zz fJ( Tn-k;)

j=1

m
Tn—k: _
(1+e)Zp] s BNl

= (Fz)(n)

m
<+ et
= (1 —n)zon * = zo(1 - n)n~*.

Taking the above into account, we have proved that the operator F' satisfies all the conditions
of the Shauder fixed-point theorem. Hence F' has fixed-point z in S such that Fz = z, and
obviously z is eventually a positive solution of Eq. (1) with z,,, = zo.
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Lemma 5 Assume that Eq. (7) has no positive roots. Then there is 0 < eg < 1 such that
| € I< €o, the equation
m
A-1+(1-€> piA~H =0 (13)
Jj=1
has no positive roots.
Proof Let F(A)=A—-1+ Z;.nzipj)\‘ki.
Since (7) does not have positive roots, it is easily seen that F(A) > 0(\ > 0) and h =
minyso F(A) exists and is positive. Supposing F'(X\g) = h, then

A=1+> pid™ > F(o)=h, A>0.

j=i

Let the function

Gle, ) =A—1+(1-€> piA™  ((&A) € (=1,1) x (0, +00)).

j=1

Then

™

Gi\(e,N) =1~ (1—¢) ijkj)\(—kf_l).

i=1
Obviously G’ (0, o) = 0. We consider equation G)\(¢,A\) = 0 in a small enough neighborhood
of the point (0, Ag), and easily check that function G) (e, A) satisfies the conditions of implicit
function theorem in the neighborhood of (0, A). So in the neighborhood of (0, A\g) there uniquely
exists a continuous function A = A{e¢), defined in the neighborhood 0(0,6) of point ¢ = 0, and
satisfying G\ (¢, A(€)) = 0 and Ag = A(0), which implies that the uniquely minimum point A(e)
of function A — 14 (1 —€) 372, p;A~* is continuous about €. So lim., A(¢) = X, and

e—0

lim [A(e) -1+(1- G)Xm:ij(e)—kj] =X -1+ zm:pj)\gkj = h
i=1

i=1

Therefore, there is 0 < ¢g < 1 such that | € |< €g; we have
Me) =1+ (1—€) > psMe)™ > h/2,
i=1

that is, when | € |< €9, equation A — 1 + (1 — ¢€) E;"zl p; A% =0 has no positive roots.
Using a similar method for Lemma 5, we have
Lemma 6 Assume Eq. (7) has positive roots. Then there is 0 < eg < 1 such that | € |< €0,

the equation

m
A=1+(1+e) pA~hi=0
=1

has positive roots.
Proof the theorem If Eq. (2) oscillates, then by Lemma 2, we know Eq. (7) has no positive
roots. By Lemma 5, there is ¢ > 0 such that | € |< €, the characteristic equation of Eq. (8)
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has no positive roots. Because of Lemma 2, we know Eq. (8) oscillates, then Eq. (1) oscillates
by Lemma 3.

If Eq. (2) does not oscillate, by Lemma 2, Eq. (7) has positive roots, by Lemma 6, there is
€0 > 0 such that | € |< €y, Eq. (14) has positive roots. Because of Lemma 2, Eq. (10) does not
oscillate, then Eq. (1) does not oscillate by Lemma 4.

For example Consider delay difference equations
Tpt1 — Tn+8inZp_p =0 (k>1)

and
Tpt1 —Tn+Tnkx =0 (k>1).

Obviously all coefficients satisfy conditions (3), (4) and (5), then we know they are equivalent
on properties of oscillation by the theorem. But we can not draw this conclusion by the theorem
in {1].
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