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Abstract In this paper, we consider the global spherically symmetric solutions for the initial bound-
ary value problem of a coupled compressible Navier—Stokes/Allen—Cahn system which describes the
motion of two-phase viscous compressible fluids. We prove the existence and uniqueness of global
classical solution, weak solution and strong solution under the assumption of spherically symmetry

condition for initial data po without vacuum state.
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1 Introduction

In this paper, we are interested in a diffuse interface model for two-phase flows of viscous
compressible fluids. As we know, in classical models, the interface between fluids is usually
assumed to be separated by a sharp interface. But when the topological transitions such as
droplet formation, coalescence or break-up of droplets occur, the sharp interface is replaced by a
narrow transition layer and the fluids may mix undergoing phase transitions. Therefore, a phase
field variable x is introduced and a mixing energy can be defined as x and its spatial gradient
in this model. Moreover, this model is a strong coupling system between the Navier—Stokes
equations and an Allen—Cahn equation by the Cauchy stress tensor. In this case, topological
transitions can be described in a natural way. The effect of phase transition can also be described
by different modified convective Cahn—Hilliard or other types of equations [3, 18, 27].

In this paper, we shall consider the following coupled Navier—Stokes/Allen—Cahn system
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proposed by Blesgen [5], which had been investigated in [17] as follows

Orp + div,(pu) = 0,
O (pu) + divy (pu @ u) = div,(T),

0:(px) + dive (pxu) = —pu(p, x, Ax),
af(p,x)
ox

where p,u and y denote the density function,the velocity filed, and the phase variable, respec-

pp=—0Ax+p

tively. The Cauchy stress tensor

2

T:S—5<V1X®me— 9

) —p(p: )L
2
S=v(x) (qu + Vfu - 3divgcu]I) + n(x)div,ul,

p = p? of é’;)’X) is the thermodynamic pressure, u represents the chemical potential and f(p, x)
is the potential energy density.

If we take the density p be a positive constant, then the system above reduces to an incom-
pressible one. The diffuse interface models for two-phase flows of incompressible fluids have been
extensively studied. For the coupled Navier—Stokes/Cahn—Hilliard system, Boyer [7] studied the
existence of global weak and strong solutions in 2D, the existence of unique strong solution in
3D and the stability of the stationary solutions. Tachim-Medjo [31] proved the existence and the
uniqueness of a coupled Cahn—Hilliard/Navier—Stokes model in a two dimensional bounded do-
main. There are also some results of the well-posedness, the asymptotic behavior, the attractor
in [1, 19, 21, 22] and the reference therein. For the coupled Navier-Stokes/Allen-Cahn system
with gi = é;(x‘[3 — x), where ¢ is a positive constant and /6 represents the thickness of the in-
terface, Zhao et al. [39] investigated the vanishing viscosity limit and proved that the solutions
of the Navier—Stokes/Allen—Cahn system converge to that of the Euler/Allen—Cahn system in a
proper small time interval. Kotschote [23] derived the more general model, and proved the ex-
istence and uniqueness of local strong solutions on a problem with a mixed boundary condition
in bounded domain. Chen et al. [8] studied the global strong solutions for the initial boundary
value problem with the heat conductivity proportional to a positive power of the temperature.
Li and Huang [25] studied the existence and uniqueness of local strong solutions in 3D case.
Babak et al. [4] provided a unified and comparative description of the most prominent phase
field based two-phase flow models and presented the numerical results of the application of
Galerkin-based isogeometric analysis to incompressible Navier—Stokes/Cahn—Hilliard equations
in velocity-pressure-phase field-chemical potential formulation. Zhang [37] established a reg-
ularity criterion for the 3D incompressible density-dependent system. Gal and Grasseli [19]
showed the existence of the trajectory attractor for both incompressible Navier—Stokes/Allen—
Cahn and Navier—Stokes/Cahn—Hilliard systems. Moreover, for numerical simulations, such as
jet pinching-off and drop formation, we refer the readers to [6, 26, 32, 36).

As far as we know, there are less theoretical available results for the compressible models.
For the Navier—Stokes/Cahn-Hilliard system, Abels and Feireisl [2] derived the existence of

weak solutions without any restriction on the size of the initial data. Kotschote and Zacher
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[24] established the local existence of unique strong solution. Deugoué et al. [14] proved the
existence and uniqueness of strong solutions of the stochastic 3D globally modified Navier—
Stokes/Cahn—Hilliard model, and discussed the relation of the stochastic 3D globally modi-
fied Navier—Stokes/Cahn-Hilliard equations to the stochastic 3D Navier—Stokes/Cahn-Hilliard
equations by proving a convergence theorem. For the isentropic Navier—Stokes/Allen—Cahn
system, Chen et al. [10] investigated the global existence and uniqueness of strong and classical
solutions of 1D initial boundary value problem. Feireisl et al. [17] proved the existence of
weak solutions in 3D, where the density p is a measurable function. A different compressible
Navier—Stokes/Allen—-Cahn system arising from the biological material change in the process
differentiation had been studied in [33]. In [30], Song et al. obtained the existence of the
time-periodic solution to the system by using an approach of parabolic regularization and com-
bining with the topology degree theory. Chen et al. [11] obtained the 1D global well-posedness
with vacuum and constant viscosity. Ding et al. [13] derived the existence and uniqueness
of global strong solutions with free boundary condition. Very recently, Chen and Zhu [12]
proved the existence and uniqueness of global classical solutions and obtained a blow-up crite-
rion for strong solutions with some assumption conditions. For the non-isentropic compressible
Navier-Stokes/Allen-Cahn system with constant viscosity, Chen et al. [8, 9] studied global
strong solutions of initial-boundary value problem and Cauchy problem. And Yan et al. [35]
established global strong solutions for initial-boundary value problem with phase variable de-
pendent viscosity in 1D. Thanks to the ideas of the investigation on the liquid crystals in Ding
et al. [16], Ding et al. [15] established the global solutions for a coupled compressible Navier—
Stokes/Allen—Cahn system in 1D. Recently, Zhang [38] established the regularity of solutions
in H'([0,1]) (i = 2,4) to the 1D isentropic compressible Navier—Stokes-Allen-Cahn system for
initial data py without vacuum states.

Motivated by Ding et al. [15] and Zhang [38], we shall establish the existence and uniqueness
of global classical solution, the existence of weak solution and the existence of unique strong
solution with spherically symmetric data for the 3D compressible Navier—Stokes/Allen—Cahn
system.

For the compressible Navier—Stokes equations, the pressure p is usually chosen as p = Ap”
with A > 0 and v > 1, and for Allen—Cahn equation, double-well structural potential is often
considered. Thus we take the specific free energy f as follows

_ Ap'y—l 1 X4 X2
f(p,x)—7_1+5( ,

4 2

where § > 0 and v/§ denotes the thickness of the interface. Now we assume that Q € R? is a
bounded domain and consider the following boundary conditions ulsgg =0, Vx-n =0, where
n is the normal outward vector at the boundary 9Q and the initial conditions (p,u, x)|t=0 =
(po, o, X0)-

In this paper, we study the spherically symmetric solutions of the system with the initial
boundary conditions above. Now we construct the corresponding system for radial solutions.

Let r = |z| and take in the Euler coordinates

pla,t) = p(rt). ulw,t) =u(rnt), xl(e.t) = x(r,1).
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Then the Navier—Stokes/Allen-Cahn system in 3D becomes
2

pet(pu)r + pu=0,

2 4 2 1 2
(pu)e + (pu?)r +  pu® + A(p7)r = (31/ + 77) (ur + Tu)r — 00 = X5

2
(px)e + (pxu)r + pxu = —p,

2
pH=— (xrr + 7Axr) +p0¢ = x)

(1.1)

for (r,t) € (a,b) x (0,400) with 0 < a < b < 400, where p > 0,u, x denote the total density,
the mean velocity of the fluid mixture, the concentration difference of the two component,

respectively. Accordingly, the initial conditions become

(psu, X)t=0 = (po, 10, X0), 7 € (a,b) (1.2)

and the usual no-slip boundary condition for the viscous fluid and natural condition for the

concentration become
(u; Xr)lr=ap = (0,0), t=0. (1.3)

In this paper, we shall use the following notation.

(1) Let I = (a,b), 01 ={a,b}, Qr =1 x [0,T] for T > 0.

(2) For p > 1, LP = LP?(I) denotes the usual Lebesgue space with the norm | - ||L.. For
k> 1and p > 1, WkP = WKP(I) denotes the Sobolev space with the norm || - ||yyx.», and

(3) For any points Py (r1,t1), Pa(re, t2) € Qr, we define the parabolic distance between them

d(Py, Py) = ([r1 — ro|? + |1 — t2])2.

(4) If p(z,t) is a function on Qr, for 0 < a < 1, we define

{I@(Pl) — ()] }

sup

Ploes -
[Ple 2@ b peQr,P#Ps

d*(Py, Py)

which is a semi-norm, and denote by C%%(Qr) the set of all function on Q7 such that

[Pl e g (@r) < 100 endowed with norm

||SD||C(¥,‘§ Qr) HSOHCO(QT) + [‘p]c”‘g Qr)’

where [|¢]|co(g,) is the maximum norm of p(z,t) on Qr.

In the system (1.1), the density p is coupled in the Allen-Cahn equations (1.1)3 4, which
leads to more strong coupling than the corresponding incompressible one. More precisely, not
only the velocity u enters in the equations for x as a coefficient of lower order term x,, but
also p appears in the coeflicient of highest order term x; or x,.. Moreover, the concentration
X enters in Navier—Stokes equations (1.1); 2 for p and w with high order x,, which describes
the capillary forces due to surface tension. Therefore, it will be essential to get good regularity
estimates of y. But it is not enough only basing on the regularities given by the energy estimates
due to the strong coupling. So we must deal with the bounds and the regularities of p firstly.
Song and Wang [29] have proved the local existence of unique classical solution by applying the
contraction mapping theorem. Therefore, we shall extend it to the global one in terms of some



Global Solutions for an NSAC System 2041

a priori estimates. And by using weakly convergent method, we show the existence of weak
solutions and the existence of unique strong solution.

Our first result is about classical solution.

Theorem 1.1 Assume that pg € CH*(I) satisfies 0 < cgl < po < ¢g for some constants
a € (0,1) and co > 0, ug,xo € C**(I) with ug(0) = ug(1) = 0. Then the initial boundary
value problem (1.1)—(1.3) admits a unique global classical solution (p,wu,x) satisfying that, for
any T > 0, there exists a constant ¢ = ¢(co,T') such that

(pispr) €C*2(Qr), 0<ct<p<conQr, and (u,x)€C*T*2(Qr).

The following two theorems are concerned with the weak and strong solutions.
Theorem 1.2 Assume that pg € H*(I) satisfies 0 < cal < po < ¢g for some constant cqg > 0
and ug € L*(I), xo € HY(I) with ug(0) = uo(1) = 0. Then the problem (1.1)~(1.3) admits a
global weak solution (p,u,x) satisfying that, for any T > 0, there exists a constant ¢ = ¢(co, T)
such that
p € L>(0,T; HY(I)), p; € L*(0,T;L*(I)), 0<c'<p<e,
we L>(0,T; L*(1)) N L*(0, T; Hy (1)),
X € L=(0,T; H'(I)) N L*(0,T; H*(I)), x¢ € L*(0,T; L*(1)).
Theorem 1.3  Assume that pg € H*(I) satisfies 0 < cal < po < ¢g for some constant cq > 0
and ug € HY(I), xo € H?(I) with up(0) = ug(1) = 0. Then the problem (1.1)~(1.3) admits a
global strong solution (p,u, x) satisfying that, for any T > 0, there exists a constant ¢ = ¢(co, T)
such that
p € LX0,T; H(I)), p, € L=(0,T;L*(I)), 0<c'<p<e,
u e L*°(0,T; Hy(I)) N L*(0,T; H*(I)), wus € L*(0,T; L*(I)),
X € L=(0,T; H*(I)) N L2(0,T; HX(I)), x¢ € L=(0,T; L*(1)) N L*(0,T; H'(I)).
Since the constants A,d,v don’t play any key role in our analysis, we can assume that

A =v =4 =1. Without loss of generality, we also set [ I r2podr = 1. Moreover, we also assume

n = —4v. Then we can also rewrite (1.1) as

r2p)e + (r?pu), = 0,

(r2pu); + (r’pu?), +1r2(p")yr = (r*u,), — 2u — (r*x2), + ;r2(xf),,, (1.4)
(r2px)e + (rpxu)r = —1r2p, |
r2pp = —(r*x;)r +12p(x° = X).
The rest of the paper is organized as follows. In Section 2, we shall establish some a priori
estimates globally in time for the classical solution. Then basing on these a priori estimates,

we shall prove our main theorems in Section 3.

2 A Priori Estimates

In this section, we shall establish some a priori estimates for solutions. The first estimate is

about the energy equality.
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Lemma 2.1 For any 0 <t < T, we have the following equality

2 9 2 ~ 2.2 242 _1)2 t
LT T e [ [0 itaras = o, 2)
I Y 0o JI
where
2 oo o 242 2 2 _1)2
Eo=/< p20 0L Pol + ;CO’" + Po(Xi) ) )ds, /Tde’I“:/TondT:L
I Y= I I

Proof Multiplying (1.4)2 by u and then integrating the result over I yield

v = —2u”—(r u 1r u pdr
Jie ot @2yt ddr = [ u-2e -0t 0 ar. (22)

We can rewrite (1.4); as
(r2p)e + (r2pu), = 0,
which, together with (2.2) and integration by parts, leads to

d 1 1 d
gt /1 2r2pu2dr+ V1t /Irszdr+/Ir2ufdr+2/ju2dr = —/I(szr)ruxrdr. (2.3)

On the other hand, (1.4)3 can be rewritten as
r?pxi + P pux, = —r’p.

Multiplying this equation by u, noting (1.4)4 and integrating the result over I, we can get

d 1 4 2
dt /[ {27‘2)(7% +T2p<>il - X2 >}d7’—|- /ITQquT _ /I(T2Xr)r'UJer7’. (2'4)

Combining (2.3) with (2.4), we have

Ld [ 5 5 1d/2 1d/22 d/2X4X2
d 7d d — d
2dt/,er T T e )T g [P s T )|

+/r2uzdr+2/u2dr+/r2u2dr:0.
I I I

Integrating the above equation over (0,t), for any ¢t € [0,T], we derive that (2.1) holds. The

proof is complete. a

With the help of the energy equality (2.1), we can obtain an upper bound of the concentra-

tion difference x.
Lemma 2.2 For any 0 <t < T, we have the following estimate

IXIlzo(rx(0,1)) < C(Ep). (2.5)
Proof From (2.1) we see

/TQP(X2 —1)%dr < Ey,
I

which implies

/r2px4dr < 2/r2px2dr — /TQPdT' + ¢(Ey)
I I I

1
< 5 /r2px4dr+2/r2pdr—/rzpdr—i-c(Eo).
I I I
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Thus

/rsz4dr < ¢(Fyp).-
1

Furthermore,

1
/rszdr < /r2px4dr + 3 /7‘2pdr < ¢(E)p).
I 47 4Jr
Noticing that [, r?pdr =1 and p > 0, for any (r,t) € I x (0,7T), we get
(e8] = |x(@,1) [ r2p(rtyar
I

< xTQp(T, [X(:L‘,t) _X(rv t)]d’r

Lﬁm,<A3ﬂmwﬁm

/ P2 p(r, t)dr / Ixe (€, 1)]dE + e(Eo)
I

I

1 1 1
/Ir2p(r, t)dr (2 /1§2ng£+ 5 /I ¢ df) + ¢(Ey)

(Eo).
The proof is complete. O

+’/Ir2p(r, x(r, t)dr

+ ¢(Eo)

t)
t)

IN

IN

IA
o

Next we prove the upper bound of the density p.
Lemma 2.3 For any 0 <t < T, there exists a constant C; = C(co, Ey,T) > 0, such that

ol Lo (rx0,1)) < Chi- (2.6)

Proof For any t € [0,T], we set

t
2 1
w(r,t) = / (ur+ u— _x2—p" —pu2)ds
0 r 2

_/Ot/ar (§X§+§pu2>d§d8+/arpouod§-

2 1 T2 2
2 ¥ 2 2 2 )4 )
wt—ur+Tu—2xr p’ = pu /a (£X£+£pu> ¢, wy = pu

Then we have

It follows from (2.1) that

[l twpar< [ [ <|ur+\
—a// ( Xr+ pu )drds—i—(b—a)/abPouodr+/abpu|dr

u? 1 1 2 2
/ / < + + 21" Xi+p" + azrzpuz + a3r2xf + a3r2pu2>drd5

+ Xr—|—p7+pu >d7’ds

2 2a
+a2/ (rpo + 1 poug + r2p + 12 pu®)dr
a

< C(Bo)(1+1).
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Hence

ol 2 (gp) < / (] + s |)dr < C(Eo)(1 +1).

Since p > 0, it suffices to prove p(y,s) < c¢. For any (y,s) € I x (0,

following problem

dr(y,t)
- 1), t <t
dt (T( ) )7 ), 0 <
r(y,s) =y, a<y<b

Denote f = exp(w). Then we have

D0 0),1)) = oo+ o)+ pf (e + )

= (pt + pru+ pwi + puwy) f

2 1,
= | Pt prutpur+ pu—  pX; = p

/9 2
—p/a <§x§+§pu2>d§+p2u2}f

Song C. M. et al.

t), let r(y,t) solve the

y+1 2,2

peu

1 "9 2
= (— 2pr —ptt —p/a <£x§+ 5pu?)d£>f

<0.

Therefore, for any s € (0,T), integrating the above inequality with respect to ¢ € (0, s), we see

p(y,8)f(y,s) = p(r(y, s),s)f(r(y, ), ) < p(r(y,0),0)f(r(y,0),0)

< ¢cg exp(Eyp).
Furthermore,

p(y,s) < C(co, Eo

eXp{ w(y, s)}

exp{[|[w|| e (@)}

c(

= C(co, Eo
< C(co, Eo
<O

)
)
)
)

co, Eo) exp{C(Ep)(1 +1)}.

The proof is complete.

Lemma 2.4 For any 0 <t < T, we have

¢
/ /Xfrdrds <Ch.
0o JI

Proof The equation (1.4)4 implies that

rXer = —ppr? = 2rx, +12px® — r?px.

Combining (2.1), (2.5) and (2.6), we can get

(2.7)

452 2)drds

t
//T xrrdrdSSC//r“pQuQﬂLTx +rip?X° +rip’x
0

t t
§b2Hp”%°°(I><(O,T))/O /17"2#2de8+/0 /IT2X§de5
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t
+bQHPHL“’(Ix(O,T))HXH%OC(IX(&T))/0 /ITQPX4deS

t
+b2Hp||L°°(I><(O,T))/ /rszzdrds
0 Jr
<y,
which implies

t
/ /Xfrdrds <.
0 JI

The proof is complete. O
Now we deal with the lower bound of p and establish the following lemma.

Lemma 2.5 The inequalities
[ sar<ca. (28)
I

and

1
H <0, (2.9)
Pl Lo (Ix(0,T))

hold, where the constant Co = C/(cq, Ey, ||pollg1,T) > 0.

Proof From (1.1);, we can obtain
1d 1 | 1
/(’I“Qp) dr :/ Uy dr.
2dt J; r2p ). r\rp/,

Multiplying (1.4)2 by (T%p)r and integrating the result over I, we arrive at

1d 9 1 P2
d " od
2 dt /I(T 2 <r2p>r r+’y/17“2p3_7 "

pr 2 (1 2 (1
= -2 d - d
7/17“%2‘7 T+/1L2u<r2p>r Tur<7“2p A7
1 1 2 1

2

= 24)] (2.10)

i=1
Since fI r2pdr = fI r2podr = 1, by the mean value theorem, there exists ((t) € I such that
C(t)2p(¢(t),t)(b—a) = [, 7*pdr = 1. Hence we have
1 1 1

V2o(rt)  r2p(rt) ~ C(t2o(c(),t) T 0T

N /g(l) <§2p(1€7t)>5d£ t=a)
:_/r (&2p(&,1)
ey (§2p(&,t)

) §§d§+(b—a)
b
| o=

().

2 1

dr+ /b Db io—a
r r —a
2/, mpb—a

IN
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1 /b ) ( 1 ) 211
< (b—a)rsp dr + +(b—a)
2 Ja r?p/, 2||r2p Loo(Ix(0,T))
which implies that
1 b 1 P
) < (b—a)/ r%p ( ) ) dr 4+ 2(b —a). (2.11)
2P 1l Lee(Ix(0,1)) a TP/

Now we can turn to estimate each term in the right-hand side of (2.10). For J;, we have
- _ Pr
Jp = 27/1 32— dr
1 1 1
:27/ (2)dr—4v/41 dr
I\ 1T
1 1 1 |? 1
2 2
<7 [ g+ 2 [0 2,) [ o= e

1 1\ P 1
2
<, /I(r p) <r2p)r d7’+c/I T4p1_27dr. (2.12)

Using the Cauchy inequality and (2.11), we also have

2 1 2 1
2= G, e Ga)
Lr \r°p/, T TPy
1 1 1 2 r2u? 1 1
< 2 d 2 d Td 2
_C/zu r2p T+2/z(r p>‘(r2p)r T+C/1 rp T+2/1(T gdivr r
1 2 2.2 2 1
usdr +cf| reugdr + [ (rp)||
Loo(Ix(0,T)) I TP llLee(rx(0,1)) /1 I TPy

r2p
2
dr <1+/u2dr+/r2u$dr>. (2.13)
I I

o4

Noting the fact |Inp| < p+ ;1)’ using Lemma 2.3 and the Cauchy inequality, we can calculate

A CA R AR A L
1 1

2
dr

2

<ec dr

r
d 1 2 1
- d . d ), ? d
i Ji) o i) e [l () i () o
d 1 w2 2uu 4u?  2p.u
e d T _ T _ _ T d
i) o [ 5
d 1 9 9 91
< dt Ipu ) Tdr—i—c I(u + u;)dr — 12u rg(lnp)rdr
—d/ U ! dr+c/(u2—|—u2)dr+/2uu 1ln dr—/6u211n dr
“ar /7 r I " i e
d 1 1 1 1 1
< /pu( 9 ) dr—i—c/(u?_i_uf)dr—i-/ 2uu, 3(p—|— )dr+/|6u2 4(p+ )|dr
dt Jr T<p ), I I T p T p
d 1
< /pu( 9 ) dr—i—c/(uQ—l-uf)dr—i-c/p2u2d7’—|—c ) /uzdr
dt J;" \r?p), I I TP llLee(1x(0,1)) /1
<d/ ! d+/(2+2)d+/(2) ! 2d/2d (2.14)
u r+c | (u4u)dr+c | (r r | u®dr. .
=t /72 r I " P2 r I
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Using the Sobolev embedding theorem, we have

1/, 1 2 (1
p— d
Ji /1 {2 (X”">T<r2p)T * TXT<T2/)>T] "

2

1 1 1 /1 2,1 4 1
- 2/1r g (T2p>r Xl g Jr2p @ E [ 2 Xepa @0 [ XeXor o O
1 1\ J?
< el [ p]( ) [ar+ [0+ 3
2 D I r?p), r2p Lo (Ix(0,T)) /1

2

1
< c/r2p ( ) ) dr/(xfr—f—xf)dr. (2.15)
I TPy I
Inserting (2.12)—(2.15) into (2.10), we get

1d 9 1 2 rp?
d " od

g 0| (,2,) [ [t ar

d/ (1) / 1 / 9 1

< U dr+c | p? Hdr+ [ (rp
dt Ip rp/, I 1( ) r?p/,
—|—/(u +u )dr—|—/r2pu2dr.
I I

Integrating the above inequality over (0,t), and combining (2.1) and (2.6) yield

2 t 2
1 2 1 TPy
2/1(T p>‘(r2p)r dr+7/0 /frgpi””drds
<1/(2) ' 2d+/ L) / ! d+/t/71dds
T r u r— U r+c r
=9, Po r2py ), IP r2p) . IPO 0 r2py ), o IP
t 1 2 t
+/ |:/(T2p)‘( ) > dr/(uz—i-u%—i-xfr—i—xf)dr] ds—i—/ /(u2+uf+r2pu2)d7’ds
0 I TP/ I 0 JI
3 2
1 1[5, /1
meHpOHHl(I) T /I(r p)‘ (7“20>r

Po
2 < 1 )
72 po r

2
dr{/(u2 +u? + x2,)dr + C(Eo):| }ds + cEy
I

2

dr / (@ + a2+ X2+ x2)dr
I

<c

dr + 0/7“2/’“sz
I
2
—1
dr + cllpll 7= (rx 0.1

1

£o Loo(I)

+/Ot{/l(r2p)‘(r;p)r
<o [ {[for e erann) foenl( L)

By the Gronwall inequality and (2.1), (2.6), (2.7), we obtain
1
2 T d d
/I(rp)‘(r2p> dr—f—v//lrg rds
ot looliwn) [ {| [+ 4+ b
0 I
t
cexp o [ ([ sz i+ B )de| fas + CCulillinan)
s I

< C(Cy llpollary)- (2.16)

+c

1
llpoll & (ry + 4/(7"2/00)
I

2
dr}ds + C(C, |lpoll e (1y)-
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Notice that
2

422 6 .2 43r
dT:/ U i
I

76 p3

1
> / (4r2p* + rOp? + 4r°pp, ) dr,
b8\ pll Loe (1% 0,1)) J1

which implies

1
/P%drSC||P||L°°(1x(0,T))/(TQP)K 9 )
I I rp) .,
< el / w2o)|(
s ellplle= oy | v2p)

Taking € small enough, we have

2

d?"JrC/(p2 + ppr)
I

2

dT‘FCHPH%«wfx(aqj)*‘EjCPfd“

/pfdr < (Cs.
I

Moreover, by virtue of (2.11) and (2.16), we can get

1

< (Os.
r2p =2

Loo(I%(0,T))

1
bQHp”L“%Ix(&TD <

The proof is complete. U
Now we turn to estimates for y.

Lemma 2.6 For any 0 <t < T, we have

t
/ Codr + / / (2, + X2 )drds < Cs, (2.17)
I 0 I

where the constant C3 = C(co, Eo, ||pollz(1ys X0l 21y, T) > 0.
Proof We rewrite the equations (1.4)3 and (1.4)4 as
r2p*xe + 12 xru = 20X + e — (0 = X). (2.18)

Differentiating (2.18) with respect to r, multiplying the result by x,: and integrating over I
yield

1d
2dt/j?"2xfrd7’+/17’2pzxftdr
= /(2XT‘XTt + 4rerXrt)dr - /(QTPQXTXM + ZTQPPTXtXTt + 2Tp2uXrXrt)dT
I I

- /(ZTQpPTuXTXTt + 7A2P2UXTTXM + TQPQUTXTXM + QTP(X?’ - X)Xrt)dr
I

- / (r?pr(X* = X)xre + r2p(3x% = )X Xre)dr
I

1 2 2
< /TQPQX?th + 0/ ( P R R T +T2p?u2x?) dr
2 Jr I \7T°p P
2.2(.3 2
r _
+ c/(r2p2u2x72nr + r2p?ux?)dr + c/(x3 —x)%dr + c/ Pr(XZ X) dr
I I I p
+ c/r2(3x2 — 1)2x2dr.
I
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Noting that the following Sobolev embedding inequalities
lullLos 1y < ellurllzry,  xrllzeery < ellxerllzzn
el < [0+ 2l < [dar+e [ dan
I I I

we can derive
d
/ Xz edr + / r?p* Xy dr
dt J;
1 1)
[darse| | [aar sl [+l [
Pllpe JI Pllpe JI I I

ol a3 / a4 3 3 / p2dr + |3 / P22 dr

/p2dr + /der) (2.19)
Loe I
Moreover, we also know that for any function ¢

1
/(pzdr < /r2np2d7“ < c/r2np2dr.
I a” Jr 1

In addition, from (2.18), we can get

<c

ol e e / uldr

el + il + ||x||m>(1 n H

2Xr Xrr _X - X

Xt = —Xru+ +
rp?  p? p

Thus we have

2 2 6 4 2
2 2,2 Xr Xrr | X X X
/Ixtdrgc/l<xr +r2p4+p4+p2+p2+p2)dr

< el sy + 1) / Cr + / dr
4

1 1
/X%dr+ H /Xfrdr
PllLo(Qr) /1 PllLe(Qr) /1

1
Xl @ry + XN T (@ry + X1 E o0 (1))
PllLe=(Qr)

c(l—i—/uzdr) /der—i—c/xfT,dr—l—Cg.
I I 1

Combining the above inequalities and (2.1), (2.5), (2.6), (2.8), from (2.19), we can get
d
dt/r XTTdT+/T2p2X3td7”

< Cqy <1 + /Tzufdr> /szzrdr + Cs (1 + /r2ufdr>.
I I I

By the Gronwall inequality and (2.1), we have

< el [ i+ H

2
iy

/7’ der—i—/ /TQPQX%thdS < C(Cy [Ixollz2(n)),
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which implies
t
/erdr‘f‘/ /thdrds < C(Co, lIxollz2(r))-
I o Jr

Differentiating (2.18) with respect to r, we can get

2 2
Xorr = 7qp% + 20pr Xt + PPXrt + rp2xru + 200X+ P2 X

2p(

. X2 =x) + o (X* = x) + p(3X% — Dxr

, 2 4
+ P07 XrUr — X — Xpr+
T T

Then we can derive from Lemmas 2.1-2.5

t t
/ / Xoppdrds < c / / {p* X3 + P°0ixE + PG + U + P ol
0 I 0 I

ou 4+ x4+ X + 07 (% = x)?

+pr(X* = X)* + p*(3x* — 1)*x? }drds

< lpliian [ t [ tards +clolie o [ t {eli ) [ o2arfas
+ellllian [ [ s + el / t {1y [ tarbas
+elll<an [ t {nun%w(nnxrniwm / pidr}ds
+CHP||ALL/°°(QT) /Ot{HU”QLoo([)/IX?«rd?"}dS
| t {Ie iy [ aarbas

+ CHPH%W(QT)(”XH%OO(QT) + ”X“iw(QT) + ”XH%W(QT))

t
+ (XS @y + Il @y + X3~ () / / p2drds

+ x4 p

t
+ellpllF e @ (X0 @y + XN F 0 (@) + ”XH%W(QT))/O /ngdrds

< C(Co, [Ixollm2(r))-
The proof is complete. O
Now we turn to establish some a priori estimates on wu.

Lemma 2.7 For any 0 <t <T, we have

t
/I(uz +u?)dr —I—/O /I(puf +u?,)drds < Cy, (2.20)

where the constant Cy = C(co, Eo, ||poll a1, l|lwoll 15 || x0l| 52,7, T) > 0.
Proof Tt follows from (1.4); and (1.4)2 that

2 pug + 2 pun, + 2907y = 20wy 4 U — 2u — 202 — P20 X (2.21)

Multiplying (2.21) by wy, integrating the results over I, we have

1d d
th/1r2u§dr+ dt/qudr—l—/Irzpufdr
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_ 2 2, y—1 2 2
= — [ ripuuyuedr — | m5yp? T prugdr — | 2rxGugdr — | rOXe Xerurdr
I I I I

1 2 2 2r—3 2 Xr rXEX7
= /rputdr—i-c/rpuudr—kcv /rprfprdr—kc/ Tdr—|—c/ T dr
21 I I 1P I P

Then we have
/ 2uldr + /2u2dr+/r2pufdr
I I

v 12y 2y 2
<c /1" pututdr 4 cy? /T2p2rf3p%dr+c/ Tdr—i—c/ AT dr
I 1P I P

2 3
< clileian i [ wtdr+ eIl [ o

1
Iy [
PllL=(@Qr) 1

< clplteiqn [ rudr [+ P, [ o

1 1
+e /xm«dr /err+c /xfrdr-/xfrdr
PllLe=(Qr) PllLe(Qr) /1 I

< Cl</r2u2dr> —|—”yQC'3,
I

where we have used (2.1), (2.6), (2.8), (2.9), (2.17) and the Sobolev embedding inequalities in
the last step. By the Gronwall inequality and (2.1), we have

t
/r2u$dr+/2u2dr+/ /r puidrds < C(Cs, |luoll (1), 7).
I I 0

/ufdr +/2u2dr < C(Cs, [Juoll 51 (1), )
I I

+e I~ [ X+
PllL=(Qr) 4

which implies

The equation (2.21) implies

2u,  2u  2x32

Upp = puy + putty +yp7 T pp = T T+

2 + Xor Xrr-
T T

Then we can obtain from Lemmas 2.1-2.6,

¢ ¢ 2 2 4
4 4 4
/ /U3Td7"d8S6/ / phud + pPutud + o pP 2R T T N, drds
0o JI o JrI r r r
t t
<l [ [ putdras+elolieayy [ {lulliea [[oarfas
+cy ||p||27 2 / /prdrds—i—c/ /u +u?)drds

ve [ ielimi [arbasse [Liolma [xiaras
0 1 0 1

S 0(037 ||u0||H1(I)7’Y)

The proof is complete. O
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Lemma 2.8 For any 0 <t < T, we have

¢
/I(puf +u?,)dr —I—/O /qu,tdrds < Cs, (2.22)

where the constant Cs = C(co, Eo, ||poll 1, l|1woll g2, || x0l| 52,7, T) > 0.
Proof Differentiating (2.21) with respect to ¢, multiplying the results by u,, then integrating

over I, we have
1d
9 dt Ar%ufdr + /Ir2u§tdr
1
=, /(Tzﬂ)tufdr - /{(TQP)tuurut + r?puiu, + v’ punpuy + 13 (p7) e
I I
+ 2u? + ArxeXreue + (P2 XX ) e JdT
= — /{r2puutu” + rzpuu%ut + szu2um«ut + szu2uru” + szufur + r2puuTtut}dr
I
- /{2TPW71PTUU7S + 2rp" Lupuy + 4p7 g + 207 T prtiyy 4 12 p Uty 4 20 p7 iy
I

- /{2u? + 4Arxe Xt + Terterut + T2XrertUt}dr
I

8
=Y K. (2.23)

Now we estimate each term on the right-hand side of (2.23). Using the equation (1.4);, the
integration by parts, the Young inequality, the embedding theorem and Lemmas 2.3 and 2.7,
we can obtain

K, = —/r2puuturtdr < E/TQUEtdr—l—c/erQuQufdr
1 1 I
<< [ e+ clplusan g [ rpiddr
I I
5/rzuftdr—FchHLoc(QT)/u%dr/erufdr
I I I

< 5/r2uftdr—|—c/r2pufdr.
I I

Noting that the equation (1.4); and using the Young inequality, the embedding theorem and

IN

Lemmas 2.3 and 2.7, we can also obtain

Ky = —/rzpuufutdr—/T2pu2u,«rutdr—/rzpuzururtdr
I I I

< c/r2pu2ufdr+c/r2pufdr+c/r2pu2ufrdr+5/r2uztdr+c/r2p2u4u3dr
I I I I I
<l [ rodar + clplmanllur e [ s

+ el @l [ b +e [ udr+ el Il [ war

< c/uidr/rzpufdr—i—ch||Loo(QT)/(uf +ufr)dr/u§dr
I I I I
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3
+€/r2u$tdr—|—c||p|QLOO(QT){/uidT}
I I
Sc—i—c/r putdr—l—c/ufrdr—l—e/TQUEtdr.
I I I

Using the Young inequality and the Cauchy inequality, we can obtain

Ks = /erufurdr < cljurl| Lo (1) /erufdr
I

1
2
{ (u? +u?, dr} /rputdr
I

{ U, dr—|—1}/r2pufdr.
I
Similarly, we have

Ky = —/’I“quu,«tutd’l" < E/TQUEth+C/T pou ufdr
I I I

< [ s + clplimonllul, [ o
E/TQuEtdr—l—c/erufdr.
I I

Using the equation (1.4);, the Young inequality, the embedding theorem and Lemmas 2.3

IA

and 2.7, we easily obtain

K5 = —’y/ZTp'y_lpTuutdr — ’y/ZTp'yurutdr —7/4p7pTuutdr
I I I

—v/rzp%lpruurtdr _V/sz’yururtdr —W/Tp”uurtdr
I I I
1
gc/rzpufdr—i—c/ 13 2dr—l—c/ 2771ufdr—|—c/ 2/)2"71u2d7"
1 I 1 T
—l—e/r uTtdr—l—cv/ p2772p§u2dr+c/r2p27u$dr+c/p2'yu2dr
I I I

2v—3
< 67/17‘21’“de + evllelle o lullzes ) /Ipidr

2y=3 2y—1
< [ Poiddr ol [dar [ s el [

2 1 2 2
el g [l o P+ & [ o + oA ey [

2
+ C”PHLZo(QT) ||UH2L°°(I)

< c/r2pufdr + 6/r2uftdr +c.
I I

By virtue of the Young inequality, we have

1
Kg = —/ufdr <c /erufdr.
1 PliLe(Qr) J1

We also deduce from the Cauchy inequality that

XiX7
K; = —/47'errtutdr < c/r putdr—i—c/ AT gy
I I I P
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1
gc/rzpufdr—i—c
I P

||Xr|\2Loo(1) /XEth
L>(Qr)

1
/erdT/Xrth
Le=(Qr)

By virtue of integrating by parts and the Young inequality, we can obtain

Sc/r putdr—|—c
I

K8 = _/(T2Xrterut + TQXTertut)dr = /QTXT‘tXT‘uth +/T2XrtXrurth
I I I

XeiXE
Sc/r putdr-l—c/ n ’“dr+e/rundr+c/r><rt><rdr
I I P I I

1
<e / Puldr o / P2puldr + ¢ 12 e / \2adr + el ) / adr
I 1 PllLe(Qr)

< a/r uTtdr+c/r putdr+c /XTTdT/Xrth+C/erd7”/xrtd7“
1 L>=(Qr)

Then combining above results and (2.6), (2 8), (2.9), (2.17), (2.20), we can get

d
gt /r putdr—i—/r u?,dr
< Cy (1 + /u%rdr> /rzpufdr + C4{1 + /(u%r + Xft)dr}.
I I I

Applying the Gronwall inequality and (2.17), (2.20), we get

/r putdr—i—/ /r tdrds < C(Cy, ||uoll a2(ry),

which implies

/Iputh-l-/ /urtdrds < C(Cy, ||uo|l 72 I))

Combining above inequalities and equation (2.21), we get
2 2.2 2 2,27-22 | U2 Xr
uf dr <c | Qp*ui + pPuPul + 2" 2 pl + T2+T4+ + XX pdr
I I

2y—2
o [ uddn + clolf el [ e+, [ ot

—I—C/ufdr—i—c/Uer—l—c/xfdr—|—CHXTH2L®(1)/Xfrdr
I I I I

< C(Cy, |luoll g2 (1))
The proof is complete. O

3 Proofs of Main Theorems

In this section, we shall show Theorems 1.1-1.3. Our main idea is to extend the local classical
solution to the global one, based on some priori estimates in Section 2 and the following well-
known lemma from [28].

Lemma 3.1 Let X, E.Y are Banach spaces. Assume that X C E CY and X —— E. Then
the following embedding are compact:

i) {1/) s e LY0,T; X), oY €

9t LI(O,T;Y)} s LI(0, T, E), if 1< q< 400,
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o

ot
Now we first show Theorem 1.1.

Proof of Theorem 1.1 Suppose that it was false. Then, for problem (1.1)—(1.3), there exists

a maximal time internal 0 < T, < 400 such that there is a unique classical solution (p,u, x) :

ii) {w:weLw(o,T;X), eL?‘(o,T;Y)} s C(0,T;E), if1<r< +oo.

Ix[0,T.) - RT x R x R, but at least one of the following properties fails:
(i) (pe,pr) € C2(Qr),
i) 0<c'<p<ec<4oo, (rt)eQr,
(i) (u,x) € C*F*FE(Qr,).

For Lemmas 2.3 and 2.5, we know that (ii) holds. Hence either (i) or (iii) fails. From Lemmas
2.1-2.8 and equations (1.1) (or equations (1.4)), we can prove

ma‘X{HpHC%,i(QT )7 HX”Cl%(QT )? Hu”Clé(QT )}
< C(co, Eo, [l poll 1, |luoll a2, Ixoll 2, Ti) < 4o0. (3.1)

In fact, for any (r1,t), (re,t) € Qr,, by Lemma 2.5, we have

< (/ p;%dr> Py —ra|2 < C(T)|r1 —ra|2.  (3.2)

For any (r,t1), (r,t2) € Qr,, we consider the case of r € [a, “;rb]. Suppose that At =t —t; >0
satisfies (At)2 < b2®. Integrating the equation (1.4); over (r,r + (At)z) x (t1,t3) , and using
Lemmas 2.3, 2.5, 2.7 and the embedding theorem, we obtain

|p(’r1a TQ; ‘ - ‘/ pr T, t d,r

r+(At) 2
/ (E20(¢.12) — E2p(€.1))de

At) 2
- / / (€2peu(€.1) + Epug(€.1) + 26pu(E, £)) dedt

ta ; pr(At)2 ) ) ta , pr(At)2 3 .
< / ( / §4p§u2d§> (At)+dt + / ( / §4p2u§d§> (At)+dt
t1 ™ t1 T
t2 ; pr(At)2 SR
+2 / ( / §2p2u2d§) (At)dt
t1 T
to ta é 1
< [ len( [0 df) @bt clolumar [ ( [udae) @nta
t1 ty
to é 1
tellolimar [ ( [utae) @nta
ty

< C(T)(At)4.

Noticing p € L°°(0,T,; H'(I)) and p; € L>(0,Ty; L*(I)), by Lemma 3.1, we have p € C(]0,7T7;
L?(I)). By the integral mean value theorem, we know that there exists a point 7* € [r,r +
(At)2] € [a, b] such that

(At)?
/ (E20(6,12) — E20(€, 1)) dé
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r+(At)
= (p(r*, 1) — p(r™,11)) / €2de

= (o0 1) = (0 0)) (P80 e+ (802

> a?(p(r*, t2) — p(r*, t1)) (At) 2.
Thus we arrive at
(1 t2) — p(r*, t1)] < C(T)|t2 — 1] 5.

Combining the above inequality with (3.2) gives

lp(r,t1) — p(r,t2)] < [p(rt1) — p(r*, t)| + |p(r*, t1) — p(r*, t2)| + [p(r", t2) — p(r, t2)]
< C(T)|r —r*|2 + C(T)|t, — to| &
< O(T)|ty — L+ (3.3)

a-+b

Similarly, for the case of 7 € [*]”, b], integrating the equation (1.4); over (r—(At) 2, 7) % (t1, t2),

we can also get the above mequahty. Therefore, from (3.2) and (3.3), for any (r1,t1), (r2,t2) €
Qr,, it holds that

lp(r1,t1) — p(ra, t2)| < [p(r1,t1) — p(ra, t1)] + |p(ra, t1) — p(re, t2)]
< C(T)(|ry = ral2 + [t — ta]2),

which implies that HpH }om) < C(T) < oo. Next we prove that ”X”Cl*i(Q ) < 0 Using
Ty Ty
the mean value theorem and Sobolev embedding inequalities, we have
1
0 = xtra) = | [ vt
ro
< lIxrllzoe @yl — 2l
< fri— o /erdr
I
S C(T)|7’1 — ’1"2|.
Notice that )
2
R T (3.4)
P2 TPt pp

For any (r,t1), (r,t2) € Qr,, we consider the case of r € [a, “erb]. Suppose that At =t;—t; >0
satisfies At < *7%. Integrating the above equation (3.4) over (r,r + At) x (t1,t5) yields

r+At
/ (0(€. 1) — (& t2))de

to r+At 2 2
// ( xru+ X7+ X’“—X +X>(g,t)dgdt
t p p P
12 tz > .
< / (nunmm / xrdr) (At>2dt+H / ( / xirdr) ()bt
t1 I PllLe(Qr) Jt1 I
2
]
+2H

t2 2 1
/ </ Xf,dr) (At)2dt + H
PllLe(Qr) Jt1 I P

3
X[ o0 (@) (A1) 2
Le=(Qr)
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4

3
)HX||L0<»(QT>(N) 2

1
Pllpes (Qr
3

< O(T)(Ab)S.

For the left-hand side of the above inequality, by the integral mean value theorem, there exists
a point r* € [r,r + At] C [a, b] such that

r+At
/ (X(€ 1) — x(€, £2))E = (x (" 12) — x(r* £2)) AL,

Then we get
X(r* 1) = x(r*, 12)] < (A2,
which leads to

Ix(r,t1) — x(r, t2)]
< Ix(rtn) = x(r* )+ (™ tn) = x (" t2)| + [x (7", t1) — x(r, t2))|
< C(T)|r = r*| + C(T)|ty — to]?
< C(T)|t, — to2.

So we can get
1
IX(r1,t1) = x(r2, t2)| < C(T)(|r1 — r2| + [t1 — t2]2) < oo,
which implies

X3 g,y < o0

By virtue of the same method above, we can easily get

[l <00

ch2(Qr)

From (2.18), we can get

rr 2T 2
Xe = —xput X4 X XX
P> et pp

then we can derive following result by the Schauder theory and (3.1)

)

||X||C2+%’l+i(QT*) < 0.

Set G(r,t) = —3(x?)r — 2x2. Then |G| .1 1

r C274(Qr,)
Lagrangian coordinate relative to matter flow (¢,7) — (7,y). With the transformation rules:
0r = 0y + u0, and 9y = r%p&“’ then (1.1); and (1.1)2 become

< oo. It is convenient to switch now to the

2 2 2
pr+riptuy + pu=0,
ur 4wy,

2u . G (35)

_(p )y+7“2p.

Moreover, Lemmas 2.3, 2.5, 2.7 and 2.8 in the Lagrangian coordinate give

r2 - r +T2(puy)y - 7’4p

0<C(T) ™ <p<C(T) < o0, (3.6)

/pidy < C(T) < oo, (3.7)
I

/(uzy + “?2; +u?)dy < C(T) < oo. (3.8)
I
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u)T_ 2u?

Since [(Inp),]- = 41:y + fj‘p —12(puy), and ¥z = ( "4, combining (3.5), we can get

U 2u? G 2u G
(r2)7+[(lnp)y]7 = 5 — (0t 2p " 3 =P (Inp)y + r2p’

Namely,

d u T
- 7 (y,6)dE
ds{L’2 +(lnp)y]e e }
2u G = [T P (y,€)dE u Yo=Y ST P (y,€)dE
= 1,3 —wp(lnp)y-i-ﬂp e M PR + (Inp)y [ypYe ") P

u 2u Gl o~
_ szﬂ + s + sz]e v [ P (y,6)dE

Integrating the above equation over (0, 7) with respect to s, we have

u
1"2 + (lnp)y
Uo NS e "l u 2u Gl i~
_ | 7 I3 P ) / Y o T P ) g
(T(Q) +(npo)y>e 0 + R + s +T2p e s
So we have

Il ot g, <o (3.9)

Similarly to the argument in [29], we can apply the Schauder theory to (3.5)2 and get

||7ULHC2+§H1+}1L (Qr.) < 00.

In particular,

Hu||ca=§ Q1) =+ HuyHCWv%(QT*) < 00.

Applying these estimates to (3.5)1, we get [|p|| ;o < 00, which, together with (3.1), using

the Schauder theory to (3.5)2, gives

"2 (Qr)

||X||C2+a,1+‘2’< (Qr.) < OQ.

Thus we have HG||CQ,3(QT ) < oo Using the same method once again and applying the

Schauder theory to (3.5)2, we have

max{||u||c2+a,1+g Q1) ”py”CQ,% (Qr,) ||p7'||cﬂ"§ (QT*)} < 00.

This contradicts the choice of Ty. Hence T, = co. The proof of Theorem 1.1 is complete.

By virtue of Lemmas 2.1-2.5, we can show that there exist global weak solutions to the
problem (1.1)-(1.3) under the assumptions py € H'(I) satisfying 0 < c5' < po < ¢o and
Ug € L2(I), Xo € HI(I)

Proof of Theorem 1.2 First, by the standard mollification, we may assume that for any o €
(0,1), there exists a sequence of initial data (p§, uf, x§) € CH*(I) x C%*(I) x C*%(I) such that

(i)O<cg1§p8§co<+ooonI,

(i) lime—o(l[pg — pollmr + llug — uoll + [IxG — xollr2) = 0.

Let (p°,u®, x%) be the unique global classical solution of the problem (1.1) with the initial
conditions (p§, ug, x§) and the boundary conditions (u®, X¢)|r=qp = (0,0) for all ¢ > 0. It
follows from Lemmas 2.1-2.5 that, for any 0 < T' < 400, the following estimates hold

C(T)™' <p® <CO(T), inlx[0,T],
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0\ o< 0,711 (1)) + 1105 | 22 00,7522 (1)) < C(T),
[l Lo 0,m:22(n)) + Ul 20,112 (1)) < C(T),

X1 £oe 0,7 (1)) + IXE 220,582 (1)) + IXE | 220,722 (1)) < C(T).

After taking possible subsequences, taking ¢ — 0 and using Lemma 3.1, we have

It is easy t

Since

(

(5, 5) = (p,pr)  weak * in L(0,T; L*(I)),
p; = pi weakly in L*(0,T; L*(I)),
p° — p strongly in C(Qr),
u® —u  weak * in L°°(0,T; L*(I)) weakly in L*(0,T; Ha(I)),
(X3 X5 X5r) = (X, X Xorr) - weakly in L2(0, T L*(1)),
(X°.x7) = (X, xr)  weak * in L(0,T; L(1)),
XE — x¢ weakly in L(0,T; L*(I)),
X — x weakly in C(Qr) N L*(0,T;C*(I)).
o see that (3.11), (3.12) and (3.13) imply

2 2
e+ (pTus)e 47" = pyt (pu)y +pu, in D(Qr).

£, € € g 2 g 1 1) 2 15 £ g 2 £ g
pru) = up, = Sut et ui— (06— 06— (W) — ()

—((p))r € L*(0, T; H' (D)),

and pfu — pu weak * in L>(0,T; L*(I)), by Lemma 3.1, we have

pfu® — pu, strongly in C(0,T; H *(I)),

which, together with (3.13), implies that

() = pu? i D(Qr).

From (3.16), we see that x&, € L2(0,T; H~'(I)). Combining this with (3.15), we have

Xe = xr inC0,T;H (1)),

which, together with (3.15), we get

Hence, by

(x7)? = (x,)* in D'(Qr).
(3.10), (3.12), (3.13) and (3.19)—(3.21), we arrive at

2 2 1 2
(o) 4 (o + 2+ (), = (14 20) =500 - 22

Similarly, we can obtain

Thus,

2.¢e,¢€ 2 .€e,¢€

(0°)Px: = PPxes ()" xu” — pPxew,  (0°)°XTu® — pxu.

2 2 .
P2xt + PP xru+ rpzxu =Xor + Xo = p(x* —x) inD(Qr).
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(3.19)

(3.20)

(3.21)

(3.22)

(3.23)
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From (3.18), (3.22) and (3.23), we conclude that the proof of Theorem 1.2 is complete.

In terms of Lemmas 2.1-2.7, we can derive the existence and uniqueness of strong solutions
to the problem (1.1)—(1.3) under the assumptions py € H*(I) satisfying 0 < c5 ' < po < ¢o and
up € HE(I), xo € H?(I).

Proof of Theorem 1.3  Since the initial data xo € H*(I) and ug € H}(I), we may assume that

Lim (125 = pollmre(ry + lug — wollas(ry + X6 = Xoll#2(r)) = 0.
Lemmas 2.6 and 2.7 imply
T
sup [ Qa4 1 24 [0 P+ PN+ [ [ (U2 165+ e P+ G Pdrds < C(D).

0<t<T J1 o JI
By the proof of Theorem 1.2 and the weak lower semi-continuity of the norm, we can easily
derive that

u € L°°(0,T; Hy(I)) N L*(0,T; H*(I)), wus € L*(0,T; L*(I)),

X € L=(0,T; H*(I)) N L*(0,T; H*(I)), x¢ € L=(0,T; L*(I)) N L*(0, T; H'(I)).
From (1.1); we can also get p; € L>(0,T; L*(I)). Thus we complete the existence result.

Next, we prove the uniqueness. Let (p;,u;, Xx;) (¢ = 1,2) be two solutions to the problem

(1.1)—(1.3) obtained as above. Denote p = p; — pa2, & = u; — ug and ¥ = x1 — x2. Then

- ~ . - 2. 2
Pt = —Pru2 — P1rU — PU2r — P1Ur — rﬂu2 - Tplu,

_ . . . - 1.
prily = Gy = =Ptz = pranily — pritug, — puzuzy = [(p])r = (p3)r] =

2 5 ~ 2
+ rur — XrX1rr — X2rXrr — TXT(XIT —+ X2T)’ (324)

2 - = 2~ 2~ = 2_
PIXt — Xrr = —P(p1 + p2)X2t — PTXrU1 — P1X 20T — P(p1 + p2)X2ruz + X

= piX(XT + XaXz +X3) = AX3 + X + Axa
for (r,t) x (0, +00), subject to the initial boundary value conditions
(P, X) le=0="0 in [a,b], (& X;) lor=0, fort>0.
Multiplying (3.24); by p, integrating the result over I gives
1d [ o, 2, 2
prdr =— [ | prpuz + pp1ru+ puzy + pprur + pTuz+ ppru | dr
2dt I I T T

1/ o 2 2
=, /pzuwlr — / (pplru + Pz + ppriiy + prus + Tpplu) dr
I I

N

1 - N N N
< yllllimay [ i+ il e oo + uacl =iy [

+ llprllz @ larll L2y 1Al 21y + clluzll Loy 1Al 21y
+ cllal Lo (nllprll o< @) 1Al L2 (1)
Since @(0,t) = 0, we have a(r,t) = [ (&, t)d¢ for (r,t) € Qr and hence

[@ll ooy < Nlarllz2qy, ¢ €[0,T]. (3.25)
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It follows from (3.25) and the regularities of (p;, u;)that
d
/[)er <l [Juzllg2(n —|—/pindr+1 /ﬁzdr—i-/ﬁ%dr. (3.26)
dt Jg I I I
Multiplying (3.24)2 by @, integrating the result over I yields

1d 1
/plﬂer + /dfdr = /pltﬂer — /plulﬁrﬁdr — / (plaqur + pusuo,t + ﬁthﬂ) dr
2dt J; I 2 Jr I I

2 2
+ / [(p1) = (p2)]tirdr — / L uldr + / iy dr — / XrX1prtidr
I T T I
. - 2 -
+ / (XerXru + XQTX?"UT‘) dr — / <TX7"(X17" + XQT)U> dr.
I I

Since p1r = —(pru1)r — iplul, then we have

1 1 2
/pltﬂer — /plulﬂrﬂdr = — / p1u1112d1".
2 T I 2 T

1
Pi

Moreover, [} [pldr = [, "' |¢ldr = || ) [l=(qr) [; |pivldr (i =1,2). By using the above results,

we get
1d ~2 ~2
d d
2dt/,p1u r—i—/jurr
:CHU1||L°°(I)/I/)11120ZT+ |\U2r\|Lw(1)/jﬂ1@2dT+ ||U2HL°<>(1)||U2THL°°(I)HﬁHL?(I)H\/meHm(I)

+ 1@l oo (ny lluzel L2y 1Pl 2 1y + el pll 2yl | L2 (1) + C/Iplﬁzdr +cllarll Lz llvprall Lz

+ @l oo (ny Ixarr | 22y Xl 220y + @l Lo 2y X 20w |22 (1) [1X | 22 1)
+lIx2rllLoe (ny IXe I L2y 18r L2 1y + ellxar | Lo () l1Xr L2 IV P12 1
+ cllxarll oo IXr | 2y IV P18l 22 (1)

1
< /ﬁfdr +c </ Xfwdr + /ngdr> /)ﬁdr +c </ ugtdr + 1> /ﬁzdr
2 Jr I I I I I
+c </ u? dr + /u%rdr—i- /u%rrdr + 1) /plfﬂdr,
I I I I

which implies

d
gt /p1ﬂ2dr—|—/ﬂfdr < c/ﬁdr—!—c </ u3,dr + 1) //;er
1 I 1 I I
+c (/ u? dr + /u%Tdr + /u%Trdr + 1) /p1a2dr. (3.27)
I I I I

Multiplying (3.24)5 by X, integrating over I, we have
1d 22 / ~2
d d
zdt/lplx r | Xidr
= /p1p1t>22d7" - /ﬁ(ﬂl + p2)x2exdr — / (PTur %o X + pilx2rX) dr
I I I

- s 2 . . -
- / (A(p1 + p2)Xaruzd) dr + / XrXdr — /plx(x? + x1X2 + X3)Xdr
I I I

- / Pdr + / i+ / Pxoxdr
I I I
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<Xl zeenylleaxllzznyllprell 2y + X 2oy ller + p2ll oo (@) 18I 22 (1) X2t | 22 (1
+ 11l oo (@ llwall oo (ny [IXr Il 22 () [P X 22 (1)

10112 oy Il 2 (0 Il 2y o % 2
P+ p2
VP

1
P1

4

||X2r||L°°(I) ||U2||L°°(I) ||\/P1ﬁ||L2(I) HﬁHL?(I)
L>=(Qr)

X2+ x1x2 + X3
p1

+c X172 ry

L>=(Qr)

1l lonkllzea + H
L= (Qr)

1
P1

- - 1
)HP||L2(I)HP1X||L2(1)+ p

+IxellZo () lo1xl72r)

LliLe=(Qr)

L= (Qr
1 - -
+ ||X2||L<>o<1)||p1 | oo @) 12l L2yl 1 X L2 (1) -

From the equations (1.1)1, (1.1)3 4 and the estimates (2.5), (2.8), (2.9), (2.17), (2.20) we can

deduce that
/P?tdv" <c /x?tdr <e¢, i=1,2.
I I

Moreover, the Sobolev embedding theorem implies that

X2y < ellXllmr ) < elllXlzzy + Xz r))-
Hence together with the regularities for (p;, u;, x;), we get

d 2.2 -2
d d
o [+ [ ar

< c(l—k/u%vndr) /ﬁzdr+c<1—|—/u%ﬂ> /p%ffdr—kc/x%wdr/plﬁ?dr. (3.28)
I I I 1 I I

Adding (3.26), (3.27) and (3.28) together, we get

d [, _ i
dt/(02+p1u2+cp§x2)dr
I

<c </ udydr + |Jus g2y + /pfrdr + 1) /ﬁQdT
I I I
2 2 ~2 2 252
+C</u17~dr+ l[well rr2(ry +/errdr+1) /plu dr+0(1+/u1rdr> /plx dr
I I I I

< c(/ ugedr + |luall g2y + 1wl () + lxallg2on —I—/Pid?‘ + 1) /(ﬁ2 i + cp2 ) dr
I ’ ’

= K(t) / (P> + p1@® + cpi?) dr, (3.29)

I
where K (t) = c ([, u3,dr + [Jus|lg2(ry + llua |y + lIx2llm2(n + J; pedr +1). From equation
(1.1)2 and estimates (2.8), (2.17), (2.20), we can get fOT J; udrds < 400 (i = 1,2). Combining

Lemmas 2.1-2.8 we see that fOT K(t)dt < +o00. Applying the Gronwall inequality to (3.29) we
arrive at

T
[ @+ o1+ et < [+ o1 4 e emadrexp ( / K(t)dt) 0,
I I 0

Noticing that the density p; and the constant ¢ are positive, thus we obtain (p, @, x¥) = 0. The
proof is complete.
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We are in preparation to deal with the case of the viscosity coefficient v depending on the

concentration y. In fact, in this case, the global Hélder estimates for the solution involve the

Holder estimates of x,+ which is nontrivial.
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