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Abstract The distributional properties of a multi-dimensional continuous-state branching process

are determined by its cumulant semigroup, which is defined by the backward differential equation.

We provide a proof of the assertion of Rhyzhov and Skorokhod (Theory Probab. Appl., 1970) on the

uniqueness of the solutions to the equation, which is based on a characterization of the process as the

pathwise unique solution to a system of stochastic equations.

Keywords Continuous-state branching process, multi-dimensional, backward differential equation,

stochastic equation, generator

MR(2010) Subject Classification 60J80, 60H20

1 Introduction

Let R+ = [0,∞) and let D = R
m
+ be its mth power for an integer m ≥ 1. Suppose that

ξ = {ξ(t) : t ≥ 0} is a stochastically continuous Markov process in D with homogeneous
transition semigroup {P (t) : t ≥ 0}. We call ξ a continuous-state branching process (CB-
process) if its transition semigroup satisfies the branching property :

P (t, x + y, ·) = P (t, x, ·) ∗ P (t, y, ·), x, y ∈ D, (1.1)

where “∗” denotes the convolution operation. Here ξ may not be conservative, so it is in general
a Markov process in the one-point compactification D̄ := D∪{∞} with ∞ being the cemetery.

The CB-process is a special form of the measure-valued branching processes studied in
Dawson [7], Dynkin [12], Le Gall [20] and Li [22]. A more general class of finite-dimensional
Markov processes, the affine processes, were investigated in Duffie et al. [10]. The process
has played important roles in the study of different areas including biological populations,
statistical physics, mathematical finance and so on. The problem of characterizing the most
general branching Markov processes in finite- or infinite-dimensional state spaces has been
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studied by Duffie et al. [10], Dynkin et al. [13], Rhyzhov and Skorokhod [25], Silverstein [28]
and Watanabe [29].

The basic structures of the multi-dimensional CB-process were investigated by Rhyzhov and
Skorokhod [25] and Watanabe [29]. Let C− = {x + iy : x ≤ 0, y ∈ R}, where i =

√−1, be the
closed left half complex plane and let C−− = {x + iy : x < 0, y ∈ R} be its interior. The mth
powers of them are denoted by C

m
− and C

m
−−, respectively. From the branching property (1.1),

it follows that P (t, x, ·) is an infinitely divisible distribution on D. A more careful analysis
shows that the Laplace transform of P (t, x, ·) is characterized by, for λ ∈ C

m
− ,

∫
D

e〈λ,z〉P (t, x, dz) = exp{〈x, K(t, λ)〉}, (1.2)

where 〈·, ·〉 denotes the inner product and K(t, λ) = (K1(t, λ), . . . , Km(t, λ)) ∈ C
m
− . From (1.2)

we have, for i = 1, . . . , m,

Ki(t, λ) = log
∫

D

e〈λ,z〉P (t, δi, dz), (1.3)

where δi = (1{i=1}, . . . , 1{i=m}) ∈ D. The Chapman–Kolmogorov equation of {P (t) : t ≥ 0}
implies

K(s + t, λ) = K(s, K(t, λ)), s, t ≥ 0, λ ∈ C
m
− . (1.4)

We call {K(t) : t ≥ 0} the cumulant semigroup of ξ or {P (t) : t ≥ 0}. In view of (1.2), we have

P (t, x, D) = exp{〈x, K(t, 0)〉}, t ≥ 0, x ∈ D. (1.5)

From the stochastic continuity of {ξ(t) : t ≥ 0} it follows that t �→ K(t, λ) is continuous in
t ≥ 0 for each λ ∈ C

m
− and the restriction of λ �→ K(t, λ) to C

m
−− is a holomorphic self-map.

In fact, the infinite divisibility of the transition probabilities yields a Lévy–Khintchine type
representation of the function λ �→ K(t, λ). For m = 1 this is known as a Bernstein function;
see, e.g., Schilling et al. [27]. It was shown by Rhyzhov and Skorokhod [25] that for any λ ∈ C

m
−−

the following derivative exists:

H(λ) =
d

dt
K(t, λ)

∣∣∣∣
t=0

. (1.6)

Rhyzhov and Skorokhod [25] also derived from (1.4) and (1.6) the differential equation, for
λ ∈ C

m
−−,

d

dt
K(t, λ) = H(K(t, λ)), K(0, λ) = λ. (1.7)

This is referred to as the backward differential equation of the cumulant semigroup since it
corresponds to Kolmogorov’s backward differential equation of the transition semigroup {P (t) :
t ≥ 0}. A similar differential equation for the generating functions of integer-valued branching
processes was given by Athreya and Ney [1, p. 106].

We call H = (H1, . . . , Hm) the branching mechanism of ξ. In complex analysis, one usually
refers to (1.7) as the Loewner–Kufarev equation; see, e.g., Bracci et al. [6], Duren [11] and
Gumenyuk et al. [16, 17]. It is also called the generalized Riccati equation; see Duffie et al. [10]
and the references therein. For x = (x1, . . . , xm) ∈ D let |x| = |x1| + · · · + |xm|. In Rhyzhov
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and Skorokhod [25], the following Lévy–Khintchine type representation of H = (H1, . . . , Hm)
was identified: for i = 1, . . . , m,

Hi(λ) = 〈ai, λ〉 +
1
2
βiλ

2
i +

∫
D◦

(
e〈λ,z〉 − 1 − λizi

1 + |z|2
)

πi(dz), (1.8)

where βi ≥ 0, ai = (ai1, . . . , aim) ∈ R
m satisfies aij ≥ 0 for j = i and πi(dz) is a σ-finite

measure on D◦ := D \ {0} satisfying
∫

D◦

[( m∑
j=1,j �=i

zj + z2
i

)
∧ 1

]
πi(dz) < ∞. (1.9)

The property aij ≥ 0 for j = i follows essentially from (1.6) and the fact that λ �→ K(t, λ)
is the cumulant of an infinitely divisible distribution on R

m
+ . It was derived rigorously in Duffie

et al. [10, Theorem 2.7]. Note that the property was stated incorrectly as aij > 0 for j = i in
[25, p. 706]. The integrability condition (1.9) also corrects the condition given in [25, p. 706],
where it was only claimed that

∫
{|z|<1}

( m∑
j=1,j �=i

zj + z2
i

)
πi(dz) < ∞. (1.10)

It is easy to see that (1.9) is satisfied if and only if (1.10) holds and

πi({z ∈ D◦ : |z| ≥ 1}) < ∞, (1.11)

which is a standard assumption for the Lévy measure; see, e.g., Sato [26, Theorem 8.1]. For
instance, if λ = −(1, . . . , 1), then the integrand in (1.8) becomes

f(z) = e−|z| − 1 +
zi

1 + |z|2 ,

which satisfies

−1 ≤ f(z) ≤ e−|z| − 1 +
|z|

1 + |z|2 ≤ −
(

1
2
− 1

e

)
, |z| ≥ 1.

Then the integral on the right-hand side of (1.8) diverges when (1.11) is not satisfied. This
shows that (1.9) is the correct assumption.

For the convenience of our exploration, we need another representation of the branching
mechanism H = (H1, . . . , Hm). Let αi = (αi1, . . . , αim), where αij = aij for j = i and

αii = aii +
∫

D◦
zi

(
1{|z|≤1} − 1

1 + |z|2
)

πi(dz).

Then, for i = 1, . . . , m,

Hi(λ) = 〈αi, λ〉 +
1
2
βiλ

2
i +

∫
D◦

(e〈λ,z〉 − 1 − λizi1{|z|≤1})πi(dz). (1.12)

It is known that the one-dimensional CB-process is conservative if and only if the following
condition is satisfied: ∫

0+

dλ

0 ∨ [−H(−λ)]
= ∞; (1.13)

see, e.g., [15, 18, 19]. There seems no necessary and sufficient condition in such a simple form
for the conservativeness of multi-dimensional CB-processes.
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Example 1.1 Let us consider the one-dimensional case, i.e., m = 1. For σ > 0 and 0 < α ≤ 1,
an α-stable branching mechanism is defined by H(λ) = −σ(−λ)α. In this case, for λ ∈ C−−
the unique solution to (1.7) is given by

K(t, λ) =
{ −[σ(1 − α)t + (−λ)1−α]1/(1−α) for 0 < α < 1,

λeσt for α = 1.

This is a holomorphic function in C−− and has a unique continuous extension on C− with

K(t, 0) =
{ −[σ(1 − α)t]1/(1−α) for 0 < α < 1,

0 for α = 1,

which solves (1.7) for λ = 0. The solution to (1.7) is unique for λ = 0 if and only if α = 1, as
K∞(t, 0) := 0 also solves the equation for λ = 0.

Example 1.2 Let m = 1 and consider the 1
2 -stable branching mechanism H(λ) = −2

√−λ.
In this case, for λ ∈ C−− we have

K(t, λ) = −(t +
√−λ)2,

which maps C−− to the domain {x + iy : x < −t
√

t2 + 2|y|}. The uniqueness of solution to
(1.7) breaks down for λ = 0. In fact, for any r ∈ [0,∞] the map t �→ Kr(t, 0) := −(t−r)21{t>r}
is a solution to (1.7) for λ = 0.

Remark 1.3 Let H be a branching mechanism defined by (1.8) or (1.12). From the result
of Duffie et al. [10, Theorem 2.7 and Proposition 6.1] it follows that for any λ ∈ C

m
−− there

is a unique solution to (1.7) and one can define the transition semigroup of a CB-process by
(1.2); see also Watanabe [29, Theorems 2 and 2′]. By (1.3) we can extend λ �→ K(t, λ) to a
continuous self-map of C

m
− . For λ ∈ C

m
−− we can rewrite (1.7) into its integral form

K(t, λ) = λ +
∫ t

0

H(K(s, λ))ds, t ≥ 0. (1.14)

In view of (1.8) or (1.12), it is clear that the function λ �→ H(λ) admits a unique continuous
extension on C

m
− with H(0) = 0. By approximation from the interior and application of domi-

nated convergence we see that (1.14) remains true for λ ∈ ∂C
m
− := C

m
− \C

m
−−. By differentiating

both sides of the integral equation we see that (1.7) also holds for all λ ∈ C
m
− . That proves the

existence of the solution to (1.7) for all λ ∈ C
m
− ; see also Duffie et al. [10, Proposition 6.4 and

its proof].

Rhyzhov and Skorokhod [25, p. 706] wrote: It can be shown that if (1.7) has a unique
solution belonging to C

m
− for all λ ∈ C

m
− , then exp{〈x, K(t, λ)〉} will be a transform of type (1.1)

of the transition probability of a branching process. The following assertion is very plausible: in
order that the equation (1.7) has a unique solution for all λ ∈ C

m
− , it is necessary and sufficient

that it has a unique solution for λ = 0. In view of Remark 1.3, we can restate their assertion
equivalently as: in order that the equation (1.7) has a unique solution for all λ ∈ C

m
− , it is

necessary and sufficient that t �→ K(t, 0) ≡ 0 is the unique solution to (1.7) for λ = 0.
In this paper, we provide a proof of the assertion of Rhyzhov and Skorokhod [25, p. 706].

The proof is based on a characterization of the m-dimensional CB-process as the pathwise
unique solution to a system of stochastic equations.
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2 The System of Stochastic Equations

Recall that the vector-valued function H = (H1, . . . , Hm) is defined by (1.12) with parameters
(ai, βi, πi), i = 1, . . . , m. Suppose that (Ω , F , Ft,P) is a filtered probability space satisfying
the usual hypotheses. For each k = 1, . . . , m let {Bk(t)} be an (Ft)-Brownian motion and let
{Nk(ds, dz, du)} be a time-space (Ft)-Poisson random measure on (0,∞) × D◦ × (0,∞) with
intensity dsπk(dz)du. Let Ñk(ds, dz, du) := Nk(ds, dz, du) − dsπk(dz)du denote the compen-
sated measure. Let D1 = {x ∈ D◦ : |x| ≤ 1} and Dc

1 = {x ∈ D◦ : |x| > 1}. We consider the
system of stochastic integral equations, for k = 1, . . . , m,

ξk(t) = ξk(0) +
∫ t

0

√
βkξk(s)dBk(s) +

m∑
i=1

∫ t

0

αikξi(s)ds

+
∫ t

0

∫
D1

∫ ξk(s−)

0

zkÑk(ds, dz, du) +
∫ t

0

∫
Dc

1

∫ ξk(s−)

0

zkNk(ds, dz, du)

+
m∑

i=1,i �=k

∫ t

0

∫
D◦

∫ ξi(s−)

0

zkNi(ds, dz, du). (2.1)

We say an (Ft)-adapted càdlàg process {ξ(t) : t ≥ 0} = {(ξ1(t), . . . , ξm(t)) : t ≥ 0} in D

with possibly finite lifetime is a solution to (2.1) if the equation holds almost surely when t is
replaced by t ∧ ζn for every t ≥ 0 and n ≥ 1, where ζn = inf{t ≥ 0 : |ξ(t)| ≥ n} with inf ∅ = ∞
by convention. We make the convention that ξ(t) = ∞ for t ≥ ζ := limn→∞ ζn. By saying
{ξ(t)} is conservative we mean ζ = ∞ almost surely.

To prove the existence and uniqueness of the solution to (2.1), we introduce an approxi-
mating sequence of the stochastic equation. For each n ≥ 1 let us consider the equations, for
k = 1, . . . , m,

xnk(t) = ξk(0) +
∫ t

0

√
βkxnk(s)dBk(s) +

m∑
i=1

∫ t

0

αikxni(s)ds

+
∫ t

0

∫
D1

∫ xnk(s−)

0

zkÑk(ds, dz, du) +
∫ t

0

∫
Dc

1

∫ xnk(s−)

0

(zk ∧ n)Nk(ds, dz, du)

+
m∑

i=1,i �=k

∫ t

0

∫
D◦

∫ xni(s−)

0

(zk ∧ n)Ni(ds, dz, du), (2.2)

The truncation zk ∧ n := min{zk, n} in (2.2) changes the jump sizes larger than n into jump
size n. With this modification of the equation, we can apply Barczy et al. [2, Theorem 4.6] to
see that there is a pathwise unique solution {xn(t) : t ≥ 0} = {(xn1(t), . . . , xnm(t)) : t ≥ 0} to
(2.2).

Theorem 2.1 For any F0-measurable random variable ξ(0) ∈ D, there is a pathwise unique
solution {ξ(t) : t ≥ 0} to (2.1).

Proof For n ≥ 1 define the stopping time ζn = inf{t ≥ 0 : |xn(t)| ≥ n}. Then |xn(t)| < n

for 0 ≤ t < ζn. Since the processes {xnk(t) : t ≥ 0}, k = 1, . . . , m are nonnegative and can
only have positive jumps, they do not have jumps with jump sizes larger than n in the time
interval (0, ζn), so the truncation (zk ∧ n) in (2.2) makes no difference in this time interval. It
follows that xn+1(t) = xn(t) for 0 ≤ t < ζn and ζn is nondecreasing in n ≥ 1. Then we can
define a process {ξ(t) : t ≥ 0} = {(ξ1(t), . . . , ξm(t)) : t ≥ 0} in D̄ such that ξ(t) = xn(t) for
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0 ≤ t < ζn and ξ(t) = ∞ for t ≥ ζ := limn→∞ ζn. It is easy to see that {ξ(t) : t ≥ 0} is a
solution to (2.1) and ζn = inf{t ≥ 0 : |ξ(t)| ≥ n}. This proves the existence of solution to (2.1).
Now suppose that {y(t) : t ≥ 0} = {(y1(t), . . . , ym(t)) : t ≥ 0} is also a solution to (2.1). Let
τn = inf{t ≥ 0 : |y(t)| ≥ n} and ηn = τn ∧ ζn for n ≥ 1. Then |y(t)| < n and |ξ(t)| < n for
0 ≤ t < ηn, and so the processes {y(t) : t ≥ 0} and {ξ(t) : t ≥ 0} coincide in the time interval
(0, ηn). In view of (2.1) and (2.2) we have ξ(ηn) = y(ηn), which implies ηn = ζn = τn. It follows
that ζ = limn→∞ ζn = limn→∞ ηn, and so the processes {y(t) : t ≥ 0} and {ξ(t) : t ≥ 0} are
indistinguishable. Then the pathwise uniqueness of solutions holds for (2.1). �

The system of stochastic equations (2.1) gives a construction of the sample path of the
m-dimensional CB-process. The existence and pathwise uniqueness of solutions to (2.1) were
established in Dawson and Li [8] for m = 1 under a stronger moment condition. A flow of
discontinuous CB-processes was constructed in Bertoin and Le Gall [5] by weak solutions to a
special form of the one-dimensional stochastic equation; see also [4]. Their construction was
extended to general flows in Dawson and Li [9] using strong solutions. See, e.g., Bernis et al. [3],
Fang and Li [14], Li [21, 22] and Pardoux [24] for a number of applications of those stochastic
equations. Theorem 2.1 weakens the moment conditions in Barczy et al. [2] and Ma [23], where
multi-dimensional continuous state branching processes with immigration were constructed in
terms of stochastic equations.

3 A Time-space Martingale Problem

Let C2
0 (D) be the set of twice continuously differentiable functions f = f(x) on D that together

with their derivatives up to the second order are rapidly decreasing as |x| → ∞. We extend the
functions f = f(x) in C2

0 (D) and those derivatives trivially to ∞ so that they become bounded
continuous functions on D̄. For x ∈ D and f ∈ C2

0 (D) set

Af(x) =
m∑

k=1

xk〈αk,∇f(x)〉 +
1
2

m∑
k=1

βkxkf ′′
kk(x)

+
m∑

k=1

xk

∫
D◦

[Δzf(x) − zkf ′
k(x)1D1(z)]πk(dz), (3.1)

where Δzf(x) = f(x+z)−f(x). Then we can understand Af as a bounded continuous function
on D̄ with Af(∞) = 0.

For a fixed constant u > 0 let C1,2([0, u] × D) be the set of functions f = f(t, x) on
[0, u] × D that are continuously differentiable in t ∈ [0, u] and twice continuously differentiable
in x = (x1, . . . , xm) ∈ D. For f ∈ C1,2([0, u] × D) and i, j = 1, . . . , m write

f ′
0(t, x) =

∂

∂t
f(t, x), f ′

i(t, x) =
∂

∂xi
f(t, x), f ′′

ij(t, x) =
∂

∂xixj
f(t, x).

Let C1,2
0 ([0, u] × D) be the set of functions f = f(t, x) in C1,2([0, u] × D) that together with

the above derivatives are rapidly decreasing as |x| → ∞. We extend all the functions in
C1,2

0 ([0, u] × D) and those derivatives trivially to [0, u] × {∞} so that they become bounded
continuous functions on [0, u]×D̄. The theorem below gives the characterization of the solution
{ξ(t) : t ≥ 0} to (2.1) by a time-space martingale problem, which identifies the operator A

defined by (3.1) as (a restriction of) its generator.
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Theorem 3.1 Let {ξ(t) : t ≥ 0} be the pathwise unique solution to (2.1). Then for any
0 ≤ t ≤ u and f ∈ C1,2

0 ([0, u] × D) we have

f(t, ξ(t)) = f(0, ξ(0)) +
∫ t

0

[f ′
0(s, ξ(s)) + Af(s, ξ(s))]ds + M(t), (3.2)

where A acts on the function x �→ f(s, x) and {M(t) : 0 ≤ t ≤ u} is a bounded martingale
defined by

M(t) =
m∑

k=1

∫ t

0

√
βkξk(s)f ′

k(s, ξ(s))dBk(s)

+
m∑

k=1

∫ t

0

∫
D◦

∫ ξk(s−)

0

Δzf(s, ξ(s−))Ñk(ds, dz, du). (3.3)

Proof For n ≥ 1 let {xn(t) : t ≥ 0} = {(xn1(t), . . . , xnm(t)) : t ≥ 0} be the pathwise unique
solution to (2.2). By Itô’s formula, for 0 ≤ t ≤ u we have

f(t, xn(t)) = f(0, ξ(0))+
∫ t

0

f ′
0(s, xn(s−))ds +

m∑
k=1

m∑
i=1

∫ t

0

αikxni(s−)f ′
k(s, xn(s−))ds

+
m∑

k=1

∫ t

0

√
βkxnk(s−)f ′

k(s, xn(s−))dBk(s)+
1
2

m∑
k=1

∫ t

0

βkxnk(s−)f ′′
kk(s, xn(s−))ds

+
m∑

k=1

∫ t

0

∫
D1

∫ xnk(s−)

0

zkf ′
k(s, xn(s−))Ñk(ds, dz, du)

+
m∑

k=1

∫ t

0

∫
Dc

1

∫ xnk(s−)

0

(zk ∧ n)f ′
k(s, xn(s−))Nk(ds, dz, du)

+
m∑

k=1

m∑
i=1,i �=k

∫ t

0

∫
D◦

∫ xni(s−)

0

(zk ∧ n)f ′
k(s, xn(s−))Ni(ds, dz, du)

+
m∑

k=1

∫ t

0

∫
D◦

∫ xnk(s−)

0

[f(s, xn(s−) + (z ∧ n)) − f(s, xn(s−))

− 〈z ∧ n,∇f(s, xn(s−))〉]Nk(ds, dz, du)

= f(0, ξ(0)) +
∫ t

0

f ′
0(s, xn(s−))ds +

m∑
i=1

∫ t

0

xni(s−)〈αi,∇f(s, xn(s−))〉ds

+
m∑

k=1

∫ t

0

√
βkxnk(s−)f ′

k(s, xn(s−))dBk(s)+
1
2

m∑
k=1

∫ t

0

βkxnk(s−)f ′′
kk(s, xn(s−))ds

+
m∑

k=1

∫ t

0

∫
D1

∫ xnk(s−)

0

zkf ′
k(s, xn(s−))Ñk(ds, dz, du)

+
m∑

k=1

∫ t

0

∫
D◦

∫ xnk(s−)

0

[f(s, xn(s−) + (z ∧ n)) − f(s, xn(s−))

− zkf ′
k(s, xn(s−))1D1(z)]Nk(ds, dz, du)

= f(0, ξ(0)) +
∫ t

0

f ′
0(s, xn(s−))ds +

m∑
i=1

∫ t

0

xni(s−)〈αi,∇f(s, xn(s−))〉ds
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+
m∑

k=1

∫ t

0

√
βkxnk(s−)f ′

k(s, xn(s−))dBk(s)+
1
2

m∑
k=1

∫ t

0

βkxnk(s−)f ′′
kk(s, xn(s−))ds

+
m∑

k=1

∫ t

0

∫
D◦

∫ xnk(s−)

0

Δz∧nf(s, xn(s−))Ñk(ds, dz, du)

+
m∑

k=1

∫ t

0

xnk(s−)ds

∫
D◦

[Δz∧nf(s, xn(s−)) − zkf ′
k(s, xn(s−))1D1(z)]πk(dz),

where z ∧ n = (z1 ∧ n, . . . , zm ∧ n). Then

f(t, xn(t)) = f(0, ξ(0)) +
∫ t

0

[f ′
0(s, xn(s−)) + Anf(s, xn(s−))]ds + Mn(t),

where

Mn(t) =
m∑

k=1

∫ t

0

√
βkxnk(s−)f ′

k(s, xn(s−))dBk(s)

+
m∑

k=1

∫ t

0

∫
D◦

∫ xnk(s−)

0

Δz∧nf(s, xn(s−))Ñk(ds, dz, du)

and

Anf(s, x) =
m∑

k=1

xk〈αk,∇f(s, x)〉 +
1
2

m∑
k=1

βkxkf ′′
kk(s, x)

+
m∑

k=1

xk

∫
D◦

[Δz∧nf(s, x) − zkf ′
k(s, x)1D1(z)]πk(dz).

Let ζn = inf{t ≥ 0 : |xn(t)| ≥ n} for n ≥ 1. By the proof of Theorem 2.1, the sequence
{ζn} is nondecreasing. Moreover, we have ξ(t) = xn(t) for 0 ≤ t < ζn and ξ(t) = ∞ for
t ≥ ζ := limn→∞ ζn. It follows that

f(t, xn(t ∧ ζn)) = f(0, ξ(0)) +
∫ t∧ζn

0

[f ′
0(s, ξ(s−)) + Anf(s, ξ(s−))]ds + Mn(t ∧ ζn), (3.4)

where

Mn(t ∧ ζn) =
m∑

k=1

∫ t∧ζn

0

√
βkξk(s−)f ′

k(s, ξ(s−))dBk(s)

+
m∑

k=1

∫ t∧ζn

0

∫
D◦

∫ ξk(s−)

0

Δz∧nf(s, ξ(s−))Ñk(ds, dz, du). (3.5)

The definition of ζn implies that limn→∞ xn(ζn) = ∞. By considering the cases ζ ≤ t and ζ > t

separately, we see that limn→∞ xn(t ∧ ζn) = ξ(t ∧ ζ). Then letting n → ∞ in (3.4) and (3.5)
we obtain

f(t, ξ(t ∧ ζ)) = f(0, ξ(0)) +
∫ t∧ζ

0

[f ′
0(s, ξ(s−)) + Af(s, ξ(s−))]ds + Mζ(t),

where

Mζ(t) =
m∑

k=1

∫ t∧ζ

0

√
βkξk(s−)f ′

k(s, ξ(s−))dBk(s)

+
m∑

k=1

∫ t∧ζ

0

∫
D◦

∫ ξk(s−)

0

Δzf(s, ξ(s−))Ñk(ds, dz, du).
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Recall that we understand f , f ′
k and Af as bounded continuous functions on [0, u] × D̄ with

f(s,∞) = f ′
k(s,∞) = Af(s,∞) = 0 for all s ∈ [0, u]. Then we have (3.2) and (3.3). From (3.2)

it is clear that

|M(t)| ≤ 2‖f‖ + (‖f ′
0‖ + ‖Af‖)u, 0 ≤ t ≤ u,

where ‖ · ‖ denotes the supremum norm of functions on [0, u] × D̄. Then {M(t) : 0 ≤ t ≤ u} is
a bounded martingale by (3.3). �

Corollary 3.2 The pathwise unique solution {ξ(t) : t ≥ 0} to (2.1) is a càdlàg process in D̄.

Proof By applying Theorem 3.1 to the function f(t, x) ≡ e−x and u = 1, 2, . . . we see that
{e−ξ(t) : t ≥ 0} is a càdlàg process in [0, 1]. Then {ξ(t) : t ≥ 0} is a càdlàg process in D̄. �

Corollary 3.3 The pathwise unique solution {ξ(t) : t ≥ 0} to (2.1) is an m-dimensional
CB-process with transition semigroup {P (t) : t ≥ 0} defined by (1.2) and (1.7).

Proof For λ ∈ C
m
−− let t �→ K(t, λ) ∈ C

m
−− be the unique solution to (1.7). Fix u > 0 and

define

f(t, x) = e〈K(u−t,λ),x〉, 0 ≤ t ≤ u, x ∈ D.

Then f ∈ C1,2
0 ([0, u] × D). It is easy to show that for k = 1, . . . , m,

f ′
k(t, x) = Kk(u − t, λ)e〈K(u−t,λ),x〉, f ′′

kk(t, x) = Kk(u − t, λ)2e〈K(u−t,λ),x〉

and

Δzf(x) = (e〈K(u−t,λ),z〉 − 1)e〈K(u−t,λ),x〉.

By (1.7) and (3.1) we have

f ′
0(t, x) = −e〈K(u−t,λ),x〉〈H(K(u − t, λ)), x〉 = −Af(t, x).

Note that the equalities above extend trivially to x ∈ D̄. An application of Theorem 3.1 shows
that

e〈K(u−t,λ),ξ(t)〉 = e〈K(u,λ),ξ(0)〉 + M(t), 0 ≤ t ≤ u,

where {M(t) : 0 ≤ t ≤ u} is a bounded martingale. It follows that

E[e〈λ,ξ(u)〉|Ft] = E[e〈K(u,λ),ξ(0)〉 + M(u)|Ft]

= e〈K(u,λ),ξ(0)〉 + M(t)

= e〈K(u−t,λ),ξ(t)〉.

Then {ξ(t) : t ≥ 0} is an m-dimensional CB-process with transition semigroup {P (t) : t ≥ 0}
defined by (1.2) and (1.7). �

Remark 3.4 In general, the process {ξ(t) : t ≥ 0} lives in the extended state space D̄. For
this reason, we need the functions f and Af to have continuous extensions on [0, u] × D̄ in
Theorem 3.1 and in the proof of Corollary 3.3. This is the reason that we assume λ ∈ C

m
−− in

the proof.
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4 The Backward Differential Equation

By Remark 1.3, there exists the solution t �→ K(t, λ) to (1.7) for every λ ∈ C
m
− . The next

theorem confirms the assertion of Rhyzhov and Skorokhod [25, p. 706]:

Theorem 4.1 The following statements are equivalent:
(i) For every λ ∈ C

m
− there is a unique solution t �→ K(t, λ) ∈ C

m
− to (1.7).

(ii) For λ = 0 the unique solution to (1.7) is given by t �→ K(t, 0) ≡ 0.
(iii) The CB-process with transition semigroup given by (1.2) and (1.7) is conservative.

Proof (i)⇒(ii) This is trivial.
(ii)⇒(iii) Suppose that t �→ K(t, 0) ≡ 0 is the unique solution to (1.7) for λ = 0. Then (1.5)

implies P (t, x, D) = 1 for all t ≥ 0 and x ∈ D, which means the CB-process is conservative.
(iii)⇒(i) Suppose that the CB-process with transition semigroup given by (1.2) and (1.7)

is conservative. Let {ξ(t) : t ≥ 0} be the realization of the process defined by (2.1) with
ξ(0) = x ∈ D. Then {ξ(t) : t ≥ 0} is a càdlàg process living in D. Suppose that t �→ J(t, λ) is
also a solution to (1.7) for λ ∈ C

m
− . Fix u > 0 and define

g(t, x) = e〈J(u−t,λ),x〉, 0 ≤ t ≤ u, x ∈ D. (4.1)

It is easy to see that g ∈ C1,2([0, u] × D). By (2.1) and Itô’s formula, as in the proof of
Theorem 3.1 we get

g(t, ξ(t)) = g(0, ξ(0)) +
∫ t

0

g′0(s, ξ(s−))ds +
m∑

i=1

∫ t

0

ξi(s−)〈αi,∇g(s, ξ(s−))〉ds

+
1
2

m∑
k=1

∫ t

0

βkξk(s−)g′′kk(s, ξ(s−))ds + Z(t)

+
m∑

k=1

∫ t

0

ξk(s−)ds

∫
D◦

[Δzg(s, ξ(s−)) − zkg′k(s, ξ(s−))1D1(z)]πk(dz), (4.2)

where

Z(t) =
m∑

k=1

∫ t

0

√
βkξk(s−)g′k(s, ξ(s−))dBk(s)

+
m∑

k=1

∫ t

0

∫
D◦

∫ ξk(s−)

0

Δzg(s, ξ(s−))Ñk(ds, dz, du).

Since t �→ J(t, λ) solves (1.7), one can use (4.1) to see

g′0(s, x) = −
m∑

i=1

xi〈αi,∇g(s, x)〉 − 1
2

m∑
k=1

βkxkg′′kk(s, x)

−
m∑

k=1

xk

∫
D◦

[Δzg(s, x) − zkg′k(s, x)1D1(z)]πk(dz),

From (4.2) it follows that

e〈J(u−t,λ),ξ(t)〉 = e〈J(u,λ),x〉 + Z(t). (4.3)

Then {Z(t) : 0 ≤ t ≤ u} is a bounded martingale. (Here we cannot apply Theorem 3.1 directly
since g /∈ C1,2

0 ([0, u]×D).) By taking the expectations in both sides of (4.3) for t = u we obtain
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E[e〈λ,ξ(u)〉] = e〈J(u,λ),x〉. Then J(u, λ) = K(u, λ) by (1.2) and Corollary 3.3. This shows the
implication “(iii)⇒(i)”. �

It would be interesting to have an analytic proof of the assertion of Rhyzhov and Skorokhod
[25, p. 706].

Conflict of Interest Zeng Hu LI is an editorial board member for Acta Mathematica Sinica
English Series and was not involved in the editorial review or the decision to publish this article.
All authors declare that there are no competing interests.

Acknowledgements We would like to thank the two anonymous referees for their valuable
comments and suggestions, which have led to a number of improvements in the presentation of
the work.

References
[1] Athreya, K. B., Ney, P. E.: Branching Processes, Springer, Berlin (1972)

[2] Barczy, M., Li, Z., Pap, G.: Stochastic differential equation with jumps for multi-type continuous state

and continuous time branching processes with immigration. ALEA Lat. Am. J. Probab. Math. Stat., 12(1),

129–169 (2015)

[3] Bernis, G., Brignone, R., Scotti, S. et al.: A Gamma Ornstein–Uhlenbeck model driven by a Hawkes

process. Math. Financ. Econ., 15, 747–773 (2021)

[4] Bertoin, J., Le Gall, J.-F.: The Bolthausen–Sznitman coalescent and the genealogy of continuous-state

branching processes. Probab. Theory Related Fields, 117, 249–266 (2000)

[5] Bertoin, J., Le Gall, J.-F.: Stochastic flows associated to coalescent processes III: Limit theorems. Illinois

J. Math., 50, 147–181 (2006)

[6] Bracci, F., Contreras, M. D., Dı́az-Madrigal, S.: Continuous Semigroups of Holomorphic Functions in the

Unit Disc, Springer, Switzerland, 2020

[7] Dawson, D. A.: Measure-valued Markov processes. In: Ecole d’Eté de Probabilités de Saint-Flour, XXI-
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