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Abstract Let An ∈ M2(Z) be integral matrices such that the infinite convolution of Dirac measures

with equal weights

μ{An,n≥1} := δ
A−1

1 D ∗ δ
A−1

1 A−2
2 D ∗ · · ·

is a probability measure with compact support, where D = {(0, 0)t, (1, 0)t, (0, 1)t} is the Sierpinski digit.

We prove that there exists a set Λ ⊂ R
2 such that the family {e2πi〈λ,x〉 : λ ∈ Λ} is an orthonormal

basis of L2(μ{An,n≥1}) if and only if 1
3
(1,−1)An ∈ Z

2 for n ≥ 2 under some metric conditions on An.
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1 Introduction

Let μ be a Borel probability measure with compact support in plane. To study the Hilbert
space L2(μ), it is natural to investigate the Fourier analysis on it. For this aim, people consider
the family of exponential functions decided by a set Λ ⊂ R

2 as follows

EΛ = {e−2πi〈x,λ〉 : x ∈ R
2, λ ∈ Λ}, (1.1)

where 〈x, λ〉 is the standard inner product in R
2. If EΛ is an orthonormal basis of L2(μ), like

EZ in L2[0, 1], μ is called a spectral measure with a spectrum Λ, also (μ, Λ) is called a spectral
pair.

It is known that μ is of pure type if it is a spectral measure, that is, μ is either a discrete
measure with finite support, absolutely continuous or singularly continuous measure with re-
spect to the Lebesgue’s one (see [25]). Surprisingly, there are many differences between the
absolutely continuous spectral measure and the singularly continuous one. For example, there
are uncountable spectra Λ with 0 ∈ Λ for all known singularly spectral measures (see [9, 13]
for example), but only finite many spectra Λ with 0 ∈ Λ for all known absolutely continuous
spectral measures in one dimension (see [27] for example).

The first singularly spectral measure was found by Jorgensen and Pedersen in 1998 ([26]).
They proved that the one forth Cantor measure μ4, which satisfies

μ4(E) =
1
2
μ4(4E) +

1
2
μ4(4E − 2), for all Borel set E ⊂ R

and is supported on the compact set T = {∑∞
k=1 dk4−k : all dk ∈ {0, 2}}, is a spectral measure

with a spectrum

Λ4 = {0, 1} + 4{0, 1} + 42{0, 1} + · · · , (1.2)

where all sums are finite. The measure μ4 has many surprising properties. For example, there
are infinitely many natural numbers k such that, for the Λ4 given in (1.2), kΛ4 is a spectrum
of μ4 (e.g. [15]). The mock Fourier expansion of any continuous function f for the basis EΛ4 of
L2(μ4) is uniformly convergence ([34]); however, there exists a continuous function whose mock
Fourier expansion for the basis E17Λ4 of L2(μ4) is divergent at 0 ([16]).

From 1998 on, there is a lot of study on the spectrality of self-similar and self-affine measures,
and many singular properties have been found (see [2, 6, 7, 10–12, 14, 15, 17, 19, 24, 33] and the
references therein). The theory of singularly spectral measures mainly includes the sufficiency
and the necessity of spectrality. The study also related with tilling (see [28] for example) and
wavelet (see [21] for example).

Recently, the spectrality of a class of more complicated probability measures receives special
interest. That is the so called “Moran self-affine measures”, “infinite convolutions” or “tower
measure” by Strichartz [34] (see Definition 1.1). Many important results have been proven (see
[1–5, 20, 23, 34] and the references therein). Among these results, most of them associate the
one dimensional case. In higher dimensional cases, an important work is due to Dutkay and
Lai [20]. For Moran self-affine measures generated by random convolutions of finite atomic
measures satisfying Hadamard triples, where the digits are chosen from a finite collections of
digit sets, the authors showed that in dimension one, or in higher dimensions under certain
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conditions, “almost all” such measures are spectral measures, but, the Hadamard triples do not
guarantee the spectrality of Moran self-affine measures in general cases (see [5]).

All the known results either give sufficient conditions or necessary conditions for some class
of Moran self-affine measures to be spectral. Even for the self-affine measures, there are few
characteristic conditions obtained for them to be spectral measures (only for the Sierpinski
Measures by several authors, which is a special case of the main result in this paper). In this
paper we study the Moran–Sierpinski Measures (see its definition below) and obtain a necessary
and sufficient condition for them to be spectral.

Definition 1.1 Let {An}∞n=1 ⊂ Md(R) be a sequence of nonsingular d × d matrices with real
entries and let {Dn}∞n=1 be a sequence of finite sets in R

d (digit sets). Assume T (An,Dn) :=
∑∞

n=1 A−1
1 A−1

2 · · ·A−1
n Dn is a compact set of R

d. Then the sequence of discrete measures,
generated by convolutions as follows,

μn = δA−1
1 D1

∗ δA−1
1 A−1

2 D2
∗ · · · ∗ μA−1

1 A−1
2 ···A−1

n Dn
, n ≥ 1, (1.3)

converges in weak sense to a Borel probability measure with compact support T (An,Dn), where
δE = 1

#E

∑
a∈E δa, #E is the cardinality of E and δa is the Dirac measure at the point a ∈ R

d.
We denote the above limit measure by

μ{An,Dn} = δA−1
1 D1

∗ δA−1
1 A−2

2 D2
∗ · · · , (1.4)

which is called a Moran self-affine measure. In particular μ{An,Dn} is called a self-affine measure
and denoted by μA,D if all An = A and Dn = D.

Remark By letting {Xn}n be a sequence of independent random variables such that Xn is
uniformly distributed on Dn for all n ≥ 1, it is easy to show that the sequence of measures
{μn}n defined in (1.3) converges in weak sense to a Borel probability measure with a compact
support if and only if the set T (An,Dn) is a bounded compact set.

To study the spectrality of μ{An,Dn} in higher dimensions, up to now there has not been a
characteristic criterion for μ{An,Dn} to be a spectral measure in general except for some special
self-affine measures. In this paper we study the spectrality of μ{An,Dn} by assuming that all
digit sets Dn are equal to the Sierpinski digit set and obtain a necessary condition and several
easy-to-check sufficient conditions for it to be a spectral measure.

The Sierpinski digit set is defined by

D =

⎧
⎨

⎩

⎛

⎝
0

0

⎞

⎠ ,

⎛

⎝
1

0

⎞

⎠ ,

⎛

⎝
0

1

⎞

⎠

⎫
⎬

⎭
:= {0, e1, e2}. (1.5)

And associated to it we will use the set

C =

⎧
⎨

⎩

⎛

⎝
0

0

⎞

⎠ ,

⎛

⎝
1

−1

⎞

⎠ ,

⎛

⎝
−1

1

⎞

⎠

⎫
⎬

⎭
:= {0, e,−e}. (1.6)

In the sequel, D and C mean the above two subsets, respectively, except some mentioned cases.
We always use e denote the vector (1,−1)t as in (1.6).

The Moran measure μ{An,Dn} is called a Moran–Sierpinski Measure if all Dn are the Sier-
pinski digit set D given by (1.5). For simplicity of notations we denote it by μ{An,n≥1}. Note
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that the compact support of μ{An,n≥1} is the set
∑∞

n=1 A−1
1 A−1

2 · · ·A−1
n D, which in general is

a fractal set and so the measure μ{An,n≥1} is singular in general.

What we are interested in this paper is the following question:

Question 1 What is the necessary and sufficient condition for the Moran–Sierpinski Measure
μ{An,n≥1} to be spectral?

Recall that, as a special case of μ{An,n≥1}, the so called Sierpinski measure μA,D satisfies
the self-affine property, that is,

μA,D(E) =
1

#D
∑

d∈D
μA,D(φ−1

d (E)), for any Borel set E ⊂ R
2,

where A ∈ M2(Z) is an expansive matrix (all its eigenvalues are larger than one in modulus)
and φd(x) = A−1(x + d) with D being defined by (1.5).

The Sierpinski measure attracted the most attention in the study of spectrality of self-
affine measures (two dimension case). Early in 1998, Jorgensen and Pedersen ([26]) showed
that the canonical Hausdorff measure on the Sierpinski gasket is not a spectral measure, but
such measure on the Sierpinski tower is a spectral measure on R

3. Later, in 2007, Dutkay
and Jorgensen ([22]) proved a sufficient condition for the self-similar measure μρ,D on R

n to be
spectral, that for ρ ∈ (n+1)N, μρ,Dn

admits some canonical spectra, where Dn = {0, e1, . . . , en}
consisting of the zero vector and the standard basis of R

n.

Assuming A ∈ M2(Z) to be an expansive matrix, Li ([29–32]) and An et al. ([2]) proved
that μA,D is a spectral measure if and only if 1

3 (1,−1)A is an integral row vector.

Assuming A = diag(ρ−1, ρ−1) with 0 < |ρ| < 1 being any real number, Deng and Lau ([14])
proved that μA,D is a spectral measure if and only if ρ−1 belongs to 3Z \ {0}. Furthermore,
assuming A = diag(b1, b2) to be a general real diagonal expansive matrix, Dai, Fu and Yan ([8])
showed that μA,D is a spectral measure if and only if b1, b2 ∈ 3Z \ {0}.

Clearly, the Moran–Sierpinski Measure μ{An,n≥1} is not the case at all. For the spectrality
of the Moran–Sierpinski Measure μ{An,n≥1}, Wang and Dong ([35]) considered the case that all
An are diagonal matrices and obtained some sufficient condition. Then Zhang ([36]) extended
these results to some more general cases.

To answer the above question, the first key problem is the necessity part. In general, it is a
difficult problem to give the necessary conditions for the spectrality and few results have been
obtained up to now. Here we find the necessary condition for the Moran–Sierpinski Measure
μ{An,n≥1} and develop a new method to prove it. The idea is, after assuming there exists a
spectrum Λ, to divide the assumed Λ into several parts and use a property of weighted sums to
obtain a proof (The details are given in Sections 2–3). Then we obtain the necessary condition
of Question 1 completely.

Theorem 1.2 Let {An}∞n=1 ⊂ M2(Z) be a sequence of expasive matrices such that T (An,Dn)
:=

∑∞
n=1 A−1

1 A−1
2 · · ·A−1

n Dn is a compact set of R
d. If μ{An,n≥1} is a spectral measure, then

1
3 (1,−1)An ∈ Z

2 for n ≥ 2.

Clearly, the condition 1
3 (1,−1)An ∈ Z

2 is equivalent to that there exist A′
n ∈ M2(Z) and
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kn, ln ∈ {−1, 0, 1} such that

An = 3A′
n +

⎛

⎝
kn ln

kn ln

⎞

⎠ , for each n ≥ 2.

For the sufficiency part of Question 1, we need to use the Euclidean norm ‖ · ‖ and some
non Euclidean norm ‖ · ‖′ on R

2 and the following notion: For η, δ ∈ (0, 1
4 ), write

Bη,δ :=
{

B ∈ M2(Z) : B−1

[

− 1
2
− η,

1
2

+ η

]2

∩
(

± 1
3
e + Z

2

)

δ

= ∅
}

, (1.7)

where [a, b]2 = {(x, y)t : x, y ∈ [a, b]} for any a ≤ b and Eδ = {x : supy∈E ‖x − y‖ < δ} is the
δ-neighborhood of E under the Euclidean norm ‖ · ‖. Then we obtain the following result.

Theorem 1.3 Let An ∈ Md(Z) for n ≥ 1. Suppose

lim sup
n→∞

‖A−1
n ‖′ ≤ r < 1

for some norm ‖ · ‖′ on R
2 and there exist two positive numbers η and δ such that

BnBn+1 · · ·Bn+p ∈ Bη,δ (1.8)

for all p ≥ 0 and sufficient large n, where Bn = At
n is the transpose of An for n ≥ 1. Then

μ{An,n≥1} is a spectral measure if and only if 1
3 (1,−1)An ∈ Z

2 for n ≥ 2.

Remark The assumption lim supn→∞ ‖A−1
n ‖′ ≤ r < 1 guarantees that μ{An,n≥1} is a Borel

probablity measure and

lim
p→∞ B−1

n B−1
n+1 · · ·B−1

n+p = 0, uniformly for n ≥ N .

Then (1.8) holds for n ≥ N and sufficient large p. The key point of the assumption (1.8) is the
arbitrariness of p ≥ 0.

The following corollaries are the main results of this paper.

Corollary 1.4 Let An ∈ M2(Z) for n ≥ 1. Suppose all A−1
n are contractive with a common

ratio r < 2
3 under the Euclidean norm ‖ · ‖ on R

2. Then μ{An,n≥1} is a spectral measure if and
only if 1

3 (1,−1)An ∈ Z
2 for n ≥ 2.

Corollary 1.5 Suppose all A−1
n are contractive under a norm ‖ · ‖′ on R

2 and supn≥1 ‖An‖′ <

∞. Then μ{An,n≥1} is a spectral measure if and only if 1
3 (1,−1)An ∈ Z

2 for n ≥ 2.

Corollary 1.6 Let

An =

⎛

⎝
pn 0

0 qn

⎞

⎠

be an integer expanding matrix for n ≥ 1. Then μ{An,n≥1} is a spectral measure if and only if
3 | pn and 3 | qn for n ≥ 2.

To prove Theorem 1.3, one may consider

Λ =
1
3
B1C +

1
3
B1B2C +

1
3
B1B2B3C + · · · , all finite sums, (1.9)

where Bn = At
n for all n ≥ 1 and C is given by (1.6). It is easy to show that the associated

family EΛ is an orthogonal family of L2(μAn,n≥1). The difficult part is the complete property
of EΛ in L2(μAn,n≥1). But, unfortunately, we do not know how to prove it.
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Up to now, there are four ways to show the complete property of an orthogonal family of
exponentials for L2(μ), where μ is a probability measure with compact support:

(1) Jorgensen and Pedensen ([26]) used the function space and fixed point theorem;
(2) Strichartz ([34]) used approximation by μn given in (1.3) and the Lebesgue dominated

convergence theorem;
(3) Dai et al. ([6, 9, 10] etc.) used the recurrent ideas.
(4) Dutkay et al. ([18]) used the frame theory to prove the complete property.
However, following those ideas, we could not prove the complete property. Thus the follow-

ing question arises:

Question 2 Is the Λ given by (1.9) a spectrum of the Moran–Sierpinski Measure μ{An,n≥1}?
If r is small enough, it is not difficult to answer Question 2 by following the known methods,

and so the sufficiency of Theorem 1.3 holds. In our general case, motivated by the ideas of the
above (2), (3), (4) and using some new ideas, we prove the sufficiency of Theorem 1.3 by
constructing a “non standard” spectral set candidate (see (4.9)) and the detailed proof is given
in Section 4.

At the end of this section we guess

Conjecture 1.7 Let An ∈ M2(Z) be such that μ{An,n≥1} is a Borel probability measure with
a compact support. Then μ{An,n≥1} is a spectral measure if and only if 1

3 (1,−1)An ∈ Z
2 for

n ≥ 2.

2 Preliminaries

Let μ be a Borel probability measure with compact support in R
2. The Fourier transform of μ

is defined by

μ̂(ξ) := F(μ)(ξ) :=
∫

e2πi〈ξ,x〉dμ(x), ξ ∈ R
2.

Then for any nonsingular 2 × 2-matrix A ∈ M2(R)

F(μ ◦ A)(ξ) = F(μ)(B−1ξ),

where μ ◦ A(E) = μ(AE) for E ⊂ R
2 and B = At, the transpose matrix of A. The following

criterion is the main idea to judge whether a probability measure μ with compact support is a
spectral one or not, which comes from Plancherel identity and Stone–Weierstrass theorem.

Theorem 2.1 ([26]) Let μ be a Borel probability measure with compact support and Λ ⊂ R
2.

Then the following statements hold:
(i) Λ is an orthogonal set of μ if and only if

Qμ,Λ(ξ) :=
∑

λ∈Λ

|μ̂(ξ + λ)|2 ≤ 1, for ξ ∈ R
2;

(ii) Λ is a spectrum of μ if and only if Qμ,Λ(ξ) = 1 for all ξ ∈ R
2.

We will use the following lemma which is easy to be proven (see [9, Lemma 2.2] for its
proof).

Lemma 2.2 Let μ = ν ∗ w be the convolution of the two measures ν, w in R
2 with compact

support. If ν is not a Dirac measure and Λ is an orthogonal set of w, then Λ is an orthogonal
set of μ but not a spectrum of it.
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The following lemma was given in several papers, e.g. [13] and the reference therein. Let A

be an expanding matrix with entries in Z and let S,M ⊂ Z
2 be two digit sets with the same

cardinality. We say that (A−1S,M) is an integral compatible pair if the matrix

[e2πi〈A−1s,m〉]s∈S,m∈M

is unitary. In this case, the pair (A,S) is said admissible and the triple (A,S,M) is said a
Hadamard triple. The following conclusions are well known.

Lemma 2.3 Let (A−1S,M) be an integral compatible pair. Then the following statements
hold.

(i) (A−1(S + d),M + c) is also an integral compatible pair for d, c ∈ Z
2;

(ii) (A−nSn,Mn) is an integral compatible pair for n ≥ 1, where Sn = S+AS+ · · ·+An−1S
and Mn = M + AtM + · · · + (At)n−1M;

(iii) All elements in S (resp., M) are in different coset of the group Z
2/AZ

2 (resp., Z
2/At

Z
2);

(iv) (A−1S̃,M̃) is an integral compatible pair for S̃ ≡ S (mod A) and M̃ ≡ M (mod At).

Denote the mask of S by mS(ξ), i.e.,

mS(ξ) =
1

#S
∑

s∈S
e2πi〈s,ξ〉, ξ ∈ R

2. (2.1)

It is easy to check the following known facts.

Lemma 2.4 Let A ∈ M2(Z) be an expanding matrix with integral entries and S,M ⊂ Z
2

with the same cardinality. Then the following statements are equivalent:
(i) (A−1S,M) is an integral compatible pair;
(ii) mS((At)−1(m1 − m2)) = 0 for any m1 �= m2 ∈ M;
(iii) (δA−1S ,M) is a spectral pair, i.e.,

∑

m∈M
|δ̂A−1S(ξ + m)|2 =

∑

m∈M
|mS((At)−1(ξ + m))|2 ≡ 1, ∀ξ ∈ R

2.

We extend some of the above results so that they suit for our setting.

Lemma 2.5 Suppose that all (A−1
n Sn,Mn) are integral compatible pairs for n ≥ 1. Then

((AnAn−1 · · ·A1)−1S̃n,M̃n) is an integral compatible pair for each n ≥ 1, where

S̃n = Sn + AnSn−1 + · · · + AnAn−1 · · ·A2S1,

M̃n = M1 + B1M2 + · · · + B1B2 · · ·Bn−1Mn,

where Bn = At
n for n ≥ 1.

Proof Write

μn = δA−1
1 S1

∗ δA−1
1 A−1

2 S2
∗ · · · δA−1

1 A−1
2 ···A−1

n Sn
= δ

(AnAn−1···A1)−1S̃n
.

Then we have

μ̂n(ξ) =
n∏

k=1

mSk
(B−1

k B−1
k−1 · · ·B−1

1 ξ).

According to (iii) in Lemma 2.3, it is easy to show that #S̃n = #M̃n. For any two different
elements c = c1 + B1c2 + · · ·+ B1B2 · · ·Bn−1cn, c′ = c′1 + B1c

′
2 + · · ·+ B1B2 · · ·Bn−1c

′
n ∈ M̃n,
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where ck, c′k ∈ Mk for 1 ≤ k ≤ n, let s be the integer such that ck = c′k for 1 ≤ k < s and
cs �= c′s. Then

c − c′ = B1B2 · · ·Bs−1(cs − c′s + Bsw)

for some w ∈ Z
2. Consequently,

mSs
(B−1

s B−1
s−1 · · ·B−1

1 (c − c′)) = mSs
(B−1

s (cs − c′s) + w) = mSs
(B−1

s (cs − c′s)) = 0.

Hence μ̂n(c − c′) = 0. And the assertion holds by Lemma 2.4 (ii). �
In this paper we always write

m(ξ) =
1
3

∑

d∈D
e2πi〈ξ,d〉 =

1
3

+
1
3

e2πiξ1 +
1
3

e2πiξ2 . (2.2)

Then

μ̂{An,n≥1} =
∞∏

k=1

δ̂A−1
1 A−1

2 ···A−1
k D(ξ) =

∞∏

k=1

m(B−1
k B−1

k−1 · · ·B−1
1 ξ), (2.3)

when μ{An,n≥1} has compact support, where Bk = At
k is the transpose of Ak for k ≥ 1.

Denote the zero set of a function f by �L(f), i.e.,

�L(f) = {x ∈ R
2, f(x) = 0}.

In the following part of this section, we assume T (An,Dn) :=
∑∞

n=1 A−1
1 A−1

2 · · ·A−1
n Dn is a

compact set of R
d (this means μ{An,n≥1} has compact support). By an elementary induction,

we get

�L(m) =
1
3
{±e + 3Z

2
}

,

where

e =

⎛

⎝
1

−1

⎞

⎠ .

Thus, by (2.3) we have

�L(μ̂{An,n≥1}) =
∞⋃

k=1

�L(δ̂A−1
1 A−1

2 ···A−1
k D) =

∞⋃

k=1

�L(δ̂D ◦ B−1
k B−1

k−1 · · ·B−1
1 )

=
∞⋃

k=1

1
3
B1B2B3 · · ·Bk(±e + 3Z

2). (2.4)

Similar to the notation μ{An,n≥1}, we write

μ{An,n≥2} = δA−1
2 D ∗ δA−1

2 A−1
3 D ∗ · · · ∗ μA−1

2 ···A−1
n D ∗ · · · (2.5)

and

μ{M,An,n≥2} = δM−1D ∗ δM−1A−1
2 D ∗ · · · ∗ μM−1A−1

2 ···A−1
n D ∗ · · · , (2.6)

i.e., the measure with A1 replaced by a nonsingular matrix M .

Lemma 2.6 Let M ∈ M2(Z) be nonsingular and let μ{M,An,n≥2} be the measure defined in
(2.6). Then

μ{An,n≥1} = μ{M,An,n≥2} ◦ (M−1A1)

and (μ{An,n≥1}, Λ) is a spectral pair if and only if (μ{M,An,n≥2}, M tB−1
1 Λ) is a spectral pair.
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Proof According to the uniqueness of Fourier transform, it is sufficient to show that

F(μ{M,An,n≥2} ◦ (M−1A1))(ξ) = μ̂{An,n≥1}(ξ)

for the first assertion. In fact, by the definition and Theorem 2.1, one has that

F(μ{M,An,n≥2} ◦ (M−1A1))(ξ) = F(μ{M,An,n≥2})(M tB−1
1 ξ)

= m((M t)−1M tB−1
1 ξ)

∞∏

k=2

m(B−1
k B−1

k−1 · · ·B−1
2 (M t)−1M tB−1

1 ξ)

=
∞∏

k=1

m(B−1
k B−1

k−1 · · ·B−1
2 B−1

1 ξ)

= μ̂{An,n≥1}(ξ).

To prove the second assertion, we have for ξ ∈ R
2,

Qμ{An,n≥1},Λ(ξ) =
∑

λ∈Λ

|μ̂{An,n≥1}(ξ + λ)|2

=
∑

λ∈Λ

|μ̂{M,An,n≥2}(M tB−1
1 (ξ + λ))|2

=
∑

λ∈Λ

|μ̂{M,An,n≥2}(M tB−1
1 ξ + M tB−1

1 λ)|2

= Qμ{M,An,n≥2},MtB−1
1 Λ(M tB−1

1 ξ).

Then the second assertion follows by Theorem 2.1. �
Lemma 2.7 Let pi,j be positive numbers such that

∑n
j=1 pi,j = 1 and let qi,j be nonnegative

numbers such that
∑n

i=1 max1≤j≤n qi,j ≤ 1. Then
∑n

i=1

∑n
j=1 pi,jqi,j = 1 if and only if qi,j = qi

for 1 ≤ i, j ≤ n and
∑n

i=1 qi = 1.

Proof Since

1 −
n∑

i=1

n∑

j=1

pi,jqi,j

can be rewritten as
[

1 −
n∑

i=1

max
1≤j≤n

qi,j

]

+
n∑

i=1

n∑

j=1

pi,j

[
max

1≤j≤n
qi,j − qi,j

]
,

By the assumptions, each term in middle brackets are nonnegative. Then the conclusion fol-
lows. �

3 Proof of Theorem 1.2

In this section, we always assume that An ∈ M2(Z) is a sequence of expansive matrices such
that T (An,Dn) :=

∑∞
n=1 A−1

1 A−1
2 · · ·A−1

n Dn is a compact set of R
d. According to Lemma 2.6,

without loss of generality, we can assume A1 = diag(3, 3). Then (2.4) shows that �L(μ̂{An,n≥1}) ⊆
Z

2.
For simple notations we write

μ = μ{diag[3,3],An,n≥2} and ν = μ{An,n≥2}, (3.1)
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where diag[3, 3] = ( 3 0
0 3 ). Then

μ = δ 1
3D ∗ (ν ◦ 3) and μ̂(ξ) = m

(
ξ

3

)

ν̂

(
ξ

3

)

. (3.2)

And by (2.3), one has that

�L(μ̂) =
(±e + 3Z

2
) ∪

∞⋃

k=2

B2B3 · · ·Bk

(±e + 3Z
2
) ⊂ Z

2. (3.3)

Let

∇ =

⎧
⎨

⎩

⎛

⎝
i

j

⎞

⎠ : i, j ∈ {−1, 0, 1}
⎫
⎬

⎭
. (3.4)

It is clear that ∇ is the complete residue system mod diag[3, 3]. Then, for any w ∈ Z
2, there

exists ck ∈ ∇ for k ≥ 1 and ck = 0 for sufficient large k such that

w =
∞∑

k=1

3k−1ck, (3.5)

and the expression is unique.
Let Λ be a spectrum of μ with 0 ∈ Λ. Then Λ ⊂ Z

2 by Λ − Λ ⊂ {0} ∪ �L(μ̂) and (3.3). For
λ ∈ Λ, by (3.5) there exists a unique γ ∈ ∇ such that λ = γ + 3w for some w ∈ Z

2. Define

Λγ = {w ∈ Z
2 : γ + 3w ∈ Λ}. (3.6)

Thus we have the following decomposition

Λ =
⋃

γ∈∇
(γ + 3Λγ), (3.7)

where γ + 3Λγ = ∅ if Λγ = ∅. Moreover, the union is disjoint. Since 0 ∈ Λ, it is clear

Λ0 �= ∅. (3.8)

Lemma 3.1 Let Λ be a spectrum of μ with 0 ∈ Λ. Then Λγ is either an empty set or
orthogonal set of ν for each γ ∈ ∇.

Proof Suppose that Λγ is a nonempty set (γ ∈ ∇) and λ �= β ∈ Λγ . Then γ + 3λ, γ + 3β ∈ Λ.
This leads to

0 = μ̂(3(λ − β)) = m(λ − β)ν̂(λ − β) = ν̂(λ − β),

which is equivalent to that Λγ is an orthogonal set of ν. �
Write

C0 = {0, e,−e},

C1 =

⎧
⎨

⎩

⎛

⎝
1

0

⎞

⎠ ,

⎛

⎝
−1

−1

⎞

⎠ ,

⎛

⎝
0

1

⎞

⎠

⎫
⎬

⎭

C−1 =

⎧
⎨

⎩

⎛

⎝
−1

0

⎞

⎠ ,

⎛

⎝
0

−1

⎞

⎠ ,

⎛

⎝
1

1

⎞

⎠

⎫
⎬

⎭
.
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It is easy to check the following further decomposition

Λ =
⋃

γ∈∇
(γ + 3Λγ) =

⋃

i∈{−1,0,1}

⋃

c∈Ci

(c + 3Λc) . (3.9)

Since

C1 ≡ C0 +

⎛

⎝
1

0

⎞

⎠

⎛

⎝ mod

⎛

⎝
3 0

0 3

⎞

⎠

⎞

⎠

and

C−1 ≡ C0 +

⎛

⎝
−1

0

⎞

⎠

⎛

⎝ mod

⎛

⎝
3 0

0 3

⎞

⎠

⎞

⎠ ,

from Lemma 2.3 (i) it follows that (A−1D, 1
3AtCi) are compatible pairs for any nonsingular

matrix A and i ∈ {−1, 0, 1}.

Lemma 3.2 Let Λ be a spectrum of μ with 0 ∈ Λ. Then, for any ci ∈ Ci, i = −1, 0, 1,

Λc−1,c0,c1 :=
⋃

i∈{−1,0,1}

(
ci

3
+ Λci

)

is either an empty set or an orthogonal set of ν. When it is an orthogonal set of ν, we have

∑

i∈{−1,0,1}

∑

λ∈Λci

∣
∣
∣
∣ν̂

(

ξ +
ci

3
+ λ

)∣
∣
∣
∣

2

≤ 1, for ξ ∈ R
2,

where the term
∑

λ∈Λci
|ν̂(ξ + ci

3 + λ)|2 is equal to 0 if Λci
= ∅ for some i ∈ {−1, 0, 1}.

Proof By Lemma 3.1, it is sufficient to prove that, for α ∈ Λc0 and β ∈ Λc1 , one has that

ν̂

(
c0

3
+ α − c1

3
− β

)

= 0.

In fact, by (3.9) and (3.2) one has that

0 = μ̂(c0 + 3α − c1 − 3β) = m

(
c0

3
+ α − c1

3
− β

)

ν̂

(
c0

3
+ α − c1

3
− β

)

= m

(
c0

3
− c1

3

)

ν̂

(
c0

3
+ α − c1

3
− β

)

.

From the definition of C0 and C1, it follows that c0
3 − c1

3 /∈ �L(m), which implies m( c0
3 − c1

3 ) �= 0.
We obtain the desired result. �

The following lemma is the rewrite of Lemma 2.7.

Lemma 3.3 Let C−1, C0, C1 be defined as above. Assume all pc are positive numbers such that
∑

c∈Ci
pc =1 for i ∈ {−1, 0, 1} and all qc are nonnegative numbers such that

∑
i∈{−1,0,1} maxc∈Ci

{qc} ≤ 1. Then
∑

i∈{−1,0,1}
∑

c∈Ci
pcqc = 1 if and only if all qc are equal for c ∈ Ci (i ∈

{−1, 0, 1}), and
∑3

i=1 qci
= 1 for any choice of ci ∈ Ci.

Lemma 3.4 Let Λ be a spectrum of μ with 0 ∈ Λ. Then, for any choosing ci ∈ Ci for
i = −1, 0, 1, the set Λc−1,c0,c1 is a spectrum of ν.
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Proof By Theorem 2.1, one has for any ξ ∈ R
2,

1 ≡
∑

λ∈Λ

|μ̂(ξ + λ)|2 =
∑

γ∈∇

∑

λ∈Λγ

|μ̂(ξ + γ + 3λ)|2 by (3.9)

=
∑

γ∈∇

∑

λ∈Λγ

∣
∣
∣
∣m

(
ξ + γ

3
+ λ

)∣
∣
∣
∣

2∣∣
∣
∣ν̂

(
ξ + γ

3
+ λ

)∣
∣
∣
∣

2

by (3.2)

=
∑

γ∈∇

∣
∣
∣
∣m

(
ξ + γ

3

)∣
∣
∣
∣

2 ∑

λ∈Λγ

∣
∣
∣
∣ν̂

(
ξ + γ

3
+ λ

)∣
∣
∣
∣

2

=
∑

i∈{−1,0,1}

∑

ci∈Ci

∣
∣
∣
∣m

(
ξ + ci

3

)∣
∣
∣
∣

2 ∑

λ∈Λci

∣
∣
∣
∣ν̂

(
ξ + ci

3
+ λ

)∣
∣
∣
∣

2

.

Choose ξ with irrational entries. Write

pc =
∣
∣
∣
∣m(

ξ + c

3
)
∣
∣
∣
∣

2

, qc =
∑

λ∈Λc

∣
∣
∣
∣ν̂(

ξ + c

3
+ λ)

∣
∣
∣
∣

2

, c ∈ ∇.

Then
∑

i∈{−1,0,1}
∑

c∈Ci
pcqc = 1 and all pci

> 0. By Theorem 2.1 (i) and Lemma 3.2, one has
∑

i∈{−1,0,1}
max
c∈Ci

qc ≤ 1.

Since (D, 1
3Ci) is a compatible pair for i ∈ {−1, 0, 1}, from Lemma 2.4 it follows

∑
ci∈Ci

pci
= 1.

Then, according to Lemma 3.3, we have qc = max{qx : x ∈ Ci} := qi for any c ∈ Ci (i ∈
{−1, 0, 1}), and

1 =
∑

i∈{−1,0,1}
qi =

∑

i∈{−1,0,1}

∑

λ∈Λci

∣
∣
∣
∣ν̂

(
ξ + ci

3
+ λ

)∣
∣
∣
∣

2

=
∑

λ∈Λc−1,c0,c1

∣
∣
∣
∣ν̂

(
ξ

3
+ λ

)∣
∣
∣
∣

2

.

Hence Λc−1,c0,c1 is a spectrum of ν by Theorem 2.1 (ii). �
Corollary 3.5 Let Λ be a spectrum of μ with 0 ∈ Λ. Then there exist z+ and z− ∈ Z

2 such
that both e + 3z+ and −e + 3z− lie in Λ.

Proof According to Lemma 3.4 and its proof, one has that q0 = qe = q−e. By q0 > 0 (because
(3.8)), it is clear that both Λe and Λ−e are nonempty. The assertion follows by (3.9). �

Now we are in the place to prove Theorem 1.2. For convenience of readers, we rewrite
Theorem 1.2 as

Theorem 3.6 Let An ∈ M2(Z) be a sequence of expansive matrices. Assume T (An,Dn)
:=

∑∞
n=1 A−1

1 A−1
2 · · ·A−1

n Dn is a compact set of R
d. If μ{An,n≥1} is a spectral measure, then

1
3 (1,−1)An ∈ Z

2 for n ≥ 2.

Proof According to Lemma 2.6, without loss of generality, we can assume A1 = diag(3, 3).
Assume that μ has a spectrum Λ with 0 ∈ Λ, then (2.4) shows that Λ ⊆ {0}∪�L(μ̂{An,n≥1}) ⊂ Z

2.
Choose c0 = 0 ∈ C0, c−1 = (−1, 0)t ∈ C−1 and c1 = (1, 1)t ∈ C1. From Lemma 3.4, it

follows that 0 ∈ Λc−1,c0,c1 is a spectrum of ν = μ{An,n≥2}. Then, we have 3B−1
2 Λc−1,c0,c1 is

a spectrum of μ{diag[3,3],An,n≥3} by Lemma 2.6 again. According to Corollary 3.5, there exist
z+, z− ∈ Z

2 such that
1
3
B2e + B2z+,−1

3
B2e + B2z− ∈ Λc−1,c0,c1 . (3.10)
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Suppose that 1
3B2e is not in Z

2. Recall that

Λc−1,c0,c1 = Λ0 ∪
(

1
3
c1 + Λc1

)

∪
(

1
3
c−1 + Λc−1

)

and all Λγ ⊂ Z
2 for γ ∈ ∇. Then 1

3B2e �∈ Λ0.
If both 1

3B2e + B2z+ and − 1
3B2e + B2z− belong to the same set in the union of Λc−1,c0,c1 ,

then ±1
3B2e − 1

3c1 ∈ Z
2 or ±1

3B2e − 1
3c−1 ∈ Z

2. Consequently, −2
3c1 ∈ Z

2 or −2
3c−1 ∈ Z

2,
which is impossible.

If not, without loss of generality we assume that 1
3B2e + B2z+ ∈ 1

3c1 + Λc1 and − 1
3B2e +

B2z− ∈ 1
3c−1 + Λc−1 . Then 1

3B2e − 1
3c1 ∈ Z

2 and −1
3B2e − 1

3c−1 ∈ Z
2. This implies that

− 1
3 (c1 + c−1) ∈ Z

2, which contradicts the known fact −1
3 (c1 + c−1) = (0,−1

3 )t. Hence, 1
3B2e

lies in Z
2, that is, 1

3 (1,−1)A2 ∈ Z
2.

If one replaces μ{An,n≥1} by ν in the above argument. Then one obtains that 1
3 (1,−1)A3 ∈

Z
2. Hence the assertion follows by induction. �

4 Proof of Theorem 1.3

The necessity of Theorem 1.3 follows from Theorem 1.2. In this section we prove the sufficiency
of Theorem 1.3. We rewrite it as the following statement. In the sequel, we write C = C0 =
{0, e, −e} for simplicity.

Theorem 4.1 Let {An}∞n=1 be a sequence of nonsingular matrices in M2(Z) satisfying that
‖A−1

n ‖′ ≤ r < 1 for n ≥ 1. Suppose that there exist two positive numbers η, δ ∈ (0, 1
4 ) and an

integer N such that

Bk+1 · · ·Bk+p ∈ Bη,δ :=
{

B : B−1

[

− 1
2
− η,

1
2

+ η

]2

∩
(

± 1
3
e + Z

2

)

δ

= ∅
}

(4.1)

for p ≥ 1 and k ≥ N . If 1
3 (1,−1)An ∈ Z

2 for n ≥ 2, then μ{An,n≥1} is a spectral measure.

Remark To prove Theorem 4.1, we first use the technique in Lemma 2.6. Then, from now
on, we can assume that 1

3 (1,−1)A1 ∈ Z
2.

In this case it is easy to see that the set

Λ =
1
3
B1C +

1
3
B1B2C +

1
3
B1B2B3C + · · · ,

where all the sums are finite, is a subset of Z
2 and EΛ is an orthogonal set of μ{An,n≥1}.

Unfortunately, we cannot prove it is a spectrum of μ{An,n≥1} by following all known methods.
To construct a spectrum for μ{An,n≥1}, we need the following conclusions.

It is well known that all norms on R
2 are equivalent. Then there exists a number α ≥ 1

such that
1
α
‖ · ‖′ ≤ ‖ · ‖ ≤ α‖ · ‖′. (4.2)

We will use the simple fact:

‖B−1
n ‖′ ≤ r, for 1 ≤ n ≤ k =⇒ ‖B−1

1 B−1
2 · · ·B−1

n ‖ ≤ α2rn, for 1 ≤ n ≤ k (4.3)

several times in the following proofs.
For simplicity, we will use the following notations frequently:

μ = μ{An,n≥1};
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μ{An,q} = δA−1
1 D ∗ δA−1

1 A−1
2 D ∗ · · · ∗ δA−1

1 A−1
2 ···A−1

q D;

μ{An,q<n≤m} = δA−1
q+1D ∗ δA−1

q+1A−1
q+2D ∗ · · · ∗ δA−1

q+1A−1
q+2···A−1

m D;

μ{An,n>q} = δA−1
q+1D ∗ δA−1

q+1A−1
q+2D ∗ · · · . (4.4)

Lemma 4.2 For the sequence {An}∞n=1 given in Theorem 4.1, there exists M ≥ N (N is
given by Theorem 4.1) and a sequence βk of positive numbers (for k ≥ M), which depend only
on the r and the α given in (4.2), such that βk ↑ 1 as k → +∞ and

|μ̂{An,n>q+k}(B−1
q+k · · ·B−1

q+1ξ)| ≥ βk

for all k ≥ M , q ≥ 0 and ξ ∈ [−1, 1]2.

Proof By simple calculations, it is easy to obtain that |m(ξ) − 1| ≤ 4π
3 ‖ξ‖ and

− ln x ≤ 2(1 − x), for
1
2
≤ x ≤ 1.

By (4.3), one has

‖B−1
q+k · · ·B−1

q+1ξ‖ ≤
√

2α2rk, for k ≥ 1, q ≥ 0 and ξ ∈ [−1, 1]2.

Then the continuity of m(x) and the fact m(0) = 1 show that there exists M ≥ N depending
only on r, α such that

|m(B−1
q+k · · ·B−1

q+1ξ)| ≥ 1
2
, for k ≥ M, q ≥ 0 and ξ ∈ [−1, 1]2.

Hence, by 1 − |m(ξ)| ≤ |1 − m(ξ)| ≤ 4π
3 ‖ξ‖, one has that

− ln |μ̂{An,n>q+k}(B−1
q+k · · ·B−1

q+1ξ)| = − ln
∞∏

n=1

|m(B−1
q+k+n · · ·B−1

q+1ξ)|

=
∞∑

n=1

− ln |m(B−1
q+k+n · · ·B−1

q+1ξ)|

≤ 2
∞∑

n=1

(1 − |m(B−1
q+k+n · · ·B−1

q+1ξ)|)

≤ 2
∞∑

n=1

|1 − m(B−1
q+k+n · · ·B−1

q+1ξ)|

≤ 8π

3

∞∑

n=1

‖B−1
q+k+n · · ·B−1

q+1ξ‖

≤ 8
√

2α2π

3
rk+1

1 − r

for k ≥ M, q ≥ 0 and ξ ∈ [−1, 1]2. Consequently, there exists a positive number βk :=
exp{−8

√
2α2π
3

rk+1

1−r } depended only on r, α and k such that

|μ̂{An,n>q+k}(B−1
q+k · · ·B−1

q+1ξ)| =
∞∏

n=1

|m(B−1
q+k+n · · ·B−1

q+1ξ)| ≥ βk, k = M, M + 1, . . .

uniformly for ξ ∈ [−1, 1]2 and q ≥ 0. Clearly βk ↑ 1 as k → +∞, then the proof is completed. �
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Lemma 4.3 For the sequence {An}∞n=1 given in Theorem 4.1, there exists a constant γ > 0,
which depends only on η, δ, such that

|μ̂{An,q<n≤q+k}(ξ)| =
k∏

n=1

|m(B−1
q+n · · ·B−1

q+1ξ)| ≥ γk

uniformly for ξ ∈ [− 1
2 − η, 1

2 + η]2, k ≥ 1 and q ≥ N , where N is given in Theorem 4.1.

Proof Noticing that ‖B−1
q+n · · ·B−1

q+1‖ ≤ α2rn and 0 < η < 1
4 , one has

‖B−1
q+n · · ·B−1

q+1ξ‖ ≤ 3
√

2
4

α2rn < 2α2, for ξ ∈
[

− 1
2
− η,

1
2

+ η

]2

. (4.5)

According to the definition of Bη,δ, for any q ≥ N and n ≥ 1, one has

B−1
q+n · · ·B−1

q+1

[

− 1
2
− η,

1
2

+ η

]2

⊂ B(0, 2α2) \
(

±1
3
e + Z

2

)

δ

,

which implies that B−1
q+n · · ·B−1

q+1ξ belongs to a fixed compact set T ⊂ R
2 \ (± 1

3e + Z
2)δ (which

does not intersect the set of zeros of m(x)). Write

γ = inf {|m(x)| : x ∈ T} .

By the continuity of m(x), it is clear that γ > 0. We finish the proof. �
Corollary 4.4 For the sequence {An}∞n=1 given in Theorem 4.1 and M given in Lemma 4.2,
we have

|μ̂{An,n>q}(ξ)| ≥ βkγk, uniformly for min{k, q} ≥ M and ξ ∈
[

− 1
2
− η,

1
2

+ η

]2

,

where βk and γk are given by Lemma 4.2 and Lemma 4.3.

Proof Note that

|μ̂{An,n>q}(ξ)| = |μ̂{An,q<n≤q+k}(ξ)||μ̂{An,n>q+k}(B−1
q+k · · ·B−1

q+1ξ)|.
Then the assertion follows by Lemma 4.2 and Lemma 4.3. �

To prove that μ{An,n≥1} is a spectral measure, the key step is to choose a suitable spectrum
candidate. To do it, we rewrite μ{An,n≥1} by combining its K-factors of convolutions as follows,

μ = (δA−1
1 D ∗ · · · ∗ δA−1

1 A−1
2 ···A−1

K D)∗
(δ(A−1

1 A−1
2 ···A−1

K )A−1
K+1D ∗ · · · ∗ δ(A−1

1 A−1
2 ···A−1

K )A−1
K+1A−1

K+2···A−1
2KD) ∗ · · ·

:= δR−1
0 D0

∗ δR−1
0 R−1

1 D1
∗ · · · ∗ δR−1

0 R−1
1 ···R−1

n Dn
∗ · · ·

for some suitable integer K, where Dk and Rk are defined as

Dk = D + AkK+KD + AkK+KAkK+K−1D + · · · + AkK+KAkK+K−1 · · ·AkK+2D,

and

Rk = AkK+KAkK+K−1 · · ·AkK+1

for k ≥ 0. Therefore

μ̂(ξ) =
∞∏

j=0

mDj
((R−1

0 R−1
1 · · ·R−1

j )tξ) =
∞∏

k=1

m(B−1
k B−1

k−1 · · ·B−1
1 ξ), (4.6)
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where mDj
(ξ) is the mask of the set Dj defined by (2.1). Corresponding to these notations, we

set

Ck =
1
3
BkK+1C +

1
3
BkK+1BkK+2C + · · · +

1
3
BkK+1BkK+2 · · ·BkK+KC

for k ≥ 0. Then (R−1
k Dk, Ck) is a compatible pair for each k ≥ 0 by Lemma 2.5. In this case,

similar to (4.4), we write

μ = μ{An,n≥1} = μ{Rn,Dn,n≥0} and μ{Ri,Di,n} = δR−1
0 D0

∗ δR−1
0 R−1

1 D1
∗ · · ·∗ δR−1

0 R−1
1 ···R−1

n Dn

for n ≥ 0.

Lemma 4.5 With the above notations, assume that 1
3 (1, −1)An ∈ Z

2 and ‖A−1
n ‖′ ≤ r for

n ≥ 1. Then there exists Nk ⊂ Z
2 with 0 ∈ Nk such that (R−1

k Dk, Nk) is an integral compatible
pair for each k ≥ 0 and, for the η ∈ (0, 1

4 ) given by Theorem 4.1, there exists K ≥ M (M is
given by Lemma 4.2) depended only on η and r such that

(Rt
0R

t
1 · · ·Rt

k)−1N0 + · · · + (Rt
k−1R

t
k)−1Nk−1 + (Rt

k)−1Nk ⊂
[

− 1
2
− 1

4
η,

1
2

+
1
4
η

]2

(4.7)

for k ≥ 0.

Proof Write

Mk = Rt
k

(

− 1
2
,

1
2

]2

∩ Z
2, for k ≥ 0.

Then the set Mk is a complete residue set of mod Rt
k for k ≥ 0. Let Ej = Bj(− 1

2 , 1
2 ]2 ∩Z

2 for
j ≥ 1. It is easy to check that

EkK+1 + BkK+1EkK+2 + · · · + BkK+1BkK+2 · · ·BkK+K−1EkK+K

is also a complete residue set of mod Rt
k for k ≥ 0. Therefore

EkK+1 + BkK+1EkK+2 + · · · + BkK+1BkK+2 · · ·BkK+K−1EkK+K ≡ Mk (mod Rt
k).

Noticing that 1
3BjC ⊂ Ej by the assumption 1

3 (1,−1)Aj ∈ Z
2 for j ≥ 1, we see that there exists

a subset Nk ⊂ Mk with 0 ∈ Nk such that Ck ≡ Nk (mod Rt
k).

On the other hand, Lemma 2.5 shows that (R−1
k Dk, Ck) is an integral compatible pair for

each k ≥ 0. According to Lemma 2.3 (iv), (R−1
k Dk, Nk) is also an integral compatible pair for

each k ≥ 0.
The remaining thing is to prove (4.7). The definition of Mk shows

(Rt
k)−1Mk ⊂

(

− 1
2
,

1
2

]2

(4.8)

for all k ≥ 0 and so, using (4.3), the diameter of (Rt
0R

t
1 · · ·Rt

k)−1N0 + · · · + (Rt
k−1R

t
k)−1Nk−1

is less than

α2

√
2

(rK + r2K + · · · + rkK) <
α2

√
2

rK

1 − rK
.

Therefore, there exists K ≥ M (M is given by Lemma 4.2) depending only on η and r such
that the set

(Rt
0R

t
1 · · ·Rt

k)−1N0 + · · · + (Rt
k−1R

t
k)−1Nk−1 + (Rt

k)−1Nk
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is a subset of [−1
2 − 1

4η, 1
2 + 1

4η]2 for K ≥ M . The lemma is proven. �
For the Nk defined by Lemma 4.5, let

Λn = N0 + Rt
0N1 + · · · + Rt

0 · · ·Rt
n−1Nn, Λ =

+∞⋃

n=1

Λn. (4.9)

We will prove that the above Λ is a spectrum of μ. Clearly, EΛ is an orthogonal family of
L2(μ) by Lemma 2.5 and Lemma 4.5. To prove the complete property of EΛ, we write

Qn(ξ) =
∑

λ∈Λn

|μ̂(λ + ξ)|2, ξ ∈ R
2.

Note that Λn ⊂ Λn+1 for n ≥ 1. One has that

lim
n→∞ Qn(ξ) =

∑

λ∈Λ

|μ̂(λ + ξ)|2 = QΛ(ξ).

The complete property is equivalent to that QΛ(ξ) ≡ 1 for ξ ∈ R
2 by Theorem 2.1. To show

that QΛ(ξ) ≡ 1 for ξ ∈ R
2, we remark that Lemma 4.5 says that

(Rt
0R

t
1 · · ·Rt

n)−1Λn ⊂
[

− 1
2
− 1

4
η,

1
2

+
1
4
η

]2

. (4.10)

It is easy to show that (μ{Ri,Di,n}, Λn) is a spectral pair. Then by Theorem 2.1 we have
∑

λ∈Λn

|μ̂{Ri,Di,n}(ξ + λ)|2 ≡ 1, ∀ξ ∈ R
2. (4.11)

We will use the two representations of μ̂{Ri,Di,n}:

μ̂{Ri,Di,n}(ξ) =
n∏

j=0

∣
∣mDj

((R−1
0 R−1

1 · · ·R−1
j )t(ξ))

∣
∣2 =

(n+1)K∏

j=1

∣
∣m(B−1

j B−1
j−1 · · ·B−1

1 ξ)
∣
∣2 . (4.12)

for n ≥ 0 in the following argument.

Lemma 4.6 Consider the {An}∞n=1 and Bη,δ given in Theorem 4.1, the K given in Lemma
4.5 satisfying (4.7). For any ξ ∈ R

2, there is an integer Nξ (≥ K), which depends only on ξ

and η, so that
|μ̂(λ + ξ)| ≥ βN1γ

N1
∣
∣μ̂{Ri,Di,n}(λ + ξ)

∣
∣

uniformly for N1 ≥ K, n ≥ Nξ and λ ∈ Λn, where βN1 and γ are given in Lemma 4.2 and
Lemma 4.3 respectively.

Proof Since

μ̂{Ri,Di,i≥0}(λ + ξ) = μ̂{Ri,Di,n}(λ + ξ)μ̂{Ri,Di,i>n}[(R−1
0 R−1

1 · · ·R−1
n )t(λ + ξ)],

we need to show that there exists Nξ such that
∣
∣μ̂{Ri,Di,i>n}[(R−1

0 R−1
1 · · ·R−1

n )t(λ + ξ)]
∣
∣2 ≥ βN1γ

N1 , for λ ∈ Λn, n ≥ Nξ and N1 ≥ K.

Indeed, according to (4.10) and the fact that R−1
0 R−1

1 · · ·R−1
n tends to the zero matrix as

n tends to infinity, there exists Nξ ≥ K such that

(R−1
0 R−1

1 · · ·R−1
n )t(λ + ξ) ⊂

[

− 1
2
− η,

1
2

+ η

]2

, for n ≥ Nξ. (4.13)
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Note that
∣
∣μ̂{Ri,Di,i>n}[(R−1

0 R−1
1 · · ·R−1

n )t(λ + ξ)]
∣
∣ =

∣
∣μ̂{Ak,k>K(n+1)}[(R−1

0 R−1
1 · · ·R−1

n )t(λ + ξ)]
∣
∣

and K(n + 1) ≥ M for n ≥ 0. Then by (4.13) and Corollary 4.4, one has that, for N1 ≥ K,
∣
∣μ̂{Ri,Di,i>n}[(R−1

0 R−1
1 · · ·R−1

n )t(λ + ξ)]
∣
∣ ≥ βN1γ

N1 .

Hence, the assertion follows. �
To prove Theorem 4.1, according to the above preparations and Lemma 2.6, it is sufficient

to prove the following theorem:

Theorem 4.7 Let {An}∞n=1 and Bη,δ be given in Theorem 4.1. Suppose further A1 =diag(3, 3).
Then μ{An,n≥1} is a spectral measure with a spectrum Λ given by (4.9).

Proof Assume that the Λ defined by (4.9) is not a spectrum of μ. Then there is a number θ

and a point ξ ∈ R
2 such that QΛ(ξ) < θ < 1. We will fix this ξ in the following. We choose a

sequence {nk}∞k=1 of increasing integers such that n1 = 1 and nk satisfying that βn2 ≥ QΛ(ξ)
θ ,

nk+1 − nk ≥ n2 ≥ M (M is given in Lemma 4.2) for k ≥ 2 and

(R−1
0 R−1

1 · · ·R−1
nk

)t(ξ + λ) ⊂
[

− 1
2
− η,

1
2

+ η

]2

, for k ≥ 2 and λ ∈ Λnk
.

Then, by Lemma 4.2, we have

|μ̂{An,n>q+nk+1−nk}(B−1
q+nk+1−nk

· · ·B−1
q+1ξ)| ≥ βnk+1−nk

≥ βn2 ≥ QΛ(ξ)
θ

uniformly for q ≥ 0, k ≥ 2. Consequently

|μ̂{Ri,Di,i>q+nk+1−nk}((R−1
q+1R

−1
q+2 · · ·R−1

q+nk+1−nk
)tξ)| ≥ QΛ(ξ)

θ

uniformly for k ≥ 2, q ≥ 0. Hence, by choosing q = nk, we have

|μ̂{Ri,Di,i>nk+1}((R−1
0 R−1

1 · · ·R−1
nk+1

)t(ξ + λ))|
= |μ̂{Ri,Di,i>nk+1}((R−1

nk+1R
−1
nk+2 · · ·R−1

nk+1
)t(R−1

0 R−1
1 · · ·R−1

nk
)t(ξ + λ))|

≥ QΛ(ξ)
θ

, ∀λ ∈ Λnk
, k ≥ 2.

Thus we get

|μ̂{Ri,Di,nk<i≤nk+1}((R−1
0 R−1

1 · · ·R−1
nk

)t(ξ + λ))|

=
|μ̂{Ri,Di,i>nk}((R−1

0 R−1
1 · · ·R−1

nk
)t(ξ + λ))|

|μ̂{Ri,Di,i>nk+1}((R−1
0 R−1

1 · · ·R−1
nk+1)t(ξ + λ))|

≤ θ

QΛ(ξ)
|μ̂{Ri,Di,i>nk}((R−1

0 R−1
1 · · ·R−1

nk
)t(ξ + λ))|

for λ ∈ Λnk
and k ≥ 2. Hence it is clear

|μ̂{Ri,Di,nk+1}(ξ + λ)| = |μ̂{Ri,Di,nk}(ξ + λ)||μ̂{Ri,Di,nk<i≤nk+1}((R−1
0 R−1

1 · · ·R−1
nk

)t(ξ + λ))|

≤ θ

QΛ(ξ)
|μ̂{Ri,Di,nk}(ξ + λ)||μ̂{Ri,Di,i>nk}((R−1

0 R−1
1 · · ·R−1

nk
)t(ξ + λ))|

=
θ

QΛ(ξ)
|μ̂{Ri,Di,i≥0}(ξ + λ)|
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=
θ

QΛ(ξ)
|μ̂(ξ + λ)|, ∀λ ∈ Λnk

, k ≥ 2. (4.14)

According to the definition of Qn(ξ), we have

Qnk+1(ξ) − Qnk
(ξ) =

∑

λ∈Λnk+1\Λnk

|μ̂(λ + ξ)|2,

Lemma 4.6 shows that there exists an integer Nξ and a positive number β := βN1γ
N1 such that

|μ̂(λ + ξ)|2 ≥ β
∣
∣μ̂{Ri,Di,nk+1}(ξ + λ)

∣
∣2 , ∀λ ∈ Λnk+1 , k ≥ Nξ.

Then by (4.11) and (4.14), we get

Qnk+1(ξ) − Qnk
(ξ) ≥ β

∑

λ∈Λnk+1\ Λnk

|μ̂{Ri,Di,nk+1}(ξ + λ)|2

= β

( ∑

λ∈Λnk+1

|μ̂{Ri,Di,nk+1}(ξ + λ)|2 −
∑

λ∈Λnk

|μ̂{Ri,Di,nk+1}(ξ + λ)|2
)

≥ β

(

1 − θ

QΛ(ξ)

∑

λ∈Λnk

|μ̂(ξ + λ)|2
)

≥ β(1 − θ), k ≥ Nξ.

Hence

1 > QΛ(ξ) = lim
k→∞

Qnk+1(ξ) ≥
∞∑

k=Nξ

[Qnk+1(ξ) − Qnk
(ξ)] ≥

∞∑

k=Nξ

[β (1 − θ)] = +∞,

a contradiction. This contradiction yields the theorem. �
Proof of Corollary 1.4 By the assumption we have ‖B−1

n ‖ = ‖A−1
n ‖ ≤ r < 2

3 for n ≥ 1. It is
sufficient to show that there exist two positive numbers η and δ such that

BkBk+1 · · ·Bk+N ∈ Bη,δ, for k ≥ 1, N ≥ 0. (4.15)

Since ∥
∥
∥
∥B−1

k

[

− 1
2
− η,

1
2

+ η

]2∥∥
∥
∥ ≤ r

√
2
(

1
2

+ η

)

for k ≥ 1, by r < 2
3 , we can find two positive numbers η and δ so that η ∈ (0, 1

3r − 1
2 ) and

δ + r
√

2( 1
2 + η) <

√
2

3 . Then
∥
∥
∥
∥B−1

k

[

− 1
2
− η,

1
2

+ η

]2∥∥
∥
∥ ≤ r

√
2
(

1
2

+ η

)

<

√
2

3
,

and we have Bk ∈ Bη,δ for k ≥ 1. By noting that ‖(BkBk+1 · · ·Bk+N )−1‖ ≤ ‖B−1
k ‖ for N ≥ 0,

then BkBk+1 · · ·Bk+N ∈ Bη,δ for k ≥ 1 and N ≥ 0. Hence (4.15) holds and the assertion
follows. �
Proof of Corollary 1.5 According to the assumption supn≥1 ‖An‖′ < ∞, one see that the
family {An : n ≥ 1} is a finite set by using the fact that An are integer matrices. Write
{An : n ≥ 1} = {M1, M2, . . . , Ms}. Then ‖M−1

i ‖′ ≤ r < 1 for 1 ≤ i ≤ s by the hypotheses.
By Theorem 1.3 we need to show that μ{An,n≥1} is a spectral measure if 1

3 (1,−1)Mi ∈ Z
2 for
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1 ≤ i ≤ s. Then it is sufficient to show that there exist two positive numbers η and δ such that
(4.15) holds. According to (4.3), we have

‖(BkBk+1 · · ·Bk+p)−1[−1, 1]2‖′ ≤
√

2α2rp+1, for k ≥ 1 and p ≥ 0.

Hence (4.2) shows that there exists an integer N > 0 such that

(BkBk+1 · · ·Bk+p)−1

[

− 3
4
,

3
4

]2

⊂
[

− 1
8
,

1
8

]2

, for k ≥ 1 and p > N . (4.16)

Set

A = {Mi1Mi2 · · ·Mij
: i1, i2, . . . , ij ∈ {1, 2, . . . , s} and 1 ≤ j ≤ N}.

Consider

(BkBk+1 · · ·Bk+p)−1

[

− 3
4
,

3
4

]2

∩
(

± 1
3
e + Z

2

)

, for k ≥ 1 and 0 ≤ p < N . (4.17)

If one of the above intersections is a nonempty set, that is, there exist ξ ∈ [−3
4 , 3

4 ]2 \ {0} and
v ∈ Z

2 such that (BkBk+1 · · ·Bk+p)−1ξ = ±1
3e + v, which implies ξ = BkBk+1 · · ·Bk+p(± 1

3e +
v) ⊆ Z

2, a contradiction. Note that A is finite and BkBk+1 · · ·Bk+p ∈ A for k ≥ 1 and
0 ≤ p < N . Then there exists δ > 0 such that

(BkBk+1 · · ·Bk+p)−1

[

− 3
4
,

3
4

]2

∩
(

± 1
3
e + Z

2

)

δ

= ∅, for k ≥ 1 and 0 ≤ p < N .

Combining (4.16) and the above relationship shows that (4.15) holds for η = 1
4 and the δ′ =

min{δ, 1
12}, and the assertion follows. �

Proof of Corollary 1.6 Note that 1
3 (1,−1)

( pn 0
0 qn

) ∈ Z
2 if and only if 3 | pn and 3 | qn for

n ≥ 1. Then the assertion follows by Corollary 1.4. �
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