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Abstract This is a continuation of our previous work (Ann. Sc. Norm. Super. Pisa Cl. Sci., 20,
1295-1324, 2020). Let (X, g) be a closed Riemann surface, where the metric g has conical singularities at
finite points. Suppose G is a group whose elements are isometries acting on (3, g). Trudinger—Moser
inequalities involving G are established via the method of blow-up analysis, and the corresponding
extremals are also obtained. This extends previous results of Chen (Proc. Amer. Math. Soc., 1990),
Tula—Manicini (Nonlinear Anal., 2017), and the authors (2020).
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1 Introduction and Main Results

Let S? be the 2-dimensional sphere 23 +23+2% = 1 endowed with the metric g; = dr?+dx3+dx3
for all z = (x1, 22, 73) € R3. It was proved by Moser [18] that there exists a universal constant

C satisfying
2
/ et dy,, < C (1.1)
S2

for all smooth functions u with [, |[Vg ul*dvy, < 1 and [y, udvg, = 0, where Vg, and dvg,
stand for the gradient operator and the volume element on (S?, g;) respectively. Here 47 is the
best constant in the sense that when 47 is replaced by any a > 4m, the integrals are still finite,
but the universal constant C' no longer exists. It was also remarked by Moser [19] that if one
considers even functions u, say u(z) = u(—z) for all z € S?, then the constant 47 in (1.1) would

double. Namely there exists an absolute constant C' such that
/ 8™ dy,, < C (1.2)
g1 — .
§2
for all even functions u satisfying [o, Vg, ul?dvg, <1, [o, udvg, = 0.
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A general manifold version of (1.1) was established by Fontana [14] via the estimation on
Green functions and by O’Neil’s lemma [20]. This comes from a Euclidean scheme designed by
Adams [1]. However, Li [15] was able to prove the inequality (1.1) by the method of blow-up
analysis. In a recent work [13], we extended (1.2) to the case of a closed Riemann surface with
a smooth “symmetric” metric. In the current paper, we consider the case of closed Riemann
surface with a “symmetric” singular metric.

Now we recall some notation from differential geometry. Let (X, go) be a closed Riemann
surface, and dg,(-,-) be the geodesic distance between two points of ¥. A smooth metric g
defined on X\ {p1,...,pr} is said to have conical singularity of order 3; > —latp;, i =1,...,L,
if

9 = pgo, (1.3)

where p € C>°(Z\ {p1,...,pL}, go) satisfies p > 0 on X\ {p1,...,pr} and

p(x) 0
0<C< e C” (%, 1.4
dgo(z,pi)gﬁi ( 90) ( )
for some constant C' and ¢ = 1,..., L. Here we write the righthand side of (1.4) in the sense

that p/dy, (z,p;)* can be continuously extended to the whole surface (3,go). With (1.3)
and (1.4), (X, g) is called a closed Riemann surface having conical singularities of the divisor
b= ZZ—LZI Bipi. For more details on singular surfaces, we refer the reader to Troyanov [23]. For
compact singular surface (X,g) with conical singularities {p1, ..., p;, } each of order 3;-th order,
(¢t =1,...,9). Still let V, and A, be its gradient operator and Laplace-Beltrami operator
respectively, dvg be its volume element. On a closed Riemann surface (3, g) with singular

metric g as above, Stefano—Gabriele [21, Theorem 1.3] have proved that Vp > 1,

2 2
sup / et (Atallulios.g) dy < oo (1.5)
Js udvg=0, [y |Vul2dv,<1 /%

can be obtained, if § < (1 4+ min; 8;) while

a <A p(X)= inf / |V yul®dvy,
b

fz udvgzo,fZ [Vul?2dvg<oo, 4[2 uPdvg=1

or if § = (1 + min; §;) while « small significantly. For earlier works on Trudinger—-Moser in-
equalities involving singular metrics, we refer the reader to Troyanov [23], Chen [7], Adimurthi—
Sandeep [3], Adimurthi-Yang [5], Li-Yang [17], Csato-Roy [10], Yang—Zhu [26] and the refer-
ences therein.

It’s also necessary to introduce finite isometric group to describe symmetric metric as in [7]
and [13]. We say that G = {01,09,...,0n} is a finite isometric group acting on (X, g), if each
smooth map o : ¥ — X satisfies

(0190)c = Gog () and plok(x)) =p(x) forallz €. (1.6)

This in particular implies

0%gr = Yo(zy forall z e X. (1.7)

Note that G is a geometric structure on special Riemann surface (X, g). It is clear that G(p;) =
{oi(pj)}¥y C {p1,...,pr} for all j, and that By = B; provided that p; € G(p;) for some j.
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Denote for any = € X,
I(z) = §G(x) (1.8)

and

ﬂ(.’[) —_ O’ T € {pl" . 7'pL}) (19)
ﬁju x:p]>1§j§L7

where fA is the number of all distinct elements in the set A. Noting that 1 < I(z) < N and
B(xz) > —1 for all z € ¥, one defines

£:gleigmin{l(x),f(x)(l+ﬂ(x))}. (1.10)

Let W12(%, g) be the completion of C°°(3, go) under the norm

1/2
Jullwregs,g) = (/E (IVgul? +u?) dvg) / : (1.11)
For convenience, we introduce the following subspace of W12(X, g)
He = {u e Wh3(2,g) : /Eudvg =0, u(z) = u(o(x)) for a.e. z € ¥ and all o € G} .(1.12)
Clearly, /¢ is a Hilbert space with inner product

(u, ) s = / (Vgu, Vgv)du,.
b
The first eigenvalue of A, on g is defined by

G .
AT = ueﬂc7.}gi2dvg—l/g ‘Vg“|2dvg’ (1.13)

where A, is the Laplace-Beltrami operator with respect to the conical metric g. A direct
method of variation leads to A& > 0. For any « strictly less than A, we can define an

equivalent norm of (1.11) on g by

1/2
llull1,a = (/2 |V gul®dv, — oz/zuzdvg> . (1.14)

The first eigenfunction space with respect to A& reads as
Eye = {ue Ag: Agu=Fu}. (1.15)
According to Chen [7], there holds

2
sup / e dy, < oo, (1.16)
ueHa, [y |Voul2dvg<1J%

where £ is given as in (1.10), and 4x¢ is the best constant for (1.16) in the sense that if 47¢
is replaced by any v > 4n/, then the supremum in (1.16) is infinity. Our main concern is the

attainability of the above supremum. We have the following more general result:

Theorem 1.1 Let (X, g) be a closed Riemann surface with conical singularities of the divisor
b= ZZ—LZI Bipi, where p; belongs to ¥ and

-1<B;<0, i=1,...,L. (1.17)
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Suppose that G = {o1,09,...,0N} is a group of isometries given in (1.6), and that ¢, Ha and
MG are defined as in (1.10), (1.12) and (1.13) respectively. Then for any o < A&, the supremum

sup / eimtv? dvg (1.18)
by

ueAa, |ull1,o<1
is attained by some function ug € C*(S\{p1,...,pr}, 90)NCO(Z, go) NHa satisfying ||uo
1, where go is a smooth metric given as in (1.3) and || - ||1,o @s defined as in (1.14).

When N = 1, Theorem 1.1 reduces to one of results of Tula—Mancini [21]. While if 5(z) =0

for all z € ¥, then Theorem 1.1 is exactly our earlier result [13]. To prove Theorem 1.1, we use

l,aa =

the method of blow-up analysis designed by Li [15]. Early groundbreaking works go back to
Carleson-Chang [6], Ding—Jost-Li-Wang [12] and Adimurthi-Struwe [4].

As in our previous work [13, Theorem 2], we may also consider the effect of higher order
eigenvalues of A, on Trudinger-Moser inequalities. Set Ey = {0}, Ey = g, and F; = Eje
defined as in (1.15). By induction, E; and E]J- can be defined for any positive integer j. To be
precise, for any j > 1, we set E; = E>\1G DD E/\Jg and

E]Jf:{ueﬁﬂg:/uvdvgzo,VveEj}, (1.19)
b))

where )\]G’ is the j-th eigenvalue of A, given by

A = inf / |V yul*dvy, (1.20)
b

ueEfil, [ u?dvg=1

and Eye ={u € EJ-{l Agu = /\JGu} is the corresponding j-th eigenfunction space. Obviously
¢ 4
for any fixed @ < A, || - |1, is equivalent to || - [ly1.2(z,g) on the space Ej-.

Our second result reads as follows:

Theorem 1.2 Let (X,g) be a closed Riemann surface with conical singularities of divisor
b = Zle Bipi, where p; belongs to ¥ and —1 < B; < 0 fori = 1,...,L. Suppose that
G = {01,09,...,0n} is a group of isomelries given as in (1.6). Then for any integer j > 1
and any real number a satisfying o < /\?4-1: the supremum

sup / e4ﬂzu2dvg (1.21)
ueEj‘v”“Hl,afl %

can be attained by some function ug € C*(S\{p1,...,pr},90)NC°(, go)NE;- with |ug|[1,0 = 1,

where NG, |, B, £ and || - |10 are defined as in (1.13), (1.19), (1.10), and (1.14) respectively,

and go is a smooth metric given as in (1.3).

The proof of Theorem 1.2 is similar to that of Theorem 1.1. The difference is that we work
on the space E]J- instead of /. Note that E]J- is still a Hilbert space for any j > 1. For more
details of Trudinger—Moser inequalities involving eigenvalues, we refer the reader to [2, 22, 25].
In both proofs of Theorems 1.1 and 1.2, to derive an upper bound of the Trudinger—Moser
functional, we need a singular version of Carleson-Chang’s estimate, which was in literature
due to Csato-Roy [10] (see also Iula-Mancini [21] and Li-Yang [17]), namely

Lemma 1.3 Let B, C R? be a ball centered at 0 with radius r. If ¢. € W&’Q(]BT) satisfies
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fB. |Voe|?dx < 1, and ¢ — 0 weakly in W&’Q(]BT), then for any B with —1 < 8 < 0, there holds
e
limsup/ e(1+6)4”¢3|x\25da§ S/ |z[*Pdz + P20, (1.22)
e—0 B, B, 1+ ﬂ

The proof of Lemma 1.3 is based on a rearrangement argument, Hardy—Littlewood inequal-
ity, and Carleson—Chang’s estimate [6]. In the remaining part of this paper, we prove Theorems
1.1 and 1.2 in Sections 2 and 3 respectively. Throughout this paper, we do not distinguish se-
quence and subsequence. Constants are often denoted by the same C from line to line, even on

the same line.

2 Trudinger—Moser Inequalities Involving the First Eigenvalue

In this section we shall prove Theorem 1.1 by using the method of blow-up analysis, which was
originally used in this topic by Li [15, 16], and extensively used by Yang [24, 25], Li-Yang [17],
de Souza-do O [11], Yang Zhu [26], Tula-Mancini [21] and others. The proof is divided into

several subsections below.

2.1 The Best Constant
Let ¢ be defined as in (1.10). It was proved by Chen [7] that

sup / e”"zdvg < oo, Vv <drd, (2.1)
wEHG, [y |Vul2dv,<1 /%

moreover, the above integrals are still finite for any v > 47/, but the supremum

sup / e'yuzdvg =00, Vv >d4nl. (2.2)
weEHG, [y |IVul2dv,<1 /%

We now take the first eigenvalue Af of A, (see (1.13) above) into account and have the following:

Lemma 2.1 For any a < A&, there exists a real number vy > 0 such that

2
sup / €7 dug < 00,
u€Ha, |ull1,6<1 /3

where || - ||l1,o is defined as in (1.14).

Proof Assume a < A and [Jul|;,o < 1. Then

L= Oé; /|un|2dvq§/ ‘un|2dvq—a/u2dvq§1.
AT s ) s ! - [

This together with (2.1) implies the existence of 7, as desired. O

In view of Lemma 2.1, for any fixed a < A\, we set

~* = sup {fyo : sup / eVO“deg < oo}.
u€Ha, lull1,a<1J3%
Lemma 2.2 There holds v* > 4xl.

Proof Suppose v* < 4wf. Then there exists a real number v, with 7* < v < 4nf and a
function sequence (u;) C g such that |Ju;|l1,o <1 and

/ e"““JZ'dvg — 00 asj — oo. (2.3)
by



2268 Fang Y. and Yang Y. Y.

Since @ < AF, we have that (u;) is bounded in W12?(%, g). Thus, u; converges to some g
weakly in W2(X, g), strongly in L?(%, g) and almost everywhere in . This particularly leads
to

Juj = uollF o0 = llujl¥ 0 = lluollf o + 05(1).
Clearly ug € . We now claim that up = 0. For otherwise, since ||u;|l1,o < 1, there must
hold
1
[Vt = )P, <1 ol (24)

for sufficiently large j. Noting that u? < (1 +v)(uj —up)* + (1 + v~ Hud for any v > 0, and
that e“s € L1(%, g) for all ¢ > 1, we conclude from (2.1) and (2.4),

/Ee'““?dvg <C (2.5)

for some constant C' depending only on 7, £ and ug. This contradicts (2.3) and confirms our

claim uy = 0. As a consequence

/E|Vguj|2dvg < 1+a/2u?dvg =1+0;(1).

This together with (2.1) gives (2.5), which again contradicts (2.3) and thus completes the proof
of the lemma. 0

More precisely we have

Lemma 2.3 There holds v* = 4n¢.
Proof By Lemma 2.2, v* > 47f. Suppose v* > 4wf. Fix some v with 47f < v5 < v*. In view
of (2.2), there exists a sequence of functions (M}) C g such that

/Z IV, My [2dv, < 1 (2.6)

and
/ e”"‘M’fdvg — 00. (2.7)
b

Obviously (My) is bounded in W2(, g). With no loss of generality, we assume M}, converges
to My weakly in W12(X, g), strongly in L?(X, g), and almost everywhere in ¥. Using the same

argument as in the proof of Lemma 2.2, we have My = 0. It then follows that
M o = [ 19,0, — o [ Mdo, =1+ (1), (2.8)
b by
Combining (2.7) and (2.8), we have for some 73 with y5 < 3 < v*,

2
sup / e dyg = oo.
b

ueHa, |lull1,a<1

This contradicts the definition of v*. Therefore v* must be 47/. O

2.2 Maximizers for Subcritical Functionals

In this subsection, using a direct method of variation, we show existence of maximizers for

subcritical Trudinger—Moser functionals. Let a < AF be fixed. Then we have
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Lemma 2.4 For any 0 < € < 4/, there exists some uc € C*(S\{p1,...,pr},90)NC°(2, go)N
Ha with ||uel|1,o = 1 satisfying

/e(4ﬁ_€)“gdvg: sup /e(4ﬁ_€)“2dvg. (2.9)
s s

u€Ha,|lull1,a <1

Moreover u. satisfies the Euler—Lagrange equation

1 2
Anl—e)u He :
Ague — aue = ueel Jue _ inX

Ae Ae ’

/ ucdvg = 0,
2 (2.10)
ml—e)u?
Ae :/Zufe(4 ) <dvy,

1 2
_ (47réfe)u€d
:u’E VOlg(E) L u€e vg)

where Ay is the Laplace—Beltrami operator on (X, g).

Proof Fix a < 4wl and 0 < ¢ < 4nf. Take a maximizing function sequence (u;) C g
verifying that |Ju;|l1,o < 1, and that as j — oo,

2 2
/e(4ﬂl—e)ujdvg N sup /e(4ﬂl—e)u dUg.
by ueEHa, |ull1,a<1J32

Clearly (u;) is bounded in W?(X,g). With no loss of generality we assume u; converges
to u. weakly in W12(X, g), strongly in L*(%,g) for any s > 1, and almost everywhere in 3.

(47\'[*6)’&.2‘

This implies u. € G and ||ue|1,o < 1. By Lemma 2.3, we have that e i converges to

e@ml=9u? in L1(, g) as j — co. Thus (2.9) holds. It is easy to see that lltell1,e = 1.
By a simple calculation, u. is a distributional solution of the Euler—Lagrange equation

(2.10). In view of g = pgo, applying elliptic estimates to (2.10), we conclude u. € C*(¥\

{p17"'apL};QO)OCO(Eng)- O
Using the same argument as [25, p. 3184], we get

lirni(glf)\€ >0, |pel/Ae <C. (2.11)

2.3 Blow-up Analysis

Since u. is bounded in W2(3, g), we assume u, converges to some u* weakly in W2(%, g),

strongly in L*(X, g) for any s > 1, and almost everywhere in ¥. Obviously ||u*||1,o < 1. If u.

is uniformly bounded, then by the Lebesgue dominated convergence theorem,

2 . —e)u? ’
/ e47r£u dUg — lim e(47T£ eJug d’Ug = sup / e4ﬂ£u d'Ug~ (2.12)
5 e—0 /s, weHa,|lulli,o<1J2

Thus u* is the desired maximizer. In the following we assume maxy |u.| — oo as € — 0. Since

—u, still satisfies (2.9) and (2.10), we assume with no loss of generality
Ce = ue(we) = max [te| — 00 (2.13)

and
Te— To EN (2.14)

as € — 0. To begin with, we have
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Lemma 2.5 u. converges to 0 weakly in W12(X, g), strongly in L*(%,g) for any s > 1, and
almost everywhere in 3.

Proof Since u, is bounded in W12(%, g), we assume u, converges to ug weakly in W1H2(X, g),

strongly in L*(X, g) for any s > 1, and almost everywhere in . Suppose ug #Z 0. Then

1
%,a - ”uOH%,a + 06(1) <1l- 2||u0|

||u€ — Ug |%,o¢ = ||u€| %,a

for sufficiently small € > 0. Using the Young inequality, the Holder inequality and Lemma 2.3,
we have that e“™=9u? is bounded in LI(X,g) for some ¢ > 1. Noting (2.11) and applying
elliptic estimate to (2.10), we obtain wu, is uniformly bounded. This contradicts (2.13). Hence
ug = 0. O

Recalling the definitions of I(z), f(x) and ¢, namely (1.8)—(1.10), under the assumptions
(2.13) and (2.14), we obtain the following energy concentration phenomenon. From now on, we
write Iy = I(xg) and By = B(xo) for short, where xq is introduced in (2.14).

Lemma 2.6 (i) lim,_olim. fBgo,r(zo) |V gotie|?*dvg, = 1/Iy, where By, ,(zo) denotes the
geodesic ball centered at xog with radius v with respect to the metric go; (ii) Io(1+ Bo) = £.

Proof We first prove the assertion (i). With no loss of generality, we assume oy (), . .., 07, (o)
are all distinct points in G(zy). Choose some ry > 0 such that By, ,,(0;(20)) N Bg,r, (0i(x0)) =
@ for every 1 < i < j < Ip. Since [ |VgouelPdvg, = [5|Vguel?dvy, = 14 0(1) and
By ro (0k(20)) = 0k(Byy,ro (®0)) for k=1,..., Iy, we have

1
/ IV gottePdvg, <~ +0e(1). (2.15)
Bag,ro (0) Io
Suppose (i) does not hold. There would exist a constant 19 > 0 and 0 < 71 < ¢ such that

1
/ IV ot ?dvg, < — g (2.16)
Bgo,Tl (3’,‘0) IO

for all sufficiently small e > 0. Since ¢ < min{ly, Io(1 + 5o)} < Iy, one finds a p > 1 such
that ™ is bounded in LP(Bg, r,/2(x0)). In view of (2.11) and Lemma 2.5, one has by
applying elliptic estimates to (2.10) that u. is bounded in L>(B,, ,, /4(z0)), which contradicts
the assumption (2.13). This confirms (i).

(ii) Suppose not. Obviously ¢ < Io(1 4 Bp). By (1.17) and (1.9), we have 3y < 0. This
together with (i) and an inequality of Adimurthi-Sandeep [3, p. 587] implies that there exist
ro >0, p > 1 and C' > 0 satisfying

2
/ e4ﬂp"6pdvgo < C.
Bgo,ro (mO)

Applying elliptic estimates to (2.10), we conclude that wu. is bounded in L (B, ,,/2(20)),

contradicting the assumption (2.13). Therefore (ii) holds. O
Set

Te = \/)\662167(%#5/2)(:3. (2.17)

Using the same argument as that of derivation of [13, the equation (42)], we have for any
0<a<dnl,

rfcfe(‘”e_e_“)cz = 0.(1). (2.18)
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In particular, r. — 0 as ¢ — 0. And it follows from (2.18) that
rZc? — 0, Vg>1. (2.19)

Keep in mind that g and gg satisfy (1.3), (1.4), and (1.6). For any 1 < k < N, we take an
isothermal coordinate system (Us, (2,), ¥&; {¥1,%2}) near op(xo) such that ¢y : Uy, (z,) — 2 C
R? is a homomorphism, ¥y, (ox(z0)) = 0, and

g0 = > (dyf + dy3), (2:20)
where f;, € C1(Q, R) satisfies f(0) = 0. If g has a conical singularity of the order 3y at o,
then in the above coordinate system, g can be represented by
g = Ve [y|* (dyi + dy3), (2.21)
where Vj, € C°(Q,R). It follows from (1.4) and (1.6) that

- p(z)
0=, 4 =W 2.29
k( ) dgo(xlvl;fré)—’o dgo(.f’o'k(xo))QﬁO 05 ( )

where V[ is a positive constant independent of k. In particular, if Gy = 0, with no loss of
generality, one can take Vi (y) = 1, and (2.21) reduces to (2.20). Writing 7, = ;. ' (z.), we have
the following:

Lemma 2.7 If By <0, then |Z|'T5 /r. is uniformly bounded.
Proof For otherwise, up to a subsequence, we have
TP 1o — 0. (2.23)
Forye O ={yeR?: 2. + re|Zc|Poy € O}, we denote
we(y) = Ce_l(ue ° %Zl)(fe + Ts‘%e‘_ﬁoy)v Ve(y) = ce ((ue o Q/Jk_l)(%e + re|56|_ﬂoy) - CE) .
By (2.10), we calculate on € ,
—Apewe = Vi(Fe + rey)e2fe@etrey) 7
ey PR fE 0 (arfwe + e eI — T2,
—Apeve = Vi(Te + Tﬁy)em(iewey)ﬁe
+ rey 2|7 72 (actrPw, + weedTI T wIve _ ¢ 12, AT

where Ape stands for the standard Laplacian operator on R2. It follows from (2.23) that both
e/ @trew) and |7, +rey|?% - |5 725 are 1+ 0.(1) in Bg for any fixed R > 0. Combining (2.11)
with (2.19), we have c.r2pu A1 is o.(1). Applying elliptic estimates to the above two equations,
we obtain

we — 1 in Cf (R?) (2.24)

and ve — v in CL_(R?), where vy satisfies

—Apevg = Vpeb™vo  in R?,
o= (2.25)
v0(0) = 0 = supg2 vy

in the is distributional sense. With the transformation of coordinate, for any fixed R > 0,

/ e87r€'u0dy — lim e(47r£—e)ﬁf(i€+r5y))e—(47r€—e)c§dy
B (0) 0 JBR(0)
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e—0

= lim A / | [200 2e(4mt— e)uedy
BRre‘welﬁo(ie)
= lim(VO)\e)*l/ Verf\y|25°afe(4”f*6>ﬂfdy
0 Brrl.| 0 (2.)

— t(novor) [ RO
0 o1 O (]B%Rré\zé|50(z(k)))

1
< .
- IyW,
Pass the limit R — o0,

1
e300 gy < 2.26
/R R, (2.26)

In view of (2.25) and (2.26), we have by a classification theorem of Chen-Li [8],

wly) =—, glog(1+7T5Vo|y| )-
It then follows that 1
ST dy = . 2.27
= (227)
Since By < 0, it follows from (ii) of Lemma 2.6 that ¢ < Iy. As a consequence, there is a
contradiction between (2.27) and (2.26). This ends the proof of the lemma. O
We now define two sequences of functions
Ye(y) = (@ +r/UTy) (y) = co@e(@e 4t/ H)y) — ) (2.28)
forye Qo :={yeR?:7, + 7"61/(1+5°)y € Q}. Then there holds the following:
Lemma 2.8 If 5 < 0, then (i) ¢ — 1 in C2 _(R?) N W,L2(R?); (i) ¢ — ¢ in O (R?) N
Wﬁ)f (R?), where
1 7TI()V0 2
_ 1 1 (1+5o) | . 2.29
W) ==, Og( + 1H),Oly\ (2.29)
Proof By (2.10) and (2.17), we have on Qg ,
— Apetpe = Vi(Fe + Tel/(1+ﬁo)y)e2fk(56+r§/“+”0)y) ly + T;U(Hﬁo)gﬁﬁﬁo (ar?y
+C€—2wée(4ﬂ€—e)cf(w§—l) L2, (2.30)
— Agape = V(@ + rl/ 1F00)y) o2 e@etrd TR0y 21/ (B0 5 1260 a2y 2y,
+ tpemime(tvee _ ¢ p2) A—1), (2.31)
—1/(1460) ~

In view of Lemma 2.7, 7. T, is a bounded sequence of points. We may assume with no
loss of generality that re Z. — p € R? as € — 0. Note that 3 > —1. Applying elliptic
estimates to (2.30), we obtain ¢, — v in CP_(R?) N VV&)C2 (R?), where ¢ is a distributional

loc
harmonic function. Then the Liouville theorem leads to ¢ = 1. Further application of elliptic

—1/(1+p0) ~

estimates on (2.31) implies that
pe— ¢ in CL(R?) NWLZ(R?), (2.32)

loc

where ¢ is a distributional solution of
—Apep = |y +p|25ovoegﬂlo(1+5o)<ﬂ in R?,

(2.33)
©(0) = 0 = maxg2 .
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For any fixed R > |p| + 1, by Fatou’s lemma and lemma 2.7, we have

/ Vol +p|25068”w°da:
Br(—p)

< lim Sup/ Vol 4 =1/ (1460 3280 g(dmt=0) (1400 gy
Br(—p)

e—0
c? "
<limsup / Voe2! |y|?Poeml=)ac gy
2B 1/(0+80)

e—0 €

2
< lim sup uze(‘”ré_e)“e dvg

=0 A /_1
€Jg (BQRrg/(lwo))

< lim | / w2l gy < 1,
b

e—0 A¢

This suggests

/ Voly + p[*Pe¥™ % dy < 1. (2.34)
R2
In view of (2.33) and (2.34), a classification theorem of Chen-Li [9] suggests the representation:
1 7TI()V() 2
— _ 1 1 (1480) . 2.35
W) ==, 0g< gyt (2.35)
Since ¢(0) = 0, we have p = 0. By a straightforward calculation,
1
/ Voly|*Pesm e Way = (2.36)
R2 IO

as desired. O
In the case By = 0, we have an analog of Lemma 2.8, namely

Lemma 2.9 Let ¢, and . be defined as in (2.28). If By = 0, then ¥ — 1 and p. — ¢ in

CL.(R?), where o(y) = —47}10 log (1 + wIop(z0)|y|?), p is given as in (1.3) and (1.4).

Proof Noting that if Sy = 0, we have by applying elliptic estimates to (2.30) and (2.31) that
e — 1 and @, — ¢ in C}

loc

(R?), where ¢ satisfies
—Agzp = p(x9)e®™ ¢ in R?,
¢(0) = 0 = maxgz ¢,
/ p(x0)ed™ 0¥ dy < 1.
R2

Then a result of Chen-Li [8] leads to ¢(y) = —47310 log (1 + mIop(zo)|y|?). As a consequence,

1
8mlow(Y) gy —
[ ptanesteay =

which is an analog of (2.36). O

(2.37)

By (2.17), Lemmas 2.8 and 2.9, we have for any fixed R > 0,

/ Voly|?P 8™ dy = lim VO\y|2ﬁoe(4ﬂf—e)(l+we)s@edy
Br(0) =0 /B, (0)

1

= lim / %e2fk|y|2ﬁ0ﬂge(4ﬂffe)ﬂ§dy
e—0 Ae B 'r>i/(1+ﬁ0) (Eé)
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_ 2 (dml—e)u?
lim | /71 B uée( ) <dvy,
€SP (B, 170480 (Ze))

where Vo = p(z0) and £ = I if By = 0. This together with (2.36) and (2.37) implies that

1
Rlim 113(1))\ / ) B ufe(‘iﬂf*e)ﬁd% =, (2.38)
Teoe € S (B 1/G+80) (Te)) 0
Noting that
Ao :/ uge(4ﬂ'€—e)ufdv9+/ uze(él‘n'f—e)ufd,vg’
UnZa 94 (B, 1/1480) () P\UL, 9 (B /e (F0))

we conclude from (2.38) that

1
lim lim / w2 l=u gy = 0. (2.39)
R—00 €—0 >\6 s\U Io 71(3 h

k=1 "k RTEI/(IHEO)(EG))
As in [15], we define e, = min{u,,yc.} for any 0 < v < 1, and have
Lemma 2.10 For any 0 < v < 1, there holds

lim [ |V ue,|*dv, = 7.
e—0 /s

Proof For fixed R > 0 and sufficiently small ¢, in view of (2.10), we have by using integration
by parts, (2.38) and (2.39) that

/E|Vgueﬁ\2dvg:/ngueﬁvguedvg

2
ueue,'ye(élﬂg e)uz d’l)g

=)\1
- € I —1 ~
Uk()zl "/"k (BRri/(1+ﬁ0) (xé))

+ At ueueﬁe(‘”l*e)“?dvg +0(1)

I _ _
E\URL, ¥y 1(]B’Hré/(l+/3o) (ze))

= (1+o0.(1)yA ! / ; ufe(‘”e*e)“fdvg +o(1)
Urls wlzl(BRTi/(l-%—ﬁo)@e))

=7+ o(1),

where o(1) — 0 as € — 0 first, and then R — co. The lemma follows immediately. ]

Lemma 2.11  There holds ce/Ae — 0 as e — 0.

Proof For any fixed 0 < v < 1,

2 2 2
/ e(47r£—e)u6 d’Ug _ / e(471'€—€)u6 dUg + / e(471'€—€)u6 dUg
3 Ue<yCe Ue>YCe

ml—e)u? >\E
< /26(4 Caduy+ o6, (2.40)

By Lemmas 2.5 and 2.10, we conclude

/ e(47ré—e)ufﬁdvg = Volg(z) +0c(1).
2
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Passing to the limit € — 0 first, and then v — 1 in (2.40), we have
A
sup / Ay, = lim [ e dv, < Voly () + lim inf 5
ueHAg, lul,a<1Js =0 Jx =0 cg

Since

2
sup / ™ du, > Vol (%),
u€a, |ull1,a<1J%

we have by (2.41) that liminf. g A./c? > 0. In particular c¢./\. — 0 as € — 0.

2275

(2.41)

O

Recall G(z¢) = {o1(%0),...,01,(x0)}, and S = {p1,...,pr}. The convergence of c.u. is

precisely described as follows.

Lemma 2.12 For any 1 < ¢ < 2, we have ccu. converges to G, weakly in WH4(X, go),
strongly in L24/2=9(%), and in C*(X\ {G(x) US}), where Gy, is a Green function satisfying

I
BgpGa = aplia = 110 ;5‘”(”) N volg(z)’
/ Gadvg =0,
Gza(ai(x)) =Ga(z), €S\ {oj(x0)}2,, 1<i< I
Proof In view of (2.10), one has

Ag(ceue) — accue) = fe —be on X,

/ Celedvy = 0,
b))

f. = 1 Ceuee(4w€—e)uf
Ae ’
Celbe
b .
€ A

Firstly we claim that
1
Ed - 60" xr
f U!] IO ; 'L( O)

weakly in the sense of measure, or equivalently, there holds

Ip
[ gty = S (oi(a0)) + 1), Vo€ OO0
=1

To see it, we estimate for any fixed 0 <y <1 and R >0

[ goto,= [ godn,+ [ 1 .o,
= ue<yce {ue>veInU2, "b;:l(]BRri/(1+[i0) (Ze))

fegdvg

1/(1+8¢) (Ze))
Te

+ ,
{u€>'yc€}\UkO:1 w;l(B

R

=1+ 11+ II1.

By Lemmas 2.5, 2.10 and 2.11, we have by the Holder inequality

/ ucedml—el ¢pdvg = o(1).
ue<yee

Ce

I=
Ae

(2.42)

(2.43)

(2.44)

(2.45)
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Note that Ui():l gl(Ber/(lwo)(Ee)) C {ue > vc.} for sufficiently small € > 0. In view of
Lemmas 2.8 and 2.9, we calculate by using (2.38) and the mean value theorem for integrals,

1= / feopdv,
UnZa 94 (B 1/1480) ()
Iy

=Y dlontea) 1 +o.(1) [

C _ 2
€ ucedrt 6)“fdvg
-1 -
k=1 Y B 1/(+80) (Te
€

) Ae

and

IIIS / B f€|¢|dvg
{’u.5>’YCs}\UkO:1 w;I(B

er/(1+50) (56))

Supy; |¢|

v {ue>re N ¥ (B 1/ 1t) (7))

L SuPs |9| (1 B / o ~ )\Eluge(zwe)ufdvg)
v Uk0=1 Yy, (BRT,i/(1+ﬁo)(Ié))

= o(1),

where o(1) — 0 as € — 0 first, and then R — oo. Inserting the estimates of I-III into (2.45),

IN

—1,,2 (4ml—e)u?
Al uze <dvg

we conclude our claim (2.44).
Secondly we calculate b, in (2.43). Similar to the estimate of (2.45), we have for any fixed
0<vy<1,

Ce

/ uee(‘”é*e)“fdvg =o0.(1)
Ae Ue <yCe

and
Ce / uee(‘”é*e)“fdvg = / ! ufe(““f)“fdvg +0(1)
Ae Ju e, UL, 11},:1(153&,,2/(1%0)(55)) Ae
=1+o0(1).
It then follows that
be = VOI;(E) ; /E“fe(w_e)uqu’g - Voli(E) +oc(1)- (2.46)

Thirdly we prove that c.u, is bounded in L'(3, g). Suppose on the contrary
||CeueHL1(E,g) — OQ. (2.47)

Since for any fixed 0 < vy < 1,

[ 1sddey = [ Ao+ [ g,
b Ue <YCe Ue >YCe

we have that f. is bounded in L'(X, g) by using a similar argument of the estimate of (2.45).

Obviously b, is a bounded sequence of numbers due to (2.46). Define we = ccuc/||cctel 11 (5,q)-
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Then (2.43) gives
fe - be

||CeueHL1(E,g)
/ wedvy = 0, (2.48)
>

wellL1(s,g) = 1.

Agywe = he == apwe + p on %

)

Clearly we have got

/E Ih|dvg, < C. (2.49)
By the Green representation formula,
1
e - cdvg, = G(z,y)he(y)d , 2.50
we) = o)y L = [ GG, (2.50)

where G(z,y) is the Green function for A, . In particular there exists a constant C' such that
|G (z,y)| < Cllogdisty, (z,y)| and |V, .G (z,y)| < C(disty, (z,y)) ! for all 2,y € X. By (1.17),
p(x) has a positive lower bound on . As a consequence

1
eldv,, < C elpdv,, = C. 2.51
Vol () . ekt <€ [ s, (251)

Combining (2.49) and (2.50), we obtain for any 1 < ¢ < 2,

/Z|V90w€‘qdvgo < C/Z |h6‘dvg0 < C.

While (2.50) and (2.51) imply that for any ¢ > 1, there holds ||w| pe(s,g,) < C. Therefore w.
is bounded in W14(X%, go) for any 1 < ¢ < 2. The Sobolev embedding theorem leads to that w,
converges to w weakly in W14(3, gg), strongly in L"(3, go) for any r < 2¢/(2 — q), and almost
everywhere in Y. Clearly w satisfies

Agw =apw in X,

/ wpdvg, = 0.
by

Since p € L”(E\Uf=1 By, 5(pi); go) for any small 6 > 0 and some r > 1, we have w €
CL(2\'S, o) and u € #g by using elliptic estimates. Then integration by parts gives

L|ng|2dvg=a/zw2dvg,

which leads to w = 0 due to v < Af. This contradicts [|w||11(s,9) = limeo [|we| 15,9 = 1.
Therefore c.u, is bounded in L*(X, g).
Fourthly we analyze the convergence of c.u.. Rewrite (2.43) as

Agy(ceue) = & = apceue + p(fe —be) on X,

/ Ceepdvg, = 0.
)

Now since &, is bounded in Ll(E, go), we conclude that c.u, is bounded in Wl’q(E, go) for any

(2.52)

1 < ¢ < 2 similar to w.. Hence c.u, converges to some G, weakly in Wh4(3, go), strongly in
L"(%, go) for any r < 2¢/(2 — q), and almost everywhere in X. In view of (2.44) and (2.46), G,
satisfies (2.42) in the distributional sense. Applying elliptic estimates to (2.52), we have that
ceue converges to G, in C1(X\ {G(x) US}). This completes the proof of the lemma. O
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2.4 Upper Bound Estimate

In this section, we aim to give an upper bound estimate of the functional in (1.18) under
assumptions (2.13) and (2.14). The calculation bases on the convergence of u. and ccue, which is
precisely studied in the previous section. Recall the isothermal coordinate system (Us, (20, ¥k)
near o (zg) (here we only take k from 1 to Iy) given as in (2.20). Set

1 .
4 min d, (0i(wo), (o))

To =
For § < 7o with By, o5(x¢) C Us,, there exist two positive constants ¢;(d) and c2(6) such
that Bgo7(1_cl(5))5(0k(.’[0)) - Qb;l(Bg) C Bg07(1+C2(5))5(0'k({E0)). Moreover, both 01(5) and Cg((S)
converge to 0 as 6 — 0. Hence, on By, 25(0k(z0)), by using isothermal coordinate system
(Uk,1x), (2.42) can be rewritten as the equation G, o, * satisfies on 1y (By, 26 (1 (20))). By

using elliptic estimates to that equation, we obtain:
-1 _
Gqo ka Ton I

where ¥, € Cl(Bgé) satisfies Uy (0) = 0 for small 6, and Ay is a constant defined by

log ly| + Ao + Wi (y), (2.53)

1 1
Ay = hrn (G ot (y) + onl, log|y|) = hﬂm <Ga(x) + onl, logdgo(x,xo)) . (2.54)

y (2.53), G, near xg can be locally presented by

1 -
Go(z) = — only log dg, (z,x0) + Ao + ¥ (z), (2.55)

where U € Cl(Bgmg(;(xO)) satisfies W (o) = 0. Furthermore, we obtain G, near o4(zo) can be
locally presented by

Golx) = —_  logdy, (z,01(20)) + Ag + U (o} ! (z)). (2.56)

1
27TI()

This conclusion is based on an observation that, for x € B, s 5(0k(x0)), by (2.55)

Calt) + logdgo<x,ak<xo>>—Ao—(Ga<a;1<x>>+ 1ogdgo<a;1<x>,xo>—Ao>

1 1
2l 2wy
= V(o;; ! (2)).
In the view of (2.10), integration by parts leads to
/ |V guc|dv, = / |V g0 tte |2y,
S\ULL, v (Bs) S\URL, i ' (Bs)

Lo ou
k=1 8wk (Bs) Z\Uk‘,:l P (Bs)

Lo Ju
:—Z/ Ue 6dsgo—i—oz/1L§d1)g—|—1—&—0(;(1).
= Jou sy On z

This together with (2.56), (2.42), and ccu, — G, in L3(2, 9) N CH(X\ {G(x0) US}) shows

1
/ B |V guc|*dv, = logd + Ao + a/ G2 dv, + 0.(1) + 05(1)
S\USL, i (Bs) 2m I



Trudinger—Moser Inequalities on a Closed Riemann Surface with a Symmetric Conical Metric 2279

We then calculate

1/ 1
2 1 _ —
/Ui‘)mkl(msa) Vard o =1= (QﬂO 10g6+A0+06(1)+06(1)> o

Set se = SUPyy-1(s,) Ue and e = (ue — s¢)*. Clearly, i € W&’Q(wgl(Bg)). Moreover, we have
V(oo ) Pds = [

¥t (Bs)

Then by using Lemma 1.3, we obtain

1 .
IV, it [2dv, < / IV u2dv, < .
B; To Jylo y-1(ms) Io

lim sup/ (e4’rmf/” — 1)dv, = lim sup/ V(y)e2f|y|26(e4ﬂ(1+ﬁ0)]0(ﬁf°¢_1)2/“ —1)dy
Y= (Bs)

e—0 e—0 Bs

= limsupeoé(l) Vb|y‘250 (e4ﬂ(1+ﬂo)lo(ﬁeo¢7l)2/‘r€ _ 1)dy

e—0 Bs
7 Vpeltos() 91940
< ) . (2.57)
14 B

For any fixed R > 0, we have u./ce = 1+0(1) on ¢;1(BRT2/(1+[j)) (k=1,...,1y). Hence, using
the definition of 7., we obtain
(4ml — e)u? < Arml(ie + sc)?
= 4mla? + 8mliis. + o (1)
= 4Amla? — 4(1 + Bo) log d + 8l Ag + o(1)
= dmlyd? [Te — 2(1 + Bo) log & + 4mlAg + o(1),

where o(1) — 0 as € — 0 first, and then § — 0. Combining this with (2.57), we have

/ e(47r€—e)u§d,ug < 6—2—2Be4ﬂZA0+0(1)/ e(47rl—e)ﬁ§/7'5d,ug
v (B, 1/a480)) Ve (B 1/a+s0)
— 67272[3064#2A0+0(1)/ (e(47r675)ﬁf/r€ _ 1)d’l}q—|—0(1)
Ve (B 1/G+60)) '
_9_ a2
<6 2 2ﬁoe47rle+o(1)/ (e(4ﬂ'é eu:/Te _ l)dvg+0(1)
¥y (Bs)
T Vel tantAoto(1)
- 1+ 5o
Letting € — 0 first, and then § — 0, we obtain
IV 1+4mwlAg
limsup/ e(4”6_5)“§dvg < Tiovoe (2.58)
=0 UL 0B 1aeg) 1+ 6o
Also we have
/ P e(4”é_6)“§dvg =I)(1+ 05(1))/ %e2f|x\25ﬁfe(4”5_e)ﬁ§dx
UkZi ¥ (B 1/a460)) B 1/at8)

IoA. i
= <1+o€<1>>( [N ’v’%dy+oe<1>)
c Br(0)

€

= (14 o(1)),

Ce
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where o(1) — 0 as € — 0 first, and then R — oo. This together with (2.58) and (2.41) leads to

sup /e“guzdvg < Vol, (%) + hm hrnsup/ eUml=e)ul gy,
ueHa, |ull1,a<1J% R0 -0 w1 i (B 1/G460))
7TIO Voel+47'rlA0
< Vol,(2) + 2.59

2.5 Existence of Extremal Functions

Recall that (X, g) has a conical singularity of the order By at xg with —1 < By <0, Iy = I(x0)
and By = B(x), where I(x) and B(x) are defined as in (1.8) and (1.9). In this section, we shall
construct a sequence of functions d, € A satisfying ||<f€\|1)a =1, and

At 71']0‘/061+47TEAO
e <dv, > Vol,(X) + ,
/E ) g( ) 1 + ﬂ()

where Ag and Vj are constants defined as in (2.54) and (2.22). The contradiction between (2.59)
and (2.60) implies that ¢ must be bounded, i.e., blow-up does not occur. This ends the proof
of Theorem 1.1.

Set R = (—loge)'/(1+50) Tt follows that R — oo and Re — 0 as € — 0. Hence, when € > 0
is sufficiently small, By, ore(0i(20)) N By 2re(0j(x0)) = 0 for 1 <i < j < I,. We firstly define
a cut-off function n on By, 2re(xo), which is radially symmetric with respect to zo. Besides, we

(2.60)

require 7 € C§°(Bg,,2re(20)) to be a nonnegative function satisfying n = 1 on By, re(zo) and
[Vl Lo (Ban.) = O(.). Then we define a sequence of functions ®, on ¥ for small € > 0 by

“0 dgg (2,0, (20))2(1+B0)

lo
ot —ame lo8(14 17§ . 2(1+50) . @ € Byy re(or(20)),
_ Golx) — (o (2)) V(o Yx B
®,. = ( ) 77( ¥ C( )) ( g ( ))’ HAS BQ072R€(01€($0)) \ goyRE(Uk(‘TO))’
Ga U
- 1’62\ Q)Zlo'k(BQRe)a

(2.61)
where k is taken from 1 to Iy, and W is the function mentioned in (2.55), both b and ¢ are
constants depending on € to be determined later.

Recall (2.42), Go(o(x)) = G4 (x) for any x € 3\ Ué‘;l{ak(xo)} and all ¢ € G. Combining
this with our premises that 7 is radially symmetric and any ¢ € G is an isometric map, for
sufficiently small e, we conclude

O (z) =D (0(z)), VoeG, aexcl. (2.62)

Set &, = &, — Voll(E) fz ®.dv,. We shall choose suitable b and ¢ to make P, = D/ ||Pell1,0 €
g

A Since the calculation is very similar to [26, pp. 3365-3368], we omit the details but give

its outline here. Integration by parts shows

[ VG,
E\Ukol 90, Re(0k(20))

- Z / G 0% a5, + / Gal,Gadv,
0B4q. re (o ( zo» “ on S\UL, Byg e (o (w0))

__ 1 2
= o, log Re + Ap + « /2 GLdvy + O(Re),
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and it follows that

1 1
IV, ®.[2dv, = 2 (_ onl, log Re + Ay + oz/EGidvg + O(Re)).

/z:\uiozl Byg,re(ox(0))
Here we use estimates

/ IV, (B)du, = O,

Byg.2Re (01 (20))\ By, Re (0k (z0))

and

/ V,GaV,(Un)dv, = O(Re).
Bgo,ZRe(gk(rO))\Bgo,Re(Uk(zo))
By a straightforward calculation, we obtain
1 o 242 —2-20
|V, ®|2dv, = <log —1+1log R*™% 1 O(R ) .
[Jiol Bgg,re(ok(20)) ! ! Amlc? L+ 50

Thus

1 log e 1
V,®|%dv, = - A G?dv, —
L| g ‘ Vg 02( 2l + 0+QL Vg Al

1 71'[0 _92_9
1 oy ).
+47r€ Og1+5o+O(R )>

/ 0, — B 2dv, = </ Gdey+0<R“ﬁ°>>~
by c =

In the view of ®, € Wh2(3, g) and ||®[|1.o = 1, it follows from the above equations that

Moreover, we have

1 1 1 7l
2= _ 1 Ay — 1 O 4 O(R2(+p0)
¢ only BT AT 108y g, T O )
and )
b= O(R™20+5o)y,
47 d +0O( )

On By, re(ok(x0)), we have the following estimate:
ﬂ'IO 7‘2(1+ﬁ0)
1+ ﬂo 62(1+BO)

7TIO
+4mlAy +1
TEAQ Og1+50

Aml(1 4 Bo)®2 > —2log (1 + ) +1—2(14 fo)loge

+ O(R™%72M),
Note that
/ 1 _, 1
Br (L4 705 [y|20+80)) |y |28 L+ (g, B2
This leads to

/ I e(4“£75)53dv9 =1+ O(RE))IO Vo|x‘2ﬁoe(47rlfe)(5>f(expwo m)2dl‘
UkO:1 BQO,RE(Uk(zO)) Bre

,/TVOIOelJr47rZAo
1+ 5o
On the other hand, by edmt—)®? > 1+ (4nl — e)fff, we obtain

> (14 O(Re))

3 4drl
/ e(47r£fe)<1>§d'ug > Volg(z) + T; / Gdeg + O(R7272ﬁ0),
E\Uiozl BQU,2R6(UIC(EO) & >
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which immediately lead to

/e(4ﬂ—é_6)&>§d’l}g :/I e(4w€—e)&>fdvg +/ . e(4‘n’f—e)&>fdvg
) UL, Bgg.2re(ok(z0)) S\UrLy Byg,2re(ok(20))

nVolpe! T4mtA0 Ay / ) i
> Vol, (2 G*dvg + O(R™272%),
> Vol,(X) + 1+ 6 +62 g vy + O( )
Note that R = (—loge)/(1+50) and O(R=2(1+5)) = o(1/c?). If € > 0 is chosen sufficiently
small, then we arrive at (2.60), as desired. O

3 Proof of Theorem 1.2

The method we use to proof of Theorem 1.2 is analogous to that of Theorem 1.1. Firstly, we
conclude 47/ is the best constant for the inequality (1.21) by a discussion totally similar to that
in Subsection 2.1. Then we introduce an orthonormal basis (e;) (1 < j < ny) of E, satisfying

E;=span{e1 ,..., en,},
ej € 0%, 9) N Ha, V1 < j < nyg,
/ lej2dv, = 1, V1 <j <ny,
b
/ eremdvg = 0, m # 1,
b

where ny = dim E,. Under this orthonormal basis, EL,L is written as

Ej—:{uejfg:/uejdvg:o, 1<j<n£}-
Y

Secondly, we prove the existence of extremals for subcritical Trudinger—-Moser functionals.
Namely, for any 0 < € < 4/, there exists some u, € EF NCHX\ {p1,...,pL},90) N C°(Z, go)

such that
/ e(47rffe)ufdvg — sup / e(4ﬂ£—€)u2dvg.
> uEEj' ull1,a<1 /2

Clearly u, satisfies the Euler-Lagrange equation

1 2 [ -
dml—e)u; €
Ague — aue = \ ueel Jue _ N g Wj €,
€ € j=1

[uell1,a =1,

/\ez/ufe(‘lﬂ*)“gdvg, (3.1)
b

1 2
— (477675)usd
He ™= Vol (2) /E“fe Vo>
1

dml—e)u?
ejuee( ) <dvy.

Wje =

Ae I

Assume u, converges to u* weakly in WH2(X%, g), strongly in L*(Z,g) for any s > 1, and
almost everywhere in 3. If u, is uniformly bounded, then we have by the Lebesgue dominated

convergence theorem

e—0

/ uejdvg = lim [ weejdvg =0, V1< j<ny,
b
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and thus u* € EX N CYZ\ {p1,...,pr}, 90) N C°(2, go) is the desired extremal function.
If blow-up happens, we still have analogs of Lemmas 2.8 and 2.9. For any 1 < ¢ < 2, we
obtain ccu, — G weakly in W4(X, g) , where G is green function satisfying

Io n
AGG —aG = ; 501:[(:0) _ Voli(Z) - ;ej (xo)ej,
/ Gejdvg =0, 1<j <ny,
Gz(ffi(x)) =G(x), 1<i<N, zeX\{oi(wo)}2;.
As in the proof of (2.59), we can draw the conclusion that

INY%
sup / e4“5“2dvg < Vol (2) + oo eltamtdo, (3.2)
weBF, llull,a<1/S 1+ Bo

where all the constants in (3.2) have the same definition as in the last section.

At last, we shall construct a sequence of functions to contradict (3.2). Denote

where @, is defined as in (2.61), and

P, e;) = e dv,.
J . Vg

Set W, = we — VOI;(Z) fz wedvg. We may choose suitable constants b and ¢ to make w, € Ej-. A
straightforward calculation shows

52
Al - “e€ o2 1
/e I@elo dy, :/e4wzws+o(loge)dv9
b b

1 G 2 IV 1447l Ao
(o) (s
€

02 1+ﬂ0
IGlI3 | mIgVpe! T4mtdo 1
> Vol, (X 47l .
= Voly(X) + 7T0—loge+ 14 Bo © log e

This indicates
sup / e4ﬂ“2dvg > Vol (2) + mloVo eltdmtao,
weEL, [ull1,a<17% 1+ 5o
which contradicts (3.2). Thus the proof of Theorem 1.2 is finished. O
Added in the proof: Note that similar results were also obtained in the paper (de Souza,
Manassés X., Trudinger-Moser type inequalities with a symmetric conical metric and a sym-
metric potential. Nonlinear Analysis 223 (2022) Paper No. 113030, 23 pages).
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