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Abstract This is a continuation of our previous work (Ann. Sc. Norm. Super. Pisa Cl. Sci., 20,

1295–1324, 2020). Let (Σ, g) be a closed Riemann surface, where the metric g has conical singularities at

finite points. Suppose G is a group whose elements are isometries acting on (Σ, g). Trudinger–Moser

inequalities involving G are established via the method of blow-up analysis, and the corresponding

extremals are also obtained. This extends previous results of Chen (Proc. Amer. Math. Soc., 1990),

Iula–Manicini (Nonlinear Anal., 2017), and the authors (2020).
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1 Introduction and Main Results

Let S
2 be the 2-dimensional sphere x2

1+x2
2+x2

3 = 1 endowed with the metric g1 = dx2
1+dx2

2+dx2
3

for all x = (x1, x2, x3) ∈ R
3. It was proved by Moser [18] that there exists a universal constant

C satisfying ∫
S2

e4πu2
dvg1 ≤ C (1.1)

for all smooth functions u with
∫

S2 |∇g1u|2dvg1 ≤ 1 and
∫

S2 udvg1 = 0, where ∇g1 and dvg1
stand for the gradient operator and the volume element on (S2, g1) respectively. Here 4π is the
best constant in the sense that when 4π is replaced by any α > 4π, the integrals are still finite,
but the universal constant C no longer exists. It was also remarked by Moser [19] that if one
considers even functions u, say u(x) = u(−x) for all x ∈ S

2, then the constant 4π in (1.1) would
double. Namely there exists an absolute constant C such that∫

S2
e8πu2

dvg1 ≤ C (1.2)

for all even functions u satisfying
∫

S2 |∇g1u|2dvg1 ≤ 1,
∫

S2 udvg1 = 0.
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A general manifold version of (1.1) was established by Fontana [14] via the estimation on
Green functions and by O’Neil’s lemma [20]. This comes from a Euclidean scheme designed by
Adams [1]. However, Li [15] was able to prove the inequality (1.1) by the method of blow-up
analysis. In a recent work [13], we extended (1.2) to the case of a closed Riemann surface with
a smooth “symmetric” metric. In the current paper, we consider the case of closed Riemann
surface with a “symmetric” singular metric.

Now we recall some notation from differential geometry. Let (Σ, g0) be a closed Riemann
surface, and dg0(·, ·) be the geodesic distance between two points of Σ. A smooth metric g
defined on Σ\{p1, . . . , pL} is said to have conical singularity of order βi > −1 at pi, i = 1, . . . , L,
if

g = ρg0, (1.3)

where ρ ∈ C∞(Σ \ {p1, . . . , pL}, g0) satisfies ρ > 0 on Σ \ {p1, . . . , pL} and

0 < C ≤ ρ(x)
dg0(x, pi)2βi

∈ C0(Σ, g0) (1.4)

for some constant C and i = 1, . . . , L. Here we write the righthand side of (1.4) in the sense
that ρ/dg0(x, pi)

2βi can be continuously extended to the whole surface (Σ, g0). With (1.3)
and (1.4), (Σ, g) is called a closed Riemann surface having conical singularities of the divisor
b =

∑L
i=1 βipi. For more details on singular surfaces, we refer the reader to Troyanov [23]. For

compact singular surface (Σ,g) with conical singularities {p1, . . . , pi0} each of order βi-th order,
(i = 1, . . . , i0). Still let ∇g and Δg be its gradient operator and Laplace–Beltrami operator
respectively, dvg be its volume element. On a closed Riemann surface (Σ, g) with singular
metric g as above, Stefano–Gabriele [21, Theorem 1.3] have proved that ∀p > 1,

sup∫
Σ udvg=0,

∫
Σ |∇u|2dvg≤1

∫
Σ

e4πβu2(1+α‖u‖2
Lq(Σ,g))dx <∞ (1.5)

can be obtained, if β < (1 + mini βi) while

α < λ1,p(Σ) = inf∫
Σ udvg=0,

∫
Σ |∇u|2dvg≤∞,

∫
Σ u

pdvg=1

∫
Σ

|∇gu|2dvg,

or if β = (1 + mini βi) while α small significantly. For earlier works on Trudinger–Moser in-
equalities involving singular metrics, we refer the reader to Troyanov [23], Chen [7], Adimurthi–
Sandeep [3], Adimurthi–Yang [5], Li–Yang [17], Csato–Roy [10], Yang–Zhu [26] and the refer-
ences therein.

It’s also necessary to introduce finite isometric group to describe symmetric metric as in [7]
and [13]. We say that G = {σ1, σ2, . . . , σN} is a finite isometric group acting on (Σ, g), if each
smooth map σk : Σ → Σ satisfies

(σ∗
kg0)x = g0σk(x) and ρ(σk(x)) = ρ(x) for all x ∈ Σ. (1.6)

This in particular implies

σ∗gx = gσ(x) for all x ∈ Σ. (1.7)

Note that G is a geometric structure on special Riemann surface (Σ, g). It is clear that G(pj) =
{σi(pj)}Ni=1 ⊂ {p1, . . . , pL} for all j, and that βk = βj provided that pk ∈ G(pj) for some j.
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Denote for any x ∈ Σ,
I(x) = �G(x) (1.8)

and

β(x) =

⎧⎨
⎩

0, x 	∈ {p1, . . . , pL},
βj , x = pj , 1 ≤ j ≤ L,

(1.9)

where �A is the number of all distinct elements in the set A. Noting that 1 ≤ I(x) ≤ N and
β(x) > −1 for all x ∈ Σ, one defines

	 = min
x∈Σ

min {I(x), I(x)(1 + β(x))} . (1.10)

Let W 1,2(Σ, g) be the completion of C∞(Σ, g0) under the norm

‖u‖W 1,2(Σ,g) =
(∫

Σ

(|∇gu|2 + u2
)
dvg

)1/2

. (1.11)

For convenience, we introduce the following subspace of W 1,2(Σ, g)

HG =
{
u ∈W 1,2(Σ, g) :

∫
Σ

udvg = 0, u(x) = u(σ(x)) for a.e. x ∈ Σ and all σ ∈ G
}
. (1.12)

Clearly, HG is a Hilbert space with inner product

〈u, v〉HG
=

∫
Σ

〈∇gu,∇gv〉dvg.

The first eigenvalue of Δg on HG is defined by

λG
1 = inf

u∈HG,
∫
Σ u

2dvg=1

∫
Σ

|∇gu|2dvg, (1.13)

where Δg is the Laplace–Beltrami operator with respect to the conical metric g. A direct
method of variation leads to λG

1 > 0. For any α strictly less than λG
1 , we can define an

equivalent norm of (1.11) on HG by

‖u‖1,α =
(∫

Σ

|∇gu|2dvg − α

∫
Σ

u2dvg

)1/2

. (1.14)

The first eigenfunction space with respect to λG
1 reads as

EλG
1

=
{
u ∈ HG : Δgu = λG

1 u
}
. (1.15)

According to Chen [7], there holds

sup
u∈HG,

∫
Σ |∇gu|2dvg≤1

∫
Σ

e4π�u2
dvg <∞, (1.16)

where 	 is given as in (1.10), and 4π	 is the best constant for (1.16) in the sense that if 4π	
is replaced by any γ > 4π	, then the supremum in (1.16) is infinity. Our main concern is the
attainability of the above supremum. We have the following more general result:

Theorem 1.1 Let (Σ, g) be a closed Riemann surface with conical singularities of the divisor
b =

∑L
i=1 βipi, where pi belongs to Σ and

−1 < βi ≤ 0, i = 1, . . . , L. (1.17)
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Suppose that G = {σ1, σ2, . . . , σN} is a group of isometries given in (1.6), and that 	, HG and
λG

1 are defined as in (1.10), (1.12) and (1.13) respectively. Then for any α < λG
1 , the supremum

sup
u∈HG, ‖u‖1,α≤1

∫
Σ

e4π�u2
dvg (1.18)

is attained by some function u0 ∈ C1(Σ\{p1, . . . , pL}, g0)∩C0(Σ, g0)∩HG satisfying ‖u0‖1,α =
1, where g0 is a smooth metric given as in (1.3) and ‖ · ‖1,α is defined as in (1.14).

When N = 1, Theorem 1.1 reduces to one of results of Iula–Mancini [21]. While if β(x) ≡ 0
for all x ∈ Σ, then Theorem 1.1 is exactly our earlier result [13]. To prove Theorem 1.1, we use
the method of blow-up analysis designed by Li [15]. Early groundbreaking works go back to
Carleson–Chang [6], Ding–Jost–Li–Wang [12] and Adimurthi–Struwe [4].

As in our previous work [13, Theorem 2], we may also consider the effect of higher order
eigenvalues of Δg on Trudinger–Moser inequalities. Set E0 = {0}, E⊥

0 = HG, and E1 = EλG
1

defined as in (1.15). By induction, Ej and E⊥
j can be defined for any positive integer j. To be

precise, for any j ≥ 1, we set Ej = EλG
1
⊕ · · · ⊕EλG

j
and

E⊥
j =

{
u ∈ HG :

∫
Σ

uvdvg = 0, ∀v ∈ Ej

}
, (1.19)

where λG
j is the j-th eigenvalue of Δg given by

λG
j = inf

u∈E⊥
j−1,

∫
Σ u

2dvg=1

∫
Σ

|∇gu|2dvg, (1.20)

and EλG
j

= {u ∈ E⊥
j−1 : Δgu = λG

j u} is the corresponding j-th eigenfunction space. Obviously
for any fixed α < λG

j+1, ‖ · ‖1,α is equivalent to ‖ · ‖W 1,2(Σ,g) on the space E⊥
j .

Our second result reads as follows:

Theorem 1.2 Let (Σ, g) be a closed Riemann surface with conical singularities of divisor
b =

∑L
i=1 βipi, where pi belongs to Σ and −1 < βi ≤ 0 for i = 1, . . . , L. Suppose that

G = {σ1, σ2, . . . , σN} is a group of isometries given as in (1.6). Then for any integer j ≥ 1
and any real number α satisfying α < λG

j+1, the supremum

sup
u∈E⊥

j , ‖u‖1,α≤1

∫
Σ

e4π�u2
dvg (1.21)

can be attained by some function u0 ∈ C1(Σ\{p1, . . . , pL}, g0)∩C0(Σ, g0)∩E⊥
j with ‖u0‖1,α = 1,

where λG
j+1, E

⊥
j , 	 and ‖ · ‖1,α are defined as in (1.13), (1.19), (1.10), and (1.14) respectively,

and g0 is a smooth metric given as in (1.3).

The proof of Theorem 1.2 is similar to that of Theorem 1.1. The difference is that we work
on the space E⊥

j instead of HG. Note that E⊥
j is still a Hilbert space for any j ≥ 1. For more

details of Trudinger–Moser inequalities involving eigenvalues, we refer the reader to [2, 22, 25].
In both proofs of Theorems 1.1 and 1.2, to derive an upper bound of the Trudinger–Moser
functional, we need a singular version of Carleson–Chang’s estimate, which was in literature
due to Csato–Roy [10] (see also Iula–Mancini [21] and Li–Yang [17]), namely

Lemma 1.3 Let Br ⊂ R
2 be a ball centered at 0 with radius r. If φε ∈ W 1,2

0 (Br) satisfies
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∫
Br

|∇φε|2dx ≤ 1, and φε ⇀ 0 weakly in W 1,2
0 (Br), then for any β with −1 < β ≤ 0, there holds

lim sup
ε→0

∫
Br

e(1+β)4πφ2
ε |x|2βdx ≤

∫
Br

|x|2βdx+
πe

1 + β
r2+2β. (1.22)

The proof of Lemma 1.3 is based on a rearrangement argument, Hardy–Littlewood inequal-
ity, and Carleson–Chang’s estimate [6]. In the remaining part of this paper, we prove Theorems
1.1 and 1.2 in Sections 2 and 3 respectively. Throughout this paper, we do not distinguish se-
quence and subsequence. Constants are often denoted by the same C from line to line, even on
the same line.

2 Trudinger–Moser Inequalities Involving the First Eigenvalue

In this section we shall prove Theorem 1.1 by using the method of blow-up analysis, which was
originally used in this topic by Li [15, 16], and extensively used by Yang [24, 25], Li–Yang [17],
de Souza–do Ó [11], Yang–Zhu [26], Iula–Mancini [21] and others. The proof is divided into
several subsections below.

2.1 The Best Constant

Let 	 be defined as in (1.10). It was proved by Chen [7] that

sup
u∈HG,

∫
Σ |∇u|2dvg≤1

∫
Σ

eγu
2
dvg <∞, ∀γ ≤ 4π	; (2.1)

moreover, the above integrals are still finite for any γ > 4π	, but the supremum

sup
u∈HG,

∫
Σ |∇u|2dvg≤1

∫
Σ

eγu
2
dvg = ∞, ∀γ > 4π	. (2.2)

We now take the first eigenvalue λG
1 of Δg (see (1.13) above) into account and have the following:

Lemma 2.1 For any α < λG
1 , there exists a real number γ0 > 0 such that

sup
u∈HG, ‖u‖1,α≤1

∫
Σ

eγ0u
2
dvg <∞,

where ‖ · ‖1,α is defined as in (1.14).

Proof Assume α < λG
1 and ‖u‖1,α ≤ 1. Then(

1 − α

λG
1

) ∫
Σ

|∇gu|2dvg ≤
∫

Σ

|∇gu|2dvg − α

∫
Σ

u2dvg ≤ 1.

This together with (2.1) implies the existence of γ0, as desired. �
In view of Lemma 2.1, for any fixed α < λG

1 , we set

γ∗ = sup
{
γ0 : sup

u∈HG, ‖u‖1,α≤1

∫
Σ

eγ0u
2
dvg <∞

}
.

Lemma 2.2 There holds γ∗ ≥ 4π	.

Proof Suppose γ∗ < 4π	. Then there exists a real number γ1 with γ∗ < γ1 < 4π	 and a
function sequence (uj) ⊂ HG such that ‖uj‖1,α ≤ 1 and∫

Σ

eγ1u
2
jdvg → ∞ as j → ∞. (2.3)
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Since α < λG
1 , we have that (uj) is bounded in W 1,2(Σ, g). Thus, uj converges to some u0

weakly in W 1,2(Σ, g), strongly in L2(Σ, g) and almost everywhere in Σ. This particularly leads
to

‖uj − u0‖2
1,α = ‖uj‖2

1,α − ‖u0‖2
1,α + oj(1).

Clearly u0 ∈ HG. We now claim that u0 ≡ 0. For otherwise, since ‖uj‖1,α ≤ 1, there must
hold ∫

Σ

|∇g(uj − u0)|2dvg ≤ 1 − 1
2
‖u0‖2

1,α (2.4)

for sufficiently large j. Noting that u2
j ≤ (1 + ν)(uj − u0)2 + (1 + ν−1)u2

0 for any ν > 0, and
that eu

2
0 ∈ Lq(Σ, g) for all q > 1, we conclude from (2.1) and (2.4),∫

Σ

eγ1u
2
jdvg ≤ C (2.5)

for some constant C depending only on γ1, 	 and u0. This contradicts (2.3) and confirms our
claim u0 ≡ 0. As a consequence∫

Σ

|∇guj |2dvg ≤ 1 + α

∫
Σ

u2
jdvg = 1 + oj(1).

This together with (2.1) gives (2.5), which again contradicts (2.3) and thus completes the proof
of the lemma. �

More precisely we have

Lemma 2.3 There holds γ∗ = 4π	.

Proof By Lemma 2.2, γ∗ ≥ 4π	. Suppose γ∗ > 4π	. Fix some γ2 with 4π	 < γ2 < γ∗. In view
of (2.2), there exists a sequence of functions (Mk) ⊂ HG such that∫

Σ

|∇gMk|2dvg ≤ 1 (2.6)

and ∫
Σ

eγ2M
2
kdvg → ∞. (2.7)

Obviously (Mk) is bounded in W 1,2(Σ, g). With no loss of generality, we assume Mk converges
to M0 weakly in W 1,2(Σ, g), strongly in L2(Σ, g), and almost everywhere in Σ. Using the same
argument as in the proof of Lemma 2.2, we have M0 ≡ 0. It then follows that

‖Mk‖2
1,α =

∫
Σ

|∇gMk|2dvg − α

∫
Σ

M2
kdvg = 1 + ok(1). (2.8)

Combining (2.7) and (2.8), we have for some γ3 with γ2 < γ3 < γ∗,

sup
u∈HG, ‖u‖1,α≤1

∫
Σ

eγ3u
2
dvg = ∞.

This contradicts the definition of γ∗. Therefore γ∗ must be 4π	. �

2.2 Maximizers for Subcritical Functionals

In this subsection, using a direct method of variation, we show existence of maximizers for
subcritical Trudinger–Moser functionals. Let α < λG

1 be fixed. Then we have
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Lemma 2.4 For any 0 < ε < 4π	, there exists some uε ∈ C1(Σ\{p1, . . . , pL}, g0)∩C0(Σ, g0)∩
HG with ‖uε‖1,α = 1 satisfying∫

Σ

e(4π�−ε)u2
εdvg = sup

u∈HG,‖u‖1,α≤1

∫
Σ

e(4π�−ε)u2
dvg. (2.9)

Moreover uε satisfies the Euler–Lagrange equation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�guε − αuε =
1
λε
uεe(4π�−ε)u2

ε − με
λε

in Σ,∫
Σ

uεdvg = 0,

λε =
∫

Σ

u2
εe

(4π�−ε)u2
εdvg,

με =
1

Volg(Σ)

∫
Σ

uεe(4π�−ε)u2
εdvg,

(2.10)

where Δg is the Laplace–Beltrami operator on (Σ, g).

Proof Fix α < 4π	 and 0 < ε < 4π	. Take a maximizing function sequence (uj) ⊂ HG

verifying that ‖uj‖1,α ≤ 1, and that as j → ∞,∫
Σ

e(4π�−ε)u2
jdvg → sup

u∈HG, ‖u‖1,α≤1

∫
Σ

e(4π�−ε)u2
dvg.

Clearly (uj) is bounded in W 1,2(Σ, g). With no loss of generality we assume uj converges
to uε weakly in W 1,2(Σ, g), strongly in Ls(Σ, g) for any s > 1, and almost everywhere in Σ.
This implies uε ∈ HG and ‖uε‖1,α ≤ 1. By Lemma 2.3, we have that e(4π�−ε)u2

j converges to
e(4π�−ε)u2

ε in L1(Σ, g) as j → ∞. Thus (2.9) holds. It is easy to see that ‖uε‖1,α = 1.
By a simple calculation, uε is a distributional solution of the Euler–Lagrange equation

(2.10). In view of g = ρg0, applying elliptic estimates to (2.10), we conclude uε ∈ C1(Σ \
{p1, . . . , pL}, g0) ∩ C0(Σ, g0). �

Using the same argument as [25, p. 3184], we get

lim inf
ε→0

λε > 0, |με|/λε ≤ C. (2.11)

2.3 Blow-up Analysis

Since uε is bounded in W 1,2(Σ, g), we assume uε converges to some u∗ weakly in W 1,2(Σ, g),
strongly in Ls(Σ, g) for any s > 1, and almost everywhere in Σ. Obviously ‖u∗‖1,α ≤ 1. If uε
is uniformly bounded, then by the Lebesgue dominated convergence theorem,∫

Σ

e4π�u∗2
dvg = lim

ε→0

∫
Σ

e(4π�−ε)u2
εdvg = sup

u∈HG,‖u‖1,α≤1

∫
Σ

e4π�u2
dvg . (2.12)

Thus u∗ is the desired maximizer. In the following we assume maxΣ |uε| → ∞ as ε→ 0. Since
−uε still satisfies (2.9) and (2.10), we assume with no loss of generality

cε = uε(xε) = max
Σ

|uε| → ∞ (2.13)

and
xε → x0 ∈ Σ (2.14)

as ε→ 0. To begin with, we have
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Lemma 2.5 uε converges to 0 weakly in W 1,2(Σ, g), strongly in Ls(Σ, g) for any s > 1, and
almost everywhere in Σ.

Proof Since uε is bounded in W 1,2(Σ, g), we assume uε converges to u0 weakly in W 1,2(Σ, g),
strongly in Ls(Σ, g) for any s > 1, and almost everywhere in Σ. Suppose u0 	≡ 0. Then

‖uε − u0‖2
1,α = ‖uε‖2

1,α − ‖u0‖2
1,α + oε(1) ≤ 1 − 1

2
‖u0‖2

1,α

for sufficiently small ε > 0. Using the Young inequality, the Hölder inequality and Lemma 2.3,
we have that e(4π�−ε)u2

ε is bounded in Lq(Σ, g) for some q > 1. Noting (2.11) and applying
elliptic estimate to (2.10), we obtain uε is uniformly bounded. This contradicts (2.13). Hence
u0 ≡ 0. �

Recalling the definitions of I(x), β(x) and 	, namely (1.8)–(1.10), under the assumptions
(2.13) and (2.14), we obtain the following energy concentration phenomenon. From now on, we
write I0 = I(x0) and β0 = β(x0) for short, where x0 is introduced in (2.14).

Lemma 2.6 (i) limr→0 limε→0

∫
Bg0,r(x0)

|∇g0uε|2dvg0 = 1/I0, where Bg0,r(x0) denotes the
geodesic ball centered at x0 with radius r with respect to the metric g0; (ii) I0(1 + β0) = 	.

Proof We first prove the assertion (i). With no loss of generality, we assume σ1(x0), . . . , σI0(x0)
are all distinct points in G(x0). Choose some r0 > 0 such that Bg0,r0(σj(x0))∩Bg0,r0(σi(x0)) =
∅ for every 1 ≤ i < j ≤ I0. Since

∫
Σ
|∇g0uε|2dvg0 =

∫
Σ
|∇guε|2dvg = 1 + oε(1) and

Bg0,r0(σk(x0)) = σk(Bg0,r0(x0)) for k = 1, . . . , I0, we have∫
Bg0,r0 (x0)

|∇g0uε|2dvg0 ≤ 1
I0

+ oε(1). (2.15)

Suppose (i) does not hold. There would exist a constant ν0 > 0 and 0 < r1 < r0 such that∫
Bg0,r1 (x0)

|∇g0uε|2dvg0 ≤ 1
I0

− ν0 (2.16)

for all sufficiently small ε > 0. Since 	 ≤ min{I0, I0(1 + β0)} ≤ I0, one finds a p > 1 such
that e4π�u2

ε is bounded in Lp(Bg0,r1/2(x0)). In view of (2.11) and Lemma 2.5, one has by
applying elliptic estimates to (2.10) that uε is bounded in L∞(Bg0,r1/4(x0)), which contradicts
the assumption (2.13). This confirms (i).

(ii) Suppose not. Obviously 	 < I0(1 + β0). By (1.17) and (1.9), we have β0 ≤ 0. This
together with (i) and an inequality of Adimurthi–Sandeep [3, p. 587] implies that there exist
r0 > 0, p > 1 and C > 0 satisfying∫

Bg0,r0 (x0)

e4π�pu2
ερdvg0 ≤ C.

Applying elliptic estimates to (2.10), we conclude that uε is bounded in L∞(Bg0,r0/2(x0)),
contradicting the assumption (2.13). Therefore (ii) holds. �

Set
rε =

√
λεc

−1
ε e−(2π�−ε/2)c2ε . (2.17)

Using the same argument as that of derivation of [13, the equation (42)], we have for any
0 < a < 4π	,

r2ε c
2
εe

(4π�−ε−a)c2ε = oε(1). (2.18)
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In particular, rε → 0 as ε→ 0. And it follows from (2.18) that

r2ε c
q
ε → 0, ∀q > 1. (2.19)

Keep in mind that g and g0 satisfy (1.3), (1.4), and (1.6). For any 1 ≤ k ≤ N , we take an
isothermal coordinate system (Uσk(x0), ψk; {y1, y2}) near σk(x0) such that ψk : Uσk(x0) → Ω ⊂
R

2 is a homomorphism, ψk(σk(x0)) = 0, and

g0 = e2fk(dy2
1 + dy2

2), (2.20)

where fk ∈ C1(Ω,R) satisfies fk(0) = 0. If g has a conical singularity of the order β0 at x0,
then in the above coordinate system, g can be represented by

g = Vke
2fk |y|2β0(dy2

1 + dy2
2), (2.21)

where Vk ∈ C0(Ω,R). It follows from (1.4) and (1.6) that

Vk(0) = lim
dg0 (x,x0)→0

ρ(x)
dg0(x, σk(x0))2β0

= V0, (2.22)

where V0 is a positive constant independent of k. In particular, if β0 = 0, with no loss of
generality, one can take Vk(y) ≡ 1, and (2.21) reduces to (2.20). Writing x̃ε = ψ−1

k (xε), we have
the following:

Lemma 2.7 If β0 < 0, then |x̃ε|1+β0/rε is uniformly bounded.

Proof For otherwise, up to a subsequence, we have

|x̃ε|1+β0/rε → ∞. (2.23)

For y ∈ Ω1,ε := {y ∈ R
2 : x̃ε + rε|x̃ε|−β0y ∈ Ω}, we denote

wε(y) = c−1
ε (uε ◦ ψ−1

k )(x̃ε + rε|x̃ε|−β0y), vε(y) = cε
(
(uε ◦ ψ−1

k )(x̃ε + rε|x̃ε|−β0y) − cε
)
.

By (2.10), we calculate on Ω1,ε,

−ΔR2wε = Vk(x̃ε + rεy)e2fk(x̃ε+rεy)|x̃ε
+ rεy|2β0 |x̃ε|−2β0(αr2εwε + c−2

ε wεe(4π�−ε)c2ε(w2
ε−1) − c−1

ε r2εμελ
−1
ε ),

−ΔR2vε = Vk(x̃ε + rεy)e2fk(x̃ε+rεy)|x̃ε
+ rεy|2β0 |x̃ε|−2β0(αc2εr

2
εwε + wεe(4π�−ε)(1+wε)vε − cεr

2
εμελ

−1
ε ),

where ΔR2 stands for the standard Laplacian operator on R
2. It follows from (2.23) that both

e2f(x̃ε+rεy) and |x̃ε+ rεy|2β0 · |x̃ε|−2β0 are 1+oε(1) in BR for any fixed R > 0. Combining (2.11)
with (2.19), we have cεr2εμελ−1

ε is oε(1). Applying elliptic estimates to the above two equations,
we obtain

wε → 1 in C1
loc(R

2) (2.24)

and vε → v0 in C1
loc(R

2), where v0 satisfies⎧⎨
⎩

−ΔR2v0 = V0e8π�v0 in R
2,

v0(0) = 0 = supR2 v0
(2.25)

in the is distributional sense. With the transformation of coordinate, for any fixed R > 0,∫
BR(0)

e8π�v0dy = lim
ε→0

∫
BR(0)

e(4π�−ε)ũ2
ε(x̃ε+rεy))e−(4π�−ε)c2εdy
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= lim
ε→0

λ−1
ε

∫
BRrε|x̃ε|β0 (x̃ε)

|x̃ε|2β0c2εe
(4π�−ε)ũ2

εdy

= lim
ε→0

(V0λε)−1

∫
BRrε|x̃ε|β0 (x̃ε)

V0e2f |y|2β0 ũ2
εe

(4π�−ε)ũ2
εdy

= lim
ε→0

(I0V0λε)−1

∫
∑ I0

k=1 φ
−1
k (BRrε|x̃ε|β0 (x̃(k)))

u2
εe

(4π�−ε)u2
εdvg

≤ 1
I0V0

.

Pass the limit R → +∞, ∫
R2

e8π�v0dy ≤ 1
I0V0

. (2.26)

In view of (2.25) and (2.26), we have by a classification theorem of Chen–Li [8],

v0(y) = − 1
4π	

log(1 + π	V0|y|2).
It then follows that ∫

R2
e8πv0dy =

1
	V0

. (2.27)

Since β0 < 0, it follows from (ii) of Lemma 2.6 that 	 < I0. As a consequence, there is a
contradiction between (2.27) and (2.26). This ends the proof of the lemma. �

We now define two sequences of functions

ψε(y) = c−1
ε ũε(x̃ε + r1/(1+β0)

ε y), ϕε(y) = cε(ũε(x̃ε + r1/(1+β0)
ε y) − cε) (2.28)

for y ∈ Ω2,ε := {y ∈ R
2 : x̃ε + r

1/(1+β0)
ε y ∈ Ω}. Then there holds the following:

Lemma 2.8 If β0 < 0, then (i) ψε → 1 in C0
loc(R

2) ∩W 1,2
loc (R2); (ii) ϕε → ϕ in C0

loc(R
2) ∩

W 1,2
loc (R2), where

ϕ(y) = − 1
4π	

log
(

1 +
πI0V0

1 + β0
|y|2(1+β0)

)
. (2.29)

Proof By (2.10) and (2.17), we have on Ω2,ε,

− ΔR2ψε = Vk(x̃ε + r1/(1+β0)
ε y)e2fk(x̃ε+r

1/(1+β0)
ε y)|y + r−1/(1+β0)

ε x̃ε|2β0(αr2εψ

+ c−2
ε ψεe(4π�−ε)c2ε(ψ2

ε−1) − c−1
ε r2εμελ

−1
ε ), (2.30)

− ΔR2ϕε = Vk(x̃ε + r1/(1+β0)
ε y)e2fk(x̃ε+r

1/(1+β0)
ε y)|y + r−1/(1+β0)

ε x̃ε|2β0(αc2εr
2
εψε

+ ψεe(4π�−ε)(1+ψε)ϕε − cεr
2
εμελ

−1
ε ). (2.31)

In view of Lemma 2.7, r−1/(1+β0)
ε x̃ε is a bounded sequence of points. We may assume with no

loss of generality that r−1/(1+β0)
ε x̃ε → p ∈ R

2 as ε → 0. Note that β > −1. Applying elliptic
estimates to (2.30), we obtain ψε → ψ in C0

loc(R
2) ∩ W 1,2

loc (R2), where ψ is a distributional
harmonic function. Then the Liouville theorem leads to ψ ≡ 1. Further application of elliptic
estimates on (2.31) implies that

ϕε → ϕ in C0
loc(R

2) ∩W 1,2
loc (R2), (2.32)

where ϕ is a distributional solution of⎧⎨
⎩

−ΔR2ϕ = |y + p|2β0V0e8πI0(1+β0)ϕ in R
2,

ϕ(0) = 0 = maxR2 ϕ.
(2.33)
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For any fixed R > |p| + 1, by Fatou’s lemma and lemma 2.7, we have∫
BR(−p)

V0|x+ p|2β0e8π�ϕ0dx

≤ lim sup
ε→0

∫
BR(−p)

V0|x+ r−1/(1+β0)
ε x̃ε|2β0e(4π�−ε)(1+ψε)ϕεdx

≤ lim sup
ε→0

c2ε
λε

∫
2B

Rr
1/(1+β0)
ε

V0e2f |y|2β0e(4π�−ε)ũ2
εdx

≤ lim sup
ε→0

1
λε

∫
φ−1(B

2Rr
1/(1+β0)
ε

)

u2
εe

(4π�−ε)u2
εdvg

≤ lim
ε→0

1
λε

∫
Σ

u2
εe

(4π�−ε)u2
εdvg ≤ 1.

This suggests ∫
R2
V0|y + p|2β0e8π�ϕdy ≤ 1. (2.34)

In view of (2.33) and (2.34), a classification theorem of Chen–Li [9] suggests the representation:

ϕ(y) = − 1
4π	

log
(

1 +
πI0V0

1 + β0
|y + p|2(1+β0)

)
. (2.35)

Since ϕ(0) = 0, we have p = 0. By a straightforward calculation,∫
R2
V0|y|2β0e8π�ϕ(y)dy =

1
I0
, (2.36)

as desired. �
In the case β0 = 0, we have an analog of Lemma 2.8, namely

Lemma 2.9 Let ψε and ϕε be defined as in (2.28). If β0 = 0, then ψε → 1 and ϕε → ϕ in
C1

loc(R
2), where ϕ(y) = − 1

4πI0
log

(
1 + πI0ρ(x0)|y|2

)
, ρ is given as in (1.3) and (1.4).

Proof Noting that if β0 = 0, we have by applying elliptic estimates to (2.30) and (2.31) that
ψε → 1 and ϕε → ϕ in C1

loc(R
2), where ϕ satisfies⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−ΔR2ϕ = ρ(x0)e8πI0ϕ in R
2,

ϕ(0) = 0 = maxR2 ϕ,∫
R2
ρ(x0)e8πI0ϕdy ≤ 1.

Then a result of Chen–Li [8] leads to ϕ(y) = − 1
4πI0

log
(
1 + πI0ρ(x0)|y|2

)
. As a consequence,∫

R2
ρ(x0)e8πI0ϕ(y)dy =

1
I0
, (2.37)

which is an analog of (2.36). �

By (2.17), Lemmas 2.8 and 2.9, we have for any fixed R > 0,∫
BR(0)

V0|y|2β0e8π�ϕdy = lim
ε→0

∫
BR(0)

V0|y|2β0e(4π�−ε)(1+ψε)ϕεdy

= lim
ε→0

1
λε

∫
B

Rr
1/(1+β0)
ε

(x̃ε)

V0e2fk |y|2β0 ũ2
εe

(4π�−ε)ũ2
εdy
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= lim
ε→0

1
λε

∫
ψ−1

k (B
Rr

1/(1+β0)
ε

(x̃ε))

u2
εe

(4π�−ε)u2
εdvg,

where V0 = ρ(x0) and 	 = I0 if β0 = 0. This together with (2.36) and (2.37) implies that

lim
R→∞

lim
ε→0

1
λε

∫
ψ−1

k (B
Rr

1/(1+β0)
ε

(x̃ε))

u2
εe

(4π�−ε)u2
εdvg =

1
I0
. (2.38)

Noting that

λε =
∫

⋃I0
k=1 ψ

−1
k (B

Rr
1/(1+β0)
ε

(x̃ε))

u2
εe

(4π�−ε)u2
εdvg+

∫
Σ\⋃I0

k=1 ψ
−1
k (B

Rr
1/(1+β0)
ε

(x̃ε))

u2
εe

(4π�−ε)u2
εdvg,

we conclude from (2.38) that

lim
R→∞

lim
ε→0

1
λε

∫
Σ\⋃I0

k=1 ψ
−1
k (B

Rr
1/(1+β0)
ε

(x̃ε))

u2
εe

(4π�−ε)u2
εdvg = 0. (2.39)

As in [15], we define uε,γ = min{uε, γcε} for any 0 < γ < 1, and have

Lemma 2.10 For any 0 < γ < 1, there holds

lim
ε→0

∫
Σ

|∇guε,γ |2dvg = γ.

Proof For fixed R > 0 and sufficiently small ε, in view of (2.10), we have by using integration
by parts, (2.38) and (2.39) that∫

Σ

|∇guε,γ |2dvg =
∫

Σ

∇guε,γ∇guεdvg

= λ−1
ε

∫
⋃I0

k=1 ψ
−1
k (B

Rr
1/(1+β0)
ε

(x̃ε))

uεuε,γe(4π�−ε)u2
εdvg

+ λ−1
ε

∫
Σ\⋃I0

k=1 ψ
−1
k (B

Rr
1/(1+β0)
ε

(x̃ε))

uεuε,γe(4π�−ε)u2
εdvg + oε(1)

= (1 + oε(1))γλε−1

∫
⋃I0

k=1 ψ
−1
k (B

Rr
1/(1+β0)
ε

(x̃ε))

u2
εe

(4π�−ε)u2
εdvg + o(1)

= γ + o(1),

where o(1) → 0 as ε→ 0 first, and then R → ∞. The lemma follows immediately. �
Lemma 2.11 There holds cε/λε → 0 as ε→ 0.

Proof For any fixed 0 < γ < 1,∫
Σ

e(4π�−ε)u2
εdvg =

∫
uε≤γcε

e(4π�−ε)u2
εdvg +

∫
uε>γcε

e(4π�−ε)u2
εdvg

≤
∫

Σ

e(4π�−ε)u2
ε,γdvg +

λε
γ2c2ε

. (2.40)

By Lemmas 2.5 and 2.10, we conclude∫
Σ

e(4π�−ε)u2
ε,γdvg = Volg(Σ) + oε(1).
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Passing to the limit ε→ 0 first, and then γ → 1 in (2.40), we have

sup
u∈HG, ‖u‖1,α≤1

∫
Σ

e4π�u2
dvg = lim

ε→0

∫
Σ

e4π�u2
εdvg ≤ Volg(Σ) + lim inf

ε→0

λε
c2ε
. (2.41)

Since
sup

u∈HG, ‖u‖1,α≤1

∫
Σ

e4π�u2
dvg > Volg(Σ),

we have by (2.41) that lim infε→0 λε/c
2
ε > 0. In particular cε/λε → 0 as ε→ 0. �

Recall G(x0) = {σ1(x0), . . . , σI0(x0)}, and S = {p1, . . . , pL}. The convergence of cεuε is
precisely described as follows.

Lemma 2.12 For any 1 < q < 2, we have cεuε converges to Gα weakly in W 1,q(Σ, g0),
strongly in L2q/(2−q)(Σ), and in C1(Σ \ {G(x0) ∪ S}), where Gα is a Green function satisfying⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Δg0Gα − αρGα =
1
I0

I0∑
i=1

δσi(x0) −
ρ

Volg(Σ)
,

∫
Σ

Gαdvg = 0,

Gα(σi(x)) = Gα(x), x ∈ Σ \ {σj(x0)}I0j=1, 1 ≤ i ≤ I0.

(2.42)

Proof In view of (2.10), one has⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δg(cεuε) − α(cεuε) = fε − bε on Σ,∫
Σ

cεuεdvg = 0,

fε =
1
λε
cεuεe(4π�−ε)u2

ε ,

bε =
cεμε
λε

.

(2.43)

Firstly we claim that

fεdvg ⇀
1
I0

I0∑
i=1

δσi(x0) (2.44)

weakly in the sense of measure, or equivalently, there holds
∫

Σ

fεφdvg =
1
I0

I0∑
i=1

φ(σi(x0)) + oε(1), ∀φ ∈ C0(Σ, g0).

To see it, we estimate for any fixed 0 < γ < 1 and R > 0∫
Σ

fεφdvg =
∫
uε≤γcε

fεφdvg +
∫
{uε>γcε}∩

⋃I0
k=1 ψ

−1
k (B

Rr
1/(1+β0)
ε

(x̃ε))

fεφdvg

+
∫
{uε>γcε}\

⋃I0
k=1 ψ

−1
k (B

Rr
1/(1+β0)
ε

(x̃ε))

fεφdvg

:= I + II + III. (2.45)

By Lemmas 2.5, 2.10 and 2.11, we have by the Hölder inequality

I =
cε
λε

∫
uε≤γcε

uεe(4π�−ε)u2
ε,γφdvg = oε(1).
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Note that
⋃I0
k=1 ψ

−1
k (B

Rr
1/(1+β0)
ε

(x̃ε)) ⊂ {uε > γcε} for sufficiently small ε > 0. In view of
Lemmas 2.8 and 2.9, we calculate by using (2.38) and the mean value theorem for integrals,

II =
∫

⋃I0
k=1 ψ

−1
k (B

Rr
1/(1+β0)
ε

(x̃ε))

fεφdvg

=
I0∑
k=1

φ(σk(x0))(1 + oε(1))
∫
ψ−1

k (B
Rr

1/(1+β0)
ε

(x̃ε))

cε
λε
uεe(4π�−ε)u2

εdvg

=
I0∑
i=1

φ(σi(x0))
(

1
I0

+ o(1)
)
,

and

III ≤
∫
{uε>γcε}\

⋃I0
k=1 ψ

−1
k (B

Rr
1/(1+β0)
ε

(x̃ε))

fε|φ|dvg

≤ supΣ |φ|
γ

∫
{uε>γcε}\

⋃I0
k=1 ψ

−1
k (B

Rr
1/(1+β0)
ε

(x̃ε))

λ−1
ε u2

εe
(4π�−ε)u2

εdvg

≤ supΣ |φ|
γ

(
1 −

∫
⋃I0

k=1 ψ
−1
k (B

Rr
1/(1+β0)
ε

(x̃ε))

λ−1
ε u2

εe
(4π�−ε)u2

εdvg

)

= o(1),

where o(1) → 0 as ε → 0 first, and then R → ∞. Inserting the estimates of I–III into (2.45),
we conclude our claim (2.44).

Secondly we calculate bε in (2.43). Similar to the estimate of (2.45), we have for any fixed
0 < γ < 1,

cε
λε

∫
uε≤γcε

uεe(4π�−ε)u2
εdvg = oε(1)

and
cε
λε

∫
uε>γcε

uεe(4π�−ε)u2
εdvg =

∫
⋃I0

k=1 ψ
−1
k (B

Rr
1/(1+β0)
ε

(x̃ε))

1
λε
u2
εe

(4π�−ε)u2
εdvg + o(1)

= 1 + o(1).

It then follows that

bε =
1

Volg(Σ)
cε
λε

∫
Σ

uεe(4π�−ε)u2
εdvg =

1
Volg(Σ)

+ oε(1). (2.46)

Thirdly we prove that cεuε is bounded in L1(Σ, g). Suppose on the contrary

‖cεuε‖L1(Σ,g) → ∞. (2.47)

Since for any fixed 0 < γ < 1,∫
Σ

|fε|dvg =
∫
uε≤γcε

|fε|dvg +
∫
uε>γcε

fεdvg,

we have that fε is bounded in L1(Σ, g) by using a similar argument of the estimate of (2.45).
Obviously bε is a bounded sequence of numbers due to (2.46). Define wε = cεuε/‖cεuε‖L1(Σ,g).
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Then (2.43) gives ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Δg0wε = hε := αρwε + ρ
fε − bε

‖cεuε‖L1(Σ,g)
on Σ,∫

Σ

wεdvg = 0,

‖wε‖L1(Σ,g) = 1.

(2.48)

Clearly we have got ∫
Σ

|hε|dvg0 ≤ C. (2.49)

By the Green representation formula,

wε(x) − 1
Volg0(Σ)

∫
Σ

wεdvg0 =
∫

Σ

G(x, y)hε(y)dvg0,y, (2.50)

where G(x, y) is the Green function for Δg0 . In particular there exists a constant C such that
|G(x, y)| ≤ C| log distg0(x, y)| and |∇g0,xG(x, y)| ≤ C(distg0(x, y))

−1 for all x, y ∈ Σ. By (1.17),
ρ(x) has a positive lower bound on Σ. As a consequence

1
Volg0(Σ)

∫
Σ

|wε|dvg0 ≤ C

∫
Σ

|wε|ρdvg0 = C. (2.51)

Combining (2.49) and (2.50), we obtain for any 1 < q < 2,∫
Σ

|∇g0wε|qdvg0 ≤ C

∫
Σ

|hε|dvg0 ≤ C.

While (2.50) and (2.51) imply that for any q > 1, there holds ‖wε‖Lq(Σ,g0) ≤ C. Therefore wε
is bounded in W 1,q(Σ, g0) for any 1 < q < 2. The Sobolev embedding theorem leads to that wε
converges to w weakly in W 1,q(Σ, g0), strongly in Lr(Σ, g0) for any r < 2q/(2 − q), and almost
everywhere in Σ. Clearly w satisfies⎧⎪⎨

⎪⎩
Δg0w = αρw in Σ,∫

Σ

wρdvg0 = 0.

Since ρ ∈ Lr(Σ \ ⋃L
i=1Bg0,δ(pi), g0) for any small δ > 0 and some r > 1, we have w ∈

C1(Σ \ S, g0) and u ∈ HG by using elliptic estimates. Then integration by parts gives∫
Σ

|∇gw|2dvg = α

∫
Σ

w2dvg,

which leads to w ≡ 0 due to α < λG
1 . This contradicts ‖w‖L1(Σ,g) = limε→0 ‖wε‖L1(Σ,g) = 1.

Therefore cεuε is bounded in L1(Σ, g).
Fourthly we analyze the convergence of cεuε. Rewrite (2.43) as⎧⎪⎨

⎪⎩
Δg0(cεuε) = ξε := αρcεuε + ρ(fε − bε) on Σ,∫

Σ

cεuερdvg0 = 0.
(2.52)

Now since ξε is bounded in L1(Σ, g0), we conclude that cεuε is bounded in W 1,q(Σ, g0) for any
1 < q < 2 similar to wε. Hence cεuε converges to some Gα weakly in W 1,q(Σ, g0), strongly in
Lr(Σ, g0) for any r < 2q/(2− q), and almost everywhere in Σ. In view of (2.44) and (2.46), Gα
satisfies (2.42) in the distributional sense. Applying elliptic estimates to (2.52), we have that
cεuε converges to Gα in C1(Σ \ {G(x0) ∪ S}). This completes the proof of the lemma. �



2278 Fang Y. and Yang Y. Y.

2.4 Upper Bound Estimate

In this section, we aim to give an upper bound estimate of the functional in (1.18) under
assumptions (2.13) and (2.14). The calculation bases on the convergence of uε and cεuε, which is
precisely studied in the previous section. Recall the isothermal coordinate system (Uσk(x0), ψk)
near σk(x0) (here we only take k from 1 to I0) given as in (2.20). Set

r0 =
1
4

min
1≤i<j≤I0

dg0(σi(x0), σj(x0)).

For δ < r0 with Bg0,2δ(x0) ⊂ Ux0 , there exist two positive constants c1(δ) and c2(δ) such
that Bg0,(1−c1(δ))δ(σk(x0)) ⊂ ψ−1

k (Bδ) ⊂ Bg0,(1+c2(δ))δ(σk(x0)). Moreover, both c1(δ) and c2(δ)
converge to 0 as δ → 0. Hence, on Bg0,2δ(σk(x0)), by using isothermal coordinate system
(Uk, ψk), (2.42) can be rewritten as the equation Gα ◦ ψ−1

k satisfies on ψk(Bg0,2δ(σk(x0))). By
using elliptic estimates to that equation, we obtain:

Gα ◦ ψ−1
k = − 1

2πI0
log |y| + A0 + Ψk(y), (2.53)

where Ψk ∈ C1(B 5
3 δ

) satisfies Ψk(0) = 0 for small δ, and A0 is a constant defined by

A0 = lim
y→0

(
Gα ◦ ψ−1

k (y) +
1

2πI0
log |y|

)
= lim
x→x0

(
Gα(x) +

1
2πI0

log dg0(x, x0)
)
. (2.54)

By (2.53), Gα near x0 can be locally presented by

Gα(x) = − 1
2πI0

log dg0(x, x0) +A0 + Ψ̃(x), (2.55)

where Ψ̃ ∈ C1(Bg0, 32 δ(x0)) satisfies Ψ̃(x0) = 0. Furthermore, we obtain Gα near σk(x0) can be
locally presented by

Gα(x) = − 1
2πI0

log dg0(x, σk(x0)) +A0 + Ψ̃(σ−1
k (x)). (2.56)

This conclusion is based on an observation that, for x ∈ Bg0, 32 δ(σk(x0)), by (2.55)

Gα(x) +
1

2πI0
log dg0(x, σk(x0)) −A0 =

(
Gα(σ−1

k (x)) +
1

2πI0
log dg0(σ

−1
k (x), x0) −A0

)

= Ψ̃(σ−1
k (x)).

In the view of (2.10), integration by parts leads to∫
Σ\⋃I0

k=1 ψ
−1
k (Bδ)

|∇guε|2dvg =
∫

Σ\⋃I0
k=1 ψ

−1
k (Bδ)

|∇g0uε|2dvg0

= −
I0∑
k=1

∫
∂ψ−1

k (Bδ)

uε
∂uε
∂n

dsg0 +
∫

Σ\⋃I0
k=1 ψ

−1
k (Bδ)

uε�g0uεdvg0

= −
I0∑
k=1

∫
∂ψ−1

k (Bδ)

uε
∂uε
∂n

dsg0 + α

∫
Σ

u2
εdvg + 1 + oδ(1).

This together with (2.56), (2.42), and cεuε → Gα in L2(Σ, g) ∩ C1(Σ \ {G(x0) ∪ S}) shows∫
Σ\⋃I0

k=1 ψ
−1
k (Bδ)

|∇guε|2dvg =
1
c2ε

(
1

2πI0
log δ +A0 + α

∫
Σ

G2
αdvg + oε(1) + oδ(1)

)
.
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We then calculate∫
⋃I0

k=1 ψ
−1
k (Bδ)

|∇guε|2dvg = 1 − 1
c2ε

(
1

2πI0
log δ +A0 + oε(1) + oδ(1)

)
:= τε.

Set sε = sup∂ψ−1(Bδ) uε and ûε = (uε − sε)+. Clearly, ûε ∈W 1,2
0 (ψ−1

k (Bδ)). Moreover, we have∫
Bδ

|∇g(ûε ◦ φ−1)|2dx =
∫
ψ−1

k (Bδ)

|∇gûε|2dvg ≤ 1
I0

∫
⋃I0

k=1 ψ
−1
k (Bδ)

|∇guε|2dvg ≤ τε
I0
.

Then by using Lemma 1.3, we obtain

lim sup
ε→0

∫
ψ−1(Bδ)

(e4π�û2
ε/τε − 1)dvg = lim sup

ε→0

∫
Bδ

V (y)e2f |y|2β(e4π(1+β0)I0(ûε◦φ−1)2/τε − 1)dy

= lim sup
ε→0

eoδ(1)

∫
Bδ

V0|y|2β0(e4π(1+β0)I0(ûε◦φ−1)2/τε − 1)dy

≤ πV0e1+oδ(1)

1 + β0
δ2+2β0 . (2.57)

For any fixed R > 0, we have uε/cε = 1+oε(1) on ψ−1
k (B

Rr
1/(1+β)
ε

) (k = 1, . . . , I0). Hence, using
the definition of τε, we obtain

(4π	− ε)u2
ε ≤ 4π	(ûε + sε)2

= 4π	û2
ε + 8π	ûεsε + oε(1)

= 4π	û2
ε − 4(1 + β0) log δ + 8π	A0 + o(1)

= 4π	0û2
ε/τε − 2(1 + β0) log δ + 4π	A0 + o(1),

where o(1) → 0 as ε→ 0 first, and then δ → 0. Combining this with (2.57), we have∫
ψ−1

k (B
Rr

1/(1+β0)
ε

)

e(4π�−ε)u2
εdvg ≤ δ−2−2βe4π�A0+o(1)

∫
ψ−1

k (B
Rr

1/(1+β0)
ε

)

e(4π�−ε)û2
ε/τεdvg

= δ−2−2β0e4π�A0+o(1)

∫
ψ−1

k (B
Rr

1/(1+β0)
ε

)

(e(4π�−ε)û2
ε/τε − 1)dvg+o(1)

≤ δ−2−2β0e4π�A0+o(1)

∫
ψ−1

k (Bδ)

(e(4π�−ε)û2
ε/τε − 1)dvg+o(1)

≤ πV0e1+4π�A0+o(1)

1 + β0
.

Letting ε→ 0 first, and then δ → 0, we obtain

lim sup
ε→0

∫
⋃I0

k=1 ψ
−1
k (B

Rr
1/(1+β0)
ε

)

e(4π�−ε)u2
εdvg ≤ πI0V0e1+4π�A0

1 + β0
. (2.58)

Also we have∫
⋃I0

k=1 ψ
−1
k (B

Rr
1/(1+β0)
ε

)

e(4π�−ε)u2
εdvg = I0(1 + oε(1))

∫
B

Rr
1/(1+β)
ε

V0e2f |x|2βũ2
εe

(4π�−ε)ũ2
εdx

=
I0λε
c2ε

(1 + oε(1))
(∫

BR(0)

V0|y|2βe8π�ϕεdy + oε(1)
)

=
λε
c2ε

(1 + o(1)),
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where o(1) → 0 as ε→ 0 first, and then R→ ∞. This together with (2.58) and (2.41) leads to

sup
u∈HG, ‖u‖1,α≤1

∫
Σ

e4π�u2
dvg ≤ Volg(Σ) + lim

R→∞
lim sup
ε→0

∫
⋃I0

k=1 ψ
−1
k (B

Rr
1/(1+β0)
ε

)

e(4π�−ε)u2
εdvg

≤ Volg(Σ) +
πI0V0e1+4π�A0

1 + β0
. (2.59)

2.5 Existence of Extremal Functions

Recall that (Σ, g) has a conical singularity of the order β0 at x0 with −1 < β0 ≤ 0, I0 = I(x0)
and β0 = β(x0), where I(x) and β(x) are defined as in (1.8) and (1.9). In this section, we shall
construct a sequence of functions Φ̃ε ∈ HG satisfying ‖Φ̃ε‖1,α = 1, and∫

Σ

e4π�Φ̃2
εdvg > Volg(Σ) +

πI0V0e1+4π�A0

1 + β0
, (2.60)

where A0 and V0 are constants defined as in (2.54) and (2.22). The contradiction between (2.59)
and (2.60) implies that cε must be bounded, i.e., blow-up does not occur. This ends the proof
of Theorem 1.1.

Set R = (− log ε)1/(1+β0). It follows that R→ ∞ and Rε→ 0 as ε→ 0. Hence, when ε > 0
is sufficiently small, Bg0,2Rε(σi(x0)) ∩Bg0,2Rε(σj(x0)) = ∅ for 1 ≤ i < j ≤ I0. We firstly define
a cut-off function η on Bg0,2Rε(x0), which is radially symmetric with respect to x0. Besides, we
require η ∈ C∞

0 (Bg0,2Rε(x0)) to be a nonnegative function satisfying η = 1 on Bg0,Rε(x0) and
‖∇η‖L∞(B2Rε) = O( 1

Rε ). Then we define a sequence of functions Φε on Σ for small ε > 0 by

Φε =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

c+
− 1

4π� log(1+
πI0

1+β0

dg0 (x,σk(x0))2(1+β0)

ε2(1+β0) )+b

c , x ∈ Bg0,Rε(σk(x0)),
Gα(x) − η(σ−1

k (x))Ψ̃(σ−1
k (x))

c
, x ∈ Bg0,2Rε(σk(x0)) \Bg0,Rε(σk(x0)),

Gα
c
, x ∈ Σ \ ⋃I0

k=1 σk(B2Rε),

(2.61)
where k is taken from 1 to I0, and Ψ̃ is the function mentioned in (2.55), both b and c are
constants depending on ε to be determined later.

Recall (2.42), Gα(σ(x)) = Gα(x) for any x ∈ Σ \ ⋃I0
k=1{σk(x0)} and all σ ∈ G. Combining

this with our premises that η is radially symmetric and any σ ∈ G is an isometric map, for
sufficiently small ε, we conclude

Φε(x) = Φε(σ(x)), ∀σ ∈ G, a.e. x ∈ Σ. (2.62)

Set Φ̄ε = Φε − 1
Volg(Σ)

∫
Σ

Φεdvg. We shall choose suitable b and c to make Φ̃ε = Φ̄ε/‖Φ̄ε‖1,α ∈
HG. Since the calculation is very similar to [26, pp. 3365–3368], we omit the details but give
its outline here. Integration by parts shows∫

Σ\⋃I0
k=1 Bg0,Rε(σk(x0))

|∇gGα|2dvg

= −
I0∑
k=1

∫
∂Bg0,Rε(σk(x0))

Gα
∂Gα
∂n

dsg +
∫

Σ\⋃I0
k=1 Bg0,Rε(σk(x0))

GαΔgGαdvg

= − 1
2πI0

logRε+A0 + α

∫
Σ

G2
αdvg +O(Rε),
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and it follows that∫
Σ\⋃I0

k=1 Bg0,Rε(σk(x0))

|∇gΦε|2dvg =
1
c2

(
− 1

2πI0
logRε+A0 + α

∫
Σ

G2
αdvg +O(Rε)

)
.

Here we use estimates∫
Bg0,2Rε(σk(x0))\Bg0,Rε(σk(x0))

|∇g(Ψ̃η)|2dvg = O(R2ε2),

and ∫
Bg0,2Rε(σk(x0))\Bg0,Rε(σk(x0))

∇gGα∇g(Ψ̃η)dvg = O(Rε).

By a straightforward calculation, we obtain∫
⋃I0

k=1 Bg0,Rε(σk(x0))

|∇gΦε|2dvg =
1

4π	c2

(
log

πI0
1 + β0

− 1 + logR2+2β0 +O(R−2−2β0)
)
.

Thus ∫
Σ

|∇gΦε|2dvg =
1
c2

(
− log ε

2πI0
+A0 + α

∫
Σ

G2dvg − 1
4π	

+
1

4π	
log

πI0
1 + β0

+O(R−2−2β0)
)
.

Moreover, we have ∫
Σ

|Φε − Φ̄ε|2dvg =
1
c2

(∫
Σ

G2dvg +O(R−2−2β0)
)
.

In the view of Φ̃ε ∈W 1,2(Σ, g) and ‖Φ̃ε‖1,α = 1, it follows from the above equations that

c2 = − 1
2πI0

log ε+A0 − 1
4π	

+
1

4π	
log

πI0
1 + β0

+O(R−2(1+β0)),

and
b =

1
4π	

+O(R−2(1+β0)).

On Bg0,Rε(σk(x0)), we have the following estimate:

4π	(1 + β0)Φ̃2
ε ≥ −2 log

(
1 +

πI0
1 + β0

r2(1+β0)

ε2(1+β0)

)
+ 1 − 2(1 + β0) log ε

+ 4π	A0 + log
πI0

1 + β0
+O(R−2−2β0).

Note that ∫
BR

1
(1 + πI0

1+β0
|y|2(1+β0))|y|2β0

= 1 − 1
1 + πI0

1+β0
R2+2β0

.

This leads to∫
⋃I0

k=1 Bg0,Rε(σk(x0))

e(4π�−ε)Φ̃2
εdvg = (1 +O(Rε))I0

∫
BRε

V0|x|2β0e(4π�−ε)(Φ̃2
ε(expx0

x)2dx

≥ (1 +O(Rε))
πV0I0e1+4π�A0

1 + β0
.

On the other hand, by e(4π�−ε)Φ̃2
ε ≥ 1 + (4π	− ε)Φ̃2

ε , we obtain∫
Σ\⋃I0

k=1 Bg0,2Rε(σk(x0)

e(4π�−ε)Φ̃2
εdvg ≥ Volg(Σ) +

4π	
c2

∫
Σ

G2dvg +O(R−2−2β0),
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which immediately lead to∫
Σ

e(4π�−ε)Φ̃2
εdvg =

∫
⋃I0

k=1 Bg0,2Rε(σk(x0))

e(4π�−ε)Φ̃2
εdvg +

∫
Σ\⋃I0

k=1 Bg0,2Rε(σk(x0))

e(4π�−ε)Φ̃2
εdvg

≥ Volg(Σ) +
πV0I0e1+4π�A0

1 + β0
+

4π	
c2

∫
Σ

G2dvg +O(R−2−2β0).

Note that R = (− log ε)1/(1+β0), and O(R−2(1+β0)) = o(1/c2). If ε > 0 is chosen sufficiently
small, then we arrive at (2.60), as desired. �

3 Proof of Theorem 1.2

The method we use to proof of Theorem 1.2 is analogous to that of Theorem 1.1. Firstly, we
conclude 4π	 is the best constant for the inequality (1.21) by a discussion totally similar to that
in Subsection 2.1. Then we introduce an orthonormal basis (ej) (1 ≤ j ≤ n�) of E� satisfying⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

E� = span{e1 , . . . , en�
},

ej ∈ C0(Σ, g) ∩ HG, ∀1 ≤ j ≤ n�,∫
Σ

|ej |2dvg = 1, ∀1 ≤ j ≤ n�,

∫
Σ

elemdvg = 0, m 	= l,

where n� = dimE�. Under this orthonormal basis, E⊥
� is written as

E⊥
� =

{
u ∈ HG :

∫
Σ

uejdvg = 0, 1 ≤ j ≤ n�

}
.

Secondly, we prove the existence of extremals for subcritical Trudinger–Moser functionals.
Namely, for any 0 < ε < 4π	, there exists some uε ∈ E⊥

� ∩ C1(Σ \ {p1, . . . , pL}, g0) ∩ C0(Σ, g0)
such that ∫

Σ

e(4π�−ε)u2
εdvg = sup

u∈E⊥
� ‖u‖1,α≤1

∫
Σ

e(4π�−ε)u2
dvg .

Clearly uε satisfies the Euler–Lagrange equation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�guε − αuε =
1
λε
uεe(4π�−ε)u2

ε − με
λε

−
n�∑
j=1

ωj,εej ,

‖uε‖1,α = 1,

λε =
∫

Σ

u2
εe

(4π�−ε)u2
εdvg ,

με =
1

Volg(Σ)

∫
Σ

uεe(4π�−ε)u2
εdvg ,

ωj,ε =
1
λε

∫
Σ

ejuεe(4π�−ε)u2
εdvg .

(3.1)

Assume uε converges to u∗ weakly in W 1,2(Σ, g), strongly in Ls(Σ, g) for any s > 1, and
almost everywhere in Σ. If uε is uniformly bounded, then we have by the Lebesgue dominated
convergence theorem ∫

Σ

u∗ejdvg = lim
ε→0

∫
Σ

uεejdvg = 0, ∀1 ≤ j ≤ n�,
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and thus u∗ ∈ E⊥
� ∩ C1(Σ \ {p1, . . . , pL}, g0) ∩ C0(Σ, g0) is the desired extremal function.

If blow-up happens, we still have analogs of Lemmas 2.8 and 2.9. For any 1 < q < 2, we
obtain cεuε ⇀ G weakly in W 1,q(Σ, g) , where G is green function satisfying⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ΔgG− αG =
I0∑
i=1

δσi(x0)

I0
− 1

Volg(Σ)
−

n�∑
j=1

ej(x0)ej ,
∫

Σ

Gejdvg = 0, 1 ≤ j ≤ n�,

G(σi(x)) = G(x), 1 ≤ i ≤ N, x ∈ Σ \ {σi(x0)}I0i=1.

As in the proof of (2.59), we can draw the conclusion that

sup
u∈E⊥

� , ‖u‖1,α≤1

∫
Σ

e4π�u2
dvg ≤ Volg(Σ) +

πI0V0

1 + β0
e1+4π�A0 , (3.2)

where all the constants in (3.2) have the same definition as in the last section.
At last, we shall construct a sequence of functions to contradict (3.2). Denote

ωε = Φε −
nj∑
j=1

(Φε, ej)ej ,

where Φε is defined as in (2.61), and

(Φε, ej) =
∫

Σ

Φεejdvg .

Set ω̃ε = ωε− 1
Volg(Σ)

∫
Σ
ωεdvg. We may choose suitable constants b and c to make ω̃ε ∈ E⊥

� . A
straightforward calculation shows∫

Σ

e4π�
ω̃2

ε
‖ω̃ε‖1,α dvg =

∫
Σ

e4π�ω̃2
ε+o( 1

log ε )dvg

≥
(

1 + o

(
1

log ε

))(
Volg(Σ) + 4πI0

‖G‖2
2

c2
+
πI0V0e1+4π�A0

1 + β0

)

≥ Volg(Σ) + 4πI0
‖G‖2

2

− log ε
+
πI0V0e1+4π�A0

1 + β0
+ o

(
1

log ε

)
.

This indicates
sup

u∈E⊥
� , ‖u‖1,α≤1

∫
Σ

e4π�u2
dvg > Volg(Σ) +

πI0V0

1 + β0
e1+4π�A0 ,

which contradicts (3.2). Thus the proof of Theorem 1.2 is finished. �
Added in the proof: Note that similar results were also obtained in the paper (de Souza,

Manassés X., Trudinger-Moser type inequalities with a symmetric conical metric and a sym-
metric potential. Nonlinear Analysis 223 (2022) Paper No. 113030, 23 pages).
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