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1 Introduction

For n ≥ 1 being an integer, denote by H(n) the space of n × n hermitian matrices. The

normalized Gaussian Unitary Ensemble (GUE) partition function of size n is defined by

ZGUE1
n (s; ε) = 2−n/2(πε)−n2/2

∫
H(n)

e−
1
ε trQ(M ;s)dM, (1)

where s := (s1, s2, . . .), Q(y; s) is a power series in y of the form

Q(y; s) =
1

2
y2 −

∑
j≥1

sjy
j , (2)

and dM =
∏

1≤i≤n dMii

∏
1≤i<j≤n dReMijdImMij . For the interest of the present paper, we

understand this integral in the way of first expanding the integrand as a power series of s

then integrating the coefficient of each monomial of s with respect to the measure dM , and we

note that the factor 2−n/2(πε)−n2/2 in front of this integral is a normalization factor so that

ZGUE1
n (0; ε) ≡ 1.

The integral in (1) is closely related to the enumeration of ribbon graphs (cf. [6–8, 15, 37, 47–

51, 58, 65, 71]). Denote byRf ;j1,...,jk the set of oriented not-necessarily connected ribbon graphs

having f faces and k vertices with valencies j1, . . . , jk, and by Rconn
f ;j1,...,jk

⊂ Rf ;j1,...,jk the subset

consisting of the connected ones. Then the partition function ZGUE1
n (s; ε) has the expression:

ZGUE1
n (s; ε) = 1 +

∑
f,k≥1

∑
j1,...,jk≥1

b(f ; j)sj1 · · · sjknf ε
|j|
2 −k, (3)
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where j = (j1, . . . , jk), |j| = j1 + · · ·+ jk, and

b(f ; j) =
∑

G∈Rf ;j

j1 · · · jk
|Aut(G)| . (4)

Applying Euler’s formula to ribbon graphs, we see that ZGUE1
n (s; ε) ∈ Q[n, ε, ε−1][[s]]. By

further taking the logarithms on both sides of (3) we obtain

logZGUE1
n (s; ε) =

∑
f,k≥1

∑
j1,...,jk≥1

a(f ; j)sj1 · · · sjknf ε
|j|
2 −k ∈ Q[n, ε, ε−1][[s]], (5)

where

a(f ; j) =
∑

G∈Rconn
f ;j

j1 · · · jk
|Aut(G)| . (6)

Following t’Hooft [48, 49], introduce

x := nε. (7)

Define

ZGUE1(x, s; ε) = ZGUE1
x/ε (s; ε), FGUE1(x, s; ε) = logZGUE1

x/ε (s; ε), (8)

and we have

ZGUE1(x, s; ε) = 1 +
∑

k,f≥1

∑
j1,...,jk≥1

b(f ; j)sj1 · · · sjkxf ε
|j|
2 −k−f ∈ Q[x](ε2)[[s]], (9)

FGUE1(x, s; ε) =
∑
k≥1

∑
g≥0, j1,...,jk≥1

2−2g−k+|j|/2≥1

ag(j)sj1 · · · sjkε2g−2x2−2g−k+ |j|
2 ∈ ε−2Q[x, ε2][[s]], (10)

where ag(j) := a(2− 2g − k + |j|/2; j), and we used Euler’s formula

k − |j|
2

+ f = 2− 2g (11)

for a connected ribbon graph of genus g. We call ZGUE1(x, s; ε) the normalized GUE partition

function, and FGUE1(x, s; ε) the normalized GUE free energy.

As in e.g. [21, 27], define the corrected GUE free energy F(x, s; ε) by

F(x, s; ε) := FGUE1(x, s; ε) +
x2

2ε2

(
log x− 3

2

)
− log x

12
+ ζ ′(−1) +

∑
g≥2

ε2g−2B2g

4g(g − 1)x2g−2
, (12)

where ζ(s) denotes the Riemann zeta function, and Bm denotes the mth Bernoulli number.

The corrected GUE partition function Z(x, s; ε) is defined as eF(x,s;ε). Clearly,

ε2F(x, s; ε) ∈ C[[ε2]][[x− 1, s]], Z(x, s; ε) ∈ C((ε2))[[x− 1, s]]. (13)

Equivalently, the corrected GUE partition function Z(x, s; ε) can be defined as

(2π)−nε−
1
12

Vol(n)

∫
H(n)

e−
1
ε trQ(M ;s)dM, x = nε, (14)

where

Vol(n) := Vol (U(n)/U(1)n) =
π

n(n−1)
2

G(n+ 1)
, G(n+ 1) =

n−1∏
j=1

j!. (15)
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To see this equivalence, we viewG(n+1) as an analytic function (G denotes Barnes’ G-function),

then together with (9) we see that the coefficient of each monomial of s in Z(x, s; ε) defined

by (14) is an analytic function of x, ε, and by taking the n = x/ε → ∞ asymptotics in these

coefficients we obtain the equivalence. Here one needs to use the fact that Barnes’ G-function

(cf. [5, 39, 64]) has the asymptotic expansion:

logG(z + 1) ∼ z2

2

(
log z − 3

2

)
+
z

2
log 2π − log z

12
+ ζ ′(−1) +

∑
�≥1

B2�+2

4�(�+ 1)z2�
. (16)

For simplicity of terminology, we refer to the corrected GUE partition function (resp., corrected

GUE free energy) as the GUE partition function (resp., GUE free energy), as we do in e.g. [26–

28]. Let Fg(x, s) := Coef(ε2g−2,F(x, s; ε)), g ≥ 0. We call Fg(x, s) the genus g part of the GUE

free energy (for short the genus g GUE free energy). It is also helpful to recall that the GUE

partition function Z(x, s; ε) satisfies the following dilaton and string equations, respectively:

∑
j≥1

(
sj − 1

2
δj,2

)
∂Z(x, s; ε)

∂sj
+ x

∂Z(x, s; ε)

∂x
+ ε

∂Z(x, s; ε)

∂ε
+
Z(x, s; ε)

12
= 0, (17)

∑
j≥1

j

(
sj − 1

2
δj,2

)
∂Z(x, s; ε)

∂sj−1
+
xs1
ε2
Z(x, s; ε) = 0. (18)

The geometric way in understanding the GUE partition function is through the theory of

integrable systems (Frobenius manifolds, tau-functions, bihamiltonian structures, etc.). Denote

by Λ = eε∂x the shift operator, and let

V (x, s; ε) = ε(Λ− 1)
∂ logZ(x, s; ε)

∂s1
, W (x, s; ε) = ε2

∂2 logZ(x, s; ε)

∂s1∂s1
. (19)

It is known (cf. e.g. [1]) that the power series (V (x, s; ε),W (x, s; ε)) is a particular solution to

the Toda lattice hierarchy [40, 57], i.e., the difference operator L defined by

L = Λ+ V (x, s; ε) +W (x, s; ε)Λ−1 (20)

satisfies the following Lax-type equations:

ε
∂L

∂sj
=
[
(Lj)+, L

]
, j ≥ 1. (21)

Moreover, Z(x, s; ε) is a tau-function of the solution (V (x, s; ε),W (x, s; ε)) to the Toda lattice

hierarchy. Here and below, for a difference operator P in its normal form P =
∑

m∈Z
PmΛm,

P+ :=
∑

m≥0 PmΛm, P− :=
∑

m<0 PmΛm, and resP := P0. We note that the functions

V (x, s; ε),W (x, s; ε) can be uniquely determined by the Toda lattice hierarchy along with the

initial data

V (x,0; ε) = 0, W (x,0; ε) = x. (22)

The definition of a tau-function for the Toda lattice hierarchy as well as the proof of these

statements will be reviewed in Section 2. Equations (17)–(18), the condition F(x, s; ε) ∈
ε−2Q[[ε2]][[x−1, s]] and the tau-function statement all together uniquely determine the partition

function Z(x, s; ε) = eF(x,s;ε) up to a pure constant factor.

The Frobenius manifold [17, 18, 33, 34] that corresponds to the Toda lattice hierarchy has

the potential [18]:

F =
1

2
v2u+ eu, (23)
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where v, u are the flat coordinates with ∂/∂v being the unit vector field. More precisely, the

differential of the generating function for the hamiltonian densities of the dispersionless Toda

lattice hierarchy is a flat section of the Dubrovin connection [18] of the Frobenius manifold (23).

It is helpful to note that this Frobenius manifold can also be obtained from the Gromov–Witten

(GW) invariants of P1 [18, 53]. Indeed, the potential F equals, up to a quadratic function, the

so-called genus zero primary free energy of these GW invariants. We often call the Frobenius

manifold with potential (23) the P1-Frobenius manifold.

For a Frobenius manifold, Dubrovin [18] constructs an integrable hierarchy of tau-symmetric

hamiltonian PDEs of hydrodynamic type, called the principal hierarchy. This integrable hierar-

chy has a particular solution called the topological solution. In [32] Dubrovin and Zhang prove

that the tau-function of the topological solution to the principal hierarchy (exponential of the

genus zero free energy for the topological solution) satisfies the genus zero Virasoro constraints

(see also Liu and Tian [56]).

For a semisimple Frobenius manifold, by solving Virasoro constraints in the form of the

so-called loop equation, Dubrovin and Zhang [33] (cf. [23]) construct the partition function

of the Frobenius manifold, and use it to define the topological deformation of the principal

hierarchy, now called the Dubrovin–Zhang (DZ) integrable hierarchy for the Frobenius manifold

(cf. [10]). By their construction, the partition function of the Frobenius manifold is a particular

tau-function called the topological tau-function for the DZ hierarchy, that is the tau-function of

a particular solution, called the topological solution, to the DZ hierarchy. In particular, if the

semisimple Frobenius manifold comes from the quantum cohomology of a smooth projective

variety X, the partition function of the Frobenius manifold equals the partition function of

the GW invariants of X [23, 33, 45, 46, 62]. A key notion in the construction of Dubrovin

and Zhang is the jet space [16, 33, 44, 65], not only because the solution (the free energy in

higher genera) to the DZ loop equation is represented in terms of jet variables (jets for short)

leading to uniqueness, but also due to the validity at the level of integrable hierarchy (free

property of jets). More precisely, firstly, the free energy in higher genera gives rise to the

topological tau-function when the jet variables are subjected to the topological solution of the

principal hierarchy. Secondly, by construction the DZ hierarchy is quasi-trivial, namely, it is

obtained from the principal hierarchy under a quasi-Miura transformation, which is given by

the higher genera free energy in terms of jets; and this is interesting, because the quasi-Miura

transformation could be substituted by any monotone solution to the principal hierarchy and

makes it become a solution to the DZ hierarchy [21, 23, 29, 33, 34, 69]. In [69], it is suggested

to interpret this as a universality class of Dubrovin [19, 20, 22, 24]. A particular dense subset

of monotone solutions to the principal hierarchy can be obtained by performing time shifts in

the topological solution, but there are also other interesting monotone solutions. They lead to

solutions to the DZ hierarchy: all these solutions are beautifully connected to the topological

solution (GW invariants in the case of quantum cohomology).

The quantum cohomology of P1 gives a semisimple Frobenius manifold. As we have men-

tioned above, the potential of this Frobenius manifold is given by (23), and the dispersionless

limit of the Toda lattice hierarchy (21) form a part of the principal hierarchy (often called the

stationary flows) of this Frobenius manifold. According to Dubrovin and Zhang [34] the corre-
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sponding DZ hierarchy is normal Miura equivalent to the extended Toda lattice hierarchy [11],

with an explicit formula of the normal Miura transformation. The DZ hierarchy is quasi-trivial,

so is the extended Toda lattice hierarchy. According to the above discussion, their quasi-trivial

transformations can be obtained from the free energy of GW invariants of P1. For example,

in [69], the dessins/LUE solution to the Toda lattice hierarchy is considered and it is shown

that this solution can be obtained by the application of quasi-triviality.

In this paper we study the GUE solution to the Toda lattice hierarchy (cf. [1, 14, 27, 66])

by using the DZ approach. Denote by v(x, s) = (v(x, s), u(x, s)) the unique power-series-in-s

solution to the principal hierarchy (30) with the initial condition

v(x,0) = 0, u(x,0) = log x. (24)

Based on the DZ approach [33, 34], we will give a new proof to the following theorem.

Theorem 1.1 (Dubrovin [21]) The genus zero GUE free energy F0(x, s) has the expression:

F0(x, s) =
1

2

∑
p,q≥0

(p+ 1)!(q + 1)!

(
sp+1 − 1

2
δp,1

)(
sq+1 − 1

2
δq,1

)
Ω2,p;2,q(v(x, s))

+ x
∑
p≥0

(p+ 1)!

(
sp+1 − 1

2
δp,1

)
θ2,p(v(x, s)) +

1

2
x2u(x, s). (25)

For g ≥ 1, the genus g GUE free energy Fg(x, s) can be represented by

Fg(x, s) = F P
1

g

(
v(x, s),

∂v(x, s)

∂x
, . . . ,

∂3g−2v(x, s)

∂x3g−2

)
+

(
ζ ′(−1)− 1

24
log(−1)

)
δg,1. (26)

Here, F P
1

g (z1, . . . , z3g−2) (g ≥ 1) denotes the genus g free energy in jets of the P1-Frobenius

manifold (see (77) of Section 3).

Originally, a proof of this theorem was outlined in [21], where the terminology of vacuum

tau-function [33] is used. Dubrovin also found [21] that the GUE partition function can be

identified with part of the partition function of the Frobenius manifold with potential

F =
1

2
(u1)2u2 +

1

2
(u2)2 log u2 − 3

4
(u2)2, (27)

realizing the space/time duality in the concrete example (cf. [11, 42]; in genus zero: the

Legendre-type transformation [18] of Dubrovin). This Frobenius manifold is often called an

NLS Frobenius manifold [11, 12, 18], and will be discussed in details in the next of the article-

series. Our proof given in Section 3 will be a relatively more direct one, which is similar to

the one given recently in [69] for a result for Grothendieck’s dessins d’enfant/Laguerre Unitary

Ensemble (LUE).

According to Witten [65], the GUE partition function being restricted to the even couplings

corresponds to the matrix gravity. We find that performing a further restriction given by a

certain explicit and rigorous limit in the jet space for the higher genera parts for the even

GUE partition function yields those for Witten’s topological gravity (the celebrated Witten–

Kontsevich partition function); see Corollary 4.6. That means that, at least for these higher

genera parts, the matrix gravity contains all the information of the topological gravity. Usually,

to come back to the matrix gravity, one needs a deformation theory [25, 26, 38, 46]. But, the

recent studies [26, 28, 30, 68] all together show that one can start with Witten’s topological
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gravity and come back to the matrix gravity without a deformation theory, again at least in

the higher genera. More precisely, we first go to the special cubic Hodge partition function by

a space/time duality [18, 67, 68] (see also [2, 3]) (in [68] this is revealed by the Hodge-BGW

correspondence), and then go to the so-called modified even GUE partition function by the

Hodge-GUE correspondence [26, 28], and finally back to the even GUE partition function via a

product formula [30], again at least to the higher genera in jets. (We note that the genus zero

parts for the above-mentioned models are relatively easy, so for us the non-trivial things are in

higher genera.) As a summary, we draw the following diagram:

FWK
g F even

g F P
1

g

Hg F̃g

via s./t. duality via a pro. formula

Hodge−GUE

Here, g ≥ 1, each of these functions lives in a certain jet space, and F P
1

g , FWK
g , F even

g , F̃g,

Hg stand for the genus g free energies in jets for GW invariants of P1, the Witten–Kontsevich

correlators, the even GUE correlators, the modified even GUE correlators, and certain special

cubic Hodge integrals, respectively. Each one-direction arrow means taking a certain restriction

or say limit (see (131), (146)–(147), (117)), the long “=” simply means equal (see (145)), the

double-direction arrow between FWK
g and Hg means the two are related by an invertible change

of their independent jet-variables (see (119) or (123)) up to a scalar (−4)g−1, and the double-

direction arrow between F even
g ’s and F̃g’s means they are related by an invertible operation

(see (137) or (138); note that in this case there is a shuffling in genus), which comes from an

invertible product formula [30].

Organization of the paper In Section 2, we review Toda lattice hierarchy and GUE. In

Section 3, we prove Theorem 1.1. In Section 4 we present a discussion on topological gravity

and matrix gravity.

2 Frobenius Manifold, Toda Lattice Hierarchy and GUE

This section contains materials of several known results about P1-Frobenius manifold, Toda

lattice hierarchy and GUE. We refer [18, 27, 66] to the reader for further interest.

2.1 Principal Hierarchy and Genus Zero Free Energy

Consider the P1-Frobenius manifold, denoted by M , which has the potential (23). Denote by

η the invariant flat metric, and denote v1 = v, v2 = u, v = (v, u). Following [33, 34] (see

also [25]), we fix the calibration θα,p(v) (α = 1, 2, p ≥ 0) for this Frobenius manifold via the

generating series

θ1(v; z) :=
∑
p≥0

θ1,p(v)z
p = −2ezv

∑
m≥0

(
γ − 1

2
u+ ψ(m+ 1)

)
emu z

2m

m!2
, (28)

θ2(v; z) :=
∑
p≥0

θ2,p(v)z
p = z−1

(∑
m≥0

emu+zv z
2m

m!2
− 1

)
, (29)

where γ is the Euler constant and ψ denotes the digamma function. (We recall that the

calibration is a choice of a family of tau-symmetric hamiltonian densities for the principal
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hierarchy.) The associated principal hierarchy [18] reads

∂vα

∂T β,q
=

2∑
γ=1

ηαγ∂x

(
∂θβ,q+1(v)

∂vγ

)
, q ≥ 0, α, β = 1, 2, (30)

where ηαγ = δα+γ,3, α, γ = 1, 2. As in [18], define a family of holomorphic functions Ω
[0]
α,p;β,q(v)

on M , called the genus zero two-point correlation functions, via

∑
p,q≥0

Ω
[0]
α,p;β,q(v)z

pyq =
1

z + y

(
2∑

ρ,σ=1

∂θα(v; z)

∂vρ
ηρσ

∂θβ(v; y)

∂vσ
− ηαβ

)
, α, β = 1, 2. (31)

For an arbitrary solution v(T) to the principal hierarchy (30), there exists a function FM
0 (T)

such that
∂2FM

0 (T)

∂Tα,p∂T β,q
= Ω

[0]
α,p;β,q(v(T)), α = 1, 2, p, q ≥ 0. (32)

We call FM
0 (T) the genus zero free energy of the solution v(T) to the principal hierarchy (30),

and call the exponential exp(FM
0 (T)) the tau-function of the solution v(T) to the principal

hierarchy (30).

As we have briefly mentioned in the Introduction, the T 2,q-flows of the principal hierar-

chy (30) coincide with the dispersionless limit of the Toda lattice hierarchy (21) under

∂

∂T 2,p
=

1

(p+ 1)!

∂

∂sp+1
, p ≥ 0. (33)

We also mentioned in the Introduction that the potential F of the P1-Frobenius manifold equals,

up to a quadratic function, the genus zero primary free energy of the GW invariants of P1. More

details about the GW invariants will be given in Section 3.

2.2 Review on tau-functions for the Toda lattice hierarchy

Let

A := Z[V (x),W (x), V (x± ε),W (x± ε), . . . ] (34)

be the ring of polynomials with integer coefficients. The second-order difference operator L =

Λ+ V (x) +W (x)Λ−1 (cf. (20)) can be written in the matrix form

L = Λ+ U(λ), U(λ) =

⎛
⎝V (x)− λ W (x)

−1 0

⎞
⎠ , (35)

where we recall that Λ is the shift operator: Λ = eε∂x .

Lemma 2.1 ([27]) There exists a unique 2× 2 matrix series

R(λ) =

⎛
⎝1 0

0 0

⎞
⎠+O(λ−1) ∈ Mat(2,A[[λ−1]]) (36)

satisfying the equation

Λ(R(λ))U(λ)− U(λ)R(λ) = 0 (37)

along with the normalization conditions

trR(λ) = 1, detR(λ) = 0. (38)
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The unique series R(λ) in the above lemma is called the basic matrix resolvent of L. Fol-

lowing [27, 66], define ωi,j ∈ A (i, j ≥ 1) via the generating series

∑
i,j≥1

ωi,j

λi+1μj+1
=

trR(λ)R(μ)− 1

(λ− μ)2
, (39)

and define ϕj = Coef(λ−j−1, (Λ(R(λ)))21) ∈ A, j ≥ 1.

Lemma 2.2 ([27]) For an arbitrary solution (V (x, s; ε),W (x, s; ε)) to the Toda lattice hierar-

chy (21), there exists a function τ (x, s; ε) such that

ε2
∂2 log τ (x, s; ε)

∂si∂sj
= ωi,j(x, s; ε), i, j ≥ 1, (40)

∂

∂sj
log

τ (x+ ε, s; ε)

τ (x, s; ε)
= ϕj(x, s; ε), j ≥ 1, (41)

τ (x+ ε, s; ε)τ (x− ε, s; ε)

τ (x, s; ε)2
=W (x, s; ε), (42)

where ωi,j(x, s; ε) and ϕj(x, s; ε) mean the substitution of (V (x, s; ε),W (x, s; ε)) in the corre-

sponding elements in A.

The function τ (x, s; ε) is determined by the solution (V (x, s; ε),W (x, s; ε)) up to

τ (x, s; ε) 	→ ec+bn+
∑

j≥1 aj−1sjτ (x, s; ε), (43)

where c, b and a’s can depend on ε. We call the function τ (x, s; ε) the DZ type tau-function of

the solution (V (x, s; ε),W (x, s; ε)) to the Toda lattice hierarchy, for short a Toda tau-function

of the solution (V (x, s; ε),W (x, s; ε)). The elements ωi,j ∈ A (i, j ≥ 1) are called two-point

correlation functions of the Toda lattice hierarchy.

Our definition of a Toda tau-function agrees with the one given in [11, 34]. Indeed, firstly, re-

call from [27] that the two-point correlation functions ωi,j are associated with the tau-symmetric

hamiltonian densities for the Toda lattice hierarchy; secondly, by taking the dispersionless limit

ε → 0 in the above definition (symbolically put v = limε→0 V (x) and w = limε→0W (x)) and

by using Lemma 2.1 (see [27, 66] for some more details), one immediately obtains that

∑
i,j≥1

ω
[0]
i,j

λi+1μj+1
=
B(λ)B(μ)((λ− v)(μ− v)− 4w)− 1

2 (λ− μ)2
, (44)

1

λ
+
∑
i≥1

ϕ
[0]
i

λi+1
= B(λ), (45)

where

B(λ) =
1√

(λ− v)2 − 4w
=

1

λ
+

v

λ2
+
v2 + 2w

λ3
+
v3 + 6vw

λ4
+O(λ−5), (46)

and the verification in the dispersionless limit, i.e., of the following equalities

ω
[0]
i,j = i!j!Ω

[0]
2,i−1;2,j−1, ϕ

[0]
i = i!θ2,i−1, i, j ≥ 1, (47)

(cf. (29), (31), (33)) is straightforward.
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2.3 GUE Partition Function as a Toda Tau-function

Recalling Gaussian integral∫
H(n)

e−
1
2ε trM

2

dM = 2
n
2 (πε)

n2

2 , n ≥ 1, (48)

we get ZGUE1
n (0; ε) ≡ 1. For ZGUE1

n (s; ε), there is the well-known formula (cf. [14, 27, 58])∫
H(n)

e−
1
ε trQ(M ;s)dM =

1

n!
Vol(U(n)/U(1)n)

∫
Rn

Δn(λ1, . . . , λn)
2e−

1
ε

∑n
k=1 Q(λk;s)dλ1 · · · dλn,

where

Δn(λ1, . . . , λn) =
∏

1≤i<j≤n

(λi − λj), n ≥ 1.

One can apply the theory of orthogonal polynomials (cf. e.g. [14]) for a further computation

of ZGUE1
n (s; ε). Let (·, ·) be an inner product on the space of polynomials defined by

(f, g) =

∫ +∞

−∞
f(λ)g(λ)e−

1
εQ(λ;s)dλ, ∀ f, g. (49)

Let

pm = pm(λ; s; ε) = λm + a1m(s; ε)λm−1 + · · ·+ amm(s; ε), m ≥ 0 (50)

be a system of monic polynomials orthogonal with respect to (·, ·), i.e.,
(pm1

(λ; s; ε), pm2
(λ; s; ε)) =: hm1

(s; ε)δm1m2
, ∀m1,m2 ≥ 0. (51)

Observing that Δn(λ1, . . . , λn) can be written into the form

Δn(λ1, . . . , λn) = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p0(λ1; s; ε) p0(λ2; s; ε) . . . p0(λn; s; ε)

p1(λ1; s; ε) p1(λ2; s; ε) . . . p1(λn; s; ε)

· · . . . ·
· · . . . ·
· · . . . ·

pn−1(λ1; s; ε) pn−1(λ2; s; ε) . . . pn−1(λn; s; ε)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n×n

, (52)

we find ∫
H(n)

e−
1
ε trQ(M ;s)dM = Vol(U(n)/U(1)n)h0(s; ε) · · ·hn−1(s; ε), n ≥ 1. (53)

At s = 0 the orthogonal polynomials pm(λ;0; ε) have the explicit expressions

pm(λ;0) = ε
m
2 Hem(λ/ε1/2), m ≥ 0, (54)

where Hem(s) are the hermite polynomials. Recalling that∫ ∞

−∞
Hem1

(t)Hem2
(t)e−

1
2 t

2

dt =
√
2πm1!δm1m2

, (55)

we find

hm(s = 0; ε) = εm+ 1
2

√
2πm!. (56)
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Using (48), (53) and (56), we obtain

Vol(U(n)/U(1)n) =
π

n2−n
2∏n−1

j=1 j!
. (57)

Therefore,

ZGUE1
n (s; ε) =

(2π)−
n
2 ε−

n2

2∏n−1
j=1 j!

h0(s; ε) · · ·hn−1(s; ε), n ≥ 1. (58)

We also define ZGUE1
0 (s; ε) ≡ 1.

The orthogonal polynomials pm(λ; s; ε) satisfy the the three-term recurrence relation:

pm+1(λ; s; ε) + Vm(s; ε)pm(λ; s; ε) +Wm(s; ε)pm−1(λ; s; ε) = λpm(λ; s; ε), m ≥ 0, (59)

for some functions Vm(s; ε) and Wm(s; ε) (m ≥ 0), with p−1(λ; s; ε) :≡ 0 and W0(s; ε) :≡ 0. The

functions Vm(s; ε) and Wm(s; ε) are well known to satisfy

Vm(0; ε) = 0, Wm(0; ε) = εm, m ≥ 0. (60)

The equality

(λpm1
, pm2

) = (pm1
, λpm2

) (61)

then implies that

Wm(s; ε) =
hm(s; ε)

hm−1(s; ε)
=
ZGUE1
m+1 (s; ε)ZGUE1

m−1 (s; ε)

ZGUE1
m (s; ε)2

+ correction, m ≥ 1. (62)

The three-term recurrence relation tells that p0, p1, . . . are eigenvectors of the difference

operator L = Λ + Vn(s; ε) +Wn(s; ε)Λ
−1 with Λ : f(n) 	→ f(n + 1) being the shift operator.

Denote again by L the corresponding tri-diagonal matrix, and denote p = (p0, p1, . . . ). For a

square matrix X = (Xi,j), denote

X− = (Xi,j)i<j , X+ = (Xi,j)i≥j , X = X+ +X−.

Lemma 2.3 For arbitrary n ≥ 0, the following two statements are true: a) the polynomial

pn(λ; s; ε) satisfies

ε
∂pn(λ; s; ε)

∂sj
− (Ajp)n(λ; s; ε) = 0, Aj := −(Lj)−, j ≥ 1; (63)

b) we have

ε
∂

∂sj
log

ZGUE1
n+1 (s; ε)

ZGUE1
n (s; ε)

= (Lj)nn, j ≥ 1. (64)

Proof Write

∂pn(λ; s; ε)

∂sj
=

n−1∑
m=0

A(j)
mn(s; ε)pm(λ; s; ε)

for some coefficients A
(j)
mn = A

(j)
mn(s; ε). Differentiating the orthogonality (pm, pn) ≡ hnδmn with

respect to sj , we find that for m < n

A(j)
mnhm +

1

ε
(λjpn, pm) = 0, (65)
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and for m = n,
1

ε
(λjpn, pn) =

∂hn
∂sj

=
∂

∂sj
log

ZGUE1
n+1 (s; ε)

ZGUE1
n (s; ε)

. (66)

Then by using (59) we obtain (63) and (64).

In particular, from (64) we see that for all n ≥ 0,

ε
∂

∂s1
log

ZGUE1
n+1 (s; ε)

ZGUE1
n (s; ε)

= Vn(s; ε), j ≥ 1. (67)

It follows from Lemma 2.3 that the difference operator L satisfies the Toda lattice hierar-

chy (21). Indeed, it immediately follows from (63) the Lax equations for the square matrix L; by

using (62), (67) and the facts mentioned in the introduction that ZGUE1
n (s; ε) and logZGUE1

n (s; ε)

belong to Q[n, ε, ε−1][[s]], we know that Wn(s; ε), Vn(s; ε) belong to Q[n, ε, ε−1][[s]]; we therefore

conclude that the Lax equations (21) hold for the difference operator L (namely with n being

viewed as an indeterminate), i.e., (Vn(s; ε),Wn(s; ε)) is a solution to the Toda lattice hierarchy.

We note that equalities (62), (67), (64) hold true in Q[n, ε, ε−1][[s]], where the right-hand

side of (64) should be viewed as resLj . By using (64) and the compatibility between (40), (41)

we have
∑
i,j≥1

1

λi+1μj+1
(Λ− 1)

(
∂2 logZGUE1

n (s; ε)

∂si∂sj

)
= (Λ− 1)

(
trRn(λ)Rn(μ)− 1

(λ− μ)2

)
. (68)

Since ZGUE1
n (s; ε) ∈ Q[n, ε, ε−1][[s]] and since logZGUE1

n (s; ε) is divisible by n, we have

∑
i,j≥1

1

λi+1μj+1

∂2 logZGUE1
n (s; ε)

∂si∂sj
=

trRn(λ)Rn(μ)− 1

(λ− μ)2
. (69)

In particular, Wn(s; ε) = ε2
∂2 logZGUE1

n (s;ε)
∂s1∂s1

. Since logZGUE1
n (s; ε) and logZ(x, s; ε) differ by a

function that only depends on x, ε, we see that Wn(s; ε) defined in this section coincides with

W (x, s; ε) defined in the Introduction.

We see also from (62), (64), (69) that ZGUE1
n (s; ε) almost satisfies the definition of a Toda

tau-function of the solution (Vn(s; ε),Wn(s; ε)), except in (62) an extra term appears. It is easy

to show (cf. [4], [64]) that the definition for the correction GUE partition function (cf. (12),

(14)) eliminates the extra term and keep the other properties hold. We therefore arrive at the

following proposition summarizing the above.

Proposition 2.4 (cf. [1, 27]) The vector-valued function (V (x, s; ε),W (x, s; ε)) defined in (19)

is the unique solution to the Toda lattice hierarchy (21) specified by the initial condition (22),

and the GUE partition function Z(x, s; ε) is the tau-function of this solution to the Toda lattice

hierarchy.

3 Proof of Theorem 1.1

The goal of this section is to prove Theorem 1.1. To this end, we will first need to recall the

definition of F P
1

g (g ≥ 1) that appear in the context of Theorem 1.1.

Denote by FP
1

(T; ε) the free energy of GW invariants of P1, and by ZP
1

(T; ε) := exp(FP
1

(T;

ε)) the partition function of these GW invariants:

FP
1

(T; ε) =
∑
d,k≥0

1

k!

∑
1≤α1,...,αk≤2,

i1,...,ik≥0

Tα1,i1 · · ·Tαk,ik
∑
g≥0

ε2g−2〈τi1(α1) · · · τik(αk)〉g,d, (70)
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where T := (Tα,i)α=1,2, i≥0 and 〈τi1(α1) · · · τik(αk)〉g,d denote the genus g and degree d GW

invariants of P1 (cf., e.g., [34, 59, 60]). We denote by FP
1

g (T) := Coef(ε2g−2,FP
1

(T; ε)) the

genus g part of FP
1

(T; ε), sometimes called for short the genus g free energy of GW invariants

of P1. It was conjectured by Dubrovin [17], Eguchi–Yang [36] (cf., [43, 70]), and proved in [34,

59, 60] that the functions

V P
1

(T; ε) := ε(Λ− 1)
∂ logZP

1

(T; ε)

∂T 2,0
, W P

1

(T; ε) := ε2
∂2 logZP

1

(T; ε)

∂T 2,0∂T 2,0
, (71)

satisfy the Toda lattice hierarchy (21) with

∂

∂T 2,p
=

1

(p+ 1)!

∂

∂sp+1
, p ≥ 0, (72)

and with L := Λ + V P
1

(T; ε) +W P
1

(T; ε)Λ−1, and, moreover, ZP
1

(T; ε) is a tau-function of

the solution (V P
1

(T; ε),W P
1

(T; ε)) to (21). Here Λ = exp(ε∂x) and x = T 1,0. The partition

function ZP
1

(T; ε) also satisfies the following dilaton and string equations:

2∑
α=1

∑
p≥0

(Tα,p − δα,1δp,1)
∂ZP

1

(T; ε)

∂Tα,p
+ ε

∂ZP
1

(T; ε)

∂ε
+

1

12
ZP

1

(T; ε) = 0, (73)

2∑
α=1

∑
p≥1

(Tα,p − δα,1δp,1)
∂ZP

1

(T; ε)

∂Tα,p−1
+
T 1,0T 2,0

ε2
ZP

1

(T; ε) = 0. (74)

Let vP
1

(T) be the topological solution to (30), that is the unique power series in Tα,q,

α = 1, 2, q > 0, satisfying (30) and

vα,P
1

(T)
∣∣
Tβ,q=0,q>0,β=1,2

= Tα,0, α = 1, 2. (75)

As it was mentioned in the Introduction, the genus zero free energy of GW invariants of P1

equals [18, 34] the one of the topological solution to the principal hierarchy, i.e.,

FP
1

0 (T) =
1

2

2∑
α,β=1

∑
p,q≥0

(Tα,p − δα,1δp,1)(T β,q − δβ,1δq,1)Ω
[0]
α,p;β,q(v

P
1

(T)). (76)

The higher genus free energies FP
1

g (T), g ≥ 1, admit the jet-variable representation (cf. [16, 33–

35, 44]). Namely, there exist functions F P
1

g (v0,v1, . . . ,v3g−2) (g ≥ 1) with vm = (vm, um) =

(v1m, v
2
m) and v0 = v, such that

FP
1

g (T) = F P
1

g

(
vP

1

(T),
∂vP

1

(T)

∂x
, . . . ,

∂3g−2vP
1

(T)

∂x3g−2

)
. (77)

By using Virasoro constraints, Dubrovin and Zhang [33, 34] obtained the following loop equa-

tion:

∑
r≥0

(
∂ΔF

∂vr

(
v − λ

D

)
r

− 2
∂ΔF

∂ur

(
1

D

)
r

)

+
∑
r≥1

r∑
k=1

(
r

k

)(
1√
D

)
k−1

(
∂ΔF

∂vr

(
v−λ√
D

)
r−k+1

− 2
∂ΔF

∂ur

(
1√
D

)
r−k+1

)

= −D−2eu
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− ε2
∑
k,l≥0

(
1

4
S(ΔF, vk, vl)

(
v − λ√
D

)
k+1

(
v − λ√
D

)
l+1

− S(ΔF, vk, ul)

(
v − λ√
D

)
k+1

(
1√
D

)
l+1

+ S(ΔF, uk, ul)

(
1√
D

)
k+1

(
1√
D

)
l+1

)

− ε2

2

∑
k≥0

(
∂ΔF

∂vk
∂k+1

(
eu

4eu(v − λ)u1 − ((v − λ)2 + 4eu)v1
D3

)

+
∂ΔF

∂uk
∂k+1

(
eu

4(v − λ) v1 − ((v − λ)2 + 4eu)u1
D3

))
, (78)

where ΔF :=
∑

g≥1 ε
2g−2F P

1

g (v0,v1, . . . ,v3g−2), D = (v−λ)2− 4eu, S(f, a, b) := ∂2f
∂a∂b +

∂f
∂a

∂f
∂b ,

and fr stands for ∂r(f) with

∂ :=
∑

α=1,2

∑
m≥0

vαm+1

∂

∂vαm
. (79)

It is also shown in [33, 34] the solution ΔF to (78) is unique up to a sequence of additive

constants for F P
1

g (g ≥ 1), that for g ≥ 2 can be fixed by the following equation:

2∑
α=1

3g−2∑
m=1

mvαm
∂F P

1

g (v0,v1, . . . ,v3g−2)

∂vαm
= (2g − 2)F P

1

g (v0,v1, . . . ,v3g−2) +
δg,1
12

, g ≥ 1. (80)

Moreover, for g ≥ 2, F P
1

g (v0,v1, . . . ,v3g−2) are polynomials of v2, . . . ,v3g−2 and have rational

dependence in v1 (cf., e.g., [33, 34]). In particular, for g = 1,

F P
1

1 (v0,v1) =
1

24
log((v1)

2 − eu(u1)
2)− 1

24
u. (81)

These unique functions F P
1

g (g ≥ 1) are the ones used in the context of Theorem 1.1.

We are ready to prove Theorem 1.1.

Proof of Theorem 1.1 Start with genus zero. Let (v(x, s), u(x, s)) be the unique solution to

the initial value problem (30), (24). The Riemann invariants for the principal hierarchy (30)

are given by

R1(v) = v + 2eu/2, R2(v) = v − 2eu/2. (82)

Since (Ri)x (i = 1, 2) do not vanish at generic x = x0, the solution (v(x, s), u(x, s)) belongs to

the class of monotone solutions. Therefore, it could be obtained by the hodograph method [22,

24, 63], yielding the following genus zero Euler–Lagrange equation:

xδβ,2 +
∑
p≥0

(T 2,p − δp,1)
∂θ2,p
∂vβ

(v(x, s)) = 0, β = 1, 2, (83)

where T 2,p = (p+ 1)!sp+1, p ≥ 0.

Following [18], define F̂0(x, s) as the right-hand side of (25). By using the well-known

properties

Ω
[0]
α,p;β,q(v) = Ω

[0]
β,q;α,p(v), ∂tγ,s(Ω

[0]
α,p;β,q(v)) = ∂tβ,q (Ω[0]

α,p;γ,s(v)), ∀ p, q, s ≥ 0, (84)

θα,p(v) = Ω
[0]
α,p;1,0(v), ∀ p ≥ 0, (85)

one can verify the validity of the following equalities:

∂2F̂0(x, s)

∂T 2,p∂T 2,q
= Ω

[0]
2,p;2,q(v(x, s)), ∀ p, q ≥ 0, (86)
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∂2F̂0(x, s)

∂x∂x
= u(x, s), (87)

∂2F̂0(x, s)

∂x∂T 2,p
= Ω

[0]
1,0;2,p(v(x, s)), ∀ p ≥ 0. (88)

From these equalities we see that exp(ε−2F̂0(x, s)) is the tau-function for the solution (v(x, s),

u(x, s)) to the ∂x, ∂T 2,q -flows of the principal hierarchy (30) (cf. (32)).

It is not difficult to verify that F̂0(x, s) also satisfies the following linear equations:

∑
j≥1

(
sj − 1

2
δj,2

)
∂F̂0(x, s)

∂sj
+ x

F̂0(x, s)

∂x
= 2F̂0(x, s), (89)

∑
j≥2

j

(
sj − 1

2
δj,2

)
∂F̂0(x, s)

∂sj−1
+ xs1 = 0. (90)

We conclude from (86)–(88) and (90) that F̂0(x, s) could differ from F0(x, s) only possibly by

adding a function of x (actually with at most linear dependence in x). Taking s = 0 in F̂0(x, s)

and in F0(x, s), we find that they both give

x2

2

(
log x− 3

2

)
. (91)

Hence formula (25) is proved.

Similarly as we do for the LUE case in [69], we proceed with the higher genera by using

quasi-triviality. According to [33, 34], the following quasi-trivial map

V̂ =
Λ− 1

ε∂x
(v) + (Λ− 1) ◦ ∂t2,0

(∑
g≥1

ε2g−1F P
1

g

(
v,
∂v

∂x
, . . . ,

∂3g−2v

∂x3g−2

))
, (92)

Ŵ =
(Λ + Λ−1 − 2)

ε2∂2x
(u) + (Λ + Λ−1 − 2)

(∑
g≥1

ε2g−2F P
1

g

(
v,
∂v

∂x
, . . . ,

∂3g−2v

∂x3g−2

))
, (93)

transforms the principal hierarchy (30) to the extended Toda hierarchy [11, 34]. The quasi-

Miura map (92)–(93) transforms a monotone solution of the principal hierarchy (30) to a

solution of the extended Toda hierarchy (see Theorem 1.1 of [34]). As we just mentioned

above, the particular solution (v(x, s), u(x, s)) of interest to the ∂t2,p -flows (p ≥ 0) in the prin-

cipal hierarchy (30) specified by the initial data (24) is monotone. Therefore, the function

(V̂ (x, s; ε), Û(x, s; ε)) defined by

V̂ (x, s; ε) := V̂ |vk �→∂k
x(v(x,s;ε)),uk �→∂k

x(u(x,s;ε)),k≥0, (94)

Û(x, s; ε) := Û |vk �→∂k
x(v(x,s;ε)),uk �→∂k

x(u(x,s;ε)),k≥0 (95)

is a particular solution to the Toda lattice hierarchy (21). What is more, since eε
−2F0(x,s) =

eε
−2F̂0(x,s) is the tau-function of the solution (v(x, s), u(x, s)) to the dispersionless Toda lattice

hierarchy and using again Theorem 1.1 of [34], we find that

τ (x, s; ε) := exp

(
ε−2F̂0(x, s) +

∑
g≥1

ε2g−2F P
1

g |vk �→∂k
x(v(x,s)),uk �→∂k

x(u(x,s)),k≥0

)
(96)

is the tau-function of the solution (V̂ (x, s; ε), Û(x, s; ε)) to the Toda lattice hierarchy. Note that
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the functions F P
1

g , g ≥ 2, satisfy the following equation:

∂F P
1

g

∂v
= 0, (97)

which follows from the string equation (74) for the GW invariants of P1. By using (89), (80),

(90), (97) one can verify that this tau-function τ (x, s; ε) satisfies the following two relations:

∑
j≥1

(
sj − 1

2
δj,2

)
∂τ (x, s; ε)

∂sj
+ ε

∂τ (x, s; ε)

∂ε
+ x

∂τ (x, s; ε)

∂x
+

1

12
τ (x, s; ε) = 0, (98)

∑
j≥2

j

(
sj − 1

2
δj,2

)
∂τ (x, s; ε)

∂sj−1
+
xs1
ε2
τ (x, s; ε) = 0, (99)

which agree with the linear equations (17), (18). The theorem is proved. �
Several applications of Theorem 1.1 can be found in [26–28, 31]; some of the details are also

given in the next section.

4 Topological Gravity and Matrix Gravity

In the previous sections, we studied the GUE partition function and give in Theorem 1.1 a jet

representation for the genus g GUE free energy Fg(x, s) for g ≥ 1, obtained by the one for

the genus g free energy of GW invariants of P1. In this section, we consider the restriction to

even couplings, and revisit its connection to GW invariants of a point and the associated Hodge

integrals.

4.1 Identification in Topological Gravity

In his seminal work [65], Witten proposed two versions of two-dimensional quantum gravity:

topological gravity and matrix gravity. In this subsection, let us consider the topological one,

that is, following Witten [65], the partition function of psi-class integrals on Deligne–Mumford’s

moduli space of curves [13]. To be precise, let FWK(t; ε), g ≥ 0, be the following generating

series for psi-class integrals:

FWK(t; ε) :=
∑
g≥0

ε2g−2
∑
k≥0

∑
i1,...,ik≥0

ti1 · · · tik
k!

∫
Mg,k

ψi1
1 · · ·ψik

k , (100)

called the free energy. Here, t = (t0, t1, t2, . . . ) and ε are indeterminates, Mg,k denotes the

moduli space of stable algebraic curves of genus g with k distinct marked points, and ψi (1 ≤
i ≤ k) denotes the first Chern class of the ith cotangent line bundle on Mg,k. Let

FWK(t; ε) :=
∑
g≥0

ε2g−2FWK
g (t). (101)

We call FWK
g (t) the genus g part of the free energy FWK(t; ε). The exponential

exp(FWK(t; ε)) =: ZWK(t; ε) (102)

is called the partition function of psi-class integrals. It was conjectured by Witten [65] and

proved by Kontsevich [52] that the partition function ZWK(t; ε) is a particular tau-function for

the Korteweg–de Vries (KdV) integrable hierarchy. We also refer to ZWK(t; ε) as the partition

function for the topological quantum gravity.
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Another important model regarding the intersection theory onMg,k is the partition function

of certain special cubic Hodge integrals [25, 38, 54, 61], which from its definition is a deformation

of the partition function ZWK(t; ε) and has important relation to the GUE partition function

[26, 28]. To be precise, define ZH(t; ε) as follows:

ZH(t; ε) = eH(t;ε), (103)

where

H(t; ε) :=
∑
g≥0

ε2g−2Hg(t), (104)

Hg(t) :=
∑
k≥0

∑
i1,...,ik≥0

ti1 · · · tik
k!

∫
Mg,k

ψi1
1 · · ·ψik

k Λ(−1)2Λ

(
1

2

)
, g ≥ 0. (105)

Here, Λ(z) :=
∑g

j=0 λjz
j is the Chern polynomial of the Hodge bundle Eg,k on Mg,k with

λj being the jth Chern class of Eg,k. We call H(t; ε) the Hodge free energy and ZH(t; ε) the

Hodge partition function1). Being suggested by the Hodge-GUE correspondence [26, 28] (see also

Theorem 4.4 below), we refer to the Hodge partition function ZH(t; ε) defined in (103)–(105)

as the dual partition function for the topological quantum gravity.

In genus zero, we have the obvious equality

H0(t) = FWK
0 (t). (106)

The discrepancy between the two partition functions ZH(t; ε) and ZWK(t; ε) starts from their

genus one parts. To understand this discrepancy, it will be convenient to look at their jet-

representations [16, 29, 33, 35, 65]. Recall the following lemma.

Lemma 4.1 Denote

vWK(t) :=
∂2FWK

0 (t)

∂t20
. (107)

For each g ≥ 1, there exist elements

FWK
g (z1, . . . , z3g−2) ∈ Q[z2, . . . , z3g−2, z1, z

−1
1 ], (108)

Hg(b0, b1, . . . , b3g−2) ∈ Q[b2, . . . , b3g−2, b0, b1, b
−1
1 ], (109)

such that

FWK
g (t) = FWK

g

(
∂vWK(t)

∂t0
, . . . ,

∂3g−2vWK(t)

∂t3g−2
0

)
, (110)

Hg(t) = Hg

(
vWK(t),

∂vWK(t)

∂t0
, . . . ,

∂3g−2vWK(t)

∂t3g−2
0

)
. (111)

Moreover, for g ≥ 2, Hg(b0, b1, . . . , b3g−2) does not depend on b0.

See for example [25, 29] for the proof of this lemma. For the reader’s convenience, we list the

first few FWK
g (z1, . . . , z3g−2), Hg(b0, b1, . . . , b3g−2) as follows:

FWK
1 (z1) =

1

24
log z1, FWK

2 (z1, z2, z3, z4) =
z4

1152z21
− 7z3z2

1920z31
+

z32
360z41

, (112)

1) The Hodge partition function considered in this paper is a specialization of the one in [25]; geometric and

topological significance of this specialization can be found, e.g., in [25, 26, 28].
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H1(b0, b1) =
1

24
log b1 − b0

16
, (113)

H2(b0, b1, b2, b3, b4) =
7b2
2560

+
11b22

3840b21
− b21

11520
− b3

320b1
+

b4
1152b21

− 7b3b2
1920b31

+
b32

360b41
. (114)

The elements FWK
g (z1, . . . , z3g−2) with g ≥ 1 can be calculated recursively by solving the

DZ loop equation [33]; the elements Hg(b0, b1, . . . , b3g−2) can also be calculated recursively by

solving the DZ type loop equation [26], or, they can be calculated by using the algorithm given

in [25].

Introduce a gradation d̃eg in Q[b2, . . . , b3g−2, b0, b1, b
−1
1 ] by assigning

d̃eg bk = 1, ∀ k ≥ 0. (115)

Then for g ≥ 2, Hg(b0, b1, . . . , b3g−2) decomposes into the homogeneous parts with respect to

d̃eg as follows:

Hg(b0, b1, . . . , b3g−2) =

2g−2∑
d=1−g

H [d]
g (b0, b1, . . . , b3g−2), (116)

where H
[d]
g (b0, b1, . . . , b3g−2) is homogeneous of degree d with respect to d̃eg. We have (cf. [25,

29])

H1(b0, b1) = FWK
1 (b1)− 1

16
b0, H [1−g]

g (b0, b1, . . . , b3g−2) = FWK
g (b1, . . . , b3g−2) (g ≥ 2). (117)

Namely, Hg can be viewed as a specific deformation of FWK
g ; in the big phase space this is

obvious (by definition), and we see the deformation in the jet space by equalities in (117).

The following proposition says that under a coordinate transformation in the jet space,

remarkably, Hg(b0, b1, . . . , b3g−2) becomes FWK
g (z1, . . . , z3g−2), g ≥ 1.

Proposition 4.2 Under the transformation B : (z0, z1, . . . ) → (b0, b1, . . . ) (i.e., bi = Bi(z),

i ≥ 0), defined inductively from

B0(z) = − log z0, ∂′′(z0) = −1

2

z1√
z0
, [∂′, ∂′′] = 0, (118)

we have the identities:

(−4)g−1Hg(B0(z), B1(z), . . . , B3g−2(z)) = FWK
g (z1, . . . , z3g−2), g ≥ 1. (119)

Here, ∂′ is the derivation on Q[z0, z1, z
−1
1 , z2, z3, . . . ] such that ∂′(zi) = zi+1, and ∂′′ is the

derivation on Q[b0, b1, b
−1
1 , b2, b3, . . . ] such that ∂′′(bi) = bi+1.

The proof of Proposition 4.2 using the Hodge-BGW correspondence is given in [68]. An

equivalent version of this proposition and the proof are given in [67]. For the reader’s conve-

nience, let us list the first few terms of the change of jet-variables in Proposition 4.2:

B1(z) =
z1

2z
3/2
0

, B2(z) =
z21
2z30

− z2
4z20

, B3(z) =
1

8

z3

z
5/2
0

− 15

16

z1z2

z
7/2
0

+
35

32

z31

z
9/2
0

(120)

with B0(z) given already in (118). This transformation is invertible, and let us list also the first

few terms of the inverse transformation:

(B−1)0(b) = e−b0 , (B−1)1(b) = 2e−
3
2 b0b1, (B−1)2(b) = e−2b0(−4b2 + 8b21), (121)

(B−1)3(b) = e−
5
2 b0(8b3 − 60b2b1 + 50b31). (122)
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A closed formula for the map B−1 is found with Don Zagier [67]. We have the identity

FWK
g ((B−1)1(b), . . . , (B

−1)3g−2(b)) = (−4)g−1Hg(b0, b1, . . . , b3g−2), g ≥ 1. (123)

In view of integrable systems, the relationship given in Proposition 4.2 reveals the space/time

duality between the q-deformed KdV hierarchy (cf. [9, 41, 55]) and the KdV hierarchy.

4.2 Back to the Matrix Gravity

In the previous subsection, we recalled the identification between the partition function (102)

and the dual partition function (103) for the topological quantum gravity: for genus zero, it

is given in the big phase space by (106); for higher genera, it is given in the jet-space by

Proposition 4.2.

In this subsection, following Witten [65], we look at a certain reduction of the GUE partition

function, which is referred to as the matrix gravity. To be precise, define the even GUE partition

function Zeven(x, seven) by

Zeven(x, seven) :=
(2π)−nε−

1
12

Vol(n)

∫
H(n)

e−
1
ε trQeven(M ;seven)dM, x = nε, (124)

where Vol(n) is defined in (15), and

Qeven(y; seven) :=
1

2
y2 −

∑
j∈Z

even
≥2

sjy
j . (125)

Clearly, this partition function equals Z(x, s) being restricted to sodd = 0.

According to (10) and (12), the logarithm of Zeven(x, seven) has the expression

logZeven(x, seven; ε) =: Feven(x, seven; ε) =:
∑
g≥0

ε2g−2Feven
g (x, seven) (126)

=
x2

2ε2

(
log x− 3

2

)
− log x

12
+ ζ ′(−1) +

∑
g≥2

ε2g−2B2g

4g(g − 1)x2g−2

+
∑
k≥1

∑
g≥0, j1,...,jk∈Zeven

≥2
2−2g−k+|j|/2≥1

ag(j)sj1 · · · sjkε2g−2x2−2g−k+|j|/2. (127)

We call Feven(x, seven; ε) the even GUE free energy, and Feven
g (x, seven) its genus g part.

The power series u(x, s), v(x, s) (cf. (83)) being restricted to sodd = 0, denoted by u(x, seven),

v(x, seven), have the following explicit expressions [28]:

v(x, seven) = 0, (128)

eu(x,seven) =
∑
k=1

1

k

∑
j1,...,jk∈Z

even
≥0

,

j1+···+jk=2k−2

wt(j1) · · ·wt(jk)
(
j1
j1/2

)
· · ·
(
jk
jk/2

)
sj1 · · · sjk , (129)

where we put s0 = x, and for j ∈ Zeven
≥0 ,

wt(j) :=

⎧⎨
⎩

1, j = 0,

j/2, otherwise.
(130)
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It is shown in [28] that one can take v0 = v1 = v2 = · · · = 0 in F P
1

g (v,v1, . . . ,v3g−2), g ≥ 1,

yielding functions of u1, u2, . . . , denoted by F even
g (u1, . . . , u3g−2); explicitly,

F even
g (u1, . . . , u3g−2) := F P

1

g (v,v1, . . . ,v3g−2)
∣∣
v0=v1=···=0

+

(
ζ ′(−1)− log(−1)

24

)
δg,1. (131)

For example, F even
1 = 1

12 log u1 + ζ ′(−1). The expression for F even
g with g = 2, . . . , 5 can be

found in [28]. The following theorem is then obtained.

Theorem 4.3 ([28]) The genus zero part of the even GUE free energy Feven
0 (x, seven) has the

expression:

Feven
0 (x, seven) =

1

2
x2u(x, seven) + x

∑
j∈Z

even
≥2

(
j

j/2

)(
sj − 1

2
δj,2

)
e

j1+j2
2 u(x,seven)

+
1

4

∑
j1,j2∈Z

even
≥2

j1j2
j1 + j2

(
j1
j1/2

)(
j2
j2/2

)(
sj1 −

1

2
δj1,2

)(
sj2 −

1

2
δj2,2

)
e

j1+j2
2 u(x,seven), (132)

where u(x, seven) = log x+ · · · is given by (129). For g ≥ 1, the genus g part of the even GUE

free energy Feven
g (x, seven) can be represented by

Feven
g (x, seven) = F even

g

(
u(x, seven),

∂u(x, seven)

∂x
, . . . ,

∂3g−2u(x, seven)

∂x3g−2

)
, (133)

where F even
g (u, u1, . . . , u3g−2) are defined by (131).

Let

Λ = eε∂x (134)

denote the shift operator. Following [26] (cf., also [28]), define the modified even GUE free

energy F̃(x, seven; ε) by

F̃(x, seven; ε) := (Λ1/2 + Λ−1/2)−1(Feven(x, seven; ε)) =:
∑
g≥0

ε2g−2F̃g(x, seven). (135)

We call F̃g(x, seven) the genus g modified GUE free energy, and call the exponential eF̃(x,seven) =:

Z̃(x, seven) the modified even GUE partition function.

By definition (135) and by (133) we see the followings [28]: F̃0(x, seven) = Feven
0 (x, seven)/2,

and for g ≥ 1 F̃g(x, seven) admits the jet representation:

F̃g(x, seven) = F̃g

(
u(x, seven),

∂u(x, seven)

∂x
, . . . ,

∂3g−2u(x, seven)

∂x3g−2

)
, (136)

where F̃g(u, u1, . . . , u3g−2), g ≥ 1, can be determined by

F̃g(u, u1, . . . , u3g−2)

=
(−1)g

2
E2gu2g−2 +

1

2

g∑
g1=1

(−1)g−g1E2g−2g1∂
2g−2g1(F even

g1 (u, u1, . . . , u3g1−2)) (137)

with Ek being the kth Euler number

∂ :=
∑
k≥0

uk+1∂uk
.
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Here the shuffling in genus phenomenon also appeared in [69]. We also have

F even
g (u1, . . . , u3g−2) =

u2g−2

22g(2g)!
+

g∑
m=1

23m−2g

(2g − 2m)!
∂2g−2m(F̃m(u, u1, . . . , u3m−2)), (138)

where g ≥ 1.

The Hodge-GUE correspondence, conjectured in [28] (cf. also [25]) and proved in [26], is

given by the following theorem.

Theorem 4.4 ([26, 28]) The identity

Z̃(x, seven; ε) = exp

(
A(x, seven)

2ε2
+
ζ ′(−1)

2

)
ZH(t(x, seven);

√
2ε), (139)

holds true in C((ε2))[[x− 1, s]], where

A(x, seven) =
1

4

∑
j1,j2∈Z

even
≥2

j1j2
j1 + j2

(
j1
j1/2

)(
j2
j2/2

)(
sj1 −

δj1,2
2

)(
sj2 −

δj2,2
2

)

+ x
∑

j∈Z
even
≥2

(
j

j/2

)(
sj − δj,2

2

)
, (140)

and

ti(x, s) =
∑

j∈Z
even
≥2

(j/2)i+1

(
j

j/2

)(
sj − δj,2

2

)
+ δi,1 + xδi,0, i ≥ 0. (141)

Taking logarithms on both sides of the identity (139), we find that it is equivalent to

F̃(x, seven; ε) =
A(x, seven)

2ε2
+
ζ ′(−1)

2
+H(t(x, seven);

√
2ε). (142)

The g = 0 part of this identity is proved in [28], and the higher genera parts are proved in [26].

To understand more the higher genera parts of (139), again, we go to the jet space. The

following lemma recalls the important relationship between vWK(t) and u(x, s).

Lemma 4.5 ([28]) Under the substitution (141), the following identity is true:

vWK(t(x, s)) = u(x, s). (143)

Using (143) and observing that
∂

∂t0
=

∂

∂x
, (144)

we can rewrite the higher genera parts of identity (139) in the jet space as follows:

F̃g(b0, b1, . . . , b3g−2) = Hg(b0, b1, . . . , b3g−2), g ≥ 1. (145)

Therefore, we have identified the higher genera parts in jets of the modified even GUE partition

function with those of the Hodge partition function. Then by using (138), one comes back to

the matrix gravity F even
g in the higher genera with the topological gravity as a starting point,

i.e., FWK
g ↔ Hg = F̃g ↔ F even

g , g ≥ 1 (cf., the diagram of the Introduction).

Comparing the lowest degree part of the identity (145) with respect to d̃eg, using (137), and

noticing that the operator ∂ does not change d̃eg, we arrive at the following corollary, which

explains the starting arrow on top of the square of the diagram of the Introduction.
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Corollary 4.6 The following equalities are true:

2FWK
1 (z0, z1) = F even

1 (z1)− ζ ′(−1) =
1

12
log z1, (146)

2gFWK
g (z1, . . . , z3g−2) = F even,[1−g]

g (z1, . . . , z3g−2), g ≥ 2. (147)
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