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Abstract Let f be any arithmetic function and define Sy(z) := 3% __ f([z/n]). If the function f is
small, namely, f(n) < n°, then the error term Ef(z) in the asyrnptoti(; formula of Sy(z) has the form
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Ey(x) for some special functions.
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1 Introduction
1.1 On a Special Sum
Let f : N — C be any arithmetic function. For any = > 1, define
Sy(a) =Y f([x/n]).
n<a

This sum was first studied in [2] and then was extensively studied by many authors. See,
for example, [1, 5, 7-12, 14, 16, 17, 19, 20].

Wu [16] and Zhai [19] proved independently that if f(n) < n®(logn)? for some 0 < a < 1
and 6 > 0, then the asymptotic formula

S¢(x) = Cf:v—l—O(a:l;a (log z)%) (1.1)

holds, where the constant C is defined by

N f()
Cr '_nz::ln(n—i-l)'

If f(n) < nf, then we say f is a small arithmetic function. From (1.1) we see that if f is

any small arithmetic function, then
S¢(z) = Crx 4 O(z1/2+e). (1.2)

The exponent 1/2 in the error term of (1.2) is a barrier for small functions f’s. It is
interesting and natural to ask the following question: for a given small arithmetic function f,
is it possible to break the barrier 1/27
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Several special examples have been studied. For simplicity, define
Ey(x) = S(x) - Cpa

and let 6 denote the infimum of oy for which the estimate Ef(x) < /¢ holds. Ma and Wu

[11] first proved that 65 < 35/71, where A is the von Mangoldt function. The exponent 35/71

was improved to 97/203 and 9/19 in Bordellés [1] and Liu, Wu and Yang [7], independently. Ma

and Sun [10] proved that if f(n) = 7(n), the Dirichlet divisor function, then 6, < 11/23. The

exponent 11/23 was improved to 19/40 and 5/11 in Bordellés [1] and Stucky [14], independently.
Bordellés [1] also studied some other arithmetic functions. He proved that

283 1 1 455 97

0., < , 0, < _— k>4), 6,< , Baw < ,

>~ 574 T2 24K -k -—1) ( ) 914 2 202

where 7 (n) denotes the number of ways n can be written as a product of k factors, w(n) denotes

(1.3)

the number of distinct prime divisors of n, respectively. All results in (1.3) were improved by
Liu, Wu and Yang [8], where they proved that
5k — 1 53 9
< > < w < .
O qgp_q F23 oSy S

Recently, Zhai [20] proved that if a small function f satisfies a good binary additive property,

(1.4)

then the barrier 1/2 in the asymptotic formula (1.2) can be broken.

1.2 Some New Results of Sy(x)
We first study the mean square of E(zx) for arbitrary f. We have the following Theorem 1.1.
Theorem 1.1 Let f be any small arithmetic function and T > 10 be a large parameter. Then

we have

2T
/ |Ef(z)?de <. TPFE.
T

Remark 1.2 From (1.2) we have Ef(z) < z'/2*¢. Theorem 1.1 implies that the estimate
E;(x) < /5% holds on average.
From Theorem 1.1 we propose the following conjecture.

Conjecture 1.3 Let f be any small arithmetic function. Then we have
S¢(x) = Crx 4 O(2?/5+%).

Now we study some special small arithmetic functions such that we can break the barrier
1/2. For any arithmetic function f(n), we define
fen) =Y fln)---f(ne), filn) = f(n). (1.5)
n=ni--ng
Theorem 1.4 Letk > 2 and ¢ > 1 be two fized integers, and suppose f is any function in
the set {1k, Ay, e, we}, where u(-) denotes the Mobius function. Then we have the asymptotic
formula
S¢(z) = Cpa + O(x¥/17+9),
Let P denote the set of all prime numbers and let 1p denote its characteristic function.

Heyman [5] proved that

S1.(z) = 1]1)([2}) = Cpa +0(z'?). (1.6)
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Ma and Wu [12] proved that the exponent 1/2 in (1.6) can be replaced by 9/19 + €. By the
arguments of [12] and Theorem 1.4 with the case f = A; we get the following Corollary 1.5.

Corollary 1.5 We have the asymptotic formula
Sy, (z) = Cpyx 4 O(2¥/17F), (1.7)

Remark 1.6 Theorem 1.4 is uniform for k¥ > 2 and ¢ > 1, which improves all results listed in
(1.4). Although our result for 7 is weaker than that of Stucky [14], we keep it for completeness
and the following Theorem 1.7.

Theorem 1.7 Let k > 2 and £ > 1 be two fixed integers, and suppose f is any function
in the set {Tg, A¢, e, we}. Suppose g : N — C is any small arithmetic function and define
F(n) =3, _spm f(m)g(d). We have the asymptotic formula

Sp(x) = Cpa+ O(x7/1551¢),

It is well-known that
2¢00 = N r(m)u(d), T(n?) = Y mmu(d), )= Y m(m)u(d).
n=d2?m n=md? n=md?

The Liouville function A(n) satisfies

n=md?
where (m) denotes the total number of prime divisors of n. Define the divisor functions
ti(n) = Z 1, ta(n):= Z 1.
n=ninanj n=ninaninj
These two functions ¢1(n) and t2(n) are important when counting subgroups of finite abelian
groups; see, for example, [18, 21, 22].
From Theorem 1.7 we get the following

Corollary 1.8 Let f(n) € {2 7(n?),72(n), A\(n), t1(n), ta(n)} and £ > 1 be a fived integer.
Then we have the asymptotic formula

sz (1‘) = szx + O(CC73/155+5),

where f; was defined in (1.5).

Remark 1.9 From the proofs of Theorem 1.4 and Theorem 1.7 we see that if fi, fo €
Ups1{7e+1, Ae, pre,we}, then Theorem 1.4 and Theorem 1.7 also hold for f(n) = fi * fa(n) =
> nenyny J1(n1) f2(n2).

The structure of this paper is as follows. In Section 2 we give some lemmas needed for the
proofs. In Section 3 we give the proof of Theorem 1.1. In Section 4 we give some estimates of
exponential sums, which are important for the proofs of our theorems. We give the proofs of

Theorem 1.4 and Theorem 1.7 in Section 5 and Section 6, respectively.

Notation Throughout this paper, 7,(n) denotes the general divisor function, which counts
the number of ways n can be written as a product of k factors, 7a(n) = 7(n), A(n) denotes the
von Mangoldt function, u(n) denotes the Mobius function, w(n) denotes the number of distinct

prime divisors of n, (m) denotes the total number of prime divisors of n, respectively. We use
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N and C denote the set of positive integers and the set of complex numbers, respectively. For
a real number ¢, [t] denotes its integer part, {¢t} denotes its fractional part, ¢(t) = {t} — 1/2,
[It]] = min({t},1 — {¢}) and e(t) = exp(2xit). The symbol n ~ N means that the summation
condition of nis N < n < 2N and n < N means that ¢; N < n < ¢aN for two absolute positive
constants 0 < ¢; < co. We always use € to denote a small positive constant, which may be

different at different places. In Lemma 2.6 we use the symbol | - |*, which means

‘Zm

M<m<2M

2 Some Lemmas
In order to prove theorems, we need the following lemmas.

Lemma 2.1 For any H > 3, we have

W(t) = — _Z 62(:2 +o<mm <1,Hﬁt”>>, (2.1)

where

Proof See Heath-Brown [4]. O

Lemma 2.2 Suppose 3 < a < b < 2a and the function f(u) is at least 6 times differentiable
on the interval [a,b] such that the estimate |f9)| < Fa™ (a < u < b) holds for some F > 0.

Then for any exponent pair (k, \), we have the estimate
Z e(f(n)) < ; + FFa? ",
a<n<b
Proof See, for example, Graham and Kolesnik [6]. O
Lemma 2.3 Let M > 0,N > 0,u,, > 0,v, >0,4,, >0,B, >0 (1 <m<M1<n<N),
and let Q1 and Qo be given non-negative numbers, Q1 < Q2. Then there is a Q such that

Q1 <Q < Q2 and

M N
PO S D D NIRRT SUICIERS oA

Proof This is Lemma 2.4 of Graham and Kolesnik [6]. O
Lemma 2.4 Suppose x'/? < y < x/® is a parameter. Then

=Y k(1) 0y,

n<y

where ky(n) := f(n) — f(n — 1) with f(0) =
Proof This is contained in Formula (3.7) of Zhai [20]. O
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Lemma 2.5 Suppose M, N > 1 are real numbers, « > 0,0 > 0 are fired constants, A > 0.
Let G(M, N; A) denote the number of solutions of the inequality

a B8
‘(nl) - <m1> ‘ <A, nyny~N, my,mg~ M.
) mo
Then we have

G(M,N;A) < MNlog2MN + AM?*N?
where the < constant is absolute.

Proof This is Lemma 1 of Fouvry and Iwaniec [3]. O
Lemma 2.6 Let

S1 = Z Z a(h,n)

H<h<2H N<n<2N

*

)

Z U hﬁn'ymo‘
(&
HANYM«

M<m<2M

where H, N, M are positive integers, U is a real number greater than one, a(h,n) is a complex
number of modulus at most one; moreover, «, 3,7 are fized real numbers such that a(a—1)8y #

0. Then we have

u o\ 1 1
S < (HNM)”E((HNMQ) o T U).

Proof This is Theorem 3 of Robert and Sargos [13]. O
Lemma 2.7 Let H > 3. Then 1(t) can be written as the form
v = 3 aen +0( X ptneinn)).
1<|h|<H [h|<H
where a(h) < 1/|h|, B(h) < 1/H.
Proof See Vaaler [15], or the appendix of Graham and Kolesnik [6]. O

3 Proof of Theorem 1.1
Suppose T < 2 < 2T and TV/? < y = y(T) < T?? is a parameter to be determined. By

Lemma 2.4 we have

2T
| B < [, (3.1)

=1

Take H = T2 in Lemma 2.1. We have

S ks () = 21(a) + Oa(e)) (3.2

n<y

B == ¥, S ke "),

I<|h|<H n<y

Sa(x) = > |ky(n)| min <1, Hlllﬁll)'

n<y

where )

dx.

> kf(ﬂ)l/)(i)

n<y




By Cauchy’s inequality we have (note that f(n) < n¢)

T

n<y n<y
2T /n 1
1+s :
min | 1, du
Ze L (o)

1/2 1
< TyH'E/ min (1, )du
—1/2 H2u?
<Ty'"™H ' < 1.

By a splitting argument we have

log®> T
21(1}) < 8

> ’ff(n)e(}:;)‘

h~H n~N

forl< H<KHand 1 <K N < y. So

P < T Y S kynks(ue (1= 1)

n
hi,ho~H ny,na~N e 2

log* T
=, En@) +Su@),
where
Yii(z) = Z kyg(ni)ky(nz),
hi,hg~H;ny,ng~N
h1n2:h2n1
hi  he
Sio(z) = > kf(nl)kf(ng)e<x(nl - m))

hy,hy~Hing,ng~N
hina#hang

Obviously we have

2T
/ Y11 (z)de < T HN.
T

By the first derivative test we have

2T
[Msuene ¥ i

hi,hg~H;ny,ng~N
hina#han,

B Z [ks(n1)kys(n2)nans|
hi,hg~H;ny,ng~N ‘h1n2 - h2n1|
hina#hani

< HN3*e,

From (3.4)—(3.7) we get

2T
/ 51 (z)|?de < TN + N3 < THey 4 2P,
T

Now Theorem 1.1 follows from (3.1)~(3.3) and (3.8) by choosing y = T°/°.

2T
/ |5 (2) 2d:c<</ > kg (n |22mm<1’7{2|1’”|2)d$

Zhat W. G.
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4 Estimates of Some Exponential Sums

Let z and N be large real numbers with z!/3 < N < 2%/3. Suppose H > 1,M; > 1, My > 2
are real numbers. Define

hx
H, M M m ,
Ssr(H M M) =S e S a 1e<m1m2+5>

h~H mi1~Mq,mg~Mg
mimo XN

hx
H, My, M>)
Ss.r1( M) =Y e Y amlbm2€<m1m2 +5)7

h~H mi~My,mg~ Mg
mlmng

where ¢, @, , bm, € C such that ¢, < 1, ay, K m§, by, <K mj, and 0 <6 < 1.

We first prove the following Lemma 4.1, which plays an important role in the proofs of both
Theorem 1.4 and Theorem 1.7.
Lemma 4.1 Suppose ©'/> <« N <« 2%/3, N'/3 « My < N'Y? and H < NY?~¢. For any

exponent pair (k, \) we have the estimate

Ss.11(H, My, My)N—° < HY2MY My + Hes Mi—"M, 2
+ Haofoe M2 M 4 I]{VQ v (4.1)
Especially we have
1o 11 21 HPg
Ss.rr(H, My, My)N= < HY2 M2 My + Has MP My + Hao M7 M7 + N2 (4.2)
Proof The idea of the proof of this lemma comes from [4]. By Taylor’s formula we have
hx hx ohx hx
mims + 6 - mims m2m% * O<M13M23)

which implies that

hx Shx H2y'te
Sé,II(H7M1;M2): Zch Z amlbmrze( - 2 2> +O( N2 > (43)

mim mim
h~H mi~M7q,mg~Mg 12 1772
mlﬂ'LQXN

We only need to bound the sum
hx ohx
Syr(H, My, My) =Y er > amlbm26< - 2>‘

h~H mi~Mq,mg~Mg mama mym;
mimo =N
Obviously 0 < h/my < 2H/M;. Suppose 1 < Q < HMj is a positive integer parameter to
be determined later. For each 1 < ¢ < @, let
B, = {(h,ml) B~ H,my ~ M, 2(‘1@_]\411)11 < 721 < ;‘ﬁ }
We can write S ;;(H, My, Mz) in the form

hx ohx
S = Y S Y cname (mlmQ_m§m5>.

man~ Mz q=1 (h,my)€E,
mlmQNN

By Cauchy’s inequality we get
|S5,11 (H, My, My)[?
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Q
hx ohx
< MyTEQ g g E ChQm, € - 5,
mimso mims
ma~Msz q=1" (h,m1)€E,
mlmng

Q
:M21+6Q Z Z Z Z chlamuch2am12e(r(m2))

mo~Msz q=1 (hy,m11)€Eq (hy,m13)EEq
mi1maXN mismoXN

Q
= M21+EQZ Z Z Ch1@myy Chy Amyy Z 6(T(m2)), (44)

q=1 (h1,m11)EE, (h2,m12)EE, mo€l

2

where I = I(mq1,m12) is a subinterval of (M, 2M5], and

T h h ox [ h h
r(mg) = r(ma; hy, he,mi1,my2) = ( o ) - ( : ; >

2 2 T2
mo \ M11 mio ms \i; miy
Let
hy ha
n= -
mii mi2

It is easy to see that the contribution of 7 = 0 to |S; ;;(H, My, My)|* is O(QM; H M3 N*). Now
we consider the case 17 # 0. From the conditions H < N'/2=¢ N'/3 « M, « NY/? MM, =< N,
we see easily that

RS | j=1,2,3,4,5,6.
By Lemma 2.2 we see that the estimate
M? "
5 efrtma)) <min (3, 28 )+ (1) g (45)
macl 7| M;

holds for any exponent pair (k, A).
By the definition of E, we have |n| < 2H/QM;. So from (4.4), (4.5) and the above discus-
sions we get that (we use a splitting argument to 1/|n|)

S5 1 (H, My, My)|* < QM HMZN® + QM+ > 1,
hihg~Himyy,myg~ My
n|<Maz—1
1
+QMIteg! > ]

hi,hg~H;my1,myg~Mq
Mz H
= <Inl< oy

+ QYR HE M My A Z 1
hy,hg~H;myq,myo~My
In|<HQ-1M;*

< QM HMZN® + QMZTe A(H, My; Myx™")

1
+ QM3 et \p, max A(H, Mq; A)
12 <A<

S oMy
+ QYRR HE MR M)A AH, My, HQ MY, (4.6)
where A(H, My; A) denotes the number of solutions of the inequality

In| <A, hi,ho~H, mi,mia~ M.
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By Lemma 2.5 we get
A(H, My; A) < HM, log HM; + AHM?. (4.7)
From (4.7) we have
QMZITe A(H, My; Max™') < (QHMEM, + QH (M, M)3z~)N®
< QHM3Z M, N°© (4.8)
and

1
QM3 ter™! max A(H, My; A)
M2 |AI< G

< (QHMEM, + QH (M, M,)3z~")N® < QH M3 M, N°© (4.9)
by noting that N < x2/3, M; < N2 MM, < N. From (4.7) again we get
QlfnanmeanlJr)\onA(H’ Ml; HQfllel)
K QYR HE MMy (H M, log HMy + Q™ H?M?)
< Q—Kan2+RM12—KM21+)\—2m (4.10)

by recalling our assumption @ < HM;.
From (4.6) and (4.8)—(4.10) we get

S5 17 (H, My, M) PN ™% < QHM; My + Q Fa " H* " ME "Myt 2"

Choosing a best @ € [1, HM;] via Lemma 2.3 we get

1/2 1+X—2k

" o 2 1+X
Sy p(H, My, Ma)N™% < HY2M"* My + Hx> M{ "M, *  + Hz>¢2 M M7, (4.11)

which combining (4.3) gives (4.1). The estimate (4.2) follows from (4.1) by taking the exponent
pair (1/2,1/2). O

Lemma 4.2 Suppose 28/17 <« N < 2'3/25_ [f NV/3 « My < N2 and H < N'/27¢ then
Ss.r(H, My, My) < Haz 100+,
Proof TFrom (4.2) and N'/3 < M; < N'/2 we see that
Ss.r1(H, My, My)N~¢ < HY2N5/S 4+ Hyi N8 4 Hzo N1,
which implies Lemma 4.2 by noting that N < 213/25, O
Lemma 4.3 Suppose 2'3/?° < N < 2917 If N?/9 « My < N*? and H < N'Y/27¢ then
Ss.rr(H, My, My) < Hairte,
Proof TFrom (4.2) and N?/9 < M; < N*/* we see that
Ss.rr(H, My, My)N~¢ < HY/?N®/9 4 HziN% + Hro N3,
which implies Lemma 4.3 by noting that N < z%/17. O
Lemma 4.4 Suppose z'3/?° < N < 2917 If My < N°/° and H < Nz=8/'7 then

Ss.r(H, My, My) < Hzirte,



10 Zhat

w. G.

Proof We consider three cases: M; < N?/9 N?/9 « M, <« N¥9 N*9 < M, < N°/9.

If M; < N?/9, then using the exponent pair (2/7,4/7) to the sum over my we get
8 g
So.r(H, My, My) < HH?/ 22/ M7« HH?/T 22/ 7+ N10/63
< H(Nx78/17)2/7x2/7+5N10/63 < H18/119+¢ \4/9
& HP4/ 9% o [ 8/17+e

When N9 « M; < N*° by Lemma 4.3 we get
Ss.r(H, My, My) < HaS/1T+e,

Finally suppose N*/? <« M, < N°/9. Define

g(n) = Z U,y -

n=miymsqg
my~My,mo~Mo

Then S5 ;(H, My, Ms) can be written as

S5 (H, My, Mp) = Y cn > g(n)6<n}f6>

h~H M1 Mz<n<4M; M

“Yo X gwe(" e,

h~H M1 Mz<n<4M; M

where " N
T T
®(u,h) := — M M. < 4M;Ms,.
(u,h) €(u+5 u)’ 1My <u < 14Vl
It is easy to see that
0 hx
D(u, h 1 D(u, h
(u7 )<< ) ou (u, )<< w3

Let

By partial integration we have
ha 4AM,y My
> g(n)e< ><1>(n, h) = / ®(u, h)dA(u, h)
My My <n<4M; M, n My Mo
= ®(4M My, h)A(4M1 My, h)
4AMy M 9
—/ A(u,h) x _ ®(u, h)du

M1 M au

From (4.12)—(4.14) we have

S50 (H, My, Mp) = cp®(4My My, h) A(4My My, h)
h~H

4M;y Mo 9
—/ Z cpA(u, h) x o ®(u, h)du

M1 M, N H 8'&
Hz N hx -
<)X X a] X e ]
h~H my~M; ma~Ma

(4.12)

(4.13)

(4.14)

(4.15)
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where ay, = |ay,|. By Lemma 2.6 we have

S | X e

h~H my~M-, mo~ My

* 1 1 1 N2
< HziMZMj + HMyMZ + . (4.16)
x

From (4.15), (4.16) and the condition N*/9 < M, < N/ we get
1 1 1 1 N2

&S50 (H, My, My) < Ha's M My + HMMg +

H%zi 1 1 H%
+ My Mj' + N2

N2
) N2  H2zi  H?
< HriN®& £ NS 45 40 0w
x N 1s N o

MM +H

< Hzx 15500
< Hz'r (4.17)

by noting that 213/ <« N < 2917 and H < N2~8/17. This completes the proof of Lemma 4.4. [J
Now we consider another exponential sum. Let 2 and N be large real numbers with 2/3 <«

N < z?/3. Suppose H > 1,D > 1,M; > 1, My > 2 are real numbers such that D?M; M, = N.
Define

hx
Ts(H,D, M, Ma) =D en y_pa  p_ “mlbm"’e(d%mz%)’

h~H d~D my~Mq,mg~Msy
d?2mimo=N

where cn, pd, Gmy, bm, € Csuch that ¢, < 1, pq < d°, apm, K M5, by, <K mj,and 0 <6 < 1. We

will prove the following Lemma 4.5, which plays an important role in the proof of Theorem 1.7.

Lemma 4.5 Supposer'/? < N < x?/3 1< D < NY6 H < (N/D?)'/2=¢ and (N/D?*)'/3 <
M, < (N/D?)'Y/2. Then for any exponent pair (x,\) we have

1.5 Ko BHA—4rk " 3+
Ty(H, D, My, My)N % < HDN + HxD]YA, + Hx;éf“ + g;‘z (4.18)
Especially we have
15 1o 1
Ts(H, D, My, My) N~ < HDJY + Hg;;vé + HxDN7 + g;ﬁ (4.19)
Proof  Similar to (4.3) we have
H2pl+e
Ts(H, D, M, M) = T;(H, D, My, M) + O (D5M12M22), (4.20)

where

T5(H, D, My, M3) : ZCthd Z amlbm2e( ha Shx 2>’

d?>mimg  d*m3m
h~H d~D my~My,mg~Mo

mimo XN

Obviously 0 < d"‘}:n < D%I]@l. Suppose 1 <« @@ <« DHM, is a positive parameter to be
determined later. For each 1 < ¢ < @, let

E:]k - {(h7d7m1) : hNH7dND’m1 NMl’

2(q—1)H h 2qH
< < .
QD2M1 d2m1 - QD2M1



12 Zhat W. G.

We now write Ty (H, D, My, M) in the form

< hx Ohx
T5(H,D, M, M) = Z meZ Z chpdamle( 2),

2 T 40,2
T prs A ?>mimy  dimim
d2mimao~N
Similar to (4.4) we can get
T3 (H, D, My, My)|* < Mi*Q > D e(ri(ma))], (4.21)
hj~H,dj~D,mqj~Mi(j=1,2) mo€l*
1< 22,
where I* = I*(my1,m12) is a subinterval of (Ms, 2Ms], and
x Sz h1 ho )
r«(mo) = r(ma; hy, ha,di,da, mi1,m132) := - — ,
(ma) (ma; ha, he, dy, da, m11, mi2) m277 m% (di‘m%l d%m%z
X h1 ha
’r} =

Bmyy dEmyy

= 0 to |T7(H,D, M, M)|* is at most
O(QDM, HM3N¥¢). Now we consider the case n* # 0. From the conditions 1 < D < N6 H <«
(N/D*)Y/2=¢ D2M, M, = N, we see easily that

It is easy to see that the contribution of n*

: zln”| :
|r>(kj)(u)| - Mngl (My <u<2Msy), j=1,2,3,4,5,6.

Suppose that (k,\) is any exponent pair. By Lemma 2.2 we have the estimate

S e(r.(ms)) < min <M2, M ) N <M*|)“M;_

4.22)
* 2 (
mo€l* ‘{rl | M2

By the definition of E} we have |n*| < 2H/QD?M. So from (4.21), (4.22) and the above
discussions we get that (we use a splitting argument to 1/|n*|)
|Tg(H’DaM15M2)|2

< QM DHMZN?® + QM3 B(H, D, My; Myz ™)

1
+ QM ! ., max AZS’(H, D, My; A)
2 KAL D2y

+ Q" H DT MMy T T B(H, D, My; HQ™' D72 M),

(4.23)
where B(H, D, M7;A) denotes the number of solutions of the inequality
hy ha
— <A, hy,he~H, dy,do~D ~ M. 4.24
d%mu d%mlg > A, 1,12 ) 1,02 ; M1, M2 1 ( )

If (4.24) holds, then we have

h1m12 . d% 8AD2M1
h2m11 d% H ’
which combining Lemma 2.5 gives
B(H,D, My; A) = > 1
h,l,h,r_)NH},lril,dQNDhj;n,ll‘mlszJ\/I]

d?my;  dimip =
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< E 1
hisho~H,dy,dg~D,mq1,mjg~M;

2
| himyo 47 I< 8AD2 M,
homiy g2 1= H

< > 7(n1)7(n2)

ny,ng~HM;7,dy,do~D
2
[ a7 I< 8AD2 M
no a2 1= H

< N¢ > 1

ny,ng~HMy,dy,do~D

| dz < SAD;JVll
nz d2 -
< (HDM, + AHM} D*)N¢, (4.25)

where we used the well-known bound 7(n) < n®.
From the conditions 1 < D <« NV/6 z1/3 « N <« 2?/3, DM, M, =< N we get

(M M) D*z~! < MZDM;,
which combining (4.25) gives

QM3 B(H, D, My; Max™') < (QHMZDM, + QH (M, M;)*D*x~ ') N*©

< QHMZDM, N¢ (4.26)
and
1
QMIteg™t max B(H, D, M;; A)
MR IAIL o B,

< (QHM3ZDM, + QH(M,M;)*D*x~*)N*©
< QHMZDM, N°®. (4.27)
From (4.25) again we get
Ql*l{anﬁDfmiMl—mMz:l.+)\—2fiB(H7 D, ]\417 HQ71D72M1—1)
< Ql_R$RHﬁD_ZRMfHM21+)\72K(HMlD + Q—1H2D2M12)NE
< Q—mxmH2+RD2—2KM127RM21+)\7211 (428)

by recalling our assumption Q < HDM;.
From (4.23) and (4.26)—(4.28) we get

Ty (H,D, My, My)|>?N™¢ < QHMZDM, + Q Fa"H>Tr D228 \p2=r M TA—2,
Choosing a best @ € [1, HDM,] via Lemma 2.3 we get

T;(H3D3M1;M2)N_E
r " 1+A—2kK
< HY2M,M{>DV? 4 Ha> DV MI="M, *
+ Haotoe Doiox M12+22~ M221++2A~
H3Né HzSN°T"  Hgadex Nidic
+

< 7 1
- 14A+
Ds D 2" D 2i2e

(4.29)
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by recalling that (N/D?)'/3 <« M; < (N/D?*)'/? and D*M;M, =< N. Now (4.18) follows
from (4.20) and (4.29). The estimate (4.19) follows from (4.18) by taking the exponent pair
(1/2,1/2). O
Remark 4.6 When we use Lemma 4.1 and Lemma 4.5 to prove Theorem 1.4 and Theorem
1.7, we choose the exponent pair (1/2,1/2). If we choose exponent pairs as well as we can, then
we can slightly improve both the exponent 8/17 in Theorem 1.4 and the exponent 73/155 in
Theorem 1.7. Especially, if (e,1/24¢€) is an exponent pair, then the exponent 8/17 in Theorem
1.4 can be improved to 7/15.

5 Proof of Theorem 1.4

5.1 Proof of Theorem 1.4

Suppose k > 2 and ¢ > 1 are fixed integers and f € {7g, A, jug,we}. Let y = 2°/17. Then
z/y = 2817, By Lemma 2.4 we have

> kf(”)i/}(i) + OB

n<g9/17
- ! z 8/17+¢
= I8/17<Z:n<gg9/17 f(n)y <n> + xs/ﬂg;gﬁg/” f(n)y <n N 1> +O(z ). (5.1)

So we only need to bound the sum

Rys(Nix) =Y f(n) (nié> (6=0,1)

n~N

for 28/'7 < N < 2917, Let H := Na2=8/17. By (2.1) of Lemma 2.1 we have
Rys(N;x) =Xp 614+ O(Zp52), (5.2)

where

Spa= 3 X e, )

1<imen 2
. 1
SRS |f<n>|mm< )
n~N |”+5 |

By (2.2) of Lemma 2.1 and Lemma 2.2 with the exponent pair (2/7,4/7) we have

1
Yoo < N° Z min ( )
THLS s

n~N

(N c (1 -2 ha
<<N<H+hz_:1mm(h ,Hh )Ze<n+6)>

n~N
2
<N (N ppprmgn N
H x
< /1Tt (5.3)
By a splitting argument we get

Ef751 <

nl 2 20 )

h~H n~N

log (5.4)



Sums with Small Functions 15

for some 1 <« H < 'H. So Theorem 1.4 follows from (5.1)—(5.4) and the estimate

Srs(H,N):=> "> f(n ( ) < Ha®/1Tre, (5.5)

h~H n~N

We only need to prove that (5.5) holds for f € {7, A¢, p¢, we}. We can prove the following

two lemmas.

Lemma 5.1 The sum Sy s(H, N) can be written as a sum of (log"! x) expressions of the form
(Type T sum)

hx
Sf?I(H7 M17M2) = Z Ch Z am16<m1m2 +5> (56)

h~H mq~Mq,mg~Mg
mimo XN

with My < N'/? and expressions of the form (Type 11 sum)

hx
Sf [[(H Ml,MQ Z Ch Z amlbmze( > (57)

h~H mq~Mq,mg~DMg mymy + Y
mimo =N

with N'/3 < My < NY2 where vy > 1 is a fived integer, and cp, < 1, am, < m5, by, < mj§.
Note that when f = wy, an additional term HN?/3 should be added to the above sums.
Lemma 5.2 The sum Sy s(H, N) can be written as a sum of (log"* x) expressions of the form
(5.6) with My < N°/° and expressions of the form (5.7) with N?/° < M; < N*° where
vy > 1 s a fized integer, and cp, < 1, apm, < mf, by, < mj. Note that when f = wy, an
additional term HN?/3 should be added to the above sums.

First suppose 17 « N <« z13/25, By Lemma 4.2 we have
Sp.r(H, My, M) < Hzivote, (5.8)

Using Lemma 2.2 with the exponent pair (2/7,4/7) to estimate the sum over mo and
estimate the sums over A and m; trivially we get

. 2
258y (H, My, My) < HH? 2% My +
2

<<H(Nx_8/17) TN 4
x

< Ha3/7
< Hz®17 (5.9)

by noting that H < Nz~%17 and M; < N'/3. So from (5.8) and (5.9) we get an estimate
better than (5.5) in the range 2%/'7 < N < x3/%,

When 213/?® < N < 2917 the estimate (5.5) follows from Lemma 4.3, Lemma 4.4 and
Lemma 5.2. This completes the proof of Theorem 1.4.

We will prove Lemma 5.1 and Lemma 5.2 in the next two subsections.

5.2 Proof of Lemma 5.1.

In this subsection we will prove Lemma 5.1. We consider only f € {7x, Ay, wy}, since the proofs
for Ay and pu, are the same.

We first prove the following decomposition formula.
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Lemma 5.3 Suppose K > 2 is a fized integer, Ny > 1,..., Ng > 1 are natural numbers
such that Ny---Ng =< N, W(u) is any function defined on (N,2N], aj(n;) € C such that

aj(n;) <nf (j=1,...,K). If max(Ny,...,Ng) < N2/3 then the sum
Z ai(ng)--- Z ag(ng)Wng - -ng)
’ﬂlf\/Nl nKNNK

can be written as the form

Z Ay Z by W (myims)

my~M; mo~ Moy

such that N'/3 < My < NY2 and a,,, < m5, by, < ms.
Proof Without loss of generality, suppose Ny < Ny < --- < Ng.

(5.10)

(5.11)

If K =2, then Ny < Ny < N2/3 and Ny N, = N implies that N*/3 <« N; < NY2. So we

see that (5.10) is of the form (5.11) by taking m; = ny, ma = na.

Now suppose K > 3. We consider three cases: Nx < N/3, N3 < Np « N/2 N1V/2 «

Ng < N2/3,

Case I Ng < N3, which implies that N; < N3 (j=1,...,K). Since Hszl N; < N, we

find that there is a j such that 2 < j < K and
Ny---Nj_; < N1/3, Ny Nj > N/3.

Thus we have

NY3 « Ny---N; = N;---N;_, x N; < N¥/3,

If Ny---N;j < N2 then the sum (5.10) can be written as (5.11) by taking

mp=mny-nj, Mg =mnj1ng, My =Ny---Nj, My=Nji;---Ng,

am, = ar(n1) - aj(ng) Kmi, by, =ajy1(nj1) - ax(ng) < ms.

If Ni---N; > N2 then the sum (5.10) can be written as (5.11) by taking

mip =nji1-NE, Mg =Ny -Nj.

Case II N'/3 < N < N'/2,
In this case the sum (5.10) can be written as (5.11) by taking

m; =ng, Mz=ni---ng_1, My =Ng, My=N;---Ng_1,

am, = ax(Ng) K mi, by, =a1(n1) - ax_1(nx_1) K mj.

Case III N2 <« N < N?/3.
In this case the sum (5.10) can be written as (5.11) by taking

my=mni--ng_1, Mo=ng, M =DNi---Ng_q,

Umy =a1(n1) - rag—1(nx—1) K mi, bm, =ax(nKg) <K mj.

This completes the proof of Lemma 5.3.
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5.2.1 Proof of Lemma 5.1 for 7
Suppose k£ > 2 is a fixed integer. By a splitting argument we see that S;, s(H,N) can be

written as a sum of O(log"~* N) exponential sums of the form

hx
S s(H Ny, .. Ny) =y > e(n1~-~nk+5>’

hNHnlrle ..... ng~Np
’I’Ll“-’nkxN

where N; > 1,...,N; > 1 are natural numbers such that Ny--- N, =< N. Without loss of
generality, we suppose N1 < Ny < .-+ < Ng.

If N, < N2/3 then from Lemma 5.3 we see that Sr..6(H,N1,...,Ny) can be written
as the form (5.7) with N'/3 < M, <« NY2.If N, > N?/3 then Ni---Ny_; < N3, So
S...5(H,Ny,...,Ny,) can be written as the form (5.6) with M; < N1/3.

5.2.2 Proof of Lemma 5.1 for f = Ay ¢0=1
We first consider the function A, for the case £ = 1. Let u > 3 be a fixed integer. If 20 > n,

then we have Heath-Brown’s identity

A(n) = (=1)’(}) > pu(na) - - - p(n;) log ngy.

i=1 5 5
J n=[1J_y n¢ [y 7jte
N1y, <vU

Using Heath-Brown’s identity with u = 4 we find that Sx s(H, N) can be written as a sum of
O(log” N) exponential sums of the form

Sas(H,Ni,... Ng):= Y > IOgnsHu nje (nl---hvfg—i-é)’

h~H ni~N1,...,ng~Ng j=1
ny-ng <N

where Ny > 1,...,Ng > 1 are natural numbers such that Ny ---Ng < N, N; < N1/4 (j =
1,2,3,4).

If max(Ny,...,Ng) < N?/3, then from Lemma 5.3 we sce that Sa,s(H, N1,...,Nsg) can be
written as the form (5.7) with N'/3 < M; < N'/2. Suppose now N; = max(Ny, ..., Ng) >
N?/3 then it is easy to see that j € {5,6,7,8}. So the sum Sy 5(H, N, .., Ng) can be written
as the form (5.6) with M; < N1/3.

5.2.3 Proof of Lemma 5.1 for Ay, ¢ > 2
Since A¢(n) = >, ., A(n1)---A(ng), the sum Sy, 5(H,N) can be written as a sum of

O(log” N) exponential sums of the form

h
SA@,&(Hava'-w Z Z HAnJ (nlzf"'é)’

h~H ny{~Nq,..., ny~Ny j=1
ny-negN

where N; > 1,..., Ny > 1 are natural numbers such that Ny ---N, < N. Without loss of
generality, suppose Ny < N --- < Ny.

If N, < N?/3_ then from Lemma 5.3 we see that Sa,.e(H, N1,...,Ng) can be written as the
form (5.7) with N/? < M; < N/2.

Now suppose Ny > N?/3. From Nj --- Ny =< N, we get that NyNs - -- Ny_y < N'/3. Applying
Heath-Brown’s identity with u = 4 to A(ny) again we find that Sa, s(H, N1,...,N;) can be
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written as a sum of O(log” N) exponential sums of the form

4
Sh,s(H,N) Z Z HA (nj) Z Hu(ngj)logngg

h~H nj~N; j=1 np1~Npy,...,npgg~Nyg j=1
1S]§4*1 ng1--meg XNy

hx
X e )
Ny Ng—1Ng1 - Nygg + 0

where N = (Ny, ..., Ny—1, Np1, ..., Ngg), Ngg > 1,..., Nyg > 1 are natural numbers such that
Niy -+ Nog = Ny, and Noy < N (5 =1,2,3,4).

If there exists an Ny; such that Ngj > N?/3_then we have 5 < j < 8. So the sum Sa,s(H,N)
can be written as the form (5.6) with M; < NY/3.If N;; < N?/3 (1 < j < 8), then by Lemma
5.3 the sum Sy, s(H,N) can be written as the form (5.7) with N'/3 < M; < N1/2,

5.2.4  Proof of Lemma 5.1 for f =w;, =1

Since w(n) =3>_, _,, 1, the sum S, s(H, N) can be written as a sum of O(log V') exponential
sums of the form

h
SuslH, PN =3 Y e<mp‘15>,

h~H niy~Ny,p~P
nip=<N

where N7 > 1, P > 1 are natural numbers such that N; P =< N.

If Ny > N?/3) then the sum S, 5(H, P, N;) can be written as the form (5.6) by taking
my =p, mo =nq. If N'/2 < Ny < N?/3_ then Sw.s(H, P,Ny) can be written as the form (5.7)
by taking m; = p, me = ny. If N'/3 < N; < N'/2, then Sw.s(H, P, N1) can be written as the
form (5.7) by taking mi = ny, ma = p.

Now suppose N; < N'/3 namely, P > N?/3. Then we have

1
S..s(H,P,N,) < 10gP|S:”5(H’ P,Ny)| + HN, P'/2, (5.12)

where

Le(H PN =D Y AU(mZﬂ(s)-

h~H ni~Nj,n~P
ninxN

We use Heath-Brown’s identity with u = 4 to A(n). So we find that S7 ;(H, P, N1) can be
written as a sum of O(log” N) exponential sums of the form

5
* hx
S5 s(H, Ny, Na,...,Ng) := Z Z log ng Hu(nj)e(nl.“ng +5),

h~H n1~N1 ..... ng~Ng Jj=2
ng,\N

where No > 1,...,Ng > 1 are natural numbers such that Ny---Ng < P, N; < pl/4 (j =
2,3,4,5).

If there exists an NN; for which IV; > N2/3 then we have 6 < j < 9. Without loss of
generality, suppose j = 9. We see that the sum S, 5(H Ny, Na, ..., Ng) can be written as the
form (5.6) with m; < N'/3 by taking m, = nq ---ng, mg = ng. If N; < N?2/3 (j=2<j<09),
then from Lemma 5.3 we see that S, 5(H, N1, Na, ..., Ng) can be written as the form (5.7) with
N1/3 <Lm < N1/2'

Note that HN; P'/? in (5.12) satisfies HN; P'/? < HN?/3.
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5.2.5 Proof of Lemma 5.1 for f = wy, £ > 2

Since we(n) = 32, .., w(n1) - w(ng), the sum Sy, s(H,N) can be written as a sum of

O(log” N) exponential sums of the form

¢ h
Suwps(H, Ny, No) o= > > Hw(nj)fi(m,“;”)’

h~H nq~Ny,...;ng~Ng j=1
ny-ngXN

where N1 > 1,..., Ny > 1 are natural numbers such that Ny --- Ny < N and N; < Ny --- < Ny.

If N; < N?/3, then by Lemma 5.3 we see that the sum S, s(H, Ny,..., N;) can be written
as the form (5.7) with N3 < M; < N/2.

If Ny > N?/3, then the sum > n,~n, Can be written as sums of the form 3 _ p, ZnNN; with
PN} =< Ng. If Nf > N?2/3_ we get a sum of the form (5.6) with M; <« N3 If N3 « Ny <
N?/3 we can get a sum of the form (5.7) with N'/? < M; < N'/2. Finally suppose N; < N1/3.
If P, < N?/3, then we use Lemma 5.3 directly to get a sum (5.7) with N3 <« M; < N2,
If P, > N?/3  then we apply Henth-Brown’s identity to p and then use the procedure of the
proof of wi. We omit the details.

5.3 Proof of Lemma 5.2

In this subsection we will prove Lemma 5.2. Since the proof is similar to that of Lemma 5.1,
we give only a short description.

We first give the following decomposition formula without proof.
Lemma 5.4 Under the conditions of Lemma 5.3, if max(Ny, ..., Ng) < N*° then the sum
(5.10) can be written as the form (5.11) such that N*/° < My < N*9 and a,,, < m5, by, <
ms.

From the proof of Lemma 5.1 we see that if f € {7, Ag, e, we}, then the sum Sy s(H, N)
can be written as a sum of O((logx)"/) expressions of the form

h
Sf?‘s(H’Nl""’NK)::Zch Z Any - Z anke(ny..nx}(—FKS)’

h~H  mni~N; ng~Ngk
where vy > 1 and K = K(f) > 2 are fixed integers, Ny > 1,...,Ng > 1 and Ny --- Ng < N.
Let N; = max(Ny,...,Ng). If N; > N*/9 then an; = 1 or a,, = logn;. Hence the sum
Sp.s(H,Ny,...,Ng) can be written as the form (5.6) with m; < N®°. If N; < N9 then
from Lemma 5.4 we see that the sum Sy.5(H, N1, ..., Ng) can be written as the form (5.7) with
N?/% < my < N9

6 Proof of Theorem 1.7

Suppose k£ > 2 and £ > 1 are two fixed integers, and f € {7y, Ay, pe, we}. Recall that F(n) =

Y oneazm 9(d) f(m) with g(d) < d°.
Let y = 282/1%5. Then z/y = x™/15%. Similar to (5.1) we have

Ep(z) = - > F("W(Z) - > F(nw}(n—xl— 1>

273/155 << 282/155 273/155 << 282/155

+O($73/155+5). (61)
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It suffices to bound the sum

Res(Vi) = 30 (7)) @=0.0)

= n+0

for 273/15% « N < 282/155_ By the expression F'(n) = 3 _ ... g(d) f(m) we see that Rp 5(N; )
can be written as a sum of O(log x) expressions of the form

Res(DM) = 30 fmg@ 7, ;) 6=0.1),

d2m=N
where D > 1, M > 1, D?>M = N. Taking H = M Dx~"3/1%5 in Lemma 2.7 we get that

Rps(D,M;z) < |Ry5(D, M;z)| + O(x7/155%¢), (6.2)

where

o0 ) = B o) 3 s, )

1<h<H d~D,m~M
d?m=N

with a*(h) < 1/h.
By a splitting argument we get

a e T e )

h~H d~D, m~M
d2m=N

for some 1 <« H < 'H, where ¢;, = a*(h)h < 1. So Theorem 1.7 follows from (6.1)-(6.3) and
the estimate

Ry 5(D, M;x) log = (6.3)

hx
Sps(H,D,M):=> ey Y f(m <d2m+5> < Hg™/155%e, (6.4)
h~H d:lzlinvimj\sz

We consider three cases.

CaseI D> N/,
In this case by trivial estimate we have

H 14¢
Sps(H,D,M) < HD'**M < p < HNO/6%e « Hal/93%e « faT3/195

Case IT  z!/1% « D <« NV/6,
Similar to Lemma 5.2, we can show that Sgs(H, D, M) can be written as a sum of type I
sums of the form

hx
S (H D Ml,M2 Z ch Z g(d)am1€<d2m1m2 _|_5>

h~H  d~D,mqi~Mj,mo~Ms
d?mimo=<N

with M; < (N/D?)'/3 and a,,, < mj, and type II sums of the form

h
SII(H3D3M1;M2) = Z Ch Z g(d)a’m1bm2e( ! )

2
h~H d~D,mq~Mq,mo~Msg d mima + 0
d2mimoxN
with (N/D?*)'/? < M, < (N/D*)'/? and a,,, < m5, by, < m§. Since the proof is almost the

same as that of Lemma 5.1, we omit the details.
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For S1(H, D, M, Ms), we estimate the sum over mqy by Lemma 2.2 with the exponent pair
(2/7,4/7) and estimate the sums over other variables trivially. We get that
D3MEM2
x

S1(H, D, My, M) < i H(Hx)2/7D3/7M15/7> Ne

N2 H9/7I2/7N5/21
< Dz + D1/21
N2
< ( +H9/7I2/7N5/21>N5
X
< HI1394/3255+6
< Hz™/15° (6.5)

by noting that My < (N/D*)'/3, D> 1, N < 282/ H < M Dz~"3/1%,
For Si(H, D, My, Ms), we get by (4.19) of Lemma 4.5 that
H:Né HziN: HzsNi> Hz
Sti(H, D, My, My)z <
H( , Ly M1 2)1' < Dg + Dé + Dg + DN?
< [ 473/155 (6.6)
by recalling that z73/1%5 <« N « 282/155  21/155 « D « DV/6 H <« DMx~73/155,

From (6.5) and (6.6) we see that (6.4) holds for 2'/1%° < D <« N/6,
Case ITII D < z!/19%,

We have
_ hx
Sps(H,D,M)z™° < Z Z ch Z f(m)e(de—l—é)‘
d~D ' h~H m~ M
d?mx=N
hxd
< Z Z ch Z f(m)e(m_'_éd)’ (6.7)
d~D ' h~H m~Ny
where x4 = 2/d?, Ng= N/d*> < M, 64 = §/d*. We shall show that the estimate
S S fme( ) <« e (6.8)
m+ dq d
h~H m~Ng
holds.

If Ng < xz/w, then (6.8) is trivial. Now suppose Ny > xz/”. It is easy to see that

H< Nda?;S/N and Ng < scg/l?. So (6.8) follows from the estimate (5.5).
From (6.7) and (6.8) we get the estimate

Sps(H, D, M)z™* < HS  ai/'" <« o\ DVT « [o™/155
d~D
for D < x/1%.
This completes the proof of Theorem 1.7.
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