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Abstract Let f be any arithmetic function and define Sf (x) :=
∑

n≤x f([x/n]). If the function f is

small, namely, f(n) � nε, then the error term Ef (x) in the asymptotic formula of Sf (x) has the form

O(x1/2+ε). In this paper, we shall study the mean square of Ef (x) and establish some new results of

Ef (x) for some special functions.
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1 Introduction

1.1 On a Special Sum

Let f : N → C be any arithmetic function. For any x ≥ 1, define

Sf (x) :=
∑

n≤x

f([x/n]).

This sum was first studied in [2] and then was extensively studied by many authors. See,
for example, [1, 5, 7–12, 14, 16, 17, 19, 20].

Wu [16] and Zhai [19] proved independently that if f(n) � nα(log n)θ for some 0 ≤ α < 1
and θ ≥ 0, then the asymptotic formula

Sf (x) = Cfx+O(x
1+α

2 (log x)θ) (1.1)

holds, where the constant Cf is defined by

Cf :=
∞∑

n=1

f(n)
n(n+ 1)

.

If f(n) � nε, then we say f is a small arithmetic function. From (1.1) we see that if f is
any small arithmetic function, then

Sf (x) = Cfx+O(x1/2+ε). (1.2)

The exponent 1/2 in the error term of (1.2) is a barrier for small functions f ’s. It is
interesting and natural to ask the following question: for a given small arithmetic function f,

is it possible to break the barrier 1/2?
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Several special examples have been studied. For simplicity, define

Ef (x) := Sf (x) − Cfx

and let θf denote the infimum of αf for which the estimate Ef (x) � xαf +ε holds. Ma and Wu
[11] first proved that θΛ ≤ 35/71, where Λ is the von Mangoldt function. The exponent 35/71
was improved to 97/203 and 9/19 in Bordellés [1] and Liu, Wu and Yang [7], independently. Ma
and Sun [10] proved that if f(n) = τ (n), the Dirichlet divisor function, then θτ ≤ 11/23. The
exponent 11/23 was improved to 19/40 and 5/11 in Bordellés [1] and Stucky [14], independently.

Bordellés [1] also studied some other arithmetic functions. He proved that

θτ3 ≤ 283
574

, θτk
≤ 1

2
− 1

2(4k3 − k − 1)
(k ≥ 4), θω ≤ 455

914
, θ2ω ≤ 97

202
, (1.3)

where τk(n) denotes the number of ways n can be written as a product of k factors, ω(n) denotes
the number of distinct prime divisors of n, respectively. All results in (1.3) were improved by
Liu, Wu and Yang [8], where they proved that

θτk
≤ 5k − 1

10k − 1
(k ≥ 3), θω ≤ 53

110
, θ2ω ≤ 9

19
. (1.4)

Recently, Zhai [20] proved that if a small function f satisfies a good binary additive property,
then the barrier 1/2 in the asymptotic formula (1.2) can be broken.

1.2 Some New Results of Sf (x)

We first study the mean square of Ef (x) for arbitrary f . We have the following Theorem 1.1.

Theorem 1.1 Let f be any small arithmetic function and T ≥ 10 be a large parameter. Then
we have ∫ 2T

T

|Ef (x)|2dx�f,ε T
9/5+ε.

Remark 1.2 From (1.2) we have Ef (x) � x1/2+ε. Theorem 1.1 implies that the estimate
Ef (x) � x2/5+ε holds on average.

From Theorem 1.1 we propose the following conjecture.

Conjecture 1.3 Let f be any small arithmetic function. Then we have

Sf (x) = Cfx+O(x2/5+ε).

Now we study some special small arithmetic functions such that we can break the barrier
1/2. For any arithmetic function f(n), we define

f�(n) :=
∑

n=n1···n�

f(n1) · · · f(n�), f1(n) = f(n). (1.5)

Theorem 1.4 Let k ≥ 2 and � ≥ 1 be two fixed integers, and suppose f is any function in
the set {τk,Λ�, μ�, ω�}, where μ(·) denotes the Möbius function. Then we have the asymptotic
formula

Sf (x) = Cfx+O(x8/17+ε).

Let P denote the set of all prime numbers and let 1P denote its characteristic function.
Heyman [5] proved that

S1P
(x) :=

∑

n≤x

1P

([
x

n

])

= C1P
x+O(x1/2). (1.6)
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Ma and Wu [12] proved that the exponent 1/2 in (1.6) can be replaced by 9/19 + ε. By the
arguments of [12] and Theorem 1.4 with the case f = Λ1 we get the following Corollary 1.5.

Corollary 1.5 We have the asymptotic formula

S1P
(x) = C1P

x+O(x8/17+ε). (1.7)

Remark 1.6 Theorem 1.4 is uniform for k ≥ 2 and � ≥ 1, which improves all results listed in
(1.4). Although our result for τ2 is weaker than that of Stucky [14], we keep it for completeness
and the following Theorem 1.7.

Theorem 1.7 Let k ≥ 2 and � ≥ 1 be two fixed integers, and suppose f is any function
in the set {τk,Λ�, μ�, ω�}. Suppose g : N → C is any small arithmetic function and define
F (n) :=

∑
n=d2m f(m)g(d). We have the asymptotic formula

SF (x) = CFx+O(x73/155+ε).

It is well-known that

2ω(n) =
∑

n=d2m

τ (m)μ(d), τ(n2) =
∑

n=md2

τ3(m)μ(d), τ2(n) =
∑

n=md2

τ4(m)μ(d).

The Liouville function λ(n) satisfies

λ(n) = (−1)Ω(n) =
∑

n=md2

μ(m),

where Ω(m) denotes the total number of prime divisors of n. Define the divisor functions

t1(n) :=
∑

n=n1n2n2
3

1, t2(n) :=
∑

n=n1n2n2
3n2

4

1.

These two functions t1(n) and t2(n) are important when counting subgroups of finite abelian
groups; see, for example, [18, 21, 22].

From Theorem 1.7 we get the following

Corollary 1.8 Let f(n) ∈ {2ω(n), τ (n2), τ2(n), λ(n), t1(n), t2(n)} and � ≥ 1 be a fixed integer.
Then we have the asymptotic formula

Sf�
(x) = Cf�

x+O(x73/155+ε),

where f� was defined in (1.5).

Remark 1.9 From the proofs of Theorem 1.4 and Theorem 1.7 we see that if f1, f2 ∈
⋃

�≥1{τ�+1,Λ�, μ�, ω�}, then Theorem 1.4 and Theorem 1.7 also hold for f(n) = f1 ∗ f2(n) =
∑

n=n1n2
f1(n1)f2(n2).

The structure of this paper is as follows. In Section 2 we give some lemmas needed for the
proofs. In Section 3 we give the proof of Theorem 1.1. In Section 4 we give some estimates of
exponential sums, which are important for the proofs of our theorems. We give the proofs of
Theorem 1.4 and Theorem 1.7 in Section 5 and Section 6, respectively.

Notation Throughout this paper, τk(n) denotes the general divisor function, which counts
the number of ways n can be written as a product of k factors, τ2(n) = τ (n), Λ(n) denotes the
von Mangoldt function, μ(n) denotes the Möbius function, ω(n) denotes the number of distinct
prime divisors of n, Ω(m) denotes the total number of prime divisors of n, respectively. We use
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N and C denote the set of positive integers and the set of complex numbers, respectively. For
a real number t, [t] denotes its integer part, {t} denotes its fractional part, ψ(t) = {t} − 1/2,
‖t‖ = min({t}, 1 − {t}) and e(t) = exp(2πit). The symbol n ∼ N means that the summation
condition of n is N < n ≤ 2N and n 
 N means that c1N ≤ n ≤ c2N for two absolute positive
constants 0 < c1 < c2. We always use ε to denote a small positive constant, which may be
different at different places. In Lemma 2.6 we use the symbol | · |∗, which means

∣
∣
∣
∣

∑

M<m≤2M

zm

∣
∣
∣
∣

∗
= max

M<u≤2M

∣
∣
∣
∣

∑

M<m≤u

zm

∣
∣
∣
∣.

2 Some Lemmas

In order to prove theorems, we need the following lemmas.

Lemma 2.1 For any H ≥ 3, we have

ψ(t) = −
∑

1≤|h|≤H

e(ht)
2πhi

+O

(

min
(

1,
1

H‖t‖
))

, (2.1)

min
(

1,
1

H‖t‖
)

=
∞∑

h=−∞
b(h)e(ht), (2.2)

where

b(0) � logH
H , b(h) � min(1/|h|,H/h2).

Proof See Heath-Brown [4]. �

Lemma 2.2 Suppose 3 < a < b ≤ 2a and the function f(u) is at least 6 times differentiable
on the interval [a, b] such that the estimate |f (j)| 
 Fa−j (a ≤ u ≤ b) holds for some F > 0.
Then for any exponent pair (κ, λ), we have the estimate

∑

a<n≤b

e(f(n)) � a

F
+ Fκaλ−κ.

Proof See, for example, Graham and Kolesnik [6]. �

Lemma 2.3 Let M > 0, N > 0, um > 0, vn > 0, Am > 0, Bn > 0 (1 ≤ m ≤ M, 1 ≤ n ≤ N),
and let Q1 and Q2 be given non-negative numbers, Q1 ≤ Q2. Then there is a Q such that
Q1 ≤ Q ≤ Q2 and

M∑

m=1

AmQ
um +

N∑

n=1

BnQ
−vn �

M∑

m=1

N∑

n=1

(Avn
m Bum

n )
1

um+vn +
M∑

m=1

AmQ
um
1 +

N∑

n=1

BnQ
−vn
2 .

Proof This is Lemma 2.4 of Graham and Kolesnik [6]. �

Lemma 2.4 Suppose x1/2 < y < x2/3 is a parameter. Then

Ef (x) = −
∑

n≤y

kf (n)ψ
(
x

n

)

+O(x1+εy−1),

where kf (n) := f(n) − f(n− 1) with f(0) = 0.

Proof This is contained in Formula (3.7) of Zhai [20]. �



Sums with Small Functions 5

Lemma 2.5 Suppose M,N ≥ 1 are real numbers, α > 0, β > 0 are fixed constants, Δ > 0.
Let G(M,N ; Δ) denote the number of solutions of the inequality

∣
∣
∣
∣

(
n1

n2

)α

−
(
m1

m2

)β∣
∣
∣
∣ ≤ Δ, n1, n2 ∼ N, m1,m2 ∼M.

Then we have
G(M,N ; Δ) �MN log 2MN + ΔM2N2,

where the � constant is absolute.

Proof This is Lemma 1 of Fouvry and Iwaniec [3]. �

Lemma 2.6 Let

S1 =
∑

H<h≤2H

∑

N<n≤2N

a(h, n)
∣
∣
∣
∣

∑

M<m≤2M

e

(

U
hβnγmα

HβNγMα

)∣
∣
∣
∣

∗
,

where H,N,M are positive integers, U is a real number greater than one, a(h, n) is a complex
number of modulus at most one; moreover, α, β, γ are fixed real numbers such that α(α−1)βγ �=
0. Then we have

S1 � (HNM)1+ε

((
U

HNM2

)1/4

+
1

M1/2
+

1
U

)

.

Proof This is Theorem 3 of Robert and Sargos [13]. �

Lemma 2.7 Let H ≥ 3. Then ψ(t) can be written as the form

ψ(t) =
∑

1≤|h|≤H
α(h)e(ht) +O

( ∑

|h|≤H
β(h)e(ht)

)

,

where α(h) � 1/|h|, β(h) � 1/H.
Proof See Vaaler [15], or the appendix of Graham and Kolesnik [6]. �

3 Proof of Theorem 1.1

Suppose T ≤ x ≤ 2T and T 1/2 � y = y(T ) � T 2/3 is a parameter to be determined. By
Lemma 2.4 we have ∫ 2T

T

|Ef (x)|2dx�
∫

1

+T 3+εy−2, (3.1)

where ∫

1

:=
∫ 2T

T

∣
∣
∣
∣

∑

n≤y

kf (n)ψ
(
x

n

)∣
∣
∣
∣

2

dx.

Take H = T 2 in Lemma 2.1. We have
∑

n≤y

kf (n)ψ
(
x

n

)

= Σ1(x) +O(Σ2(x)), (3.2)

Σ1(x) = −
∑

1≤|h|≤H

1
2πih

∑

n≤y

kf (n)e
(
hx

n

)

,

Σ2(x) =
∑

n≤y

|kf (n)|min
(

1,
1

H‖ x
n‖

)

.
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By Cauchy’s inequality we have (note that f(n) � nε)
∫ 2T

T

|Σ2(x)|2dx�
∫ 2T

T

∑

n≤y

|kf (n)|2
∑

n≤y

min
(

1,
1

H2‖ x
n‖2

)

dx

� y1+ε
∑

n≤y

n

∫ 2T/n

T/n

min
(

1,
1

H2‖u‖2

)

du

� Ty1+ε

∫ 1/2

−1/2

min
(

1,
1

H2u2

)

du

� Ty1+εH−1 � 1. (3.3)

By a splitting argument we have

Σ1(x) � log2 T

H

∣
∣
∣
∣

∑

h∼H

∑

n∼N

kf (n)e
(
hx

n

)∣
∣
∣
∣ (3.4)

for 1 � H � H and 1 � N � y. So

|Σ1(x)|2 � log4 T

H2

∑

h1,h2∼H

∑

n1,n2∼N

kf (n1)kf (n2)e
(

x

(
h1

n1
− h2

n2

))

(3.5)

=
log4 T

H2
(Σ11(x) + Σ12(x)),

where

Σ11(x) :=
∑

h1,h2∼H;n1,n2∼N

h1n2=h2n1

kf (n1)kf (n2),

Σ12(x) :=
∑

h1,h2∼H;n1,n2∼N

h1n2 �=h2n1

kf (n1)kf (n2)e
(

x

(
h1

n1
− h2

n2

))

Obviously we have
∫ 2T

T

Σ11(x)dx� T 1+εHN. (3.6)

By the first derivative test we have
∫ 2T

T

Σ12(x)dx�
∑

h1,h2∼H;n1,n2∼N

h1n2 �=h2n1

|kf (n1)kf (n2)|
|h1
n1

− h2
n2
|

=
∑

h1,h2∼H;n1,n2∼N

h1n2 �=h2n1

|kf (n1)kf (n2)n1n2|
|h1n2 − h2n1|

� HN3+ε. (3.7)

From (3.4)–(3.7) we get
∫ 2T

T

|Σ1(x)|2dx� T 1+εN +N3+ε � T 1+εy + y3+ε. (3.8)

Now Theorem 1.1 follows from (3.1)–(3.3) and (3.8) by choosing y = T 3/5.
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4 Estimates of Some Exponential Sums

Let x and N be large real numbers with x1/3 � N � x2/3. Suppose H ≥ 1,M1 ≥ 1,M2 ≥ 2
are real numbers. Define

Sδ,I(H,M1,M2) :=
∑

h∼H

ch
∑

m1∼M1,m2∼M2
m1m2�N

am1e

(
hx

m1m2 + δ

)

,

Sδ,II(H,M1,M2) :=
∑

h∼H

ch
∑

m1∼M1,m2∼M2
m1m2�N

am1bm2e

(
hx

m1m2 + δ

)

,

where ch, am1 , bm2 ∈ C such that ch � 1, am1 � mε
1, bm2 � mε

2, and 0 ≤ δ ≤ 1.
We first prove the following Lemma 4.1, which plays an important role in the proofs of both

Theorem 1.4 and Theorem 1.7.

Lemma 4.1 Suppose x1/3 � N � x2/3, N1/3 � M1 � N1/2 and H � N1/2−ε. For any
exponent pair (κ, λ) we have the estimate

Sδ,II(H,M1,M2)N−ε � H1/2M
1/2
1 M2 +Hx

κ
2M1−κ

1 M
1+λ−2κ

2
2

+Hx
κ

2+2κM
2

2+2κ

1 M
1+λ
2+2κ

2 +
H2x

N2
. (4.1)

Especially we have

Sδ,II(H,M1,M2)N−ε � H1/2M
1/2
1 M2 +Hx

1
4M

1
2
1 M

1
4
2 +Hx

1
6M

2
3
1 M

1
2
2 +

H2x

N2
. (4.2)

Proof The idea of the proof of this lemma comes from [4]. By Taylor’s formula we have

hx

m1m2 + δ
=

hx

m1m2
− δhx

m2
1m

2
2

+O

(
hx

M3
1M

3
2

)

,

which implies that

Sδ,II(H,M1,M2) =
∑

h∼H

ch
∑

m1∼M1,m2∼M2
m1m2�N

am1bm2e

(
hx

m1m2
− δhx

m2
1m

2
2

)

+O

(
H2x1+ε

N2

)

. (4.3)

We only need to bound the sum

S∗
δ,II(H,M1,M2) :=

∑

h∼H

ch
∑

m1∼M1,m2∼M2
m1m2�N

am1bm2e

(
hx

m1m2
− δhx

m2
1m

2
2

)

.

Obviously 0 < h/m1 ≤ 2H/M1. Suppose 1 � Q� HM1 is a positive integer parameter to
be determined later. For each 1 ≤ q ≤ Q, let

Eq =
{

(h,m1) : h ∼ H,m1 ∼M1,
2(q − 1)H
QM1

<
h

m1
≤ 2qH
QM1

}

.

We can write S∗
δ,II(H,M1,M2) in the form

S∗
δ,II(H,M1,M2) =

∑

m2∼M2

bm2

Q∑

q=1

∑

(h,m1)∈Eq

m1m2∼N

cham1e

(
hx

m1m2
− δhx

m2
1m

2
2

)

.

By Cauchy’s inequality we get

|S∗
δ,II(H,M1,M2)|2
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�M1+ε
2 Q

∑

m2∼M2

Q∑

q=1

∣
∣
∣
∣

∑

(h,m1)∈Eq

m1m2�N

cham1e

(
hx

m1m2
− δhx

m2
1m

2
2

)∣
∣
∣
∣

2

= M1+ε
2 Q

∑

m2∼M2

Q∑

q=1

∑

(h1,m11)∈Eq

m11m2�N

∑

(h2,m12)∈Eq

m12m2�N

ch1am11ch2am12e(r(m2))

= M1+ε
2 Q

Q∑

q=1

∑

(h1,m11)∈Eq

∑

(h2,m12)∈Eq

ch1am11ch2am12

∑

m2∈I

e(r(m2)), (4.4)

where I = I(m11,m12) is a subinterval of (M2, 2M2], and

r(m2) = r(m2;h1, h2,m11,m12) :=
x

m2

(
h1

m11
− h2

m12

)

− δx

m2
2

(
h1

m2
11

− h2

m2
12

)

.

Let

η =
h1

m11
− h2

m12
.

It is easy to see that the contribution of η = 0 to |S∗
δ,II(H,M1,M2)|2 is O(QM1HM

2
2N

ε). Now
we consider the case η �= 0. From the conditionsH � N1/2−ε, N1/3 �M1 � N1/2,M1M2 
 N ,
we see easily that

|r(j)(u)| 
 x|η|
M j+1

2

, j = 1, 2, 3, 4, 5, 6.

By Lemma 2.2 we see that the estimate
∑

m2∈I

e(r(m2)) � min
(

M2,
M2

2

x|η|
)

+
(
x|η|
M2

2

)κ

Mλ
2 (4.5)

holds for any exponent pair (κ, λ).
By the definition of Eq we have |η| ≤ 2H/QM1. So from (4.4), (4.5) and the above discus-

sions we get that (we use a splitting argument to 1/|η|)
|S∗

δ,II(H,M1,M2)|2 � QM1HM
2
2N

ε +QM2+ε
2

∑

h1,h2∼H;m11,m12∼M1
|η|≤M2x−1

1,

+QM3+ε
2 x−1

∑

h1,h2∼H;m11,m12∼M1
M2
x 
|η|≤ H

QM1

1
|η|

+Q1−κxκHκM−κ
1 M1+λ−2κ

2

∑

h1,h2∼H;m11,m12∼M1
|η|≤HQ−1M−1

1

1

� QM1HM
2
2N

ε +QM2+ε
2 A(H,M1;M2x

−1)

+QM3+ε
2 x−1 max

M2
x 
Δ≤ H

QM1

1
Δ
A(H,M1; Δ)

+Q1−κxκHκM−κ
1 M1+λ−2κ

2 A(H,M1;HQ−1M−1
1 ), (4.6)

where A(H,M1; Δ) denotes the number of solutions of the inequality

|η| ≤ Δ, h1, h2 ∼ H, m11,m12 ∼M1.
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By Lemma 2.5 we get

A(H,M1; Δ) � HM1 logHM1 + ΔHM3
1 . (4.7)

From (4.7) we have

QM2+ε
2 A(H,M1;M2x

−1) � (QHM2
2M1 +QH(M1M2)3x−1)Nε

� QHM2
2M1N

ε (4.8)

and

QM3+ε
2 x−1 max

M2
x 
|Δ|≤ H

QM1

1
Δ
A(H,M1; Δ)

� (QHM2
2M1 +QH(M1M2)3x−1)Nε � QHM2

2M1N
ε (4.9)

by noting that N � x2/3, M1 � N1/2, M1M2 
 N. From (4.7) again we get

Q1−κxκHκM−κ
1 M1+λ−2κ

2 A(H,M1;HQ−1M−1
1 )

� Q1−κxκHκM−κ
1 M1+λ−2κ

2 (HM1 logHM1 +Q−1H2M2
1 )

� Q−κxκH2+κM2−κ
1 M1+λ−2κ

2 (4.10)

by recalling our assumption Q� HM1.

From (4.6) and (4.8)–(4.10) we get

|S∗
δ,II(H,M1,M2)|2N−ε � QHM2

2M1 +Q−κxκH2+κM2−κ
1 M1+λ−2κ

2 .

Choosing a best Q ∈ [1, HM1] via Lemma 2.3 we get

S∗
δ,II(H,M1,M2)N−ε � H1/2M

1/2
1 M2 +Hx

κ
2M1−κ

1 M
1+λ−2κ

2
2 +Hx

κ
2+2κM

2
2+2κ

1 M
1+λ
2+2κ

2 . (4.11)

which combining (4.3) gives (4.1). The estimate (4.2) follows from (4.1) by taking the exponent
pair (1/2, 1/2). �

Lemma 4.2 Suppose x8/17 � N � x13/25. If N1/3 �M1 � N1/2 and H � N1/2−ε, then

Sδ,II(H,M1,M2) � Hx
47
100+ε.

Proof From (4.2) and N1/3 �M1 � N1/2 we see that

Sδ,II(H,M1,M2)N−ε � H1/2N5/6 +Hx
1
4N

3
8 +Hx

1
6N

7
12 ,

which implies Lemma 4.2 by noting that N � x13/25. �

Lemma 4.3 Suppose x13/25 � N � x9/17. If N2/9 �M1 � N4/9 and H � N1/2−ε, then

Sδ,II(H,M1,M2) � Hx
8
17+ε.

Proof From (4.2) and N2/9 �M1 � N4/9 we see that

Sδ,II(H,M1,M2)N−ε � H1/2N8/9 +Hx
1
4N

13
36 +Hx

1
6N

31
54 ,

which implies Lemma 4.3 by noting that N � x9/17. �

Lemma 4.4 Suppose x13/25 � N � x9/17. If M1 � N5/9 and H � Nx−8/17, then

Sδ,I(H,M1,M2) � Hx
8
17+ε.
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Proof We consider three cases: M1 � N2/9, N2/9 �M1 � N4/9, N4/9 �M1 � N5/9.

If M1 � N2/9, then using the exponent pair (2/7, 4/7) to the sum over m2 we get

Sδ,I(H,M1,M2) � HH2/7x2/7+εM
5/7
1 � HH2/7x2/7+εN10/63

� H(Nx−8/17)2/7x2/7+εN10/63 � Hx18/119+εN4/9

� Hx54/119+ε � Hx8/17+ε.

When N2/9 �M1 � N4/9, by Lemma 4.3 we get

Sδ,I(H,M1,M2) � Hx8/17+ε.

Finally suppose N4/9 �M1 � N5/9. Define

g(n) :=
∑

n=m1m2
m1∼M1,m2∼M2

am1 .

Then Sδ,I(H,M1,M2) can be written as

Sδ,I(H,M1,M2) =
∑

h∼H

ch
∑

M1M2<n≤4M1M2

g(n)e
(

hx

n+ δ

)

=
∑

h∼H

ch
∑

M1M2<n≤4M1M2

g(n)e
(
hx

n

)

Φ(n, h), (4.12)

where

Φ(u, h) := e

(
hx

u+ δ
− hx

u

)

, M1M2 < u ≤ 4M1M2.

It is easy to see that

Φ(u, h) � 1,
∂

∂u
Φ(u, h) � hx

u3
. (4.13)

Let

A(u, h) :=
∑

M1M2<n≤u

g(n)e
(
hx

n

)

.

By partial integration we have

∑

M1M2<n≤4M1M2

g(n)e
(
hx

n

)

Φ(n, h) =
∫ 4M1M2

M1M2

Φ(u, h)dA(u, h)

= Φ(4M1M2, h)A(4M1M2, h)

−
∫ 4M1M2

M1M2

A(u, h) × ∂

∂u
Φ(u, h)du (4.14)

From (4.12)–(4.14) we have

Sδ,I(H,M1,M2) =
∑

h∼H

chΦ(4M1M2, h)A(4M1M2, h)

−
∫ 4M1M2

M1M2

∑

h∼H

chA(u, h) × ∂

∂u
Φ(u, h)du

�
(

1 +
Hx

N2

) ∑

h∼H

∑

m1∼M1

a∗m1

∣
∣
∣
∣

∑

m2∼M2

e

(
hx

m1m2

)∣
∣
∣
∣

∗
, (4.15)
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where a∗m1
= |am1 |. By Lemma 2.6 we have

x−ε
∑

h∼H

∑

m1∼M1

a∗m1

∣
∣
∣
∣

∑

m2∼M2

e

(
hx

m1m2

)∣
∣
∣
∣

∗
� Hx

1
4M

1
2
1 M

1
4
2 +HM1M

1
2
2 +

N2

x
. (4.16)

From (4.15), (4.16) and the condition N4/9 �M2 � N5/9 we get

x−εSδ,I(H,M1,M2) � Hx
1
4M

1
2
1 M

1
4
2 +HM1M

1
2
2 +

N2

x

+
H2x

5
4

N2
M

1
2
1 M

1
4
2 +

H2x

N2
M1M

1
2
2 +H

� Hx
1
4N

7
18 +HN

7
9 +

N2

x
+
H2x

5
4

N
29
18

+
H2x

N
11
9

� Hx
7063
15300

� Hx
8
17 (4.17)

by noting that x13/25�N�x9/17 and H�Nx−8/17. This completes the proof of Lemma 4.4. �
Now we consider another exponential sum. Let x and N be large real numbers with x1/3 �

N � x2/3. Suppose H ≥ 1, D ≥ 1,M1 ≥ 1,M2 ≥ 2 are real numbers such that D2M1M2 
 N.

Define

Tδ(H,D,M1,M2) :=
∑

h∼H

ch
∑

d∼D

ρd

∑

m1∼M1,m2∼M2
d2m1m2�N

am1bm2e

(
hx

d2m1m2 + δ

)

,

where ch, ρd, am1 , bm2 ∈ C such that ch � 1, ρd � dε, am1 � mε
1, bm2 � mε

2, and 0 ≤ δ ≤ 1. We
will prove the following Lemma 4.5, which plays an important role in the proof of Theorem 1.7.

Lemma 4.5 Suppose x1/3 � N � x2/3, 1 � D � N1/6, H � (N/D2)1/2−ε and (N/D2)1/3 �
M1 � (N/D2)1/2. Then for any exponent pair (κ, λ) we have

Tδ(H,D,M1,M2)N−ε � H
1
2N

5
6

D
7
6

+
Hx

κ
2N

3+λ−4κ
4

D
1+λ−κ

2

+
Hx

κ
2+2κN

3+λ
4+4κ

D
1+λ+κ
2+2κ

+
H2x

DN2
. (4.18)

Especially we have

Tδ(H,D,M1,M2)N−ε � H
1
2N

5
6

D
7
6

+
Hx

1
4N

3
8

D
1
2

+
Hx

1
6N

7
12

D
2
3

+
H2x

DN2
. (4.19)

Proof Similar to (4.3) we have

Tδ(H,D,M1,M2) = T ∗
δ (H,D,M1,M2) +O

(
H2x1+ε

D5M2
1M

2
2

)

, (4.20)

where

T ∗
δ (H,D,M1,M2) :=

∑

h∼H

ch
∑

d∼D

ρd

∑

m1∼M1,m2∼M2
m1m2�N

am1bm2e

(
hx

d2m1m2
− δhx

d4m2
1m

2
2

)

.

Obviously 0 < h
d2m1

≤ 2H
D2M1

. Suppose 1 � Q � DHM1 is a positive parameter to be
determined later. For each 1 ≤ q ≤ Q, let

E∗
q =

{

(h, d,m1) : h ∼ H, d ∼ D,m1 ∼M1,
2(q − 1)H
QD2M1

<
h

d2m1
≤ 2qH
QD2M1

}

.
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We now write T ∗
δ (H,D,M1,M2) in the form

T ∗
δ (H,D,M1,M2) =

∑

m2∼M2

bm2

Q∑

q=1

∑

(h,d,m1)∈Eq

d2m1m2∼N

chρdam1e

(
hx

d2m1m2
− δhx

d4m2
1m

2
2

)

.

Similar to (4.4) we can get

|T ∗
δ (H,D,M1,M2)|2 �M1+ε

2 Q
∑

hj∼H,dj∼D,m1j∼M1(j=1,2)

|η∗|≤ 2H
QD2M1

∣
∣
∣
∣

∑

m2∈I∗
e(r∗(m2))

∣
∣
∣
∣, (4.21)

where I∗ = I∗(m11,m12) is a subinterval of (M2, 2M2], and

r∗(m2) = r(m2;h1, h2, d1, d2,m11,m12) :=
x

m2
η∗ − δx

m2
2

(
h1

d4
1m

2
11

− h2

d4
2m

2
12

)

,

η∗ =
h1

d2
1m11

− h2

d2
2m12

.

It is easy to see that the contribution of η∗ = 0 to |T ∗
δ (H,D,M1,M2)|2 is at most

O(QDM1HM
2
2N

ε).Now we consider the case η∗ �= 0. From the conditions 1 � D � N1/6, H �
(N/D2)1/2−ε, D2M1M2 
 N , we see easily that

|r(j)∗ (u)| 
 x|η∗|
M j+1

2

(M2 ≤ u ≤ 2M2), j = 1, 2, 3, 4, 5, 6.

Suppose that (κ, λ) is any exponent pair. By Lemma 2.2 we have the estimate
∑

m2∈I∗
e(r∗(m2)) � min

(

M2,
M2

2

x|η∗|
)

+
(
x|η∗|
M2

2

)κ

Mλ
2 . (4.22)

By the definition of E∗
q we have |η∗| ≤ 2H/QD2M1. So from (4.21), (4.22) and the above

discussions we get that (we use a splitting argument to 1/|η∗|)
|T ∗

δ (H,D,M1,M2)|2
� QM1DHM

2
2N

ε +QM2+ε
2 B(H,D,M1;M2x

−1)

+QM3+ε
2 x−1 max

M2
x 
Δ≤ 2H

QD2M1

1
Δ
B(H,D,M1; Δ)

+Q1−κxκHκD−2κM−κ
1 M1+λ−2κ

2 B(H,D,M1;HQ−1D−2M−1
1 ), (4.23)

where B(H,D,M1; Δ) denotes the number of solutions of the inequality
∣
∣
∣
∣
h1

d2
1m11

− h2

d2
2m12

∣
∣
∣
∣ ≤ Δ, h1, h2 ∼ H, d1, d2 ∼ D, m11,m12 ∼M1. (4.24)

If (4.24) holds, then we have
∣
∣
∣
∣
h1m12

h2m11
− d2

1

d2
2

∣
∣
∣
∣ ≤

8ΔD2M1

H
,

which combining Lemma 2.5 gives

B(H,D,M1; Δ) =
∑

h1,h2∼H,d1,d2∼D,m11,m12∼M1

| h1
d2
1m11

− h2
d2
2m12

|≤Δ

1
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�
∑

h1,h2∼H,d1,d2∼D,m11,m12∼M1

|h1m12
h2m11

− d2
1

d2
2
|≤ 8ΔD2M1

H

1

�
∑

n1,n2∼HM1,d1,d2∼D

|n1
n2

− d2
1

d2
2
|≤ 8ΔD2M1

H

τ (n1)τ (n2)

� Nε
∑

n1,n2∼HM1,d1,d2∼D

|n1
n2

− d2
1

d2
2
|≤ 8ΔD2M1

H

1

� (HDM1 + ΔHM3
1D

4)Nε, (4.25)

where we used the well-known bound τ (n) � nε.

From the conditions 1 � D � N1/6, x1/3 � N � x2/3, D2M1M2 
 N we get

(M1M2)3D4x−1 �M2
2DM1,

which combining (4.25) gives

QM2+ε
2 B(H,D,M1;M2x

−1) � (QHM2
2DM1 +QH(M1M2)3D4x−1)Nε

� QHM2
2DM1N

ε (4.26)

and

QM3+ε
2 x−1 max

M2
x 
|Δ|≤ H

QD2M1

1
Δ
B(H,D,M1; Δ)

� (QHM2
2DM1 +QH(M1M2)3D4x−1)Nε

� QHM2
2DM1N

ε. (4.27)

From (4.25) again we get

Q1−κxκHκD−2κM−κ
1 M1+λ−2κ

2 B(H,D,M1;HQ−1D−2M−1
1 )

� Q1−κxκHκD−2κM−κ
1 M1+λ−2κ

2 (HM1D +Q−1H2D2M2
1 )Nε

� Q−κxκH2+κD2−2κM2−κ
1 M1+λ−2κ

2 (4.28)

by recalling our assumption Q� HDM1.

From (4.23) and (4.26)–(4.28) we get

|T ∗
δ (H,D,M1,M2)|2N−ε � QHM2

2DM1 +Q−κxκH2+κD2−2κM2−κ
1 M1+λ−2κ

2 .

Choosing a best Q ∈ [1, HDM1] via Lemma 2.3 we get

T ∗
δ (H,D,M1,M2)N−ε

� H1/2M2M
1/2
1 D1/2 +Hx

κ
2D1− 3κ

2 M1−κ
1 M

1+λ−2κ
2

2

+Hx
κ

2+2κD
2−κ
2+2κM

2
2+2κ

1 M
1+λ
2+2κ

2

� H
1
2N

5
6

D
7
6

+
Hx

κ
2N

3+λ−4κ
4

D
1+λ−κ

2

+
Hx

κ
2+2κN

3+λ
4+4κ

D
1+λ+κ
2+2κ

(4.29)



14 Zhai W. G.

by recalling that (N/D2)1/3 � M1 � (N/D2)1/2 and D2M1M2 
 N. Now (4.18) follows
from (4.20) and (4.29). The estimate (4.19) follows from (4.18) by taking the exponent pair
(1/2, 1/2). �

Remark 4.6 When we use Lemma 4.1 and Lemma 4.5 to prove Theorem 1.4 and Theorem
1.7, we choose the exponent pair (1/2, 1/2). If we choose exponent pairs as well as we can, then
we can slightly improve both the exponent 8/17 in Theorem 1.4 and the exponent 73/155 in
Theorem 1.7. Especially, if (ε, 1/2+ε) is an exponent pair, then the exponent 8/17 in Theorem
1.4 can be improved to 7/15.

5 Proof of Theorem 1.4

5.1 Proof of Theorem 1.4

Suppose k ≥ 2 and � ≥ 1 are fixed integers and f ∈ {τk,Λ�, μ�, ω�}. Let y = x9/17. Then
x/y = x8/17. By Lemma 2.4 we have

Ef (x) = −
∑

n≤x9/17

kf (n)ψ
(
x

n

)

+O(x8/17+ε)

= −
∑

x8/17<n≤x9/17

f(n)ψ
(
x

n

)

+
∑

x8/17<n≤x9/17

f(n)ψ
(

x

n+ 1

)

+O(x8/17+ε). (5.1)

So we only need to bound the sum

Rf,δ(N ;x) :=
∑

n∼N

f(n)ψ
(

x

n+ δ

)

(δ = 0, 1)

for x8/17 � N � x9/17. Let H := Nx−8/17. By (2.1) of Lemma 2.1 we have

Rf,δ(N ;x) = Σf,δ1 +O(Σf,δ2), (5.2)

where

Σf,δ1 = −
∑

1≤|h|≤H

1
2πih

∑

n∼N

f(n)e
(

hx

n+ δ

)

,

Σf,δ2 =
∑

n∼N

|f(n)|min
(

1,
1

H‖ x
n+δ‖

)

.

By (2.2) of Lemma 2.1 and Lemma 2.2 with the exponent pair (2/7, 4/7) we have

Σf,δ2 � Nε
∑

n∼N

min
(

1,
1

H‖ x
n+δ‖

)

� Nε

(
N

H +
∞∑

h=1

min(h−1,Hh−2)
∑

n∼N

e

(
hx

n+ δ

))

� Nε

(
N

H + H2/7x2/7 +
N2

x

)

� x8/17+ε. (5.3)

By a splitting argument we get

Σf,δ1 � 1
H

∣
∣
∣
∣

∑

h∼H

∑

n∼N

f(n)e
(

hx

n+ δ

)∣
∣
∣
∣ log x (5.4)
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for some 1 � H � H. So Theorem 1.4 follows from (5.1)–(5.4) and the estimate

Sf,δ(H,N) :=
∑

h∼H

∑

n∼N

f(n)e
(

hx

n+ δ

)

� Hx8/17+ε. (5.5)

We only need to prove that (5.5) holds for f ∈ {τk,Λ�, μ�, ω�}. We can prove the following
two lemmas.

Lemma 5.1 The sum Sf,δ(H,N) can be written as a sum of (logνf x) expressions of the form
(Type I sum)

Sf ;I(H,M1,M2) :=
∑

h∼H

ch
∑

m1∼M1,m2∼M2
m1m2�N

am1e

(
hx

m1m2 + δ

)

(5.6)

with M1 � N1/3 and expressions of the form (Type II sum)

Sf ;II(H,M1,M2) :=
∑

h∼H

ch
∑

m1∼M1,m2∼M2
m1m2�N

am1bm2e

(
hx

m1m2 + δ

)

(5.7)

with N1/3 �M1 � N1/2, where νf ≥ 1 is a fixed integer, and ch � 1, am1 � mε
1, bm2 � mε

2.

Note that when f = ω�, an additional term HN2/3 should be added to the above sums.

Lemma 5.2 The sum Sf,δ(H,N) can be written as a sum of (logνf x) expressions of the form
(5.6) with M1 � N5/9 and expressions of the form (5.7) with N2/9 � M1 � N4/9, where
νf ≥ 1 is a fixed integer, and ch � 1, am1 � mε

1, bm2 � mε
2. Note that when f = ω�, an

additional term HN2/3 should be added to the above sums.

First suppose x8/17 � N � x13/25. By Lemma 4.2 we have

Sf ;II(H,M1,M2) � Hx
47
100+ε. (5.8)

Using Lemma 2.2 with the exponent pair (2/7, 4/7) to estimate the sum over m2 and
estimate the sums over h and m1 trivially we get

x−εSf ;I(H,M1,M2) � HH
2
7x

2
7M

5
7
1 +

N2

x

� H(Nx−8/17)
2
7x

2
7N

5
21 +

N2

x

� Hx3/7

� Hx8/17 (5.9)

by noting that H � Nx−8/17 and M1 � N1/3. So from (5.8) and (5.9) we get an estimate
better than (5.5) in the range x8/17 � N � x13/25.

When x13/25 � N � x9/17, the estimate (5.5) follows from Lemma 4.3, Lemma 4.4 and
Lemma 5.2. This completes the proof of Theorem 1.4.

We will prove Lemma 5.1 and Lemma 5.2 in the next two subsections.

5.2 Proof of Lemma 5.1.

In this subsection we will prove Lemma 5.1. We consider only f ∈ {τk,Λ�, ω�}, since the proofs
for Λ� and μ� are the same.

We first prove the following decomposition formula.
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Lemma 5.3 Suppose K ≥ 2 is a fixed integer, N1 ≥ 1, . . . , NK ≥ 1 are natural numbers
such that N1 · · ·NK 
 N , W (u) is any function defined on (N, 2N ], aj(nj) ∈ C such that
aj(nj) � nε

j (j = 1, . . . ,K). If max(N1, . . . , NK) � N2/3, then the sum
∑

n1∼N1

a1(n1) · · ·
∑

nK∼NK

aK(nK)W (n1 · · ·nK) (5.10)

can be written as the form
∑

m1∼M1

am1

∑

m2∼M2

bm2W (m1m2) (5.11)

such that N1/3 �M1 � N1/2 and am1 � mε
1, bm2 � mε

2.

Proof Without loss of generality, suppose N1 ≤ N2 ≤ · · · ≤ NK .

If K = 2, then N1 ≤ N2 � N2/3 and N1N2 
 N implies that N1/3 � N1 � N1/2. So we
see that (5.10) is of the form (5.11) by taking m1 = n1,m2 = n2.

Now suppose K ≥ 3. We consider three cases: NK < N1/3, N1/3 ≤ NK � N1/2, N1/2 �
NK � N2/3.

Case I NK < N1/3, which implies that Nj < N1/3 (j = 1, . . . ,K). Since
∏K

j=1Nj 
 N, we
find that there is a j such that 2 ≤ j < K and

N1 · · ·Nj−1 < N1/3, N1 · · ·Nj � N1/3.

Thus we have

N1/3 � N1 · · ·Nj = N1 · · ·Nj−1 ×Nj � N2/3.

If N1 · · ·Nj � N1/2, then the sum (5.10) can be written as (5.11) by taking

m1 = n1 · · ·nj , m2 = nj+1 · · ·nK , M1 = N1 · · ·Nj , M2 = Nj+1 · · ·NK ,

am1 = a1(n1) · · · aj(nj) � mε
1, bm2 = aj+1(nj+1) · · · aK(nK) � mε

2.

If N1 · · ·Nj � N1/2, then the sum (5.10) can be written as (5.11) by taking

m1 = nj+1 · · ·nK , m2 = n1 · · ·nj .

Case II N1/3 � NK � N1/2.

In this case the sum (5.10) can be written as (5.11) by taking

m1 = nK , m2 = n1 · · ·nK−1, M1 = NK , M2 = N1 · · ·NK−1,

am1 = aK(nK) � mε
1, bm2 = a1(n1) · · · aK−1(nK−1) � mε

2.

Case III N1/2 � NK � N2/3.

In this case the sum (5.10) can be written as (5.11) by taking

m1 = n1 · · ·nK−1, m2 = nK , M1 = N1 · · ·NK−1, M2 = NK ,

am1 = a1(n1) · · ·aK−1(nK−1) � mε
1, bm2 = aK(nK) � mε

2.

This completes the proof of Lemma 5.3. �
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5.2.1 Proof of Lemma 5.1 for τk

Suppose k ≥ 2 is a fixed integer. By a splitting argument we see that Sτk,δ(H,N) can be
written as a sum of O(logk−1N) exponential sums of the form

Sτk,δ(H,N1, . . . , Nk) :=
∑

h∼H

∑

n1∼N1,...,nk∼Nk
n1···nk�N

e

(
hx

n1 · · ·nk + δ

)

,

where N1 ≥ 1, . . . , Nk ≥ 1 are natural numbers such that N1 · · ·Nk 
 N. Without loss of
generality, we suppose N1 ≤ N2 ≤ · · · ≤ Nk.

If Nk � N2/3, then from Lemma 5.3 we see that Sτk,δ(H,N1, . . . , Nk) can be written
as the form (5.7) with N1/3 � M1 � N1/2. If Nk � N2/3, then N1 · · ·Nk−1 � N1/3. So
Sτk,δ(H,N1, . . . , Nk) can be written as the form (5.6) with M1 � N1/3.

5.2.2 Proof of Lemma 5.1 for f = Λ�, � = 1

We first consider the function Λ� for the case � = 1. Let u ≥ 3 be a fixed integer. If 2vu ≥ n,
then we have Heath-Brown’s identity

Λ(n) =
u∑

j=1

(−1)j(u
j )

∑

n=
∏j

t=1 nt
∏j

t=1 nj+t
n1,...,nj<v

μ(n1) · · ·μ(nj) logn2u.

Using Heath-Brown’s identity with u = 4 we find that SΛ,δ(H,N) can be written as a sum of
O(log7N) exponential sums of the form

SΛ,δ(H,N1, . . . , N8) :=
∑

h∼H

∑

n1∼N1,...,n8∼N8
n1···n8�N

log n8

4∏

j=1

μ(nj)e
(

hx

n1 · · ·n8 + δ

)

,

where N1 ≥ 1, . . . , N8 ≥ 1 are natural numbers such that N1 · · ·N8 
 N, Nj ≤ N1/4 (j =
1, 2, 3, 4).

If max(N1, . . . , N8) � N2/3, then from Lemma 5.3 we see that SΛ,δ(H,N1, . . . , N8) can be
written as the form (5.7) with N1/3 � M1 � N1/2. Suppose now Nj = max(N1, . . . , N8) �
N2/3, then it is easy to see that j ∈ {5, 6, 7, 8}. So the sum SΛ,δ(H,N1, . . . , N8) can be written
as the form (5.6) with M1 � N1/3.

5.2.3 Proof of Lemma 5.1 for Λ�, � ≥ 2

Since Λ�(n) =
∑

n=n1···n�
Λ(n1) · · ·Λ(n�), the sum SΛ�,δ(H,N) can be written as a sum of

O(log�N) exponential sums of the form

SΛ�,δ(H,N1, . . . , N�) :=
∑

h∼H

∑

n1∼N1,...,n�∼N�
n1···n��N

�∏

j=1

Λ(nj)e
(

hx

n1 · · ·n� + δ

)

,

where N1 ≥ 1, . . . , N� ≥ 1 are natural numbers such that N1 · · ·N� 
 N. Without loss of
generality, suppose N1 ≤ N2 · · · ≤ N�.

If N� ≤ N2/3, then from Lemma 5.3 we see that SΛ�,δ(H,N1, . . . , N�) can be written as the
form (5.7) with N1/3 �M1 � N1/2.

Now supposeN� > N2/3. FromN1 · · ·N� 
 N, we get thatN1N2 · · ·N�−1 � N1/3. Applying
Heath-Brown’s identity with u = 4 to Λ(n�) again we find that SΛ�,δ(H,N1, . . . , N�) can be
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written as a sum of O(log7N) exponential sums of the form

SΛ�,δ(H,N) : =
∑

h∼H

∑

nj∼Nj

1≤j≤�−1

�−1∏

j=1

Λ(nj)
∑

n�1∼N�1,...,n�8∼N�8
n�1···n�8�N�

4∏

j=1

μ(n�j) logn�8

× e

(
hx

n1 · · ·n�−1n�1 · · ·n�8 + δ

)

,

where N = (N1, . . . , N�−1, N�1, . . . , N�8), N�1 ≥ 1, . . . , N�8 ≥ 1 are natural numbers such that
N�1 · · ·N�8 
 N�, and N�j ≤ N

1/4
� (j = 1, 2, 3, 4).

If there exists anN�j such thatN�j � N2/3, then we have 5 ≤ j ≤ 8. So the sum SΛ�,δ(H,N)
can be written as the form (5.6) with M1 � N1/3. If N�j � N2/3 (1 ≤ j ≤ 8), then by Lemma
5.3 the sum SΛ�,δ(H,N) can be written as the form (5.7) with N1/3 �M1 � N1/2.

5.2.4 Proof of Lemma 5.1 for f = ω�, � = 1

Since ω(n) =
∑

n=pn1
1, the sum Sω,δ(H,N) can be written as a sum of O(logN) exponential

sums of the form

Sω,δ(H,P,N1) :=
∑

h∼H

∑

n1∼N1,p∼P

n1p�N

e

(
hx

n1p+ δ

)

,

where N1 ≥ 1, P ≥ 1 are natural numbers such that N1P 
 N.

If N1 � N2/3, then the sum Sω,δ(H,P,N1) can be written as the form (5.6) by taking
m1 = p, m2 = n1. If N1/2 � N1 � N2/3, then Sω,δ(H,P,N1) can be written as the form (5.7)
by taking m1 = p, m2 = n1. If N1/3 < N1 � N1/2, then Sω,δ(H,P,N1) can be written as the
form (5.7) by taking m1 = n1, m2 = p.

Now suppose N1 � N1/3, namely, P � N2/3. Then we have

Sω,δ(H,P,N1) � 1
logP

|S∗
ω,δ(H,P,N1)| +HN1P

1/2, (5.12)

where

S∗
ω,δ(H,P,N1) :=

∑

h∼H

∑

n1∼N1,n∼P

n1n�N

Λ(n)e
(

hx

n1n+ δ

)

.

We use Heath-Brown’s identity with u = 4 to Λ(n). So we find that S∗
ω,δ(H,P,N1) can be

written as a sum of O(log7N) exponential sums of the form

S∗
ω,δ(H,N1, N2, . . . , N9) :=

∑

h∼H

∑

n1∼N1,...,n9∼N9
n1···n9�N

log n9

5∏

j=2

μ(nj)e
(

hx

n1 · · ·n9 + δ

)

,

where N2 ≥ 1, . . . , N9 ≥ 1 are natural numbers such that N2 · · ·N9 
 P, Nj ≤ P 1/4 (j =
2, 3, 4, 5).

If there exists an Nj for which Nj � N2/3, then we have 6 ≤ j ≤ 9. Without loss of
generality, suppose j = 9. We see that the sum S∗

ω,δ(H,N1, N2, . . . , N9) can be written as the
form (5.6) with m1 � N1/3 by taking m1 = n1 · · ·n8, m2 = n9. If Nj � N2/3 (j = 2 ≤ j ≤ 9),
then from Lemma 5.3 we see that S∗

ω,δ(H,N1, N2, . . . , N9) can be written as the form (5.7) with
N1/3 � m1 � N1/2.

Note that HN1P
1/2 in (5.12) satisfies HN1P

1/2 � HN2/3.
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5.2.5 Proof of Lemma 5.1 for f = ω�, � ≥ 2

Since ω�(n) =
∑

n=n1···n�
ω(n1) · · ·ω(n�), the sum Sω�,δ(H,N) can be written as a sum of

O(log�N) exponential sums of the form

Sω�,δ(H,N1, . . . , N�) :=
∑

h∼H

∑

n1∼N1,...,n�∼N�
n1···n��N

�∏

j=1

ω(nj)e
(

hx

n1 · · ·n� + δ

)

,

where N1 ≥ 1, . . . , N� ≥ 1 are natural numbers such that N1 · · ·N� 
 N and N1 ≤ N2 · · · ≤ N�.

If N� ≤ N2/3, then by Lemma 5.3 we see that the sum Sω�,δ(H,N1, . . . , N�) can be written
as the form (5.7) with N1/3 �M1 � N1/2.

If N� � N2/3, then the sum
∑

n�∼N�
can be written as sums of the form

∑
p∼P�

∑
n∼N∗

�
with

P�N
∗
� 
 N�. If N∗

� � N2/3, we get a sum of the form (5.6) with M1 � N1/3. If N1/3 � N∗
� �

N2/3, we can get a sum of the form (5.7) withN1/3 �M1 � N1/2. Finally suppose N∗
� � N1/3.

If P� � N2/3, then we use Lemma 5.3 directly to get a sum (5.7) with N1/3 � M1 � N1/2.

If P� � N2/3, then we apply Henth-Brown’s identity to p and then use the procedure of the
proof of ω1. We omit the details.

5.3 Proof of Lemma 5.2

In this subsection we will prove Lemma 5.2. Since the proof is similar to that of Lemma 5.1,
we give only a short description.

We first give the following decomposition formula without proof.

Lemma 5.4 Under the conditions of Lemma 5.3, if max(N1, . . . , NK) � N4/9, then the sum
(5.10) can be written as the form (5.11) such that N2/9 �M1 � N4/9 and am1 � mε

1, bm2 �
mε

2.

From the proof of Lemma 5.1 we see that if f ∈ {τk,Λ�, μ�, ω�}, then the sum Sf,δ(H,N)
can be written as a sum of O((logx)νf ) expressions of the form

Sf ;δ(H,N1, . . . , NK) :=
∑

h∼H

ch
∑

n1∼N1

an1 · · ·
∑

nK∼NK

anK
e

(
hx

n1 · · ·nK + δ

)

,

where νf ≥ 1 and K = K(f) ≥ 2 are fixed integers, N1 ≥ 1, . . . , NK ≥ 1 and N1 · · ·NK 
 N.

Let Nj = max(N1, . . . , NK). If Nj � N4/9, then anj
= 1 or anj

= log nj . Hence the sum
Sf ;δ(H,N1, . . . , NK) can be written as the form (5.6) with m1 � N5/9. If Nj � N4/9, then
from Lemma 5.4 we see that the sum Sf ;δ(H,N1, . . . , NK) can be written as the form (5.7) with
N2/9 � m1 � N4/9.

6 Proof of Theorem 1.7

Suppose k ≥ 2 and � ≥ 1 are two fixed integers, and f ∈ {τk,Λ�, μ�, ω�}. Recall that F (n) =
∑

n=d2m g(d)f(m) with g(d) � dε.

Let y = x82/155. Then x/y = x73/155. Similar to (5.1) we have

EF (x) = −
∑

x73/155<n≤x82/155

F (n)ψ
(
x

n

)

+
∑

x73/155<n≤x82/155

F (n)ψ
(

x

n+ 1

)

+O(x73/155+ε). (6.1)
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It suffices to bound the sum

RF,δ(N ;x) :=
∑

n∼N

F (n)ψ
(

x

n+ δ

)

(δ = 0, 1)

for x73/155 � N � x82/155. By the expression F (n) =
∑

n=d2m g(d)f(m) we see that RF,δ(N ;x)
can be written as a sum of O(log x) expressions of the form

RF,δ(D,M ;x) :=
∑

d∼D,m∼M

d2m�N

f(m)g(d)ψ
(

x

d2m+ δ

)

(δ = 0, 1),

where D ≥ 1,M ≥ 1, D2M 
 N. Taking H = MDx−73/155 in Lemma 2.7 we get that

RF,δ(D,M ;x) � |R∗
F,δ(D,M ;x)| +O(x73/155+ε), (6.2)

where

R∗
F,δ(D,M ;x) :=

∑

1≤h≤H
α∗(h)

∑

d∼D,m∼M

d2m�N

f(m)g(d)e
(

hx

d2m+ δ

)

with α∗(h) � 1/h.
By a splitting argument we get

R∗
F,δ(D,M ;x) � 1

H

∣
∣
∣
∣

∑

h∼H

ch
∑

d∼D,m∼M

d2m�N

f(m)g(d)e
(

hx

d2m+ δ

)∣
∣
∣
∣ log x (6.3)

for some 1 � H � H, where ch = α∗(h)h � 1. So Theorem 1.7 follows from (6.1)–(6.3) and
the estimate

SF,δ(H,D,M) :=
∑

h∼H

ch
∑

d∼D,m∼M

d2m�N

f(m)g(d)e
(

hx

d2m+ δ

)

� Hx73/155+ε. (6.4)

We consider three cases.

Case I D � N1/6.
In this case by trivial estimate we have

SF,δ(H,D,M) � HD1+εM � HN1+ε

D
� HN5/6+ε � Hx41/93+ε � Hx73/155.

Case II x1/155 � D � N1/6.

Similar to Lemma 5.2, we can show that SF,δ(H,D,M) can be written as a sum of type I
sums of the form

SI(H,D,M1,M2) :=
∑

h∼H

ch
∑

d∼D,m1∼M1,m2∼M2
d2m1m2�N

g(d)am1e

(
hx

d2m1m2 + δ

)

with M1 � (N/D2)1/3 and am1 � mε
1, and type II sums of the form

SII(H,D,M1,M2) :=
∑

h∼H

ch
∑

d∼D,m1∼M1,m2∼M2
d2m1m2�N

g(d)am1bm2e

(
hx

d2m1m2 + δ

)

with (N/D2)1/3 �M1 � (N/D2)1/2 and am1 � mε
1, bm2 � mε

2. Since the proof is almost the
same as that of Lemma 5.1, we omit the details.
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For SI(H,D,M1,M2), we estimate the sum over m2 by Lemma 2.2 with the exponent pair
(2/7, 4/7) and estimate the sums over other variables trivially. We get that

SI(H,D,M1,M2) �
(
D3M2

1M
2
2

x
+H(Hx)2/7D3/7M

5/7
1

)

Nε

�
(
N2

Dx
+
H9/7x2/7N5/21

D1/21

)

Nε

�
(
N2

x
+H9/7x2/7N5/21

)

Nε

� Hx1394/3255+ε

� Hx73/155 (6.5)

by noting that M1 � (N/D2)1/3, D � 1, N � x82/155, H �MDx−73/155.

For SII(H,D,M1,M2), we get by (4.19) of Lemma 4.5 that

SII(H,D,M1,M2)x−ε � H
1
2N

5
6

D
7
6

+
Hx

1
4N

3
8

D
1
2

+
Hx

1
6N

7
12

D
2
3

+
H2x

DN2

� Hx73/155 (6.6)

by recalling that x73/155 � N � x82/155, x1/155 � D � D1/6, H � DMx−73/155.

From (6.5) and (6.6) we see that (6.4) holds for x1/155 � D � N1/6.

Case III D � x1/155.

We have

SF,δ(H,D,M)x−ε �
∑

d∼D

∣
∣
∣
∣

∑

h∼H

ch
∑

m∼M

d2m�N

f(m)e
(

hx

d2m+ δ

)∣
∣
∣
∣

�
∑

d∼D

∣
∣
∣
∣

∑

h∼H

ch
∑

m∼Nd

f(m)e
(

hxd

m+ δd

)∣
∣
∣
∣ (6.7)

where xd = x/d2, Nd = N/d2 
M, δd = δ/d2. We shall show that the estimate
∑

h∼H

ch
∑

m∼Nd

f(m)e
(

hxd

m+ δd

)

� Hx
8/17+ε
d (6.8)

holds.
If Nd � x

8/17
d , then (6.8) is trivial. Now suppose Nd � x

8/17
d . It is easy to see that

H � Ndx
−8/17
d and Nd � x

9/17
d . So (6.8) follows from the estimate (5.5).

From (6.7) and (6.8) we get the estimate

SF,δ(H,D,M)x−ε � H
∑

d∼D

x
8/17
d � x8/17D1/17 � Hx73/155

for D � x1/155.

This completes the proof of Theorem 1.7.
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