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Abstract Let Mn be an embedded closed submanifold of R
k+1 or a smooth bounded domain in R

n,

where n ≥ 3. We show that the local smooth solution to the heat flow of self-induced harmonic map

will blow up at a finite time, provided that the initial map u0 is in a suitable nontrivial homotopy class

with energy small enough.
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1 Introduction

1.1 Background

In physics, the Landau–Lifshtiz (LL) equation, deduced in [19, 27], is a fundamental evolution
equation for the ferromagnetic spin chain and was proposed on the phenomenological back-
ground in studying the dispersive theory of magnetization of ferromagnets. In fact, this equa-
tion describes the Hamiltonian dynamics corresponding to the micromagnetic energy, which is
defined as follows.

We assume that a ferromagnetic material occupies a smooth bounded domain Ω ⊂ R
3. Let

u, denoting magnetization vector, be a mapping from Ω into a unit sphere S
2 ⊂ R

3. The
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micromagnetic energy of map u is defined by

E(u) := Q

∫
Ω

Φ(u) dx +
∫

Ω

|∇u|2 dx +
∫

Ω

|hd(u)|2 dx.

Here ∇ denote the gradient operator and dx is the volume element of R
3.

In the above functional, the first and second terms are the anisotropy energy with positive
quality factor Q and exchange energy, respectively. Φ(u) is a real function on S

2. The last
term is the self-induced energy, and hd(u) is the demagnetizing field, which solves the following
Maxwell equations ⎧⎨

⎩
∇× hd = 0,

∇ · (hd + uχΩ) = 0
(1.1)

in R
3, where χΩ is the characteristic function of Ω.
The Landau–Lifshitz–Gilbert (LLG) equation with dissipation can be written as

ut = −αu × h − βu × (u × h),

where “×” denotes the cross production in R
3 and the local field h of E(u) can be derived as

h := −1
2

δE(u)
δu

= Δu + hd − Q

2
∇uΦ.

Here β ≥ 0 is the damping parameter and α ∈ R such that α2 + β2 = 1. Mathematically
speaking, the LLG equation is a hybrid of the heat flow and the Schrödinger flow for the energy
E .

In the following context, we restrict ourselves to the regime of soft and small ferromagnetic
particle Ωη with η > 0, where Ωη = {ηx |x ∈ Ω} and |Ω| denotes the volume of Ω. “Soft” refers
to the case when Q = 0, and “small” means that |Ωη| ≤ η3|Ω| � 1. Then the micromagnetic
energy becomes

E(u) :=
∫

Ωη

|∇u|2 dx +
∫

Ωη

|hd(u)|2 dx.

Hence, by setting u(x) = m(ηx), we consider the rescaled micromagnetic energy

Eη(u) := η−1E(m) =
∫

Ω

|∇u|2 dx + η2

∫
Ω

|hd(u)|2 dx,

where we set hd(u)(x) := hd(m)(ηx) : Ω → R
3, which also solves equation (1.1).

In fact, the non-local field hd(u) = −∇f , where f is the solution of the Possion equation

Δf = div(uχΩ),

and hence, which has a precise formula

f(x) =
∫

Ω

∇yG(x, y)u(y)dy,

where G(x, y) = 1
4π|x−y| is the fundamental function in R

3. Therefore, hd(u) can be presented
as

hd(u)(x) = −∇x

∫
Ω

∇yG(x, y)u(y)dy.



Heat Flow of Self-induced Harmonic Map 3

On the other hand, it is natural to extend the definition of hd for u : Ω → S
n−1 ↪→ R

n with
n ≥ 3 as

hd(u)(x) = −∇x

∫
Ω

∇yG(x, y)u(y)dy (1.2)

in distribution sense, where Ω is a domain in R
n and G(x, y) = cn

|x−y|n−2 is the fundamental
solution for the Laplace operator Δ on R

n.
A smooth map u : Ω → S

n−1 is called self-induced harmonic map if it is a critical point of
Eη satisfying the following Euler–Lagrange equation

Δu = −|∇u|2u − η2(hd(u) − 〈hd(u), u〉u),

which explains the multiple magnetic phenomena in the static case.
The heat flow of self-induced harmonic map (i.e. LLG equation of the case β = 1) with

Neumann initial boundary condition satisfies the following equation⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tu = Δu + |∇u|2u + η2(hd(u) − 〈hd(u), u〉u), (x, t) ∈ Ω × R
+,

∂u

∂ν

∣∣∣∣
∂Ω

= 0, (x, t) ∈ ∂Ω × R
+,

u(x, 0) = u0 : Ω → S
n−1,

(1.3)

where ν is the unit outer normal vector of ∂Ω.
In general, one can also give the following extension of hd for u : Mn → S

k ↪→ R
k+1

(see Section 2), where Mn is an embedded closed submanifold of R
k+1 with dim(M) = n.

Therefore, from the viewpoint of mathematics it is of interest to consider the following heat
flow of self-induced harmonic map u with initial smooth map u0 : M → S

k

⎧⎨
⎩

∂tu = Δu + |∇u|2u + η2(hd(u) − 〈hd(u), u〉u), (x, t) ∈ M × R
+

u(x, 0) = u0 : M → S
k.

(1.4)

1.2 Related works

Since LLG equation is an important topic in both mathematics and physics, there has been
tremendous interest in developing the well-posedness of LLG equation and its related topics.
Here, we list only a few of results that are closely related to our work in the present paper.

In 1964, Eells and Sampson [18] obtained the existence of local smooth solution to heat
flow of harmonic map on closed Riemannian manifold. Moreover, the solution exists globally
and converges to a harmonic map, provided that the target compact manifold has nonpositive
sectional curvature. Later, Hamilton generalized this result to the case of Dirichlet boundary
problem in [21]. Inspirted by the work of Sacks–Uhlenbeck [34], Chen and Struwe [36] proved
that the global solution to heat flow of harmonic map exists, if the initial energy is small. A
similar global existence of solution to LLG equation in R

2 was obtained by Carbou [4].
In general settings, by using the Lp-spectral theory of the Laplace operator (see Section 7 of

Chapter 1 in [37]), Taylor could give the existence of short-time regular solution in C1([0, T )×
M̄) ∩ C∞((0, T ) × M̄) to the semi-linear parabolic equation in both Dirichlet and Neumann
problems when M is a compact manifold with boundary, by providing the initial data u0 ∈
C∞(M̄) (see Section 1 and Section 3 in Chapter 15 of [37], also refer to [28]). Since the equations
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(1.3) and (1.4) are both strictly semi-linear parabolic equations, their locally regular solutions
indeed exist.

Recently, the local existence of very regular solution to LLG equation (α �= 0) with Neumann
boundary condition was addressed by applying the delicate Galerkin approximation method
and adding compatibility initial-boundary condition in [5]. And then, inspired by the method
used in [5], we obtained the locally very regular solution of LLG equation with spin-polarized
transport in [7]. Later, we generalized our previous work [7] (or Carbou’s result in [5]) to
a Landau–Lifshitz–Gilbert flow with target being compact symplectic manifold, cf. [8]. For
the most challenging case of β = 0, the local regular solution to Schrödinger flow defined on
closed manifold was given by Ding and Wang in [16]. Very recently, we get the existence and
uniqueness of local smooth solutions to LL equation (i.e. Schrödinger flow into sphere) with
Neumann boundary condition in [9, 10].

On the other hand, in the past three decades, a great deal of mathematical effort in blow-up
analysis has been devoted to studying the phenomenon for finite-time singularities of heat flow
of harmonic maps. In 1989, Coron and Gildaglia [14] gave finite-time blow-up examples to heat
flow of harmonic maps, for some certain symmetric initial data from R

n or S
n to S

n with n ≥ 3.
Another approach to show the occurrence of finite-time singularities was built up by Ding [15]
for heat flow of harmonic map in dimension 3, by using a monotonicity formula of almost
harmonic map and applying the delicate blow up analysis; and then by Chen and Ding in [11]
for higher dimension n ≥ 3, based on both the Struwe’s parabolic energy monotonicity formula
(see [12]) and Ding’s method in [15]. Their results guarantee that such singular examples will
occur if the initial data u0 is in some nontrivial homotopy class with small energy. In fact,
there exists topological conditions of spaces, which can insure the condition of initial map u0,
see [39]. When n = 2, such finite-time singular examples were shown by Chang, Ding and Ye
in [6].

Later, the similar results of finite-time singularity were addressed by Grotowshi [20] for
Yang–Mills heat flow with initial connection in a trivial SO(n)-bundle over R

n with n ≥ 5.
Under a similar setting as in [11], Naito in [32] gave finite-time blow-up solutions to Yang–Mills
heat flow with initial data in a nontrivial principal bundle SO(n) over S

n with n ≥ 5. S.J.
Ding and C.Y. Wang in [17] applied a similar approach as in [11] to show finite-times singular
examples for Landau–Lifshitz equation in lower dimensions.

We would like to remark that the critical ingredient in [11] is the ε-regularity of heat flow
of harmonic map (see [12]), which is based on both the parabolic monotonicity formula and
the Bochner identity for the heat flow of harmonic map. Since in lack of both the parabolic
monotonicity formula and the Bochner formula for Landau–Lifshitz equation, the authors in
[17] used a similar treatment as in [29] and [30] to get a slice monotonicity formula in lower
dimension and then obtained the ε-regular estimate of solutions by applying the dual of BMO
and H1. This method has been also used by [30, 31] and [24] respectively to get partially regular
results of harmonic maps and almost harmonic maps.

1.3 Main Results and Strategy

In this paper, we focus on the aspect of blow-up for the heat flow of self-induced harmonic map
satisfying (1.3) or (1.4). Since the nonlocal potential hd(u) can be well estimated by u (see
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Section 5 in Appendix), there holds a parabolic monotonicity formula by a similar argument as
in [12]. Hence, we also use the dual of BMO and H1 to show the ε-regularity of self-induced
harmonic map. By combining the parabolic monotonicity formula in Theorem 2.10 and the
ε-regularity Theorem 2.6, we can get the following main results.

Theorem 1.1 Let n ≥ 3, and Mn be an embedded closed submanifold in R
k+1 with induced

metric. There exists constants ε, η0 such that if

0 < η ≤ η0,

and u0 ∈ C∞(Mn, Sk) is in a nontrivial homotopic class [u0] with E[u0] = 0 (defined in (1.5)),
which satisfies ∫

M

|∇u0|2dv ≤ ε2,

then the local smooth solution u of (1.4) with initial map u0 blows up in finite time. Moreover,
let T be the maximal existence time of u, we have

T ≤ C(ε2 + η2
0)

2
n−2 ,

where C is a positive constant depending only on the geometry of M and S
k.

Remark 1.2 Let [u0] = {f ∈ C(M, N) | f is homotopic to u0}. Then, there holds

E[u0] := inf
f∈[u0]∩W 1,2(M,N)

∫
M

|∇f |2dv = 0 (1.5)

if we provide one of the following three topological conditions:
(1) π1(M) = 0 and π2(M) = 0,
(2) π1(M) = 0 and π2(N) = 0,
(3) π1(N) = 0 and π2(N) = 0,

to see [39] for more details.

In particular, let M = S
n and N = S

n with n ≥ 3. Let u0 : S
n → S

n be a smooth map with
deg(u0) �= 0. Then u0 is not homotopically trivial. Meanwhile, E[u0] = 0, since π1(Sn) = 0 and
π2(Sn) = 0. Some other examples were given by Ding–Wang by using the Hopf map (to see
[17]).

For a domain Ω ⊂ R
n with boundary ∂Ω �= ∅, we can get a similar result as in Theorem 1.1

for the Neumann boundary problem (1.3).
To proceed, we denote [u0]ν := {v ∈ C1(Ω̄, Sn−1) | there is a C0([0, 1], C1(Ω̄)) map ϕ : Ω̄ ×

[0, 1] → S
n−1 such thatϕ(x, 0) = u0, ϕ(x, 1) = v, and ∂ϕ(·,t)

∂ν |∂Ω = 0}, and then define

E[u0]ν = inf
v∈[u0]ν

∫
Ω

|∇v|2dx,

where ν is the unit outer normal vector of ∂Ω and [u0]ν is the completion of [u0]ν in W 1,2-norm.
We say [u0]ν is a nontrivial class (denoted by [u0]ν �= 0), if constant maps are not in [u0]ν .

Theorem 1.3 Let Ω ⊂ R
n be a smooth bounded domain with n ≥ 3. There exists constants

ε, η0 such that if

0 < η ≤ η0,
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and u0 ∈ C∞(Ω̄, Sn−1) is in a nontrivial class [u0]ν with E[u0]ν = 0, which satisfies∫
Ω

|∇u0|2dv ≤ ε2,

then the local smooth solution u of (1.3) with initial map u0 blows up in finite time. Moreover,
letting T be the maximal existence time of u, we have

T ≤ C(ε2 + η2
0)

2
n−2 ,

where C is a positive constant depending only on n and |Ω|.
Remark 1.4 Let Ω = {x ∈ R

n | 1 < |x| < 2}. For n ≥ 4, by using the facts π1(Sn−1) = 0 and
π2(Sn−1) = 0, we have E[f ] = 0, where [f ] is any nontrivial homotopy class of maps from S

n−1

into itself. Since {
u(x) = g

(
x

|x|
) ∣∣∣∣ g ∈ [f ] ∩ C1(Sn−1, Sn−1)

}
⊂ [u0]ν

for some u0 = g0( x
|x|) with g0 ∈ [f ] ∩ C1(Sn−1, Sn−1), and

∫
Ω

|∇u|2dv = ωn−1

∫ 2

1

rn−3dr

∫
Sn−1

|∇g|2dθ =
ωn−1(2n−2 − 1)

n − 2

∫
Sn−1

|∇g|2dθ,

there holds
E[u0]ν = 0 and [u0]ν �= 0.

Now we give an illustration of the main ideas in our proof. We will first prove Theorem
1.1 in Section 3, and then Theorem 1.3 in Section 4. The proof of Theorem 1.1 consists of two
steps. In the first step, we use the ε-regularity obtained in Theorem 2.6 to eliminate the case
of not blowing up along heat flow of self-induced harmonic map. Then, in the second step, by
using parabolic monotonicity formula in Theorem 2.10, we take a similar but more complicated
argument as in [11] to give

T ≤ C(ε2 + η2)
2

n−2

for small ε and η, where T is the extreme existence time of solution and ε2 = ‖∇u0‖L2(M).
Both of the two steps need fine estimates on hd, which is given in Theorem 5.5 in Appendix 5.

Theorem 1.3 is proved by a similar but more involved manner, since we need boundary
regular estimates of u. For the case η = 0, that is, u is a heat flow of harmonic map, there
is a standard treatment to deal with the boundary regularity, which is to extend u across the
boundary by a transformation of reflection (see the definition in (6.4)). Let ū denote this
extension of u. It is not difficult to check that ū is a strong solution of equation (1.3) with
η = 0 on a bigger domain than Ω, when u satisfies the Neumann boundary condition. This
transfers the regular estimates near the boundary to the interior ones. However, when η > 0,
it seems difficult for us to get the regular estimates of hd near the boundary by applying the
above method, due to hd being defined globally in (1.2), so as u. Fortunately, we can develop
the global Lp-theory for heat equation with the Neumann boundary condition in a more general
setting in Appendix 6 to overcome this difficulty. Since the ε-regularity in Theorem 2.6 and the
parabolic monotonicity also hold near boundary in the case of Neumann problem (see Corallary
4.1 and Remark 4.3), after some modifications about the proof of Theorem 1.1, the desired result
in Theorem 1.3 can be established.
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The rest of our paper is organized as follows. In Section 2, we introduce the basic setting of
self-induced harmonic maps and some critical preliminary lemmas, including the ε-regularity
theorem of self-induced harmonic maps and the parabolic monotonicity formula for heat flow
of self-induced harmonic maps. In Section 3, we give the proof of Theorem 1.1. The proof
of theorem 1.3 will be built up in Section 4. Finally, the estimates of hd and the global Lp-
estimates of heat equations in more general settings are given in Appendix 5 and Appendix 6
respectively.

2 Preliminary

2.1 The Self-induced Dirichlet Energy Functional

Suppose that Mn (n ≥ 3) is an embedded closed submanifold of R
k+1, which is equipped with

the metric g induced by the Euclidean metric 〈 , 〉 of R
k+1. The tangent bundle of M , denoted

by TM , is a subbundle of the trivial vector bundle E = M × R
k+1. Let π : E → TM be

the bundle projection, and F = Γ(E) denote the space of smooth sections for vector bundle
E, which is identified with the space of smooth map from M to R

k+1, since E is trivial. The
completeness of Γ(E) under the W s,2 Sobolev norm is denoted by W s,2(F ) for any s ∈ N.
Denote

W 1,2(M, Sk) := {u ∈ W 1,2(F ) |u : M → S
k ↪→ R

k+1, for a.e. x ∈ M}.

For any u ∈ W 1,2(F ), the nonlocal potential is defined by

hd(u)(x) = −∇xf = −∇x

∫
M

〈∇yG(x, y), π(u)(y)〉dvy (2.1)

in distribution sense, where ∇ denotes the Levi–Civita connection induced by metric g and
G(x, y) is a Green’s function on M (refer to Lemma 5.1). Here and in the following context,
without loss of generality and for simplicity, we denote π(u)(x) = πx(u(x)). The function
f : M → R satisfies the following equation

Δf = div(π(u)). (2.2)

This implies

div(hd + π(u)) = 0. (2.3)

Then we define the self-induced Dirichlet functional with nonlocal potential for a section
u ∈ W 1,2(M, Sk) by

Eη(u) :=
∫

M

|∇u|2dv + η2

∫
M

|hd(u)|2dv, (2.4)

where η is a nonnegative scalar constant, and dv is the volume form.

2.2 Self-induced Harmonic Map

By definition, hd : L2(M, Rk+1) → L2(M, TM) is a linear operator. Then, the gradient δE
δu of

this energy functional Eη is obtained from the following lemma.

Lemma 2.1 For any u and w in W 1,2(F ), there holds∫
M

〈hd(u), hd(w)〉 dv = −
∫

M

〈hd(u), w〉 dv.
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Proof Since Δf(u) = div(π(u)) and u ∈ W 1,2(M, Sk), it implies hd(u) ∈ W 1,2(M, Rk+1) by
the classical L2-elliptic estimates.

Thus, by using Stokes formula, there holds∫
M

〈hd(u), hd(w)〉 dv = −
∫

M

〈∇f(u), hd(w)〉 dv =
∫

M

div(hd(w))f(u)dv

= −
∫

M

div(π(w))fdv = −
∫

M

〈hd(u), w〉 dv. �

Proposition 2.2 For any u ∈ W 1,2(M, Sk), the gradient of self-induced Dirichlet energy
functional Eη at u is

1
2

δEη(u)
δu

= τ(u) − η2(hd(u) − 〈hd(u), u〉u),

where τ(u) = −Δu − |∇u|2u is the tension field.

Proof Let ut = u+tϕ
|u+tϕ| for any ϕ ∈ C∞(M, Rk+1) with t small enough. Then we have

d

dt

∣∣∣∣
t=0

Eη(ut) = 2
∫

M

〈∇u,∇(ϕ − 〈ϕ, u〉u〉dv + 2η2

∫
M

〈hd(u), hd(ϕ − 〈ϕ, u〉u)〉dv

= 2
∫

M

〈∇u,∇ϕ〉 − 〈|∇u|2u, ϕ〉dv − 2η2

∫
M

〈hd(u), ϕ − 〈ϕ, u〉u〉dv.

That is,
δEη(u)

δu
= 2τ(u) − 2η2(hd(u) − 〈hd(u), u〉u),

in the distribution sense. �
A smooth map u : M → S

k ↪→ R
k+1 is called a self-induced harmonic map if it satisfies the

Euler–Lagrange equation

τ(u) − η2(hd(u) − 〈hd(u), u〉u) = 0. (2.5)

Remark 2.3 The same results as in the above Lemma 2.1 and Proposition 2.2 also hold true
in the case mentioned in Section 1 where the underlying space is a bounded domain Ω ⊂ R

n

(cf. [3]).

2.2.1 Epsilon Regularity of Self-induced Harmonic Map

In this subsection, the ε-regularity for self-induced harmonic map will be obtained, which is
contributed to show Theorem 1.1 in Section 3. Let u ∈ C∞(M, Sk) be a self-induced harmonic
map. Due to the fine regular estimates (see Theorem 5.5), the term involving hd can be
considered as a good disturbance of harmonic map. And hence, the techniques used to approach
harmonic map can also be adopted to deal with the self-induced harmonic maps u. We will see
that many properties of self-induced harmonic maps is analogous to harmonic maps, such as
the monotonicity formula and the ε-regularity (also cf. [3]).

Let injM > 0 be the injective radius of M , Br(p) denote the geodesic ball with radius r and
center at p ∈ M , where r ≤ injM . Choose i0(≤ injM ) be a positive constant such that there
holds

|gij − δij | ≤ Ar2, |∂gij | ≤ Ar,

under a normal coordinates (x1, x2, . . . , xn) on Bi0(p), where A is a constant depending only
on the geometry of M .
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Denote the scaling invariant energies by

Ir(u) :=
1

rn−2

∫
Br(p)

|∇u|2dv,

and

Īr(u) :=
1

rn−2

( ∫
Br(p)

|∇u|2dv + η2

∫
Br(p)

|hd(u)|2dv

)
,

where hd(u) = −∇f ∈ Γ(TM).

Theorem 2.4 There exists a constant C depending only on the geometry of M , such that if
u ∈ C2(M, Sk) is a self-induced harmonic map, then for any p ∈ M , there holds

eCρĪρ(u) ≤ eCσ Īσ(u)

for 0 < ρ ≤ σ < i0.

Proof Let ϕt be the one parameter transformation group induced by a smooth vector field
X ∈ Γ(TM), and ut = u ◦ ϕ. Then, there holds

Eη(ut, g) =
∫

M

|∇ut|2gdvg + η2

∫
M

|hd(ut)|2dvg

=
∫

M

|∇u|2ϕ∗
−tg

dvϕ∗
−tg

+ η2

∫
M

|hd(u)|2ϕ∗
−tg

dvϕ∗
−tg,

because of hd(ut) = (ϕt)∗hd(u), where (ϕt)∗ is the push-in map induced by automorphism ϕt.
Since u is the critical point of Eη, we obtain

0 =
d

dt

∣∣∣∣
t=0

Eη(ut, g) =
d

dt

∣∣∣∣
t=0

Eη(u, gϕ∗
−tg

) = −1
2

∫
M

(|∇u|2 + η2|hd(u)|2)divXdvg

+
∫

M

gij(〈∇u(∇eiX),∇u(ej)〉 + 〈hd(u),∇eiX〉〈hd(u), ej〉)dvg ,

where ei = ∂
∂xi for 0 ≤ i ≤ n.

Let X = χ(r)r ∂
∂r = χ(d(p, x))xi ∂

∂xi , where

χ(r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if r ≤ ρ;

σ − r

σ − ρ
if ρ < r ≤ σ;

0 if r > σ.

Thus, a simple calculation shows

divX = nχ(r) + rχ′(r) + O(r2),

gij〈∇u(∇eiX),∇u(ej)〉 = |∇u|2(χ(r) + O(r2)) + χ′(r)
(

r

∣∣∣∣∂u

∂r

∣∣∣∣
2

+ O(r3)|∇u|2
)

,

and

gij〈hd(u), (∇eiX)〉〈hd(u), ej〉 = |hd(u)|2(χ(r) + O(r2))

+ χ′(r)
(

r

∣∣∣∣
〈

hd(u),
∂

∂r

〉∣∣∣∣
2

+ O(r3)|hd(u)|2
)

.
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Therefore, we have

0 = (n − 2)
∫

Bσ(p)

(χ(r) + O(r2)(|∇u|2 + η2|hd(u)|2)dvg

− 1
σ − ρ

∫
Bσ(p)/Bρ(p)

(r + O(r3))(|∇u|2 + η2|hd(u)|2)

− 2r

(∣∣∣∣∂u

∂r

∣∣∣∣
2

+
∣∣∣∣
〈

hd(u),
∂

∂r

〉∣∣∣∣
2)

dvg.

Letting ρ → σ, it follows

σ∂σĒσ − (n − 2)Ēσ(u) ≥ −Cσ2Ēσ(u),

Thus, there holds

Ī ′σ(u) = σ1−n(σ∂tĒσ − (n − 2)Ēσ(u)) ≥ −CĪσ(u),

which gives
eCρĪρ(u) ≤ eCσ Īσ(u),

for any 0 < ρ ≤ σ < i0. �
It is not difficult to show the above monotonicity formula also holds for u ∈ W 2,2(M, Sk).

This formula combining with the dual of BMO and H1 implies the following ε-regularity theorem
by using a similar method applied to harmonic map, see [17, 29, 30]. To this end, we firstly
obtain an improved Poincaré inequality, which can be presented as the following lemma.

Lemma 2.5 There exists a positive constant C0 such that for any θ ∈ (0, 1), there exists ε0(θ)
such that for any solution u ∈ W 2,2(Br(x0), Sk) to (2.5) and 0 < r ≤ i0, if u satisfies

Îr(u) :=
1

rn−2

∫
Br

|∇u|2dv +
η2

rn−2

∫
Br

|hd(u)|dv ≤ ε2
0(θ),

there holds
1

(θr)n

∫
Bθr

|u − urθ|2dv ≤ C0θ
2Îr(u),

where urθ is the mean value of u on Brθ.

Proof In general, we assume that r = 1 by scaling. On the contrary, suppose that for any
C > 0, there exist a θ ∈ (0, 1) and a sequence {uj} ⊂ W 2,2(B1, S

k) solving (2.5), which satisfy

Δuj = −|∇uj|2uj − η2(hd(uj) − 〈hd(uj), uj〉uj),

such that
Î1(uj) = ε2

j → 0,

as j → ∞. But, ∫
Bθ

|uj − (uj)θ|2dv > Cθn+2ε2
j ,

where (uj)θ is the mean value of uj on Bθ.
Letting vj(x) = 1

εj
(uj − (uj)θ), it follows

∫
B1

|∇vj |2dv ≤ 1.
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The Poincaré inequality (to see Lemma 6.14 in [28]) implies that {vj} is a bounded sequence
in W 1,2(B1, R

k+1). Hence, there exists a v ∈ W 1,2(B1, R
k+1), which satisfies

vj ⇀ v weakly in W 1,2(B1, R
k+1),

vj → v strongly in L2(B1, R
k+1).

On the other hand, for any cut-off function ϕ ∈ C∞
0 (B1, R

k+1), it follows
∫

B1

〈∇vj ,∇ϕ〉 dv =
1
εj

∫
B1

|∇uj |2 〈uj , ϕ〉 dv +
η2

εj

∫
B1

〈(hd(uj) − 〈hd(uj), uj〉uj), ϕ〉 dv

≤ |ϕ|L∞

εj

( ∫
B1

|∇uj |2dv + |hd(uj)|dv

)
→ 0,

as j → ∞.
Thus, v is a harmonic function in B1. Lemma 3.3.12 in [24] implies∫

Bθ

|v|2dv ≤ C0θ
2

∫
Bθ

|∇v|2dv ≤ C0θ
n+2

for some C0, which is a contradiction.
If u is a solution to Equation (2.5) on Br(x0), we set v(x) = u(x0 + rx), which is defined

on B1(0) endowed with the metric (ḡij) = (g(x0 + rx)ij). Then v satisfies the below equation

Δv(x) = |∇v|2(x) + η2r2(hd(rx) − 〈hd(rx), v(x)〉 v(x)).

By the same argument as that in the above we can obtain the desired results. �
By using Lemma 2.5, the following ε-regularity theorem is obtained.

Theorem 2.6 There exists a constant ε such that if u ∈ W 2,2(M, Sk) is a solution of (2.5)
and satisfies, for 0 < r0 ≤ i0 and p ∈ M ,

Īr0(u) ≤ ε2,

then, u is Cα-continuous on B r0
2 (p) for any α ∈ (0, 1). Moreover, there holds

[u]Cα(B r0
2

) ≤ C

(
r2−n−2α
0

∫
Br0

|∇u|2 + η2

) 1
2

,

where constant C depends only on α and the geometry of M and S
k.

Proof Since it is a local result, we may assume Br0 is a Euclidean ball with the Euclidean
metric gE . Moreover, one can modify without difficulties the following argument to show the
result is also true in general case.

Since Īr0(u) ≤ ε2, the monotonicity formula implies

Īr(u)(y) = r2−n

∫
Br(y)

(|∇u|2 + |hd(u)|2)dv ≤ eCr02n−2ε2,

for any y ∈ B r0
2

(p) and r ≤ r0
2 . Next, our proof is divided into 3 steps.

Step 1 We claim that for any δ > 0, there exist Cδ and ε1 such that if

Ir(u) ≤ ε2
1,
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there holds(
1
4
r

)2−n ∫
B 1

4 r

|∇u|2dv ≤ δ

rn−2

∫
Br

|∇u|2dv + Cδη4ra +
Cδ

δ
r−n

∫
Br

|u − ur|2dv,

where a ∈ (0, 4).
Without loss of generality, we assume r = 1. Let ξ be a cut-off function with support in B1

and ξ = 1 in B 1
4
. Then, a simple calculation shows

∫
B1

ξ|∇u|2dv = −
∫

B1

〈div(ξ∇u), u − ū〉 dv

= −
∫

B1

〈∇ξ · ∇u, u − u1〉 dv −
∫

B1

ξ 〈Δu, u − u1〉 dv

= −
∫

B1

〈∇ξ · ∇u, u − u1〉 dv +
∫

B1

ξ
〈|∇u|2u − λ, u − ū

〉
dv

+
∫

B1

ξ 〈λ, u − u1〉 dv + η2

∫
B1

ξ 〈hd(u) − 〈hd(u), u〉u, u − u1〉 dv

= I + II + III + IV,

where u1 = 1
|B1|

∫
B1

u dv and

λ =

∫
Rn |∇u|2ξu dv∫

Rn ξ dv
.

Since |u| = 1, then

|∇u|2u =
∑

i

∇uj · (ui∇uj − uj∇ui)ei,

and

div(ui∇uj − uj∇ui) = {u, ω}ij = uiωj − ujωi.

where {ei} is the standard frame of R
k+1, and

ω = τ(u) = η2(hd(u) − 〈hd(u), u〉u) ∈ L2(B1, R
k+1).

Therefore, Lemma 2.6 in [17] implies |∇u|2u ∈ H1
loc(B1). And moreover there holds

‖ξ(|∇u|2u − λ)‖H1(Rn) ≤ C‖|∇u|2u‖H1
loc

(B1)

≤ C(‖∇u‖2
L2(B1)

+ η4‖hd(u)‖2
L2(B1)

).

Hence, it follows

II ≤ C(‖∇u‖2
L2(B1)

+ η4‖hd(u)‖2
L2(B1))‖u − ū‖BMO(B1)

≤ C(‖∇u‖2
L2(B1)

+ η4‖hd(u)‖2
L2(B1))‖∇u‖L2(B1).

Since I and III can be easily estimated by using Hölder inequality, we obtain∫
B1/4

|∇u|2dv ≤
(

C‖∇u‖L2(B1) +
2
3
δ

)
(‖∇u‖2

L2(B1) + η4‖hd(u)‖2
L2(B1))

+
Cδ

δ

∫
B1

|u − u1|2dv. (2.6)
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In general case, let u ∈ W 2,2(Br, S
k) be a solution of (2.5). Let v(y) = u(ry) on B1 with

Euclidean metric gE , then v satisfies the following equation:

Δv(y) + |∇v|2v(y) = −η2r2(hd(u)(ry) − 〈hd(u)(ry), v(y)〉 v(y)).

thus, taking almost the same arguments as in the above leads to∫
B1/4

|∇v|2dv ≤
(

C‖∇v‖L2(B1)+
2
3
δ

)
(‖∇v‖2

L2(B1)+η4r4‖hd(u)(r.)‖2
L2(B1))+

Cδ

δ

∫
B1

|v−v1|2dv.

Scaling back to Br and choosing ε1 ≤ δ
3C , we have

(
1
4r

)2−n ∫
B1/4r

|∇u|2dv ≤ δ(r2−n‖∇u‖2
L2(Br) + η4r4−n‖hd(u)‖2

L2(Br))

+
Cδ

δ
r−n

∫
Br

|u − ur|2dv

≤ δr2−n‖∇u‖2
L2(Br) + Cδη4ra +

Cδ

δ
r−n

∫
Br

|u − ur|2dv,

for any a ∈ (0, 4). Here we have used the fact

r4−n‖hd(u)‖2
L2(Br) ≤ Cr4− n

p

(∫
Br

|hd(u)|2pdv

) 1
p

≤ Cr4− n
p ≤ Cra

if p > n
4 .

Step 2 By combining the result in Step 1 with Lemma 2.5, we can show the required decay
estimate by choosing suitable δ, θ, ε0 and ε1.

The following iteration argument is similar with that in [29]. For any α ∈ (0, 1), let δ = (1
4 )4,

θ = θ(α) ≤ min{( δ2

2C0Cδ
)

1
2−2α , ( 7

15 )1/2}, where C0 and Cδ comes from Lemma 2.5 and the claim
in step 1, respectively. Let l ∈ N such that θ(α) = 1

4l . The monotonicity formula 2.4 implies
that if Īr(u) ≤ ε2 is small enough, then

Iρ(u) ≤ CĪr(u) ≤ Cε2 ≤ ε2
1,

for 0 < ρ ≤ r. Hence, by choosing Îr(u) ≤ min{ε2
0(4θ), . . . , ε2

0(4
iθ)}, it follows

I4iθr(u) ≤ δI4i+1θr(u) + Cη4δ(4i+1θ)ara +
C0Cδ

δ
(4i+1θ)2Îr(u),

for 0 ≤ i ≤ l − 1.
By induction on i, there holds

Iθr(u) ≤ δlI4lθr(u) + Cη4 1
1 − δ4a

θara +
C0Cδ

1 − 16δ

(
θ

δ

)2

Îr(u),

where we choose a < 3. Thus,

Iθr(u) ≤ θ2α

(
8
15

+ θ4−2α

)
Ir(u) + Cη4ra + Cη2r2−n

∫
Br

|hd(u)|dv,

where we choose a > 2α.
Since r2−n‖hd(u)‖L1(Br) ≤ Cr2− n

p (
∫

Br
|hd(u)|pdv)

1
p ≤ Cr2− n

p if p > n
2 . It implies

Iθr(u) ≤ θ2αIr(u) + Cη2rβ ,
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for any β ∈ (0, 2).
Therefore, Lemma 3.4 in Chapter 3 of [23] implies

Iρ(u) ≤ Cα

((
ρ

r

)2α

Ir(u) + Cη2ρβ

)
,

for any 0 < ρ ≤ r and β < 2α.

Step 3 The Hölder continuity of u.
Step 2 follows that, for any y ∈ B r0

2
(p) and any ρ ≤ r ≤ r0

2 , there holds

ρ−n

∫
Bρ(y)

|u − uBρ(y)|2 ≤ Cα,βρ2α′
(

1
r2α′ Ir(u) + η2

)
,

where uBρ(y) is the mean value of u on Bρ(y) and 2α′ = β. Therefore, the Campanato space
theory implies

[u]Cα′(B r0
2

) ≤ C

(
r2−n−2α′
0

∫
Br0

|∇u|2 + η2

) 1
2

. �

Theorem 2.6 implies the following gap result.

Corollary 2.7 There exists positive constants ε0 and η0 such that if u is a W 2,2(M, Sk)
solution to (2.5), ‖∇u‖2

L2 ≤ ε2
0 and η ≤ η0, then u is a null-homotopic map.

Proof We choose a finite covering {Br/2(xi)}N
i=1 of M , such that there holds

Īr(u)i = r2−n

∫
Br(xi)

|∇u|2 + η2|hd(u)|2dv ≤ r2−n(ε2
0 + Cη2rl) ≤ ε2,

for any 0 < i ≤ N ≤ Cr−n, where l ∈ (0, n) and r = i0
2 .

Thus, the ε-regularity theorem 2.6 implies

oscMu ≤ C
N∑

i=1

rα[u]Cα(B r
2
(xi)) ≤ Crα−n(r1− n

2 −αε0 + η)

≤ C(i0)(ε0 + η0).

Then by choosing ε0 and η0 small enough, it follows that u(M) is contained in a geodesic
convex ball B of S

k. Thus, u is null homotopic since B is contractible. �

2.3 Parabolic Monotonicity Formula of the Heat Flow of Self-induced Harmonic Map

In this section, a parabolic version of monotonicity formula will be given by using a similar
argument with that for heat flow of harmonic maps by Struwe [12] and Hamilton [22].

A smooth map u(x, t) : M × [0, T ) → S
k is called the heat flow of self-induced harmonic

map if it solves the negative gradient flow of the self-induced energy Eη(u) defined in (2.4).
Namely, u is a smooth solution of the following equation with initial smooth map u0 : M → S

k:
⎧⎨
⎩

∂tu = −1
2

δEη(u)
δu

= Δu + |∇u|2u + η2(hd(u) − 〈hd(u), u〉u),

u(x, 0) = u0.
(2.7)

where T is the maximal existence time.
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Remark 2.8 Since the nonlocal field hd(u) is well estimated by u in Theorem 5.5 and Theorem
5.7, by using almost the same arguments as that in Section 1 and Section 3 in Chapter 15 of
[37] (also refer to [28]), we can show the existence of local regular solution to (2.7) or (1.3).

The following energy identity for the heat flow of self-induced harmonic map, which will be
used in the coming context, is obtained directly.

Lemma 2.9 Suppose u is a smooth solution of (2.7) (or (1.3)), then for any 0 < t < T , there
holds

Eη(ut) +
∫ t

0

∫
M

∣∣∣∣δEη(u)
δu

∣∣∣∣
2

(x, t)dvdt = Eη(u0),

where ut(x) = u(x, t).

Now, we are in the position to give the parabolic type monotonicity formula for the heat flow
of self-induced harmonic map. Let Bρ(p) ⊂ M be a geodesic ball with ρ ≤ i0, (x1, x2, . . . , xn)
be a normal coordinate on Bρ(p) = exp−1

p Bρ(p) with x(p) = 0. Define a weighted energy in
the following form

φ(r, u, t) = φp,t0(r, u, t) :=
1
2
r2

∫
Bρ(0)

|∇u|2(x, t)Γ(x, 0; t, t0)ϕ2(x)
√

det(g)dx.

Here

Γ(x, 0; t, t0) = [4π(t0 − t)]−n/2 exp− |x|2
4(t0 − t)

is the backward heat kernel on R
n for t < t0 < T , and ϕ(x) is a cut-off function with support

in Bρ, ϕ = 1 on B ρ
2
(0).

Let t = t0 − r2, where 0 < r < min{√t0, ρ}. Then the weighted energy can be rewritten as

φ(r) =
1
2
Cnr2−n

∫
Rn

|∇u|2(x, t0 − r2) exp
(
− |x|2

4r2

)
ϕ2(x)

√
det(g)dx. (2.8)

Theorem 2.10 There exists a constant C (depending only on the geometry of M and S
k)

such that if u is a smooth solution to the heat flow (2.7), then for any 0 < s ≤ r < min{√t0, ρ}
with t0 < T and ρ ≤ i0, the following properties hold.

(1) For n = 3, there holds

φ(s) ≤ eC(r−s)φ(r) + CEη(u0)(r − s).

(2) For n > 3, there holds

φ(s) ≤ eC(r−s)φ(r) + CEη(u0)(r − s) + Cη4(rl+1 − sl+1),

where l ∈ (1, 3) is a constant depending only on n.

Proof Without loss of generality, we assume Cn = 1. Since Equation (2.7) is invariant under
translation (x, t) → (x, t− t0), we may shift (0, t0) to (0, 0). Let ur(x, t) = u(rx, r2t). It follows

φ(r) =
1
2

∫
Rn

|∇ur|2(x,−1)φ2
r(x) exp

(
−|x|2

4

)√
det(gr(x))dx,

where ϕr(x) = ϕ(rx), gr(x) = g(rx) = gij(rx)dxi ⊗ dxj . Thus, we have

dφ

dr
(r0) =

1
r0

dφ(rr0)
dr

∣∣∣∣
r=1
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=
1
2
r1−n
0

d

dr

∣∣∣∣
r=1

∫
Rn

|∇ur|2gr
(x,−r2

0)ϕ
2
r(x) exp

(
− |x|2

4r2
0

)√
det(gr)dx

= r1−n
0

∫
Rn

〈
∇u,∇ur

dr

∣∣∣∣
r=1

〉
ϕ2(x) exp

(
− |x|2

4r2
0

)√
det(g)dx

+ r1−n
0

∫
Rn

dgij
r

dr

∣∣∣∣
r=1

∂u

∂xi

∂u

∂xj
ϕ2(x) exp

(
− |x|2

4r2
0

)√
det(g)dx

+ r1−n
0

∫
Rn

|∇u|2ϕ(x)
dϕr

dr

∣∣∣∣
r=1

exp
(
− |x|2

4r2
0

)√
det(g)dx

+ r1−n
0

∫
Rn

|∇u|2ϕ2(x) exp
(
− |x|2

4r2
0

)
d

dr

∣∣∣∣
r=1

√
det(gr)dx

= I + II + III + IV,

Next, we estimate the above four terms step by steps.

Step 1 The estimates of I.

I = r1−n
0

∫
Rn

〈
∇∗

(
exp

(
− |x|2

4r2
0

)
ϕ2(x)∇u

)
,∇u · x − 2r2

0∂tu

〉√
det(g)dx

= −r1−n
0

∫
Rn

〈
− τ(u) − x

2r2
0

·g ∇u,∇u · x − 2r2
0∂tu

〉
exp

(
− |x|2

4r2
0

)
ϕ2(x)

√
det(g)dx

− 2r1−n
0

∫
Rn

〈∇ϕ(x) ·g ∇u,∇u · x − 2r2
0∂tu〉 exp

(
− |x|2

4r2
0

)
ϕ(x)

√
det(g)dx

= I1 + I2,

where τ(u) = −Δu − |∇u|2u.
A simple calculation shows

I1 = 2η2r3−n
0

∫
Rn

〈
− τ(u) − gij xi

2r2
0

∂u

∂xj
, hd(u) − 〈hd(u), u〉u

〉
exp

(
− |x|2

4r2
0

)
ϕ2(x)

√
det(g)dx

+ 2r3−n
0

∫
Rn

∣∣∣∣ − τ(u) − gij xi

2r2
0

∂u

∂xj

∣∣∣∣
2

exp
(
− |x|2

4r2
0

)
ϕ2(x)

√
det(g)dx

− r1−n
0

∫
Rn

〈
− τ(u) − gij xi

2r2
0

∂u

∂xj
, (I − g)ijxi ∂u

∂xj

〉
exp

(
− |x|2

4r2
0

)
ϕ2(x)

√
det(g)dx

≥ −8η4r3−n
0

∫
Rn

|hd(u)|2 exp
(
− |x|2

4r2
0

)
ϕ2(x)

√
det(g)dx

+ r3−n
0

∫
Rn

∣∣∣∣ − τ(u) − x

2r2
0

· ∇u

∣∣∣∣
2

exp
(
− |x|2

4r2
0

)
ϕ2(x)

√
det(g)dx

− Cr2−n
0

∫
Rn

|I − g|2|x|2
r3
0

|∇u|2 exp
(
− |x|2

4r2
0

)
ϕ2(x)

√
det(g)dx.

The last term of I1 can be estimated as follows

The last term of I1 ≤ Cφ(r0) + C

∫
Bρ(0)

|∇u|2
√

det(g)dx,

since we have the fact in [12]:

|x|m
rs
0

r−n
0 exp

(
− |x|2

4r2
0

)
≤ Cr−n

0 exp
(
− |x|2

4r2
0

)
+ C, (2.9)
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for m > s ≥ 0 and max{|x|, r0} ≤ ρ.
Next, we obtain the estimate of I2 as follows

I2 ≥− Cr3−n
0

∫
Rn

|∇u|2|∇ϕ|2 exp
(
− |x|2

4r2
0

)√
det(g)dx

− 1
2
r3−n
0

∫
Rn

∣∣∣∣ − τ(u) − x

2r2
0

·g ∇u

∣∣∣∣
2

exp
(
− |x|2

4r2
0

)
ϕ2(x)

√
det(g)dx

− C8η4r3−n
0

∫
Rn

|hd(u)|2 exp
(
− |x|2

4r2
0

)
ϕ2(x)

√
det(g)dx

− Cr2−n
0

∫
Rn

|I − g|2|x|2
r3
0

|∇u|2 exp
(
− |x|2

4r2
0

)
ϕ2(x)

√
det(g)dx.

Thus, by combining the estimates of I1 and I2, there holds

I ≥ −Cη4r3−n
0

∫
Rn

|hd(u)|2 exp
(
− |x|2

4r2
0

)
ϕ2(x)

√
det(g)dx − Cφ(r0)

− Cr3−n
0

∫
Rn

|∇u|2|∇ϕ|2 exp
(
− |x|2

4r2
0

)√
det(g)dx − C

∫
Bρ(0)

|∇u|2
√

det(g)dx

≥ −Cφ(r0) − C(ρ)
∫

Bρ

|∇u|2
√

det(g)dx − Cη4|M |1− 1
q ,

where we have used the fact

r3−n
0

∫
Rn

|hd(u)|2 exp
(
− |x|2

4r2
0

)
ϕ2(x)

√
det(g)dx

≤ Cr3−n
0 ‖hd(u)‖2

L2q
′
(Bρ(p))

∥∥∥∥ exp
(
− |x|2

4r2
0

)∥∥∥∥
Lq(Rn)

≤ Cr
3−n+ n

q

0 ‖hd(u)‖2

L2q
′
(Bρ(p))

≤ Cr
3−n+ n

q

0 ,

for 1 < q ≤ n
n−3 with n > 3 and 1

q + 1
q′ = 1, where we used Lemma 5.4.

In the case of n = 3, there holds

r3−n
0

∫
Rn

|hd(u)|2 exp
(
− |x|2

4r2
0

)
ϕ2(x)

√
det(g)dx ≤ C

∫
Bρ

|hd(u)|2
√

det(g)dx.

Step 2 The estimates of II.

II ≥ −Cφ(r0) − C

∫
Bρ(p)

|∇u|2
√

det(g)dx,

where we have used the inequality (2.9) and the fact∣∣∣∣∂gij
r

∂r

∣∣∣∣
r=1

≤ C|x|2.

Step 3 The estimates of III.

III ≥ −r1−n
0

∫
Bρ(p)/B ρ

2 (p)

|∇u|2|∇ϕ||x| exp
(
− |x|2

4r2
0

)√
det(g)dx

≥ −C(ρ)
∫

Bρ(p)

|∇u|2
√

det(g)dx.
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Step 4 The estimates of IV .

IV ≥ −r1−n
0

∫
Rn

|∇u|2ϕ2(x) exp
(
− |x|2

4r2
0

)
gij |(∂rgr)ij |r=1|

√
det(g)dx

≥ −Cr2−n
0

∫
Rn

|∇u|2ϕ2(x) exp
(
− |x|2

4r2
0

)√
det(g)dx − C

∫
Bρ(p)

|∇u|2
√

det(g)dx

≥ −Cφ(r0) − C

∫
Bρ(p)

|∇u|2
√

det(g)dx,

where the inequality (2.9) has been used.
Therefore, there holds

φ′(r) > −Cφ(r) − CEη(u0), for n = 3;

and
φ′(r) > −Cφ(r) − CEη(u0) − Cη4rl, for n > 3,

where l ∈ (1, 3) is a positive constant depending only on n. Therefore, the above differential
inequalities imply the desire result in this theorem. �

3 The Proof of Theorem 1.1

Ding in [15] has ever shown a similar result with Theorem 1.1 for the heat flows of harmonic
maps with Dirichlet boundary condition. But Ding used a key lemma (Lemma 3.2 in [15]) which
doesn’t work for the heat flows of self-induced harmonic maps, since the self-induced harmonic
map is not defined locally. In this section, we intend to prove Theorem 1.1. To this end, we
need to establish a similar result with Lemma 3.2 in [15] since we can not use the maximum
principle in the present situation.

Lemma 3.1 Let u be a smooth solution to (2.7). Assume that max{1, 16
i20
} < e(t0) satisfying

e(t) ≤ e(t0) for 0 < t0 − 2
e(t0)

< t < t0.

Then there exists a constant C > 0 (depending only on the geometry of M and S
k) such that if

δ > 0 and Cδ < 1
4 , we have

e(t) ≤ (1 − 2Cδ)−1e(t0) for t0 < t ≤ t0 +
δ

e(t0)
,

where e(t) = supx∈M |∇u|2(x, t).

Proof Let t̄ > t0 be a time such that

e(t) ≤ e(t̄) for t0 < t < t̄.

Assume that e(u)(x̄, t̄) = e(t̄) for some (x̄, t̄) ∈ M × (0, T ). Let

v(x, t) = u

(
x̄ +

x√
e(t̄)

, t̄ +
t

e(t̄)

)
.

The assumption implies v(x, t) is well-defined on B4(0) × [−2, 0] endowed with metric ḡ(x) =
(ḡij(x)) = (g(x̄ + x√

e(t̄)
)ij), under which e(v) = |∇v|2ḡ ≤ 1. Moreover, it satisfies the following

equation:
∂v

∂t
− Δv = |∇v|2v + η2(h̃d(v) − 〈h̃d(v), v〉v),
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where

h̃d(v)(x) = e(t̄)−1hd(u)
(

x̄ +
x√
e(t̄)

, t̄ +
t

e(t̄)

)
.

Let f̃(x, t) = f(u)(x̄ + x√
e(t̄)

, t̄ + t
e(t̄) ). Then h̃d(v) = ∇ḡ f̃ and

Δḡ f̃ =
1

e(t̄)
divg(π(v)) =

∑
i,j

ḡij

〈
∂v

∂xi
,

∂

∂xj

〉
− 1

e(t̄)
〈H(x), v(x)〉,

where H is the mean curvature field of M . The fact λ = e−1/2(t̄) < 1, since e(t0) > 1, gives
the high order estimate |∂kḡij | ≤ |∂kgij |. And hence, the standard locally Lp estimate with
bootstrap technique implies there exists a constant C > 0 (depending only on the geometry of
M and S

k) such that we have
sup

−1≤t≤0
‖v‖C3,α(B2) ≤ C, (3.1)

where α ∈ (0, 1) (also see Corollaries 6.6 and 6.8).
A simple calculation shows∣∣∣∣∂e(v)

∂t

∣∣∣∣ ≤ |Δ|∇v|2| + C(1 + |∇2v|2) + C(|∇v|)η2(|h̃d(v)| + |∇h̃d(v)|).

Thus,
e(v)(0, 0) ≤ e(v)(0, t) + C|t| for t ∈ [−1, 0].

By rescaling back to the original coordinates, we have

e(t̄) = e(u)(x̄, t̄) ≤ e(t) + C(t̄ − t)e2(t̄) for t ∈
[
t̄ − 1

e(t̄)
, t̄

]
.

Let t̄ be the least time in (t0, t0 + δ
e(t0) ) such that

e(t̄) =
e(t0)

1 − 2Cδ
.

If such t̄ does not exist, we are done. Therefore, we have

t̄ − 1
e(t̄)

≤ t0 +
δ

e(t0)
− 1 − 2Cδ

e(t0)
≤ t0 − 1 − (2C + 1)δ

e(t0)
≤ t0,

where we have chosen (2C + 1)δ < 1. Thus,

e(t̄) ≤ e(t0) + C(t̄ − t0)e2(t̄) ≤ e(t0)
1 − 2Cδ

(
1 +

Cδ(4Cδ − 1)
1 − 2Cδ

)
<

e(t0)
1 − 2Cδ

,

if Cδ < 1
4 , which is a contradiction.

Therefore, we have
e(t) ≤ (1 − 2Cδ)−1e(t0),

for t ∈ (t0, t0 + δ
e(t0)

). �

Remark 3.2 In the case of Neumann boundary, namely the case that u is a local smooth
solution to Equation (1.3), Lemma 3.1 also holds. Its proof is totally similar with that in the
above argument, the only thing we should check is the bound of sup−1≤t≤0 |v|C3,α(B2∩Ω̃), where

v(x, t) = u

(
x̄ +

x√
e(t̄)

, t̄ +
t

e(t̄)

)
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is defined on Ω̃ = {(x, t) ∈ R
n× [−2, 0] | x̄+ x√

e(t̄)
∈ Ω̄} for fixed (x̄, t̄) ∈ Ω̄× [0, T ) with e(t̄) > 1.

In fact, v satisfies the following equation:

∂v

∂t
− Δv = |∇v|2v + η2(h̃d(v) − 〈h̃d(v), v〉v)

with Neumann boundary condition ∂v
∂ν |∂Ω̃(., t) = 0, where

h̃d(v) =
1

e(t̄)
hd(u)

(
x̄ +

x√
e(t̄)

, t̄ +
t

e(t̄)

)
.

Therefore, the global Lp-estimates in Appendix 6 imply

sup
−1≤t≤0

|v|C3,α(B2∩Ω̃) ≤ C,

for some constant C depending only on n.

In the last part of this section, we use the results developed in Sections 2.2.1 and 2.3 to give
the proof of Theorem 1.1.
Proof of Theorem 1.1 The proof is divided into two steps as follows.

Step 1 The solution u blows up at T , that is supt∈[0,T ) e(t) = ∞.
On the contrary, we assume there is a bound

sup
0≤t<T

e(t) ≤ C (3.2)

for some constant C. In this case, we claim that T = ∞. We prove the claim by contradiction.
Assume that T < ∞, by applying the regular estimates in Remark 6.9, the bound (3.2) tells us
there holds

|u|Cm(M×[δ,T )) ≤ C(m, δ, C, |M |),
for any m > 0 and some small positive δ. And hence, it is not difficult to show T is an
extensional time, which is a contradiction.

The energy identity in Lemma 2.9 shows
∫ ∞

0

∥∥∥∥δEη(u)
δu

∥∥∥∥
2

L2(M)

dt ≤ Eη(u0),

then there exists a sequence {ti} such that ‖ δEη(u)
δu ‖2

L2(M)(ti) → 0 as ti → ∞. On the other
hand, the Schauder estimates with a bootstrap technique imply

‖uti‖C2,α(M) ≤ C.

And hence, without loss of generality, we conclude that the sequence uti(x) → u∞(x) in C2,α

norms when ti → ∞, which implies

δEη(u∞)
δu∞

= 0.

The energy inequality follows
Eη(u∞) ≤ Eη(u0) ≤ ε2.

Thus, if ε and η0 are small enough, Corollary 2.7 implies u∞ is null homotopic map, which is
a contradiction.
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Step 2 The estimate for upper bound of T .
We claim that, if

sup
t∈[0,T )

e(t) = ∞, (3.3)

where T is the maximal existence time of solution u, then there is a constant C > 0 depending
only on the geometry of M and S

k such that

min{i20, T } ≤
⎧⎨
⎩

CEη(u0)
2

n−2 for n = 3,

C(Eη(u0) + η4)
2

n−2 for n > 3.

Next, we show the claim. By (3.3), there exists a sequence of ti → T such that

e(xi, ti) = e(ti) → ∞ and e(t) ≤ e(ti) for t ∈ [0, ti],

where xi ∈ M . Letting λi = 1√
e(ti)

, Lemma 3.1 implies

e(t) ≤ 1
1 − 2Cδ

λ−2
i ,

where t ∈ [0, ti + λ2
i δ] ⊂ [0, T ) and 4

λi
≤ i0.

Set vi(x, t) = u(xi+λix, ti+λ2
i t) for (x, t) ∈ Bλ−1

i ρ(0)× [−λ−2
i ti, δ] endowed with the metric

gi(x) = g(xi + λix), for some small ρ < i0. Then, vi satisfies the following equation

∂tvi − Δvi = |∇vi|2vi + η2(h̃(vi) − 〈h̃(vi), vi〉vi), (3.4)

on Bλ−1
i ρ(0) × [−λ−2

i ti, δ], where h̃d(vi)(x) = λ2
i hd(u)(xi + λix, ti + λ2

i t).

Let Pl = Bl2(0) × [− l2

2 , l2

2 ] be a parabolic cylinder for some l > 0, and

d = sup
Pl

(|h̃d(vi)| + |∇h̃d(vi)|).

Since ei = |∇vi|2 ≤ 1
1−2Cδ ≤ 2 and d depends only on δ and M , the Bochner formula shows

∂tei − Δgiei ≤ Cei + Cη2d,

where the constant C is independent of i, due to gi → gE (the Euclidean metric) when λi → 0
and the uniformly bound of ei. Let hi = exp(−Ct)ei. Then

∂thi − Δihi ≤ η2d.

The Nash–Moser iteration (one can refer Theorem 6.17 in [28]) shows

1 = hi(0, 0) ≤ C

{(
1

l2|Bl|
∫

Pl

h2
i (x, t)dνidt

) 1
2

+ η2dl2
}

.

By choosing Cη2dl2 ≤ 1
2 , i.e. l2 ≤ 1

2Cdη2 , we have

1 ≤ 4C exp(Cl2/2)
l2|Bl|

∫
Pl

|∇vi|2dνidt.

Let R2 = λ2
i δ − λ2

i t = λ2
i s

2. For t ∈ (− l2

2 , l2

2 ), by choosing l2 ≤ δ we can see that there
holds

δ

2
< s2 = δ − t <

3δ

2
.
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Let t0 = ti + λ2
i δ. By choosing l2 ≤ δ

2 we have

l2−n

∫
Bl

|∇vi|2dνi = (λil)2−n

∫
Bλil(xi)

|∇u|2(·, ti + λ2
i t)dν

≤
(

l

s

)2−n

R2−n

∫
B

R l
s
(xi)

|∇u|2(·, t0 − R2)dν

≤ CR2−n

∫
BR(xi)

|∇u|2(·, t0 − R2)dν

≤ CR2−n

∫
BR(xi)

|∇u|2(·, t0 − R2) exp
(
− |x|2

4R2

)
ϕ2(x)

√
det(g)dx

≤ CR2−n

∫
Rn

|∇u|2(·, t0 − R2) exp
(
− |x|2

4R2

)
ϕ2(x)

√
det(g)dx

= Cφ(R),

where we have used the facts: exp( |x|2
4R2 ) is bounded in BR(xi) and ϕ(x) = 1 on BR(xi), when

i → ∞.
Therefore, for small l2 ≤ min{ δ

2 , 1
2Cdη2 }, the monotonicity formulas in Theorem 2.10

1 ≤ 4C exp(Cl2/2)
l2|Bl|

∫
Pl

|∇vi|2dνidt ≤ C

l4
sup

t∈[− l2
2 , l2

2 ]

(
l2−n

∫
Bl

|∇vi|2dνi

)

≤ C(δ) ×
⎧⎨
⎩

R2−n
0 Eη(u0) for n = 3,

R2−n
0 Eη(u0) + η4Rl+1

0 for n > 3.

Here R0 ≤ min{i0,
√

t0} for i large enough. And hence, letting t0 → T , the claim follows.
On the other hand, if

√
T > i0, then 0 < i0 ≤ C(ε2 +η2

0)
2

n−2 for ε and η0 both small enough,
which is a contradiction. Hence, T ≤ i20, and the result follows. �

4 Estimates for the Boundary Case and the Proof of Theorem 1.3

In this section, we give the proof of Theorem 1.3 by modifying the previous argument on
Theorem 1.1. To proceed, we first establish an ε-regularity result for self-induced harmonic
map and a parabolic monotonicity inequality for the heat flow of self-induced harmonic map
with Neumann boundary conditions. We only give the sketches of the proofs for these two
results, since the arguments go almost the same as that in Sections 2.2.1 and 2.3.

4.1 ε-regularity and Gap Theorem for Boundary Case

Let u : Ω → S
n−1 be a W 2,2 map on a smooth domain Ω ⊂ R

n equipped with Euclidean metric
gE , which solves the following equation⎧⎪⎨

⎪⎩
τ(u) = η2(hd(u) − 〈hd(u), u〉u);
∂u

∂ν

∣∣∣∣
∂Ω

= 0.
(4.1)

Let ū be the extension of u by transformation of reflection associated to ∂Ω ((6.4) and (6.5) in
Section 6). One can check that ū ∈ W 2,2(Ω̂, Sn), which satisfies the below equation

τḡ(ū) = η2(h̄d(ū) − 〈
h̄d(ū), ū

〉
ū)
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on Ω̂, where ḡ and h̄d(ū) are the extensions of gE and hd(u) under this reflection respectively.
Here Ω ⊂⊂ Ω̂.

On the other hand, the estimates of hd(u) in Theorem 5.7 implies
∥∥h̄d(ū)

∥∥
Lp(Ω̂)

≤ C ‖ū‖Lp(Ω̂) ,

for any p ∈ (1,∞).
Therefore, the monotonicity formula for almost harmonic maps (to see Proposition 2.1 in

[15] or [31]) implies that there exists positive constants C such that

Iρ(ū) ≤ CIσ(ū) + Cη2σγ , (4.2)

for any Bσ(p) ⊂ Ω̂, γ ∈ (0, 4) and 0 < ρ ≤ σ.
By using this monotonicity formula, by almost the same arguments as in Theorem 2.6 we

get a similar regularity result as follows in Neumann case.

Theorem 4.1 Let Ω ⊂ R
n be a smooth bounded domian with n ≥ 3. There exist positive

constants ε and η0 such that if u ∈ W 2,2(Ω, Sn−1) is a solution of (1.4) and there hold

0 < η ≤ η0 and Ir0(u) ≤ ε2

for r0 > 0 and p ∈ Ω̄, then u is Cα-continuous on B r0
2 (p) ∩ Ω for any α ∈ (0, 1). Moreover,

there holds

[u]Cα(B r0
2

∩Ω) ≤ C

(
r2−n−2α
0

∫
Br0∩Ω

|∇u|2 + η2
0

) 1
2

,

where constant C is dependent only on n and α.

As a direct corollary, we have

Corollary 4.2 There exist positive constants ε0 and η0 such that if u is a W 2,2(Ω, Sn−1)
solution to (4.1), ‖∇u‖2

L2 ≤ ε2
0 and η ≤ η0, then u is a null-homotopic map.

4.2 Parabolic Monotonicity Inequality for the Boundary Case

Let u be a local smooth solution to⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tu = Δu + |∇u|2u + η2(hd(u) − 〈hd(u), u〉u), (x, t) ∈ Ω × [0, T ),

∂u

∂ν

∣∣∣∣
∂Ω

= 0, (x, t) ∈ ∂Ω × [0, T ),

u(x, 0) = u0 : Ω → S
n−1,

(4.3)

where T is the maximal existence time. By definition of hd(u), Lemma 2.1 also holds for map
u ∈ W 1,2(Ω, Rn). This implies that the local smooth solution u to Equation (4.3) satisfies the
following energy identity

Eη(ut) +
∫ t

0

∫
M

∣∣∣∣δEη(u)
δu

∣∣∣∣
2

(x, t)dvdt = Eη(u0),

for any 0 < t < T and we denote ut(x) = u(x, t).
Next, we show a similar parabolic type monotonicity formula as that obtained in Theorem

2.10 for the boundary case. For any x0 ∈ ∂Ω, let {x} be a chart near x0 such that ∂
∂xn

= ν

and the domain Bρ(x0) = {x ∈ Ω̄ | |x − x0| ≤ ρ} is corresponding to the half ball B+
ρ = {x ∈
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R
n | |x| ≤ ρ, xn ≥ 0}. We can define a similar weighted energy φ+(r) on half space R

n
+ as

follows,

φ+(r) =
1
2
Cnr2−n

∫
Rn

+

|∇u|2(x, t0 − r2) exp
(
− |x|2

4r2
ϕ2(x)

)√
det(g)dx,

where 0 < r < min{√t0, ρ}, and ϕ is a cutoff function with support in B+
ρ . Then we have

Theorem 4.3 There exists a constant C (depending only on the geometry of Ω) such that if
u is a smooth solution of (4.3), then for any 0 < s ≤ r < min{√t0, ρ} with t0 < T and ρ ≤ r0,
the following properties hold.

(1) For n = 3, φ+(s) ≤ eC(r−s)φ+(r) + CEη(u0)(r − s);
(2) For n > 3, φ+(s) ≤ eC(r−s)φ+(r) + CEη(u0)(r − s) + Cη4(rl+1 − sl+1), where l ∈ (0, 3)

is a constant.

The proof of Theorem 4.3 is a similar argument with that in Theorem 2.10. The only thing
we need to emphasize is that the condition ∂u

∂ν = 0 on boundary ∂Ω guarantees the boundary
term is vanished when integration by parts in Step 1 of Theorem 2.10.

4.3 Proof of Main Result

With the above ε-regularity Theorem 4.1 and the parabolic monotonicity given in Theorem 4.3
at hand, we then prove Theorem 1.3 by applying almost same arguments as in the proof of
Theorem 1.1.
Proof of Theorem 1.3 The proof is divided into two steps as follows.

Step 1 The solution u blows up at T , namely, supt∈[0,T ) e(t) = ∞.
On the contrary, by taking a similar argument as in Step 1 of Theorem 1.1 and using the

global estimates in Corollary 6.8, we can show there exists a limiting map u∞ ∈ C2,α(Ω̄, Sn−1)
which satisfies the below equation⎧⎪⎨

⎪⎩
Δu∞ = |∇u∞|2u∞ + η2(hd(u) − 〈hd(u), u∞〉u∞),
∂u∞
∂ν

∣∣∣∣
∂Ω

= 0,
(4.4)

with Eη(u∞) ≤ Eη(u0).
Therefore, if ε and η0 are small enough, Theorem 4.1 and Corollary 4.2 imply that the

u∞(Ω̄) is in a contractible geodesic ball B of S
n. Suppose that φ : B → D1 is a smooth

diffeomorphism, where D1 is the unit disk in R
n−1, then there exists a smooth map

F (x, t) := φ−1 ◦ (tφ ◦ u∞(x) + (1 − t)φ(p0))

satisfying F (x, 0) = p0, F (x, 1) = u∞ and

∂F

∂ν

∣∣∣∣
∂Ω

= tdφ−1(tφ ◦ u∞(x) + (1 − t)φ(p0)) ◦ dφ(u∞(x)) ◦ ∂u∞
∂ν

∣∣∣∣
∂Ω

= 0.

Since u∞ ∈ [u0]ν , this implies that constant map is in [u0]ν , which is a contradiction with
[u0]ν �= 0.

Step 2 The estimate for upper bound of T .
Since Lemma 3.1 also holds for the boundary case, one can refer to Remark 3.2 for the

details, by a similar argument as that in Step 2 of Theorem 1.1, we can also show that there
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exists a sequence of maps {vi(x, t) = u(xi + λix, ti + λ2
i t)} satisfying

∂tvi = Δvi + |∇vi|2vi + η2(h̃d(vi) − 〈h̃d(vi), vi〉vi), (4.5)

on Ωi × [−λ−2
i ti, δ], where Ωi = {x ∈ R

n |xi + λix ∈ Ω} and h̃d(vi)(x) = λ2
i hd(u)(xi + λix, ti +

λ2
i t) is a vector-valued function from Ω̃ to R

n. In fact, λi → 0 when i → ∞, and there holds

sup
Ω̄i

|∇vi|2 ≤ 1
1 − 2Cδ

≤ 2 and |∇vi|(0, 0) = 1.

Thus, without loss of generality, we assume (0, 0) ∈ ∂Ωi, the global estimates in Corollary 6.8
imply that there exists a constant C > 0 depending only on δ such that we have a bound

sup
−l2≤t≤l2

∑
0≤2s+r<4

|∂r
x∂s

t vi|Cα(B+
l (0)) ≤ C,

for some small l < δ. Therefore, by an almost same blow-up argument as in [11], we can see
that there holds the following result, replacing the one obtained by Nash–Morse iteration in
Theorem 1.1,

1 = |∇vi|(0, 0) ≤ C

ln+2

∫
P+

l

|∇vi|2dx,

where P+
l = B+

l (0) × [−l2, l2]. Again by applying the parabolic monotonicity formula in
Theorem 4.3, we take a similar argument as in Theorem 1.1 to obtain the desire result. �

5 Appendix: Estimates of Potential hd

In this section, our goal is to get regular estimates of hd. In the sense of distribution, hd is
defined by

hd(u) = ∇
∫

M

〈∇yG(x, y), π(u)(y)〉 dvy,

which is a singular integral involved the Green’s function G(x, y) with u.
Since the main difference between the perturbed harmonic map and harmonic map is the

nonlocal potential, it is essential to obtain some regularity estimates of hd when u is regular. To
proceed, we need to recall some basic facts about the Green function G(x, y) and the Calderón–
Zygmund singular integral theory, which can be found in [1] and [2, 35] respectively.

Lemma 5.1 Let (Mn, g) be a compact Riemannian manifold without boundary. There exists
a positive Green function G(x, y) ∈ C∞(M × M \ diag(M × M), R) such that the following
properties hold.

(1) G(x, y) = G(y, x) and G(x, y) > 0 for any x �= y.
(2) ΔxG(x, y) = −δx(y) for fixed y ∈ M , where δ is the Delta function.
(3) For any fixed y, there holds

G(x, y) = cn(d(x, y))2−n(1 + o(1)),

where d(x, y) is the distance function on M .
(4) There exists constant C such that for 0 ≤ i ≤ 3, we have

|∇iG(x, y)| ≤ C

(d(x, y))n−2+i
.
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Next, we give a brief introduction to the Calderón–Zygmund decomposition theory for
metric spaces satisfying volume doubling condition, which will be used to give the Lp-estimate
of hd(u) for u ∈ Lp(M, Rk+1), 1 < p < ∞. More details can be found in [2].

Let (M, g) be a complete Riemannian manifold. We call that M satisfies the volume dou-
bling condition if there exists a constant C such that for any geodesic ball Br(p) and B2r(p),
there holds

μ(B2r) ≤ Cμ(Br). (5.1)

Since a compact manifold (M, g) naturally meets Condition 5.1, the following lemma is obtained
by a similar argument as in Lemma 7.3.5 in [2]. There Auscher discussed the Calderón–Zygmund
decomposition theorem by using an overlapping-balls-covering technique (see Theorem 2.3.4 in
[2]).

Lemma 5.2 Suppose (Mn, g) is a compact Riemannian manifold without boundary. Let f ∈
L1(M) and δ > 0. Then there exist a C(n) and a decomposition of f = g+ b almost everywhere
on M , such that the following arguments hold.

(1) g ∈ L∞(M) with ‖g‖L∞ ≤ C(n)δ,
(2) b =

∑
i bi with support being in Bi and

∫
M bidv = 0, where {Bi} are geodesic balls,

(3)
∫

Bi
|bi|dv ≤ C(n)δ vol(Bi),

(4) {Bi} has the bounded overlapping property, that is,
∑

i χBi ≤ C(n),
(5)

∑
i vol(Bi) ≤ C(n)

δ ‖f‖L1(M).

By using Lemma 5.2, one can obtain the following Calderón–Zygmund (C-Z) singular inte-
gral theorem, whose proof can be found in [2, Corollary 7.3.8] and [35, Theorem 1 in p. 29].

Lemma 5.3 Suppose (Mn, g) is a compact Riemannian manifold without boundary. Let T :
L2(M) → L2(M) be a bounded linear operator given by T (f)(x) = K ∗ f(x), where K(x, y) =
K(y, x) satisfies the following Hörmander conditions:

|K(x, y)| ≤ C

d(x, y)n
, |∇K(x, y)| ≤ C

d(x, y)n+1
, (5.2)

where d(x, y) is the distance function on M , and n ≥ 3. Then, there exists C(n, p) for p ∈ (1,∞)
such that for any u ∈ Lp(M), it holds

‖T (u)‖Lp ≤ C(n, p)‖u‖Lp.

Now, we are in the position to show the estimates of hd.

Theorem 5.4 Let p ∈ (1,∞). There exists a constant C, such that for any u ∈ Lp(M, Rk+1),
the potential hd(u) ∈ Lp(M, Rk+1), which satisfies

‖hd(u)‖Lp ≤ C‖u‖Lp .

That is, hd : Lp(M, Rk+1) → Lp(M, Rk+1) is a bounded linear operator.

Proof Without loss of generality, we assume u ∈ C∞(M, Rk+1).

Step 1 We claim that hd : L2(M, Rk+1) → L2(M, Rk+1) is bounded.
Let f solve Δf = div(π(u)) satisfying (2.1) . Then f is smooth by the classical elliptic

theory. By choosing test function v = f , then we have∫
M

|∇f |2dv =
∫

M

〈∇f, π(u)〉dv.
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The Hölder inequality implies∫
M

|hd(u)|2dv ≤
∫

M

|π(u)|2dv ≤
∫

M

|u|2dv.

Step 2 We claim hd(u) = K ∗ π(u) + h0π(u), where K is a C-Z singular integral operator
and h0 is a bounded constant operator.

A simple calculation shows

f(x) =
∫

M

G(x, y)div(π(u))(y)dvy = lim
ε→0

∫
M\Bε(x)

G(x, y)div(π(u))(y)dvy

= − lim
ε→0

∫
M\Bε(x)

〈∇yG(x, y), π(u)(y)〉 dvy + lim
ε→0

∫
∂Bε(x)

G(x, y)π(u)(y) · νdvy ,

= −
∫

M

〈∇yG(x, y), π(u)(y)〉 dvy .

Here we have used the fact∣∣∣∣
∫

∂Bε(x)

G(x, y)π(u)(y) · νdvy

∣∣∣∣ ≤ Cε

|∂Bε(x)|
∫

∂Bε(x)

|π(u)|(y)dvy → 0

as ε → 0, by using the estimate of Green’s function and the Bishop’s volume comparison
theorem.

For any ϕ ∈ C∞(M, TM), then

〈∇f, ϕ〉 := −
∫

M

fdiv(ϕ)dv =
∫

M

∫
M

〈∇yG(x, y), π(u)(y)〉 dvydiv(ϕ)(x)dvx

=
∫

M

〈∫
M

∇yG(x, y)div(ϕ)(x)dvx, π(u)(y)
〉

dvy

= −
∫

M

〈∫
M

〈∇x∇yG(x, y), ϕ(x)〉dvx , π(u)(y)
〉

dvy

−
∫

M

〈
lim
ε→0

∫
∂Bε(y)

∇yG(x, y)(ϕ(x) · ν)dvx, π(u)(y)
〉

dvy,

where the first equality is in the sense of distribution.
On the other hand, there holds∣∣∣∣

∫
∂Bε(y)

∇yG(x, y)ϕ(x) · νdvx −
∫

∂Bε(y)

∇yG(x, y)ϕ(y) · νdvx

∣∣∣∣
≤ Cε1−n

∫
∂Bε(y)

|ϕ(x) − ϕ(y)|dvx → 0,

as ε → 0, since ϕ is continuous. Hence, the last term in the above formula is as follows,

lim
ε→0

∫
M

〈∫
∂Bε(y)

∇yG(x, y) ⊗ νdvx, π(u) ⊗ ϕ(y)
〉

dνy ,

which defines a bounded operator h0, since

sup
0<ε<i0

∫
∂Bε(y)

|∇yG(x, y)|dvx ≤ C

by using the estimates of the Green’s function in Lemma 5.1. Hence, it follows that

hd(u) = K ∗ π(u) + h0π(u) = T (u) + h0π(u).
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where K(x, y) = ∇x∇yG(x, y) and K(x, y) = K(y, x). The operator T satisfies the Hörmander
condition (5.2) by the estimates of Green’s function G in Lemma 5.1. Therefore, Theorem 5.3
implies hd is bounded from Lp(M, Rk+1) to itself for any p ∈ (1,∞). �

Theorem 5.5 Let p ∈ (1,∞). There exists a constant C, such that for any u ∈ W 1,p(M,

R
k+1), the potential hd(u) ∈ W 1,p(M, TM), which satisfies

‖hd(u)‖W 1,p ≤ C‖u‖W 1,p .

That is, hd : W 1,p(M, Rk+1) → W 1,p(M, TM) is a bounded linear operator.

Proof Since u ∈ W 1,p, we have Δf = div(π(u)) ∈ Lp. By applying Theorem 2.3 in [38], there
holds

‖f‖W 2,p ≤ C(‖Δf‖Lp + ‖f‖W 1,p).

The precise form
Δf = div(π(u)) = div(u) − 〈H, u〉

gives
‖Δf‖Lp ≤ C(‖u‖W 1,p + ‖H‖L∞‖u‖Lp).

Here H(x) is the mean curvature of M .
On the other hand, we have f(x) = − ∫

M 〈∇yG(x, y), π(u)(y)〉dvy . The Young inequality
implies

‖f‖Lp ≤ ‖∇yG(x, ·)‖L1‖u‖Lp ≤ C‖u‖Lp .

To combine with the result in Theorem 5.4, there holds

‖hd(u)‖W 1,p ≤ C‖u‖W 1,p . �

Remark 5.6 By using Theorem 2.3 in [38] again, we can also obtain higher regular estimates
for hd:

‖hd(u)‖W k,p ≤ ‖f‖W k+1,p ≤ Ck(‖u‖W k,p + ‖H#u‖W k−1,p) ≤ Ck‖u‖W k,p ,

for p ∈ (1,∞) and k > 1.

If M = Ω is a smooth bounded domain in R
n, similar estimates of hd have been established

by Carbou and others as the following theorem (cf. [4, 5, 26, 33]).

Theorem 5.7 Let 1 < p < ∞. There for any k ∈ N, if u ∈ W k,p(Ω), the potential hd belongs
to W k,p(Ω), and there exists a constant Ck such that

‖hd(u)‖W k,p(Ω) ≤ Ck‖u‖W k,p(Ω).

6 Appendix: Global Estimates of Heat Equation with Neumann Boundary Con-
dition

Let (M, g) be a compact Riemannian manifold with boundary ∂M (or ∂M = ∅), and u :
M̄ × [0, T0] → R be a smooth solution to the following heat equation⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∂tu − Δu = f(x, u), (x, t) ∈ M × (0, T0],
∂u

∂ν
= 0, (x, t) ∈ ∂M × [0, T0],

u(x, 0) = u0, x ∈ M.

(6.1)
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with u0 being a smooth initial data, where f(x, u) is the nonhomogeneous term involving x and
u, ν is the outer normal vector field. If ∂M = ∅, let u be a smooth solution to the following
problem ⎧⎨

⎩
∂tu − Δu = f(x, u), (x, t) ∈ M × (0, T0],

u(x, 0) = u0, x ∈ M.
(6.2)

Let r0 > 0 be the injective radius of M , {x1, . . . , xn} be normal coordinates on geodesic
ball Br(y) ⊂ M with r ≤ r0. We denote Qr,δ = Br × (δ, T0] for 0 < δ ≤ T0, and set

W 2,1
2,0 (Qr,δ) = {u ∈ W 2,1

2 (Qr,δ) |u = 0 on the parabolic boundary}.
To get regular estimates of the solution u to (6.1) or (6.2), we need to use the following local
Lp-estimates for parabolic equations (cf. [13, 28]).

Lemma 6.1 Let 1 < p < ∞. Suppose that u ∈ W 2,1
2,0 (Qr,δ) ∩ Lp(Qr,δ) is a solution to

∂tu − Δu = f with f ∈ Lp(Qr,δ). Then there exists a constant C depending only on ω(r), p

and n, such that there holds a bound:

‖u‖W 2,1
p (Qr,δ) ≤ C(‖u‖Lp(Qr,δ) + ‖f‖Lp(Qr,δ)),

where ω(r) = supBr

∑
ij |gij − δij | + supBr

∑
ij |∂gij |.

Remark 6.2 If Br is equipped with the Euclidean metric gE , the above constant C is depen-
dent only of p and n.

With Lemma 6.1 at hand, we can show the global estimates for the regular solution u to (6.2)
by taking an inductive argument and using a process of patching together the local estimates
for u in the case ∂M = ∅. On the other hand, when ∂M �= ∅, the analysis is more complicated,
since we need to deal with the regular estimates for the solution u to (6.1) on the boundary,
where u has no equation. By using the classical treatment for Neumann boundary problem, we
will extend the solution across boundary by reflection, which transfers the boundary estimates
into the locally interior ones. Therefore, global estimates of solution u for (6.1) can be obtained
by a suitable combination of extending the solution and employing an argument of patching
local estimates.

6.1 Regular Estimates of Solutions to Equation (6.2)

In this subsection, we will establish the Lp-theory of heat equation on a closed Riemannian
manifold. Let (M, g) be a closed Riemannian manifold, and u be a smooth solution of (6.2)
with smooth initial data u0. To state the result precisely, we denote

‖u‖W̃ k,p(M×[t1,t2])
=

k∑
i=0

∥∥∇iu
∥∥

Lp(M×[t1,t2])
,

and

‖u‖Ŵ k+2,p(M×[t1,t2]) = ‖u‖W̃ k+2,p(M×[t1,t2])
+ ‖∂tu‖W̃ k,p(M×[t1,t2])

,

for k ∈ N and [t1, t2] ⊂ (0, T0].

Theorem 6.3 Let 2 ≤ p < ∞, and u be a smooth solution of (6.2). Then for any 0 < δ < T0

and k ∈ N, there exists a positive constant Cδ,k depending only on k, δ and n such that there
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holds

‖u‖Ŵ k+2,p(M×[δ,T0])
≤ Cδ,k(‖f‖W̃ k,p(M×[δ/2,T ]) + ‖u‖W̃ k+1,p(M×[δ/2,T0])).

Proof Since (M, g) is closed, there exists a uniformly local finite covering {Br(xi)} for M such
that Br/2(xi)∩Br/2(xj) = ∅ for i �= j (cf. Lemma 1.6 in [25]). Let {ηi} be a partition of unity
corresponding to this covering. Then u =

∑
i ui where ui = ηiu has compact support in Br(xi).

Moreover, there exists a constant C depending on the geometry of M such that
∑

i

|∇ηi|(x) +
∑

i

|∇2ηi|(x) ≤ C, I(x) = Card{i |x ∈ Br(xi)} ≤ C, (6.3)

for any x ∈ M . Then we divide our proof into two steps.

Step 1 We show the result when k = 0.
Since ui has support in Br(xi), which satisfies the following equation

∂tui − Δui = 2〈∇u,∇ηi〉 + Δηiu + ηif = f̄i,

Theorem 6.1 implies that there exists a Cδ such that

‖ui‖W 2,1
p (Qr,δ) ≤ Cδ(‖ui‖Lp(Qr,δ/2) + ‖f̄i‖Lp(Qr,δ/2)),

where Qr,δ = Br × [δ, T ]. Next, we patch the above local results to get

‖u‖W 2,1
p (M×[δ,T0]) ≤

∑
i

‖ui‖W 2,1
p (Qr,δ(xi))

≤ CCδ

∑
i

(‖u‖W̃ 1,p(Qr,δ/2(xi))
+ ‖f‖Lp(Qr,δ/2(xi))

)

≤ C2Cδ(‖u‖W̃ 1,p(M×[δ/2,T0]) + ‖f‖Lp(M×[δ/2,T0])).

Step 2 Higher estimates for u by inducting on k.
We assume that the estimate in this theorem holds true for any l ≤ k. In the case of k + 1,

let X be any smooth vector field on M , then we can take a simple computation to show that
∇Xu satisfies the following equation locally

(∂t − Δ)∇Xu = ∇Xf +
n∑

α=1

[
∂

∂xα
, X

]
∇ ∂

∂xα
u + ∇ ∂

∂xα

([
∂

∂xα
, X

]
u

)
= fX ,

where [·, ·] is the Lie bracket and {xα} is a chart. Here,

fX = ∇Xf + ∇2X#u + ∇X#∇u,

where # denotes the linear combination.
Therefore, by using the assumption of induction, there holds

‖∇Xu‖Ŵ k+2,p(M×[δ,T0])
≤ Cδ(‖∇Xu‖W̃ k+1,p(M×[δ/2,T0]) + ‖fX‖W̃ (M×[δ/2,T0]))

≤ Cδ,X(‖∇Xf‖W̃ k,p(M×[δ/2,T0]) + ‖u‖W̃ k+2,p(M×[δ/2,T0])).

For the covering {Br(xi)} in Step 1 with 2r ≤ i0, there exists a constant C depending only on
the geometry of M such that

I ′(x) = card{i |x ∈ B2r(xi)} ≤ C.
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Let X = ϕ ∂
∂xα

i
with ϕ = 1 on Br(xi) and ϕ = 0 on M \ B2r(xi), where {xα

i } is the normal
coordinates on B2r(xi). Then there exists a constant Cδ,k > 0 such that∥∥∥∥ ∂u

∂xα
i

∥∥∥∥
Ŵ k+2,p(Qr,δ(xi))

≤ Cδ,k

(∥∥∥∥ ∂f

∂xα
i

∥∥∥∥
W̃ k,p(Q2r,δ/2(xi))

+ ‖u‖W̃ k+2,p(Q2r,δ/2(xi))

)
.

Since there exists a Cl > 0 such that

C−1
l ‖∇u‖W l,p(Br(xi))

≤
n∑

α=1

∥∥∥∥ ∂u

∂xα
i

∥∥∥∥
W l,p(Br(xi))

≤ Cl ‖∇u‖W l,p(Br(xi))

for any l ≥ 0. It follows that

‖u‖Ŵ k+3,p(Qr,δ(xi))
≤ Cδ,k(‖f‖W̃ k+1,p(Q2r,δ/2(xi))

+ ‖u‖W̃ k+2,p(Q2r,δ(xi))
).

Therefore, by a similar patching argument as in Step 1, we have

‖u‖Ŵ k+3,p(M×[δ,T0])
≤ Cδ,k(‖f‖W̃ k+1,p(M×[δ/2,T0]) + ‖u‖W̃ k+2,p(M×[δ/2,T0])).

Therefore, the proof is completed. �

6.2 Regular Estimates of Solutions to Equation (6.1)

In this subsection, we show that the regular solution u to the Neumann boundary problem (6.1)
satisfies similar estimates as that in Theorem 6.3. For simplicity, we assume (M, g) = (Ω, gE)
is a bounded domain in R

n endowed with the Euclidean metric gE , and the boundary ∂Ω is
smooth. Let u be a smooth solution of Equation (6.1). Our theorem can be stated as follows.

Theorem 6.4 Let u be a smooth solution to (6.1) on Ω̄ × [0, T0], Then for any 0 < δ < T0,
k ≥ 0 and 2 ≤ p < ∞, there exists a Cδ,k such that we have

‖u‖W 2k+2,k+1
p (Ω×[δ,T0])

≤ Cδ,k(‖f‖W 2k,k
p (Ω×[δ/2,T0]) + ‖u‖W̃ 2k+1,p(Ω×[δ/2,T0])).

Before proving Theorem 6.4, we need to define the reflection associated to the boundary.
Let Ωε = {x ∈ Ω | dist(x, ∂Ω) ≤ ε} with ε small enough. We define the reflection map by

R : Ωε −→ R
n, x �−→ y = 2π(x) − x, (6.4)

where π : Ωε → ∂Ω is the projection such that π(x) = z with |x − z| = dist(x, ∂Ω). In fact, π

is well-defined and smooth if we choose ε small enough, so does R (cf. [17]). For simplicity, we
denote

Ω̂ = Ω̄ ∪ R(Ωε).

Let u : Ω → R be a function. we define the extension of u and metric gE by using the
transformation of reflection associated to ∂Ω as follows,

ū(x) =

⎧⎨
⎩

u(x), x ∈ Ω,

u ◦ R−1(x), x ∈ R(Ωε).
(6.5)

And

ḡ =

⎧⎨
⎩

gE, x ∈ Ω̄,

(R−1)∗gE , x ∈ R(Ωε),

which is in W 1,∞(Ω̃).
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Now we are in position to prove Theorem 6.4.
Proof Our proof is divided into three steps.

Step 1 We show the result when k = 0. Let η be a cut-off function such that η|∂Par(Ω×(0,T0]) =
0, where ∂Par(Ω×(0,T0]) is the parabolic boundary. v = ηu satisfies the below equation

⎧⎨
⎩

∂tv − Δv = −u(∂t − Δ)η + 2〈∇u,∇η〉 + ηf = f̃ ,

v|∂Par(Ω×(0,T0]) = 0.
(6.6)

Then, Theorem 6.1 implies

‖u‖W 2,1
p (Ω′×[δ,T0])

≤ Cδ(‖f‖Lp(Ω×[δ/2,T0]) + ‖u‖W̃ 1,p(Ω×[δ/2,T0])).

where Ω′ × [δ, T0] is the level set of {η = 1}.
On the other hand, to get the global regular estimates of u, we need to extend u across

the boundary ∂Ω. Let x0 be a point on ∂Ω, U0 be a neighborhood of x0 in Ω̄. The Neumann
boundary condition ∂u

∂ν |∂Ω = 0 implies that ū is a strong solution to equation

(∂t − Δḡ)ū = f̄ ,

on Ω0 = U0 ∪ R(U0), where

f̄(x) =

⎧⎨
⎩

f(x), x ∈ U0,

f(R−1(x)), x ∈ R(U0).

Hence, Theorem 6.1 again shows

‖u‖W 2,1
p (U ′

0×[δ,T0])
≤ Cδ(‖f‖Lp(U0×[δ/2,T0]) + ‖u‖W̃ 1,p(U0×[δ,T0])

),

where U ′
0 ⊂⊂ U0. Then by applying a similar patching process as in Theorem 6.3, the desire

result can be obtained.

Step 2 Higher order estimates by inducting on k.
Assume that the result holds true for any s ≤ k, we will show it also holds true for s = k+1.

In order to apply a similar treatment as that used in Step 2 of Theorem 6.3, we classify the
tangent vector fields on Ω̄ into two classes as follows.

(1) A = {X ∈ χ(Ω) |X |∂Ω ∈ χ(∂Ω) with [X, ν] = 0}, where ν is the outer normal vector of
∂Ω. In this case, we mainly take X = ∂

∂xi
near the boundary under local coordinates {xi} with

ν = ∂
∂xn

or X has compact support in Ω.
(2) B = {X ∈ χ(Ω) |X |∂Ω ⊥ χ(∂Ω)}. That is, B is the space of smooth vector field whose

restriction on ∂Ω is orthogonal with the tangent space of ∂Ω. In this case, we mainly take
X = ν near the boundary.

Step 2.1 Estimates for the case X ∈ A.
Let ϕs be the solution of the following ordinary differential equation⎧⎨

⎩
∂ϕs

∂s
= X(ϕs),

ϕ0 = identity.
(6.7)

Then, ∇Xu = ∂u◦ϕ
ds |s=0 and ∂∇Xu

∂ν |∂Ω = ∇X(∂u
∂ν |∂Ω) + [X, ν]u|∂Ω = 0.
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Letting X ∈ A and Y ∈ A, a simple calculation shows⎧⎪⎨
⎪⎩

(∂t − Δ)∇X∇Y u = ∇X∇Y f + L = fXY ,

∂

∂ν
∇X∇Y u|∂Ω =

(
∇X∇Y

∂u

∂ν
+ [ν, X ]∇Y u + ∇Y ([ν, X ]u)

)∣∣∣∣
∂Ω

= 0,
(6.8)

where

L =
∑

l+s+m=4, 1≤m<4

∇lX#∇sY #∇mu.

By applying the assumption of induction, we have

‖∇X∇Y u‖W 2k+2,k+1
p (Ω×[δ,T0])

≤ Cδ,k(‖fXY ‖W 2k,k
p (Ω×[δ,T0])

+ ‖∇X∇Y u‖W̃ 2k+1,p(Ω×[δ/2,T0])).

On the other hand, ∂tu satisfies the following evolved equation
⎧⎨
⎩

(∂t − Δ)∂tu = ∂tf,
∂

∂ν
(∂tu)|∂Ω = 0.

(6.9)

Then, again the assumption of induction gives

‖∂tu‖W 2k+2,k+1
p (Ω×[δ,T0])

≤ Cδ,k(‖∂tf‖W 2k,k
p (Ω×[δ/2,T0]) + ‖∂tu‖W̃ 2k+1,p(Ω×[δ/2,T0])).

Step 2.2 Estimates for the case of X ∈ B.
Let x0 be a point on ∂Ω. Without loss of generality, we assume U0 ⊂ Ωε is a neighborhood

of x0 in Ω̄ such that ∂U0 ∩ ∂Ω ⊂ R
n−1. By choosing X = ν = ∂

∂xn
, we can show

∂2u

∂x2
n

= Δu −
n−1∑
i=1

∂2u

∂x2
i

= ∂tu − f −
n−1∑
i=1

∂2u

∂x2
i

.

The estimates in Step 2.1 implies∥∥∥∥ ∂2u

∂x2
n

∥∥∥∥
W 2k+2,k+1

p (U ′
0×[δ,T0])

≤ Cδ,k(‖∂tu‖W 2k+2,k+1
p (U ′

0×[δ,T0])
+ ‖f‖W 2k+2,k+1

p (U ′
0×[δ,T0])

)

+ Cδ,k

n−1∑
i=1

∥∥∥∥∂2u

∂x2
i

∥∥∥∥
W 2k+2,k+1

p (U ′
0×[δ,T0])

≤ Cδ,k(‖f‖W 2k+2,k+1
p (U0×[δ/2,T0])

+ ‖u‖W̃ 2k+3,p(U0×[δ/2,T0])),

where U ′
0 has compact support in U0.

Then by using a similar patching argument as in Step 2 of Theorem 6.3, the estimates in
Step 2.1 and Step 2.2 imply

‖u‖W 2k+4,k+2
p (Ω′×[δ,T0])

≤ Cδ,k(‖f‖W 2k+2,k+1
p (Ω×[δ/2,T0]) + ‖u‖W̃ 2k+3,p(Ω×[δ/2,T0])

)

and

‖u‖W 2k+4,k+2
p (Ω2ε/3×[δ,T0])

≤ Cδ,k(‖f‖W 2k+2,k+1
p (Ωε×[δ/2,T0])

+ ‖u‖W̃ 2k+3,p(Ωε×[δ/2,T0])
),

where Ω′ = Ω \ Ωε/2.
Therefore, the desired result follows from the above tw estimates. �
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6.3 Applications to the Heat Flow of Self-induced Harmonic Maps

By using the Lp-estimates of heat equation we obtained in Theorem 6.3 and Theorem 6.4, we
have the following estimates for heat flows of self-induced harmonic maps, which has been used
in the preceding context.

Theorem 6.5 Let u be a smooth solution of (1.3). We assume that supΩ̄×[0,T0] |∇u|(x, t) ≤ C

for some constant C. Then for any 2 ≤ p < ∞ and 0 < δ < T0, there exists a constant
C(δ, C, T0, |Ω|) such that we have

‖u‖W 4,2
p (Ω×[2δ,T0])

≤ C(δ, C, T0, |Ω|),
where |Ω| denotes the volume of Ω.

Proof Let

f(x, u) = |∇u|2u + (hd(u) − 〈hd(u), u〉u).

Since supΩ̄×[0,T0] e(x, t) ≤ C, we can easily see that for any p0 ∈ [2,∞)

‖f‖Lp0(Ω×[0,T0])
≤ C(p0, |Ω|).

On the other hand, the global Lp-estimate in Theorem 6.4 implies

‖u‖W 2,1
p0 (Ω×[δ/2,T0]) ≤ Cδ(‖f‖Lp0 + ‖u‖W̃ 1,p0 (Ω×[0,T0])) ≤ C(p0, T0, |Ω|).

The above estimate for u then implies that

‖f‖W̃ 1,p0 (Ω×[δ/2,T0]) ≤ C(p0, T0, |Ω|),
since

∇f =
∑

s+l+γ=2

∇su#∇lu#∇γu +
∑

s+l+γ=1

∇shd(u)#∇lu#∇γu.

To show the estimates of ‖u‖W̃ 3,p0 + ‖∂tu‖W̃ 1,p0 , we only need to estimate the bounds of
∂3u

(∂xn)3 and ∂
∂xn ∂tu, where {xi} is a chart at a neighborhood U0 of any x0 ∈ ∂Ω in Ω̄ and

∂
∂xn |∂Ω∩U0 = ν, since the other components of ∇3u and ∇∂tu can be estimated by an almost
the same method as that in Step 2.1 of Theorem 6.4.

Without loss of generality, we assume U0 ∩ ∂Ω ⊂ R
n−1. Then ∂u

∂xn satisfies the following
equation: ⎧⎪⎨

⎪⎩
(∂t − Δ)

∂u

∂xn
=

∂f

∂xn
,

∂u

∂xn

∣∣∣∣
U0∩∂Ω

= 0.
(6.10)

The global Lp-estimates in Dirichlet case (refer to [13, 28]) implies∥∥∥∥ ∂u

∂xn

∥∥∥∥
W 2,1

p1 (U ′
0×[δ,T0])

≤ C(‖f‖W̃ 1,p0 + ‖u‖W̃ 1,p0 ) ≤ C(p0, T0, |U0|),

where U ′
0 ⊂⊂ U0.

Then, by applying a covering argument, we can show

‖u‖W̃ 3,p0 + ‖∂tu‖W̃ 1,p0 ≤ C(p0, T0, |Ω|).
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Hence, this estimate again implies f ∈ W̃ 2,p with norm controlled by C(p0, T0, |Ω|), for any
2 ≤ p ≤ p0 < ∞, since

∇2f =
∑

s+l+γ=3

∇su#∇lu#∇γu +
∑

s+l+γ=2

∇shd(u)#∇lu#∇γu.

To get a bound of ‖f‖W 2,1
p (Ω×[δ,T0])

, it remains to show the estimate for ∂tf . A simple
calculation shows

∂tf = ∇u#∇∂tu#u + |∇u|2∂tu + hd(∂tu) + ∂tu#hd(u)#u.

Since |∇u| + |hd(u)| ≤ C and ‖hd(∂tu)‖W 1,p(Ω) ≤ C ‖∂tu‖W 1,p(Ω), there holds

‖∂tf‖Lp(Ω×[δ,T0])
≤ ‖∂tu‖W 1,p(Ω×[δ/2,T0]) .

Therefore, Theorem 6.4 implies

‖u‖W 4,2
p (Ω×[2δ,T0])

≤ C(‖f‖W 2,1
p (Ω×[δ,T0])

+ ‖u‖W̃ 3,p(Ω×[δ,T0])
) ≤ C,

where C is only dependent on p2, |Ω|, T0 and supΩ×[0,T0] |∇u|. �
For the application of Theorem 6.5 to the blow-up analysis in Section 4, we consider the

equation to some scaling of u (a smooth solution of (1.3)). That is, for 0 < λ ≤ 1, let
v(x, t) = u(λx, λ2t), where (0, 0) ∈ Ω̄ and λ−1 = supΩ̄×[0,T0] |∇u|. A simple calculation shows
that v satisfies the following equation on Ωλ = {x |λx ∈ Ω}:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tv − Δv = |∇v|2v + η2(hλ
d(v) − 〈hλ

d(v), v〉v),
∂v

∂ν

∣∣∣∣
∂Ωλ

= 0,

v(x, 0) = u0(λx) : Ωλ → S
n ↪→ R

n+1,

(6.11)

where hλ
d(v)(x, t) = λ2hd(u)(λx, λ2t) is a vector-valued function from Ωλ to R

n, and
supΩλ×[0,λ−2T0] |∇v| ≤ 1. Thus, the fine estimates of hd(u) imply∥∥hλ

d(v)
∥∥

W k,p(Ωλ)
≤ Cλ2 ‖v‖W k,p(Ωλ) .

Given any x0 ∈ Ω̄λ, we assume B+
2 (x0) = {x ∈ Ω̄λ | |x − x0| < 2} ⊂ Ω̄λ. Theorem 6.5 implies

the following result.

Corollary 6.6 Let p ∈ (n,∞), and [t0, t0 + 1] ⊂ [0, λ−1T0]. Suppose that v is a smooth
solution to Equation (6.11). Then, there holds

‖v‖W 4,2
p (B+

2 (x0)×[t0+δ,t0+1]) ≤ C(δ, p, |Ω|),
for any x0 ∈ Ω̄λ and some small δ > 0.

Proof Let p0 > n. Then, there holds

‖hλ
d(v)‖W 1,p0 (Ωλ) ≤ Cλ2 ‖v‖W 1,p0 (Ωλ) ≤ Cλ2− n

p0 |Ω| 1
p0 .

It implies that for some constant C there holds true

sup
Ωλ×[0,λ−2T0]

|hλ
d(v)| ≤ Cλ

2− n
p0 .

Without loss of generality, we assume t0 = 0. A similar argument as in Theorem 6.5 shows
that there exists C(p, δ, p0) and p0 > n such that

‖v‖W̃ 3,p0 (B+
2 (x0)×[δ/2,1]) + ‖∂tv‖W̃ 1,p0(B+

2 (x0)×[δ/2,1]) ≤ C(λ, δ, |Ω|).
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Therefore, Theorem 6.5 implies the result. �
By using the following embedding theorem in [13], we can get the point-wise estimates of

solutions as follows.

Theorem 6.7 Let v ∈ W 2l,l
p (Ω × [0, T0]), where ∂Ω is smooth and l ∈ N. Then, for 0 ≤

r + 2s = μ < 2l, if p > n+2
2l−μ and n+2

p is not an integer, there holds

∂s
t ∂r

xu ∈ Cα(Ω̄ × [0, T0]),

where α = 2l − μ − (n + 2)/p. Moreover, we have

|∂s
t ∂r

xu|Cα(Ω̄×[0,T0]) ≤ C ‖u‖W 2l.l
p (Ω×[0,T0]) ,

where C is only dependent of n, l, p, ∂Ω, diam(Ω)−1 and T−1
0 .

Corollary 6.8 Let u be a smooth solution of Equation (1.3). We assume that supΩ̄×[0,T0] |∇u|
·(x, t) ≤ C for some constant C. Then, there holds

∑
0≤2s+r<4

|∂s
t ∂r

xu|Cα(Ω̄×[δ,T0]) ≤ C(δ, C, T0, |Ω|),

for any α ∈ (0, 1).

Remark 6.9 (1) Suppose that v is smooth solution to (6.11) with supΩλ×[0,λ−2T0] |∇v| ≤ 1,
then there exists a constant C depending only on |Ω| and δ such that

∑
0≤2s+r<4

|∂s
t ∂r

xv|Cα(B+
2 (x0)×[t0+δ,t0+1]) ≤ C(δ, |Ω|),

for any x0 ∈ Ω̄λ and [t0, t0 + 1] ⊂ [0, λ−2T0].
(2) Let k ≥ 1. Suppose u is a smooth solution of to (1.3) on Ω̄×[0, T ) with supΩ̄×[0,T ) |∇u|(x,

t) ≤ C. By considering the equation of uk = ∂k
t u for any k ∈ N, we can apply an argument of

induction on k to show that for any m > 0, there holds

|u|Cm(Ω̄×[δ,T )) ≤ C(m, δ, C, |Ω|).
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