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1 Introduction
1.1 Background

In physics, the Landau-Lifshtiz (LL) equation, deduced in [19, 27], is a fundamental evolution
equation for the ferromagnetic spin chain and was proposed on the phenomenological back-
ground in studying the dispersive theory of magnetization of ferromagnets. In fact, this equa-
tion describes the Hamiltonian dynamics corresponding to the micromagnetic energy, which is
defined as follows.

We assume that a ferromagnetic material occupies a smooth bounded domain  C R3. Let
u, denoting magnetization vector, be a mapping from  into a unit sphere S? C R3. The
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micromagnetic energy of map wu is defined by
E@U::CQ/NQQde+l/|VuFdx+:/|hAuﬂ2dw
Q Q Q

Here V denote the gradient operator and dz is the volume element of R3.

In the above functional, the first and second terms are the anisotropy energy with positive
quality factor @@ and exchange energy, respectively. ®(u) is a real function on S?. The last
term is the self-induced energy, and hg(u) is the demagnetizing field, which solves the following
Maxwell equations

V x hqg =0,

1.1
V-(hd-I—UXQ):O ( )

in R?, where yq is the characteristic function of €.
The Landau-Lifshitz—Gilbert (LLG) equation with dissipation can be written as
uy = —au X h— fu X (u x h),

where “x” denotes the cross production in R? and the local field h of £(u) can be derived as

10€(u) Q

Here 8 > 0 is the damping parameter and o € R such that a? 4+ 32 = 1. Mathematically

h =

speaking, the LLG equation is a hybrid of the heat flow and the Schrédinger flow for the energy
E.

In the following context, we restrict ourselves to the regime of soft and small ferromagnetic
particle Q, with 7 > 0, where Q,, = {nz |z € Q} and |Q| denotes the volume of . “Soft” refers
to the case when @ = 0, and “small” means that [©2,| < *|Q2] < 1. Then the micromagnetic
energy becomes

ewi= [ [VuPdet [ fratw)p da,
QT/ QT/

Hence, by setting u(z) = m(nx), we consider the rescaled micromagnetic energy
&(w) = 'em) = [ [Vuldo -t o2 [ [hatw)l? da.
Q Q

where we set hg(u)(z) := hqa(m)(nz) : Q — R3, which also solves equation (1.1).

In fact, the non-local field hg(u) = —V f, where f is the solution of the Possion equation
Af = div(uxa),

and hence, which has a precise formula
@) = [ V,Gla)uty)dy,

where G(z,y) = 4ﬂ1

sy 15 the fundamental function in R3. Therefore, hg(u) can be presented

as
ha(u)(z) = —V, / V, Gl y)u(y)dy.
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On the other hand, it is natural to extend the definition of hq for u : Q@ — S*~! — R™ with

n >3 as
ha(u) () = —V, / V, Gz, y)u(y)dy (1.2)

in distribution sense, where 2 is a domain in R" and G(z,y) = ‘z_zf‘bn_2 is the fundamental
solution for the Laplace operator A on R".
A smooth map u :  — S* ! is called self-induced harmonic map if it is a critical point of

&, satisfying the following Euler-Lagrange equation
Au = —|Vul*u —1*(ha(u) — (ha(u), u)u),

which explains the multiple magnetic phenomena in the static case.
The heat flow of self-induced harmonic map (i.e. LLG equation of the case 8 = 1) with
Neumann initial boundary condition satisfies the following equation

Oru = Au+ [Vul*u + n?(ha(uw) — (ha(u), u)u), (z,t) € Q x RY,
ou
o |50

w(z,0) = ug : Q — SP L,

_0. (z,1) € 00 x R, (1.3)

where v is the unit outer normal vector of 9€2.

In general, one can also give the following extension of hg for u : M™ — SF < RFH1
(see Section 2), where M™ is an embedded closed submanifold of R¥*! with dim(M) = n.
Therefore, from the viewpoint of mathematics it is of interest to consider the following heat

flow of self-induced harmonic map u with initial smooth map wg : M — S*

Ou = Au+ |Vul?u + n?(ha(u) — (ha(u), u)u), (x,t) € M x RT

(1.4)
u(z,0) = ug : M — S*.

1.2 Related works

Since LLG equation is an important topic in both mathematics and physics, there has been
tremendous interest in developing the well-posedness of LLG equation and its related topics.
Here, we list only a few of results that are closely related to our work in the present paper.

In 1964, Eells and Sampson [18] obtained the existence of local smooth solution to heat
flow of harmonic map on closed Riemannian manifold. Moreover, the solution exists globally
and converges to a harmonic map, provided that the target compact manifold has nonpositive
sectional curvature. Later, Hamilton generalized this result to the case of Dirichlet boundary
problem in [21]. Inspirted by the work of Sacks—Uhlenbeck [34], Chen and Struwe [36] proved
that the global solution to heat flow of harmonic map exists, if the initial energy is small. A
similar global existence of solution to LLG equation in R? was obtained by Carbou [4].

In general settings, by using the LP-spectral theory of the Laplace operator (see Section 7 of
Chapter 1 in [37]), Taylor could give the existence of short-time regular solution in C*([0,T") x
M)N C>=((0,T) x M) to the semi-linear parabolic equation in both Dirichlet and Neumann
problems when M is a compact manifold with boundary, by providing the initial data uy €
C*°(M) (see Section 1 and Section 3 in Chapter 15 of [37], also refer to [28]). Since the equations
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(1.3) and (1.4) are both strictly semi-linear parabolic equations, their locally regular solutions
indeed exist.

Recently, the local existence of very regular solution to LLG equation (v # 0) with Neumann
boundary condition was addressed by applying the delicate Galerkin approximation method
and adding compatibility initial-boundary condition in [5]. And then, inspired by the method
used in [5], we obtained the locally very regular solution of LLG equation with spin-polarized
transport in [7]. Later, we generalized our previous work [7] (or Carbou’s result in [5]) to
a Landau-Lifshitz—Gilbert flow with target being compact symplectic manifold, cf. [8]. For
the most challenging case of § = 0, the local regular solution to Schrodinger flow defined on
closed manifold was given by Ding and Wang in [16]. Very recently, we get the existence and
uniqueness of local smooth solutions to LL equation (i.e. Schrédinger flow into sphere) with
Neumann boundary condition in [9, 10].

On the other hand, in the past three decades, a great deal of mathematical effort in blow-up
analysis has been devoted to studying the phenomenon for finite-time singularities of heat flow
of harmonic maps. In 1989, Coron and Gildaglia [14] gave finite-time blow-up examples to heat
flow of harmonic maps, for some certain symmetric initial data from R™ or S” to S” with n > 3.
Another approach to show the occurrence of finite-time singularities was built up by Ding [15]
for heat flow of harmonic map in dimension 3, by using a monotonicity formula of almost
harmonic map and applying the delicate blow up analysis; and then by Chen and Ding in [11]
for higher dimension n > 3, based on both the Struwe’s parabolic energy monotonicity formula
(see [12]) and Ding’s method in [15]. Their results guarantee that such singular examples will
occur if the initial data wg is in some nontrivial homotopy class with small energy. In fact,
there exists topological conditions of spaces, which can insure the condition of initial map uy,
see [39]. When n = 2, such finite-time singular examples were shown by Chang, Ding and Ye
in [6].

Later, the similar results of finite-time singularity were addressed by Grotowshi [20] for
Yang-Mills heat flow with initial connection in a trivial SO(n)-bundle over R™ with n > 5.
Under a similar setting as in [11], Naito in [32] gave finite-time blow-up solutions to Yang—Mills
heat flow with initial data in a nontrivial principal bundle SO(n) over S™ with n > 5. S.J.
Ding and C.Y. Wang in [17] applied a similar approach as in [11] to show finite-times singular
examples for Landau—Lifshitz equation in lower dimensions.

We would like to remark that the critical ingredient in [11] is the e-regularity of heat flow
of harmonic map (see [12]), which is based on both the parabolic monotonicity formula and
the Bochner identity for the heat flow of harmonic map. Since in lack of both the parabolic
monotonicity formula and the Bochner formula for Landau-Lifshitz equation, the authors in
[17] used a similar treatment as in [29] and [30] to get a slice monotonicity formula in lower
dimension and then obtained the e-regular estimate of solutions by applying the dual of BMO
and H;. This method has been also used by [30, 31] and [24] respectively to get partially regular

results of harmonic maps and almost harmonic maps.

1.3 Main Results and Strategy

In this paper, we focus on the aspect of blow-up for the heat flow of self-induced harmonic map
satisfying (1.3) or (1.4). Since the nonlocal potential hy(u) can be well estimated by u (see
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Section 5 in Appendix), there holds a parabolic monotonicity formula by a similar argument as
in [12]. Hence, we also use the dual of BMO and H; to show the e-regularity of self-induced
harmonic map. By combining the parabolic monotonicity formula in Theorem 2.10 and the

e-regularity Theorem 2.6, we can get the following main results.

Theorem 1.1 Let n > 3, and M™ be an embedded closed submanifold in R with induced
metric. There ezists constants €, 1y such that if

0<77§,’70a

and ug € C*(M",S¥) is in a nontrivial homotopic class [uo] with Ep,, = 0 (defined in (1.5)),
which satisfies

/ |Vug|2dv < €2,
M

then the local smooth solution w of (1.4) with initial map uy blows up in finite time. Moreover,

let T be the mazimal existence time of u, we have
T<C(E>+n2) 2,

where C' is a positive constant depending only on the geometry of M and S*.

Remark 1.2 Let [ug] = {f € C(M,N)| f is homotopic to ug}. Then, there holds

Bluo) = inf V2 =0 1.5
ol fE[uo]ﬁ%/Ir/ll’Q(M,N)/M| fPdv (1.5)

if we provide one of the following three topological conditions:

(1) m (M) =0 and m (M) = 0,

(2) 71 (M) =0 and m2(N) =0,

(3) m(N) =0 and m(N) =0,
to see [39] for more details.

In particular, let M = S™ and N = S™ with n > 3. Let ug : S™ — S™ be a smooth map with
deg(uo) # 0. Then ug is not homotopically trivial. Meanwhile, Ej,, = 0, since 71 (S") = 0 and
m2(S™) = 0. Some other examples were given by Ding-Wang by using the Hopf map (to see
[17)).

For a domain 2 C R™ with boundary 99 # (), we can get a similar result as in Theorem 1.1
for the Neumann boundary problem (1.3).

To proceed, we denote [ug], = {v € C1(Q,S"!)|there is a C°([0,1],C1(2)) mapp : Q x
[0,1] — S"~!such that p(z,0) = ug, ¢(z,1) = v, and B‘Pa(l',’t) la = 0}, and then define

Ejy,), = inf |Vo|2dz,
v€luol, JQ

where v is the unit outer normal vector of 99 and [ug],, is the completion of [ug], in W!2-norm.
We say [ug], is a nontrivial class (denoted by [ug], # 0), if constant maps are not in [ug],.

Theorem 1.3 Let Q C R"™ be a smooth bounded domain with n > 3. There exists constants

€, no such that if
0< n < Mo,
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and ug € C=(Q,S"~1) is in a nontrivial class [ug), with Elug), = 0, which satisfies

/|Vuo|2dv < e?,
Q

then the local smooth solution u of (1.3) with initial map uy blows up in finite time. Moreover,

letting T be the mazimal existence time of u, we have
T < O +15)"2,
where C' is a positive constant depending only on n and |$)|.

Remark 1.4 Let Q= {z € R"|1 < |z| < 2}. For n > 4, by using the facts 71 (S*~1) = 0 and
mo(S"1) = 0, we have Ejy) = 0, where [f] is any nontrivial homotopy class of maps from st

into itself. Since
T

{ute) o ﬂgemm@SW%WA@cww

for some ug = go(lfcl) with g € [f]N CY(S"~1,S"7 1), and

2 n—2
n—1(2 -1
/|Vu|2dv :wn_l/ r"_gdr/ |Vg|?do = wn-1( )/ |Vgl|2do,
Q 1 §n—1 n—2 §n—1

there holds

||

Epe, =0 and  [ugl, # 0.

Now we give an illustration of the main ideas in our proof. We will first prove Theorem
1.1 in Section 3, and then Theorem 1.3 in Section 4. The proof of Theorem 1.1 consists of two
steps. In the first step, we use the e-regularity obtained in Theorem 2.6 to eliminate the case
of not blowing up along heat flow of self-induced harmonic map. Then, in the second step, by
using parabolic monotonicity formula in Theorem 2.10, we take a similar but more complicated
argument as in [11] to give
T < O +17)»=

for small € and 7, where T is the extreme existence time of solution and &2 = ||Vuy| L2(M)-
Both of the two steps need fine estimates on hg, which is given in Theorem 5.5 in Appendix 5.

Theorem 1.3 is proved by a similar but more involved manner, since we need boundary
regular estimates of u. For the case n = 0, that is, u is a heat flow of harmonic map, there
is a standard treatment to deal with the boundary regularity, which is to extend u across the
boundary by a transformation of reflection (see the definition in (6.4)). Let @ denote this
extension of u. It is not difficult to check that @ is a strong solution of equation (1.3) with
n = 0 on a bigger domain than €2, when u satisfies the Neumann boundary condition. This
transfers the regular estimates near the boundary to the interior ones. However, when n > 0,
it seems difficult for us to get the regular estimates of hy near the boundary by applying the
above method, due to hg being defined globally in (1.2), so as u. Fortunately, we can develop
the global LP-theory for heat equation with the Neumann boundary condition in a more general
setting in Appendix 6 to overcome this difficulty. Since the e-regularity in Theorem 2.6 and the
parabolic monotonicity also hold near boundary in the case of Neumann problem (see Corallary
4.1 and Remark 4.3), after some modifications about the proof of Theorem 1.1, the desired result
in Theorem 1.3 can be established.
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The rest of our paper is organized as follows. In Section 2, we introduce the basic setting of
self-induced harmonic maps and some critical preliminary lemmas, including the e-regularity
theorem of self-induced harmonic maps and the parabolic monotonicity formula for heat flow
of self-induced harmonic maps. In Section 3, we give the proof of Theorem 1.1. The proof
of theorem 1.3 will be built up in Section 4. Finally, the estimates of hy and the global LP-
estimates of heat equations in more general settings are given in Appendix 5 and Appendix 6
respectively.

2 Preliminary

2.1 The Self-induced Dirichlet Energy Functional

Suppose that M™ (n > 3) is an embedded closed submanifold of R**! which is equipped with
the metric ¢ induced by the Euclidean metric (, ) of R¥T!. The tangent bundle of M, denoted
by T'M, is a subbundle of the trivial vector bundle £ = M x RF*1. Let 7 : E — TM be
the bundle projection, and .% = I'(E) denote the space of smooth sections for vector bundle
E, which is identified with the space of smooth map from M to RFt!, since F is trivial. The
completeness of I'(F) under the W*? Sobolev norm is denoted by W*2(%) for any s € N.
Denote

Wh2(M,S*) = {u e W"(F)|u: M — S*¥ — R¥1 for ae. x € M}.

For any u € W2(.#), the nonlocal potential is defined by

ha(u)(x) = =Vaf = =V, /MW@;G(%Z/)J(U)(?J))M (2.1)

in distribution sense, where V denotes the Levi—Civita connection induced by metric g and
G(z,y) is a Green’s function on M (refer to Lemma 5.1). Here and in the following context,
without loss of generality and for simplicity, we denote 7(u)(z) = m(u(x)). The function
f+ M — R satisfies the following equation

Af =div(m(u)). (2.2)
This implies
div(hg + 7(u)) = 0. (2.3)

Then we define the self-induced Dirichlet functional with nonlocal potential for a section
u € WH2(M,S*) by

= ’(1,21] 2 u 2’U .
£1(u) .—/M|v v+ 1 /Mmd( ) do, (2.4)

where 7 is a nonnegative scalar constant, and dv is the volume form.

2.2 Self-induced Harmonic Map

By definition, hy : L*(M,R**1) — L?(M,TM) is a linear operator. Then, the gradient 55 of
this energy functional &, is obtained from the following lemma.

Lemma 2.1 For any u and w in W12(F), there holds

/M (ha(u), ha(w)) dv = — / (ha(u), w) dv.

M
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Proof Since Af(u) = div(m(u)) and u € WH2(M,SF), it implies hq(u) € WH2(M, RF1) by
the classical L2-elliptic estimates.
Thus, by using Stokes formula, there holds

/ (haw), ha(w)) dv = — / (V£ (u), ha(w)) do = / div(ha(w)) f (u)do
M M M
:—/ div(w(w))fdvz—/ (ha(u),w) dv. O
M M

Proposition 2.2 For any u € WY2(M,S¥), the gradient of self-induced Dirichlet energy

functional &, at u is

16
b Er) ) — 2 hatw) — (hat), ),
where T(u) = —Au — |Vu|?u is the tension field.
Proof Let us = ﬁiiz‘ for any ¢ € C>°(M,R*+1) with ¢ small enough. Then we have

d
dt

Ey(us) =2 / (Y, V(o — (i, u)u)dv + 2 / (ha(u), ha(p — (i, uyu))du
t=0 M M

=9 /M<Vu, Vo) — (|Vul?u, p)dv — 21 /M<hd(u), © — (@, uyu)do.

That is,
5E<;EU) = 27(u) = 27 (ha(u) = (ha(u), upu),

in the distribution sense. O

A smooth map u : M — SF < R¥*1 is called a self-induced harmonic map if it satisfies the

Euler—Lagrange equation

7(u) = 17 (ha(u) — (ha(u), u)u) = 0. (2.5)
Remark 2.3 The same results as in the above Lemma 2.1 and Proposition 2.2 also hold true
in the case mentioned in Section 1 where the underlying space is a bounded domain  C R"
(ct. [3]).
2.2.1 Epsilon Regularity of Self-induced Harmonic Map

In this subsection, the e-regularity for self-induced harmonic map will be obtained, which is
contributed to show Theorem 1.1 in Section 3. Let u € C°°(M, S*) be a self-induced harmonic
map. Due to the fine regular estimates (see Theorem 5.5), the term involving hg can be
considered as a good disturbance of harmonic map. And hence, the techniques used to approach
harmonic map can also be adopted to deal with the self-induced harmonic maps u. We will see
that many properties of self-induced harmonic maps is analogous to harmonic maps, such as
the monotonicity formula and the e-regularity (also cf. [3]).

Let inj,,; > 0 be the injective radius of M, B, (p) denote the geodesic ball with radius r and
center at p € M, where r < inj,,;. Choose io(< inj,,;) be a positive constant such that there
holds

lgij — 05| < Ar®, |0gi;| < Ar,

under a normal coordinates (z',z2,...,2") on B;,(p), where A is a constant depending only

on the geometry of M.
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Denote the scaling invariant energies by

1
- / |Vu|?dv,
r Br(p)

- 1
= ([ vePae [ ).
r By (p) B (p)
where hg(u) = -V f e I'(TM).

I.(u) :=

and

Theorem 2.4 There ezists a constant C' depending only on the geometry of M, such that if
u € C?(M,SF) is a self-induced harmonic map, then for any p € M, there holds

eI, (u) < e“ I, (u)

for0 < p <o <ip.

Proof Let ¢ be the one parameter transformation group induced by a smooth vector field
X eT'(T'M), and uy = u o . Then, there holds

&, (urg) = / Yy 2dv, + 1 / ha(ur) [2do,
M M

=/|Vu
M

because of hg(ut) = (1) «ha(u), where (@) is the push-in map induced by automorphism ;.

2 2 2
o g g 1 /M|hd(u) o Ve g5

Since u is the critical point of &, we obtain

d

0:
dt

577(“’1‘/7 g) =
t=0

+ / 09 (Vu(Ve, X), Vue;)) + (ha(), Vo X) (ha(u), e5))dug,
M

dt

d 1 .
E1(u.957,0) = = [ (Va4 0P hatu) P)ivX,
t=0 M

where ¢; = a(Z'i for0<i<n.
Let X = x(r)raar = x(d(p, z))x? B(Z'i’ where

1 if r < p;
X)) =37"" ifp<r<o

g—p

0 ifr>o.

Thus, a simple calculation shows

divX = nx(r) +rX'(r) + O(r?),
2

97 (Vu(Ve, X), Vule;)) = [Vul*(x(r) + O(r*)) +X'(r) ( Z:

+ O(r3)|Vu|2),
and

9" (ha(u), (Ve, X)) {ha(u), ¢j) = |ha(u)|*(x(r) + O(r*))

) (7« <hd(u), ;>

2

+O(r3)|hd(u)|2>.
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Therefore, we have

0= (n—2)/B ( )(X(T)+0(7‘2)(|VUI2+n2|hd(U)I2)dvg

1
- / (r + O(*)(IVuf? + 1 | ha(w) )
By (p)/By(p)

o—p
2+ (it ) )d

B 27"( ou
00, E, — (n —2)E,(u) > —Co*E, (u),

or

Letting p — o, it follows

Thus, there holds
I'(u) = o' (60, E, — (n — 2)Ey(u)) > —Cl,(u),

which gives

for any 0 < p < o < ig. O
It is not difficult to show the above monotonicity formula also holds for v € W22(M,SF).
This formula combining with the dual of BMO and H; implies the following e-regularity theorem
by using a similar method applied to harmonic map, see [17, 29, 30]. To this end, we firstly
obtain an improved Poincaré inequality, which can be presented as the following lemma.

Lemma 2.5 There ezists a positive constant Cy such that for any 6 € (0,1), there exists €o(6)
such that for any solution u € W2(B,(z¢),S¥) to (2.5) and 0 < r < g, if u satisfies
i _ 1 2 UR 2
I.(u):= o |Vul“dv + - [ha(u)|dv < §(8),
T B, T B,

there holds )

(6r)"

where u,g s the mean value of u on Byrg.

/ lu — upg|?dv < COHQIAT(u),
B@r

Proof In general, we assume that » = 1 by scaling. On the contrary, suppose that for any
C > 0, there exist a § € (0,1) and a sequence {u;} C W22(By,S*) solving (2.5), which satisfy

Auy = —|Vu,Puj — n? (ha(us) — (ha(ug), us) uy),

such that

~

Il(Uj) = 8? — 0,
as j — oo. But,

/ lu; — (uj)9|2dv > CG"“E?,
Beg

where (u;)g is the mean value of u; on By.
Letting v;(z) = ;j (uj — (uj)p), it follows

/ |V, |?dv < 1.
B
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The Poincaré inequality (to see Lemma 6.14 in [28]) implies that {v;} is a bounded sequence
in W12(By,R¥1). Hence, there exists a v € W%(By, RF¥t1), which satisfies

v; — v weakly in Wh2(By, RF),
v; — v strongly in L?(By, RF1).

On the other hand, for any cut-off function ¢ € C§°(By, R¥*1), it follows

2
/ (Vo Voydo= " [ [Vuf? (ug, 0y do + / (ha(uy) — (ha(u) ) u), o) do
Bl Bl

€j JBy €j

< ¢l (/ |V |2dv + |hd(uj)|dv) — 0,
, 5

€j
as j — oo.
Thus, v is a harmonic function in B;. Lemma 3.3.12 in [24] implies
[v[2dv < Cob? [ |VolPdv < Cof™ 2
By By
for some Cj, which is a contradiction.

If u is a solution to Equation (2.5) on B,.(x¢), we set v(z) = u(xo + rx), which is defined
on By (0) endowed with the metric (g;;) = (g(xo + r2);;). Then v satisfies the below equation

Av(z) = [Vo]*(2) + n*r* (ha(rz) = (ha(rz), v(@)) v(@)).

By the same argument as that in the above we can obtain the desired results. O
By using Lemma 2.5, the following e-regularity theorem is obtained.

Theorem 2.6 There exists a constant € such that if u € W22(M,S¥) is a solution of (2.5)
and satisfies, for 0 <rg <1ig andp € M,

Iy (u) < &2,

then, u is C'*-continuous on Brzo ) for any a € (0,1). Moreover, there holds

1

2

[U]CQ(BTQO) <C<T3n2a/ |VU|2—|—772> 7
B

0
where constant C depends only on o and the geometry of M and S*.
Proof  Since it is a local result, we may assume B,, is a Euclidean ball with the Euclidean
metric gp. Moreover, one can modify without difficulties the following argument to show the

result is also true in general case.

Since I, (u) < €2, the monotonicity formula implies

L)) = [ (9l )Py < o2
ry

for any y € Bro (p) and r < Y. Next, our proof is divided into 3 steps.
Step 1  We claim that for any § > 0, there exist Cs and 1 such that if

IT(U’) S 6%7
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there holds

1 2—n s c
" / |Vul?dv < / (Vuldv+ Con'r® + 7 r " [ u— u,[?do,
4 B 7’"_2 B, 5 5

ir
where a € (0,4).

Without loss of generality, we assume r = 1. Let £ be a cut-off function with support in By
and £ =1 in Bi' Then, a simple calculation shows

E|Vul2dv = —/ (div(EVu), u — a) dv

Bl Bl

=—/ (V{-Vu,u—ul)dv—/ E(Au,u —uy) dv
B,

B

:—/ (V&-Vu,u—ul)dv—i—/ E(|VulPu— X\ u—u)dv
B,

B

+ ENu—u1)do+1n° & (ha(u) — (hg(u),u) u,u — uy) dv
B1 B1

=T+ IT+1IT+1V,

where u; = ‘Blll fBl wdv and
5= fRn|Vu|2§udv'
Jan Edv

Since |u| = 1, then
|Vu|?u = Z V! - (u'Vu? — uVule;,
and
div(u' V! — ! Vu') = {u,w}ij = v'ew’ —ulw'.
where {e;} is the standard frame of R**1 and
w=7(u) = n*(ha(u) — (ha(u),u)u) € L*(By,RF1).
Therefore, Lemma 2.6 in [17] implies |Vu|?u € H] _(B1). And moreover there holds
IE0VuPu = N30 @ny < CllIVulullyg (Br)
< CIVulZas,) + 0 lha()lZss,)-
Hence, it follows
1T < C(I|VulZa(s,) +n*lha(2s,)llv = @llsmos)
< C(HVUH%%&) + n4||hd(u)||%2(Bl))||vu||L2(Bl)'

Since I and 11 can be easily estimated by using Holder inequality, we obtain

2
[ 9ud < (CIVullzaay + 58) (9l + 0 a)lecs,)
1/4

+ Cs lu — uq |*dv. (2.6)
5 Jp,
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In general case, let u € W22(B,,S*) be a solution of (2.5). Let v(y) = u(ry) on By with
Fuclidean metric gg, then v satisfies the following equation:

Av(y) +[Volo(y) = —n*r® (ha(u)(ry) — (ha(u)(ry), v(y)) v(y)).

thus, taking almost the same arguments as in the above leads to

2 Cs
[ 1woido < (C196luatm + 58) T,y 4 s ) e+ 5 [ o-uas.
1/4 1
Scaling back to B, and choosing €1 < 3‘50, we have
1 2—n
() [ IVuPdo <0G 1Tul,) 0t Wrat s, )
1/4r
C
+ O lu — u,|*dv
1) B,
C
< 57‘27"||Vu||2L2(BT) + Contre + ;7“7” lu — u,|*dv,
B,

for any a € (0,4). Here we have used the fact

1
P
|hd(u>|2pdv)
B,

<COort e < Or®

T47n||hd(u)||%2(BT) <Crty (

ifp>7.
Step 2 By combining the result in Step 1 with Lemma 2.5, we can show the required decay
estimate by choosing suitable 4, 8, g and €;.

The following iteration argument is similar with that in [29]. For any o € (0,1),let § = (})*,
0 =0(a) < min{(cha; )2-2a (15)Y/2}, where Cy and Cj comes from Lemma 2.5 and the claim
in step 1, respectively. Let | € N such that 6(«) = 411. The monotonicity formula 2.4 implies

that if I,.(u) < 2 is small enough, then
I,(u) < CI.(u) < Ce? < &},

for 0 < p < r. Hence, by choosing I,(u) < min{e2(46),...,2(4°0)}, it follows
CoCs

Tyigr(u) < 6lgivrgr(u) + C7745(4i+19)a7”a + 5

(4710)* 1, (u),
for0<i<l-—-1.
By induction on 7, there holds
1 CoCs (0 -
Ir < lI 4 a,.a 0 Ir
o) < Tt Ot e () ),

where we choose a < 3. Thus,

8
Igr(u) < 6% <15

+ 94_2"‘) I.(u) + C774ra + Cn2r2_"/ |ha(u)|dv,
B,

where we choose a > 2a.
Since 2" ||ha(u)||L1(B,) < Cr? e (J5 |hd(u)|pdv)119 <Cr* e ifp > 5. It implies

Iy, (u) < 62“I,.(u) + Cn?*rP,
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for any 5 € (0,2).
Therefore, Lemma 3.4 in Chapter 3 of [23] implies

Ip(u) < Ca <(p>2afr(U) + 0772/)5),

r
for any 0 < p <r and 8 < 2.

Step 3 The Holder continuity of u.
Step 2 follows that, for any y € B "0 (p) and any p < r < 'Y, there holds

_n a/ ].
p / |U — qu(y)|2 S Ca,ﬁp2 < 20/ Ir(u) + 772) )
B, (y) "

where up (,) is the mean value of u on B,(y) and 2o/ = 3. Therefore, the Campanato space

theory implies

1
’ 2
[ulcar (B <C<r§"2a/B |Vu|2+772> . O
2

70
Theorem 2.6 implies the following gap result.
Corollary 2.7 There exists positive constants eg and no such that if u is a W*2(M,SF)
solution to (2.5), ||Vu||%2 < e and n < no, then u is a null-homotopic map.

Proof We choose a finite covering {B, j»(z;)}X.; of M, such that there holds
T,(u); = 7«2—"/ IVul? + 2 lha(u) 2o < 27 (22 + COnPrd) < &2,
Br(zl)

for any 0 < i < N < Cr=", where [ € (0,n) and r = 3.
Thus, the e-regularity theorem 2.6 implies

N
oscpyu < C’Zro‘[u]ca (Br(z:)) < Cro—"(rl=2 7%y +n)
i=1

< Cl(ig)(g0 + m0)-

Then by choosing ¢ and 79 small enough, it follows that «(M) is contained in a geodesic
convex ball B of S¥. Thus, u is null homotopic since B is contractible. O

2.3 Parabolic Monotonicity Formula of the Heat Flow of Self-induced Harmonic Map

In this section, a parabolic version of monotonicity formula will be given by using a similar
argument with that for heat flow of harmonic maps by Struwe [12] and Hamilton [22].

A smooth map u(z,t) : M x [0,T) — SF is called the heat flow of self-induced harmonic
map if it solves the negative gradient flow of the self-induced energy &,(u) defined in (2.4).
Namely, u is a smooth solution of the following equation with initial smooth map ug : M — SF:

16&,(u)
2 bu
u(x,0) = uo.

Owu = = Au+ |Vul*u + 1 (ha(u) — (ha(u),u) ),

(2.7)

where T is the maximal existence time.
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Remark 2.8 Since the nonlocal field hq(u) is well estimated by w in Theorem 5.5 and Theorem
5.7, by using almost the same arguments as that in Section 1 and Section 3 in Chapter 15 of

[37] (also refer to [28]), we can show the existence of local regular solution to (2.7) or (1.3).

The following energy identity for the heat flow of self-induced harmonic map, which will be

used in the coming context, is obtained directly.

Lemma 2.9 Suppose u is a smooth solution of (2.7) (or (1.3)), then for any 0 <t < T, there

holds
t 0E,(u)
E(u +// ‘ K
77( t) 0 o (S'U/

Now, we are in the position to give the parabolic type monotonicity formula for the heat flow

2
(x,t)dvdt = &, (uo),

where u(z) = u(z,t).

of self-induced harmonic map. Let B,(p) C M be a geodesic ball with p < g, (!, 2%,...,2")
be a normal coordinate on B,(p) = exp, ' B,(p) with 2(p) = 0. Define a weighted energy in

the following form
1
d(r,u,t) = ¢yt (ryu, t) == 2r2/ |Vu|2(x,t)f‘(x,O;t,to)apz(x)\/det(g)d:r.
B, (0)

Here
D(z,0;t,t0) = [4m(to — )] ™% exp — Jol*
) Y 4(t0 _ t)
is the backward heat kernel on R™ for ¢t <ty < T, and ¢(x) is a cut-off function with support
in By, ¢ =1 on By (0).
Let t = tg — r2, where 0 < r < min{\/to, p}. Then the weighted energy can be rewritten as

o(r) = lCnTQ_" |Vul?(x, tg — r%) exp ( )cpz(x)\/det(g)dx. (2.8)
Rn

2

||
4r2

Theorem 2.10 There exists a constant C (depending only on the geometry of M and SF)
such that if u is a smooth solution to the heat flow (2.7), then for any 0 < s < r < min{\/to, p}
with to < T and p < ig, the following properties hold.

(1) For n =3, there holds

¢(s) < e“UVG(r) + CE,(uo)(r — s).
(2) For n > 3, there holds
B(s) < ec(ris)¢(7“) + C&(uo)(r —s) + C(r'+! — §H,

where | € (1,3) is a constant depending only on n.

Proof Without loss of generality, we assume C,, = 1. Since Equation (2.7) is invariant under
translation (x,t) — (x,t —to), we may shift (0,%) to (0,0). Let u,(z,t) = u(rx,r?t). It follows
1 2 2 |z|?
o(r) = 2 /. [Vuy|*(z,—1)¢5(z)exp | — 4 Vdet(g,(x))dz,

where ¢, (z) = ¢(rz), g-(x) = g(rz) = g;j(rr)dz’ @ dz?. Thus, we have

do ~ 1.do(rro)
dr (ro) = ro dr

r=1
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1,.,d 2[?
= V2 ()2 @) esp (L ) Vaet(g,)da
T lp=1JR" U]
1—n Uy 2 2
=g / <Vu,V ><p()exp< 2>\/
n dr,._, g
_ dgi ou Ou ||?
1-n T 2
det(g
7o /R dr | _ 0w 02,7 @ eXp( 12 Ve
+rg™ |Vu|2<p(x)d% exp( ) det(g
Rn dr r=1
+re7™ [ Vu2e?(z)exp [ — =% d Vdet(g,)d
"o Rn uhe i esp 4r¢ ) dr|,_, Ir)a%

= I+ IT+IIT+1V,

Next, we estimate the above four terms step by steps.

Step 1  The estimates of I.

2
I= ré_n/ <V* <exp < - |49:Cr|2 >‘P2($)VU> s Vu -z — 2r§8tu>\/det(g)da:
n 0
1-n X 2 | |2
= - A 7(u) — o2 g Vu, Vu -z — 2rjoyu ) exp 42 \/det

2
— 27“(1)_"/ (Vo(z) -y Vu, Vu - 2 — 2r3du) exp < 1 2 ) (z)+/det(g)
R o
=1 + Iy,
where 7(u) = —Au — |Vu|?u.
A simple calculation shows

=z [ rw g o ) - <hd<u>7u>u>exp(— ﬁg)goQ(x)%det(g)dx

2r¢ 0z;

i Ti Ou

: [2f?
exp ( ) \/det

+2r8*”/ A2
n i T O0u i o0u z|?
-7 /n<_7(u)_g]27'08m] (I—g)]xamj>exp< |4|2) 2)+/det(g)
2
> sitri [ e (=, ) 2@ vaer(gas

413
—7(u) — Y

-l - 2r¢ Oz

2
212 exp( [2I* ) (2)+/det(g)
I — 2
—CT(Q)_"/ | g| 1 |Vu|zexp< l=[* ) (2)+/det(g)

7“0

The last term of I; can be estimated as follows

The last term of Iy < C¢(rg) + C/ |Vu|?y/det(g)dx
B, (0)

since we have the fact in [12]:
[

2™ o? . a?
" — <Cry" — C,
s To €xXp ( 47“(2) ) < Cry"exp ( 47“(2) +

o
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for m > s > 0 and max{|z|,ro} < p.

Next, we obtain the estimate of I as follows

2

Bz-oi [ vapveen (- 1 ) Ve
Rn 4T0

1 @ ? |2
- ZTg_"/n —7(u) — or2 ¢ Vu exp( ) x)4/det(g)
— C8ntrd~ "/ |hd(u)|26xp ( [2I* ) \/det
I — 2

7’0

Thus, by combining the estimates of I; and I, there holds

2
I>—-Cn*rd™ ”/ |hd(u)|26xp(— |f|2) x)\/det(g)dz — Co(ro)

|z

—Cv"g’"/ IWIQIWIQexp( o 2>\/det z—C |Vul|?y/det(g)dx

B, (0)

> —Co(rg) — /|Vu| Vdet(g)dz — Cn* |M|1_

where we have used the fact

. z|?
i [ e (=, )o@
R To

o |z
S C'f‘g ||hd( )||L2q (B ( ))Hexp<_ 47_8

3—n+" 3—n+"
< CTO q ||hd( )||L2‘1 (B, (p)) < CTO 7,

La(Rm)

for1 <¢< ™, withn >3 and ; + q, = 1, where we used Lemma 5.4.
In the case of n = 3, there holds

rem |hd(u)|2exp( 1 ) z)\/det(g)de < C [ |ha(uw)|?/det(g)dx
Rn

Step 2 The estimates of I1.

IT > —Co(ry) — C |Vu|?\/det(g)dx
B/J(P)

where we have used the inequality (2.9) and the fact
‘ dg,?

< 2,
or < Cla|

r=1

Step 3 The estimates of I11.

2
I > —r} "/ |Vu|?|V||z|exp (— |x|2>\/det(g)dx
P(ZD)/B P (p) 47‘0

>~c() [ [VuPVaet(g)ie

17
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Step 4 The estimates of IV.

v > —r(l)_" |Vul?p? () exp( ) 97109, )i lre 1|\/det
z[?
2
U

]Rn
) Vdet(g)dz — C |Vu|?\/det(g)dx

> —CT(Q)_" |Vul?¢?(z) exp (
R™ B,(p)

> ~Colr)~C | [VuPVaetg)ie
ava

where the inequality (2.9) has been used.
Therefore, there holds

@' (r) > —Co(r) — C&,(ug), forn=3;
and
¢ (r) > —Coh(r) — CE,(up) — Cn*r!,  for n > 3,
where [ € (1,3) is a positive constant depending only on n. Therefore, the above differential
inequalities imply the desire result in this theorem. O

3 The Proof of Theorem 1.1

Ding in [15] has ever shown a similar result with Theorem 1.1 for the heat flows of harmonic
maps with Dirichlet boundary condition. But Ding used a key lemma (Lemma 3.2 in [15]) which
doesn’t work for the heat flows of self-induced harmonic maps, since the self-induced harmonic
map is not defined locally. In this section, we intend to prove Theorem 1.1. To this end, we
need to establish a similar result with Lemma 3.2 in [15] since we can not use the maximum

principle in the present situation.

Lemma 3.1 Let u be a smooth solution to (2.7). Assume that max{1, 1f} < e(to) satisfying
0

e(t) <e(to) for0<ty— <t <tp.

2
e(to)

Then there exists a constant C > 0 (depending only on the geometry of M and S*) such that if
§>0and C65 < ! 1, we have

e(t) < (1 —-2C8)"te(ty) forto<t<to+ e(i )
0

where e(t) = sup, e | Vul?(z, t).
Proof Let t >ty be a time such that
e(t) <e(t) forty<t<t.

Assume that e(u)(z,t) = e(f) for some (z,t) € M x (0,T). Let

v(z,t) :u<x+ \/:@,EJF e%).

The assumption implies v(x,t) is well-defined on By(0) x [—2,0] endowed with metric g(z) =
(Gij () = (9(z + \/ @ ))”) under which e(v) = [Vv|2 < 1. Moreover, it satisfies the following

equation:

ov
ot

— Av = [Vol2o + 1P (ha(v) — (ha(v), o)),
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where

- ) t
halo)(e) = () hatw (= + " ol )
Let f(z,t) = f(u)(z + \/:({),E—F e(tﬂ). Then hy(v) = V,f and

. 1 ./ O0v 0 1
Agf = di = g* — H
o7 = dstrte) = 3 (oo )= gy (EH @) 0(0)
where H is the mean curvature field of M. The fact A = e '/2(#) < 1, since e(to) > 1, gives
the high order estimate [0%g;;| < |0¥g;;|. And hence, the standard locally LP estimate with
bootstrap technique implies there exists a constant C' > 0 (depending only on the geometry of
M and S*) such that we have

sup_[[vlloe sy < C, (3.1)
—1<t<

where a € (0,1) (also see Corollaries 6.6 and 6.8).
A simple calculation shows
’86(11)

o | SIAIVUE [+ CO+V20P) + C(IVeDn* (1ha(v)] + [Vha(v))-

Thus,
e(v)(0,0) < e(v)(0,t) + C|t| fort e [-1,0].

By rescaling back to the original coordinates, we have
_ _ 1 -
e(t) = e(u)(z,t) < e(t)+ C(t —t)e*(f) forte [t G ,t}
e

Let t be the least time in (to,to + e(fo)) such that

e(to)
t) = .
“® =1 _2cs
If such ¢ does not exist, we are done. Therefore, we have
_ 1 1) 1-2C6 1—(2C+1)0
t— <tg— (20 +1) < to,

Sto+ - <
e®) =" elto)  elto)
where we have chosen (2C 4 1)6 < 1. Thus,

e(to)

e(t) < e(to) + C(t —to)e*() < 1 — 205 1-206 1-2C6’

e(to) (1+05(4c5—1)>< e(to)

if C6 < }l, which is a contradiction.
Therefore, we have

e(t) < (1—2C3)te(to),
for ¢ € (to, to + et )) O
Remark 3.2 In the case of Neumann boundary, namely the case that u is a local smooth

solution to Equation (1.3), Lemma 3.1 also holds. Its proof is totally similar with that in the

above argument, the only thing we should check is the bound of sup_; <, |v|03,a(32ﬁﬁ), where

v(z,t) = U<$ + \/Z@’“— ef@)
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is defined on Q = {(x,t) € R" x [-2,0] | Z+
In fact, v satisfies the following equation:

ov
ot

with Neumann boundary condition 9 oulaa(,t) =0, where

\/ o € Q} for fixed (z,t) € 2 x[0,T) with e(f) > 1.

— Av = |Vo|*v + 2 (ha(v) — (ha(v), v)v)

hd(’l})

t
(" ( * e )
Therefore, the global LP-estimates in Appendix 6 imply
s vl caa By < O
for some constant C' depending only on n.
In the last part of this section, we use the results developed in Sections 2.2.1 and 2.3 to give
the proof of Theorem 1.1.
Proof of Theorem 1.1 ~ The proof is divided into two steps as follows.

Step 1 The solution u blows up at 7', that is sup,¢(o 1) e(t) = oc.
On the contrary, we assume there is a bound
sup e(t) <C (3.2)
0<t<T
for some constant C. In this case, we claim that T = co. We prove the claim by contradiction.
Assume that T' < oo, by applying the regular estimates in Remark 6.9, the bound (3.2) tells us
there holds
[ulom (arxis.ry) < C(m,0,C, |M]),

for any m > 0 and some small positive 0. And hence, it is not difficult to show 7' is an
extensional time, which is a contradiction.
The energy identity in Lemma 2.9 shows
/ - H 6&y(u) ?
0 (5U LQ(M)

dt S gn(U,Q),

then there exists a sequence {t;} such that || M)( i) — 0 as t; — oco. On the other

hand, the Schauder estimates with a bootstrap techmque imply

And hence, without loss of generality, we conclude that the sequence u, (7) — uso(x) in O

norms when t; — oo, which implies

0&y(uso) _
oo 0-

The energy inequality follows
E(uoo) < Enluo) < €2

Thus, if € and 79 are small enough, Corollary 2.7 implies 4o, is null homotopic map, which is

a contradiction.
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Step 2 The estimate for upper bound of T.
We claim that, if

sup e(t) = oo, (3.3)
t€[0,T)

where 7' is the maximal existence time of solution u, then there is a constant C' > 0 depending

only on the geometry of M and S¥ such that

Cé’n(uo)"i? for n =3,

min{iZ, T} <
0 C(&y(uwo) + T]4)"i2 for n > 3.

Next, we show the claim. By (3.3), there exists a sequence of ¢; — T such that
e(x;,t;) =e(t;) — oo and e(t) <e(t;)) fortel0,t],

where x; € M. Letting \; = \/1@_), Lemma 3.1 implies

1 —2
< )

)= _goshi
where t € [0,4; + A76] C [0,T) and | <io.

Set vi(x,t) = u(z;+Niw, t; + A2t) for (z,t) € By-1,(0) x [—\; %t;, 6] endowed with the metric
gi(x) = g(x; + \izx), for some small p < 5. Then, v; satisfies the following equation

Avi — A = |Vl 2v; + 2 (h(vi) — (h(vs), vi)vs), (3.4)
2t 0], where ﬁd(vi)(m) = Mhg(u)(z; + Nz, t; + \7).

l2

Let P, = B;2(0) x [—l;, , ] be a parabolic cylinder for some [ > 0, and

on B)\flp(O) X [—/\»_

3

d= Sgp(lﬁd(vi)l + [Vha(vi))).

Since e; = |Vv;|? < 1_§05 < 2 and d depends only on § and M, the Bochner formula shows
Orei — Ag,ei < Ce; + Cn?d,

where the constant C' is independent of 4, due to g; — gg (the Euclidean metric) when \; — 0
and the uniformly bound of e;. Let h; = exp(—Ct)e;. Then

8thi — Alhl S T]Qd.

The Nash—Moser iteration (one can refer Theorem 6.17 in [28]) shows

1= h(0,0) < C{( ) ! / h?(x,t)duﬂt) +n2d12}.
2B Jp,

By choosing Cn?dl® < }, ie. 1? < QCbng, we have

2
1 < 4C exp(Cl1#/2)

VUZ‘ 2dV¢dt.
< ey PLI |

Let R? = X265 — A%t = A\2s2. For t € (=%, %), by choosing I < § we can see that there

2
holds
30

o 2
=0—t .
2<S < 9
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Let to = t; + A26. By choosing 12 < § we have

2 [ Vo = (M)H/ V(- s + A2)dv
Bxi(zi)

B
! o 2—n 2 2
< R [Vu|*(-,to — R*)dv
o B (@)

< CRQ‘”/ |Vul?(-, to — R*)dv
Br(zi)

|z

<CR2‘"/ Vul?(-,to — R?) e (—
N BR(I1)| u|( ’ ) P AR?

)wwdet(g)dm

2
<COR*™" A |Vul|?(-,tg — R?) exp < — Lﬁ'zQ)gog(x)\/det(g)dx

= Co(R),

2
where we have used the facts: exp( !

1r2) is bounded in Br(z;) and ¢(z) = 1 on Br(z;), when
1 — 00.

)

2 20101772 }, the monotonicity formulas in Theorem 2.10

Therefore, for small {2 < min{

4 12/2
1< CeXQP(C /2) |V, [2dv;dt < C; sup <12” |Vvi|2dui>
l |Bl| Pl l tE[—lQ 12] Bl
272
R27&, (uo) for n =3,
<c@x{

R27"E,(ug) + n*RETH for n > 3.

Here Ry < min{ig, /to} for i large enough. And hence, letting o — 7', the claim follows.
On the other hand, if v/T' > ig, then 0 < ig < C(e? +77(2)) 22 for £ and 1o both small enough,
which is a contradiction. Hence, T' < i%, and the result follows. O

4 Estimates for the Boundary Case and the Proof of Theorem 1.3

In this section, we give the proof of Theorem 1.3 by modifying the previous argument on
Theorem 1.1. To proceed, we first establish an e-regularity result for self-induced harmonic
map and a parabolic monotonicity inequality for the heat flow of self-induced harmonic map
with Neumann boundary conditions. We only give the sketches of the proofs for these two

results, since the arguments go almost the same as that in Sections 2.2.1 and 2.3.

4.1 e-regularity and Gap Theorem for Boundary Case

Let u: Q — S™ ! be a W22 map on a smooth domain £ C R™ equipped with Euclidean metric

g, which solves the following equation

7(u) = n*(ha(u) — (ha(u), wyu);
ou (4.1)
=0.

oV |5q
Let @ be the extension of u by transformation of reflection associated to 9 ((6.4) and (6.5) in

Section 6). One can check that @ € W22(Q,S"), which satisfies the below equation

75(u) = n*(ha(t) — (hq(u),u) i)
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on 2, where § and hq() are the extensions of gg and hg(u) under this reflection respectively.
Here Q cC Q.
On the other hand, the estimates of h4(u) in Theorem 5.7 implies

Hﬁd(ﬂ)HLP(Q) S c ||17’HL:D(Q) )
for any p € (1,00).
Therefore, the monotonicity formula for almost harmonic maps (to see Proposition 2.1 in
[15] or [31]) implies that there exists positive constants C' such that
I,(a) < CI,(a) + Cn?a7, (4.2)

for any By(p) C Q, v € (0,4) and 0 < p < 0.
By using this monotonicity formula, by almost the same arguments as in Theorem 2.6 we
get a similar regularity result as follows in Neumann case.

Theorem 4.1 Let Q C R™ be a smooth bounded domian with n > 3. There exist positive
constants € and ny such that if u € W22(Q,S""1) is a solution of (1.4) and there hold
0<n<mny and I,(u)< g2

or rg > 0 and p € Q, then u is C“-continuous on Bro,, N for any o € (0,1). Moreover,
2 (p)
there holds

1
2
[u]co(Bry no) < C<7‘(2)_"_2a/ |Vul® + 77(2)> )
2 BryNQ

where constant C' is dependent only on n and o.
As a direct corollary, we have
Corollary 4.2 There erist positive constants €o and 19 such that if u is a W22(Q,S"~1)
solution to (4.1), ||Vul|2, <& and n <o, then u is a null-homotopic map.
4.2 Parabolic Monotonicity Inequality for the Boundary Case
Let u be a local smooth solution to
Oru = Au+ |Vul?u + n?(ha(u) — (ha(u), u)u), (z,t) € QA x [0,T),
ou

oV |5q
w(z,0) = ug : Q — S,

=0, (z,t) € 9Q x [0,T), (4.3)

where T is the maximal existence time. By definition of hg(u), Lemma 2.1 also holds for map
u € WH2(Q,R"). This implies that the local smooth solution u to Equation (4.3) satisfies the
following energy identity

nun) + | t / "55;5“)

for any 0 < t < T and we denote ui(x) = u(z, t).

2
(x,t)dvdt = E,(uo),

Next, we show a similar parabolic type monotonicity formula as that obtained in Theorem
2.10 for the boundary case. For any xo € 99, let {z} be a chart near zo such that Bgn =v
and the domain B,(z¢) = {x € Q|| — z¢| < p} is corresponding to the half ball By ={z¢c
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R™||z| < p, zn > 0}. We can define a similar weighted energy ¢ (r) on half space R’} as
follows,

610 = 40 [ 9ulate =ty (= o)) Vet

4r

7
where 0 < r < min{\/tg, p}, and ¢ is a cutoff function with support in B. Then we have
Theorem 4.3 There exists a constant C' (depending only on the geometry of Q) such that if
w s a smooth solution of (4.3), then for any 0 < s < r < min{+/to, p} with to <T and p < r,
the following properties hold.

(1) Forn =3, ¢*(s) < e“C=*Ig™(r) + CE)(uo)(r — s);

(2) Forn >3, ¢7(s) <eC=9)¢F(r) + C&,(uo)(r — s) + Cn*(r'+1 — s!*1), where | € (0,3)
18 a constant.

The proof of Theorem 4.3 is a similar argument with that in Theorem 2.10. The only thing
we need to emphasize is that the condition gﬁ = 0 on boundary 92 guarantees the boundary

term is vanished when integration by parts in Step 1 of Theorem 2.10.

4.3 Proof of Main Result

With the above e-regularity Theorem 4.1 and the parabolic monotonicity given in Theorem 4.3
at hand, we then prove Theorem 1.3 by applying almost same arguments as in the proof of
Theorem 1.1.

Proof of Theorem 1.3 The proof is divided into two steps as follows.

Step 1 The solution u blows up at 7', namely, sup;c(o 1 e(t) = oo.

On the contrary, by taking a similar argument as in Step 1 of Theorem 1.1 and using the
global estimates in Corollary 6.8, we can show there exists a limiting map u,, € C?%(Q,S"1)
which satisfies the below equation

Auee = |Vu00|2uoo + TIQ(hd(U) — (ha(u), Uso) Uoo),

OUoo (4.4)
p— 0’

o |sq

with By (us) < Ey(uo).
Therefore, if € and 7y are small enough, Theorem 4.1 and Corollary 4.2 imply that the
Uso () is in a contractible geodesic ball B of S". Suppose that ¢ : B — D is a smooth

diffeomorphism, where D; is the unit disk in R”~!, then there exists a smooth map

F(a,t) = ¢~ o (t¢ 0 uo(x) + (1 = )d(po))

satisfying F'(x,0) = po, F'(z,1) = us and
OUoo

6;1; =td¢ ™ (t 0 Uso () + (1 — 1) (o)) © dd(teo()) © o —0.
o0 o

Since ue € [ug]y, this implies that constant map is in [ugl,, which is a contradiction with
[uo]y # 0.
Step 2 The estimate for upper bound of 7.

Since Lemma 3.1 also holds for the boundary case, one can refer to Remark 3.2 for the
details, by a similar argument as that in Step 2 of Theorem 1.1, we can also show that there
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exists a sequence of maps {v;(x,t) = u(x; + \ix, t; + A7t)} satisfying
Oyvi = Av; + |V v; + 12 (ha(vi) — (ha(v;), vi)vs), (4.5)

on Q; x [=A72t;,8], where ; = {x € R™ | z; + \jx € Q} and hg(v;)(x) = N ha(u)(z; + Nz, t; +
A?t) is a vector-valued function from Q to R™. In fact, \; — 0 when i — oo, and there holds

1
sup|Vo;|* < <2 and |Vu](0,0)=1.
a, 1-2Co

Thus, without loss of generality, we assume (0,0) € 9€2;, the global estimates in Corollary 6.8
imply that there exists a constant C' > 0 depending only on § such that we have a bound
sup Z |8;8158Uz‘|ca(3+(0)) <C,
—2<t<I2 o5 ey ¢
for some small [ < §. Therefore, by an almost same blow-up argument as in [11], we can see

that there holds the following result, replacing the one obtained by Nash—Morse iteration in
Theorem 1.1,

C
1 =|Vv](0,0) < jt2 /P+ V| 2d,

where Pfr = Bl*(O) x [—12,1%]. Again by applying the parabolic monotonicity formula in
Theorem 4.3, we take a similar argument as in Theorem 1.1 to obtain the desire result. O

5 Appendix: Estimates of Potential hy

In this section, our goal is to get regular estimates of hy. In the sense of distribution, hg is
defined by

hd(u) =V <VyG(xv y)’ W(U)(y)> de,
M

which is a singular integral involved the Green’s function G(z,y) with w.

Since the main difference between the perturbed harmonic map and harmonic map is the
nonlocal potential, it is essential to obtain some regularity estimates of hy when u is regular. To
proceed, we need to recall some basic facts about the Green function G(x,y) and the Calderén—

Zygmund singular integral theory, which can be found in [1] and [2, 35] respectively.

Lemma 5.1 Let (M™,g) be a compact Riemannian manifold without boundary. There exists
a positive Green function G(x,y) € C°(M x M \ diag(M x M),R) such that the following
properties hold.

(1) G(z,y) = G(y,x) and G(x,y) > 0 for any x # y.

(2) AyG(z,y) = —04(y) for fized y € M, where § is the Delta function.

(3) For any fized y, there holds

G(z,y) = eald(z,)* ™" (1 +0(1)),

where d(z,y) is the distance function on M.
(4) There exists constant C' such that for 0 <1i <3, we have

i C
V@IS (g v
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Next, we give a brief introduction to the Calderén—Zygmund decomposition theory for
metric spaces satisfying volume doubling condition, which will be used to give the LP-estimate
of hg(u) for uw € LP(M,R*+1) 1 < p < co. More details can be found in [2].

Let (M, g) be a complete Riemannian manifold. We call that M satisfies the volume dou-
bling condition if there exists a constant C' such that for any geodesic ball B,.(p) and Bs,.(p),
there holds

p(Bar) < Cu(B;). (5.1)

Since a compact manifold (M, g) naturally meets Condition 5.1, the following lemma is obtained
by a similar argument as in Lemma 7.3.5 in [2]. There Auscher discussed the Calderén—Zygmund
decomposition theorem by using an overlapping-balls-covering technique (see Theorem 2.3.4 in
[2)).

Lemma 5.2 Suppose (M™, g) is a compact Riemannian manifold without boundary. Let f €
LY(M) and § > 0. Then there exist a C(n) and a decomposition of f = g+b almost everywhere
on M, such that the following arguments hold.

(1) g € L>=(M) with [|g||L~ < C(n)d,

(2) b= )", b; with support being in B; and fM bidv = 0, where {B;} are geodesic balls,

(3) fBi|bi|dU < C(n)dvol(By),

(4) {B;} has the bounded overlapping property, that is, >, xp, < C(n),

(5) 32 vol(Bi) < “§ ISl qany-

By using Lemma 5.2, one can obtain the following Calderén-Zygmund (C-Z) singular inte-
gral theorem, whose proof can be found in [2, Corollary 7.3.8] and [35, Theorem 1 in p. 29].
Lemma 5.3 Suppose (M",g) is a compact Riemannian manifold without boundary. Let T :
L?(M) — L%*(M) be a bounded linear operator given by T(f)(x) = K  f(z), where K(x,y) =

K(y,z) satisfies the following Hormander conditions:

K@l © VK@) < (52)

(z, )" = d(z,y)n Tt
where d(z,y) is the distance function on M, andn > 3. Then, there exists C(n,p) forp € (1,00)
such that for any w € LP(M), it holds

1T (w)|zr < C(n,p)lullzr-

Now, we are in the position to show the estimates of hgy.
Theorem 5.4 Let p € (1,00). There exists a constant C, such that for any v € LP(M,RF 1),
the potential hq(u) € LP(M,R*H1), which satisfies
[ha(w)llze < Cllullze.
That is, hq : LP(M,RF*1Y) — LP(M,R**1) is a bounded linear operator.
Proof Without loss of generality, we assume u € C>° (M, RF1).

Step 1 We claim that hy : L2(M,R¥1) — L2(M,RF*1) is bounded.
Let f solve Af = div(m(u)) satisfying (2.1) . Then f is smooth by the classical elliptic
theory. By choosing test function v = f, then we have

/MIVfIde = /M<Vf,7r(u)>dv.
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The Holder inequality implies

/|hd(u)|2dv§/ |7T(u)|2dv§/ lu[2dv.
M M M

Step 2 We claim hg4(u) = K * w(u) + hom(u), where K is a C-Z singular integral operator
and hg is a bounded constant operator.

A simple calculation shows

2) = [ Glaydivin(w)(y)de, = lin G, y)div(m(u))(y)dv,
M

e=0JM\B. (x)

=—lim (VyG(z,y), m(u)(y)) dvy + lim G(z,y)m(u)(y) - vdvuy,
£=0 JAn\B. () =0 JaB, (z)

—— [ (V6. 7w 0) doy.
Here we have used the fact

[ Gt v < O
0B.(x)

|0B(2)| JoB. ()

as € — 0, by using the estimate of Green’s function and the Bishop’s volume comparison

|7 (w)|(y)dvy — 0

theorem.
For any ¢ € C*>(M,TM), then

(Vf, o) : / fdiv(e dv—/ / (VyG(z,y), m(u)(y)) dvuydiv(p)(z)dv,
- /N ] V6o @, w(w o

= [ { [ @566 e, 0w Y,
ey » VG0 (0) V) m(w)(0) i

where the first equality is in the sense of distribution.
On the other hand, there holds

/ V, G, y)p(a) - vdv, — / V, Gz, 9)py) - vidvs
OB (y)

0B: (y)

< et / o) — @(y)|dvs — 0,
aBE(y)

as € — 0, since ¢ is continuous. Hence, the last term in the above formula is as follows,

lim </ V,G(z,y) @ vdvy, m(u) ® go(y)>d1/y,
9Bc(y)

e—=0 Jar

which defines a bounded operator hg, since

sup / |V,G(x,y)|dv, < C
0Bc(y)

0<e<ip

by using the estimates of the Green’s function in Lemma 5.1. Hence, it follows that

ha(u) = K m(u) + hom(u) = T'(u) + hom(u).
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where K (z,y) = V,V,G(z,y) and K(z,y) = K(y,z). The operator T satisfies the Hérmander
condition (5.2) by the estimates of Green’s function G in Lemma 5.1. Therefore, Theorem 5.3
implies h4 is bounded from LP(M,RF*1) to itself for any p € (1, 00). O

Theorem 5.5 Let p € (1,00). There erxists a constant C, such that for any u € W1P(M,
R*+1) | the potential hqa(u) € WHP(M, T M), which satisfies
[ha(u)llwre < Cllullw.e.
That is, hq : WP (M, RFD — WP (M, TM) is a bounded linear operator.
Proof  Since u € WP, we have Af = div(n(u)) € LP. By applying Theorem 2.3 in [38], there
holds
[fllwze < CUAf[Le + | fllwre)-

The precise form
Af =div(n(u)) = div(u) — (H, u)

gives

[Aflle < Clullwre + [[HI Lo [[ullr)-
Here H(z) is the mean curvature of M.

On the other hand, we have f(z) = — [,,(V,G(z,y),n(u)(y))dv,. The Young inequality

implies

[fllr < (IVy Gz, o lullr < Cllul|e.
To combine with the result in Theorem 5.4, there holds

[ha(uw)llwre < Cllullwre. O
Remark 5.6 By using Theorem 2.3 in [38] again, we can also obtain higher regular estimates
for hy:
[ha(w)llwrr < | fllwrere < Ce(lullwes + [H#fuwe-rp) < Crllullwr.s,
for p € (1,00) and k > 1.

If M = € is a smooth bounded domain in R", similar estimates of hg have been established
by Carbou and others as the following theorem (cf. [4, 5, 26, 33]).

Theorem 5.7 Let 1 < p < co. There for any k € N, if u € W*P(Q), the potential hy belongs
to WEP(Q), and there exists a constant Cy, such that

||hd(u)||Wk,p(Q) < Cillullwrr()-
6 Appendix: Global Estimates of Heat Equation with Neumann Boundary Con-
dition
Let (M,g) be a compact Riemannian manifold with boundary M (or OM = (), and w :
M x [0,Tp] — R be a smooth solution to the following heat equation
deu—Du=f(zu),  (2,t) € M x (0,To],
0
Y, (z,1) € OM x [0, Ty, (6.1)

v
u(z,0) = uo, xreM.
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with uo being a smooth initial data, where f(z,u) is the nonhomogeneous term involving = and

u, v is the outer normal vector field. If OM = (), let u be a smooth solution to the following

problem
u— Au= fz,u),  (z,1) € M x (0,Ty], 62)
u(z,0) = uo, e M. '
Let rg > 0 be the injective radius of M, {x1,...,2,} be normal coordinates on geodesic

ball B,.(y) C M with r < ro. We denote Qs = B, x (J,T] for 0 < 6 < Ty, and set
VV2201 (Qrs5) = {u € W' (Q,5)| u =0 on the parabolic boundary}.

To get regular estimates of the solution u to (6.1) or (6.2), we need to use the following local
LP-estimates for parabolic equations (cf. [13, 28]).
Lemma 6.1 Let 1 < p < oco. Suppose that u € W22”01(QT,5) N LP(Qrs) is a solution to

O — Au = f with f € LP(Qrs). Then there exists a constant C' depending only on w(r), p
and n, such that there holds a bound:

lullw21g, .y < Cllullog,o) + 1 F12r(@,0):

where w(r) = supp, >, 9i — dij| +supg, >2.; 10g:5]-
Remark 6.2 If B, is equipped with the Euclidean metric gg, the above constant C'is depen-
dent only of p and n.

With Lemma 6.1 at hand, we can show the global estimates for the regular solution u to (6.2)
by taking an inductive argument and using a process of patching together the local estimates
for u in the case 9M = (). On the other hand, when OM # (), the analysis is more complicated,
since we need to deal with the regular estimates for the solution u to (6.1) on the boundary,
where u has no equation. By using the classical treatment for Neumann boundary problem, we
will extend the solution across boundary by reflection, which transfers the boundary estimates
into the locally interior ones. Therefore, global estimates of solution u for (6.1) can be obtained
by a suitable combination of extending the solution and employing an argument of patching
local estimates.

6.1 Regular Estimates of Solutions to Equation (6.2)

In this subsection, we will establish the LP-theory of heat equation on a closed Riemannian
manifold. Let (M, g) be a closed Riemannian manifold, and « be a smooth solution of (6.2)
with smooth initial data ug. To state the result precisely, we denote

k
Hu”kap(MX[tl,tz]) - Z ||ViuHLP(M><[t1,t2]) ?
=0

and
Hu||Wk+2,p(M><[t17t2]) = ||U||Wk+2,p(MX[t1,t2]) + ||atu||Wk,p(Mx[tht2]) )
for k € N and [tl,tg] C (O,Tg].

Theorem 6.3 Let2 < p < oo, and u be a smooth solution of (6.2). Then for any 0 < § < Ty
and k € N, there exists a positive constant Csj depending only on k, § and n such that there
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holds
||u||Wk+2,p(Mx[5,TO]) < Cé,k(HfHWk,p(Mx[5/2,T]) + HUHWHLP(MX[5/2,T0]))-

Proof Since (M, g) is closed, there exists a uniformly local finite covering { B, (x;)} for M such
that B, jo(x;) N By ja(x;) = 0 for i # j (cf. Lemma 1.6 in [25]). Let {7} be a partition of unity
corresponding to this covering. Then v = ), u; where u; = n;u has compact support in B,.(x;).

Moreover, there exists a constant C' depending on the geometry of M such that
Z [Vni|(z) + Z |V2nil(z) < C, I(x) = Card{i|z € B.(z;)} <C, (6.3)

for any x € M. Then we divide our proof into two steps.

Step 1 We show the result when k& = 0.
Since u; has support in B,.(z;), which satisfies the following equation

Ovui — Auy = 2(Vu, Vi) + Anju+ ni f = fi,
Theorem 6.1 implies that there exists a Cs such that

il g, 5 < Collluill e, s + I fillr(@,.s/2):

where Q5 = B, x [6,T]. Next, we patch the above local results to get
el arxisn < D2 Iillwz @ s

< CCs Y _(lullirinq, s s + 1 Loy s et

3

< CQCS(”“”WLP(MX[5/2,TO]) + HfHLp(MX[(s/Q,TO]))-

Step 2 Higher estimates for u by inducting on k.
We assume that the estimate in this theorem holds true for any [ < k. In the case of k + 1,
let X be any smooth vector field on M, then we can take a simple computation to show that

V xu satisfies the following equation locally

(at —A)qu = fo-f—o; l:axa’X:|vafau+vafa <[8m°"X:|u> = fx,

where [+, ] is the Lie bracket and {x®} is a chart. Here,
fx =Vxf+ V> X#u+ VXH#Vu,
where # denotes the linear combination.
Therefore, by using the assumption of induction, there holds
”vXu”WkJrZP(MX[(S,TO]) < Cis(”VXu“VV’HLP(Mx[6/2,Tg]) + ||fX||W(Mx[5/2,TO]))
< C5,X(”vaHV”V’CvP(Mx[S/Q,TO]) + ||u||Wk+2vP(M><[6/2,TO]))'

For the covering {B,(z;)} in Step 1 with 2r < ig, there exists a constant C' depending only on
the geometry of M such that

I'(z) = card{i |z € Ba,(z;)} < C.
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Let X = 9062@ with ¢ = 1 on B,(z;) and ¢ = 0 on M \ Ba,(z;), where {z{} is the normal
coordinates on By, (x;). Then there exists a constant Csj > 0 such that
o o

(e {03
0§ 0x§

< Cm(

e B )
Wh+20(Q s (20) WD Qansale)

Since there exists a C; > 0 such that

Wk P(Qays/2(24))

ou

Dz < ClIVullwer (s, @)

Wp (B, (z:))

Cfl ||vu||leP(Br(:ri)) = Z
a=1
for any [ > 0. It follows that

ullyirranq, s < C&k(”f||V”Vk+1’p<Q2T,a/2(zi>) Fllulliszn @, wi)-

Therefore, by a similar patching argument as in Step 1, we have

H“”WHM(Mx[&,%]) < C‘Svk(”f”ﬁ/k“vp(Mx[6/2,T0]) + ||u||Wk+2vP(M><[6/2,T0]))'

Therefore, the proof is completed. O

6.2 Regular Estimates of Solutions to Equation (6.1)

In this subsection, we show that the regular solution u to the Neumann boundary problem (6.1)
satisfies similar estimates as that in Theorem 6.3. For simplicity, we assume (M, g) = (2, gg)
is a bounded domain in R™ endowed with the Euclidean metric gz, and the boundary 02 is
smooth. Let u be a smooth solution of Equation (6.1). Our theorem can be stated as follows.
Theorem 6.4 Let u be a smooth solution to (6.1) on Q x [0, Ty, Then for any 0 < & < Ty,
k>0 and 2 < p < oo, there exists a Csj, such that we have

||U||Wp2k+2vk+1(gx[5,TO]) < Cé,k(||f||wp2kv’“(gx[5/2,TO]) + Hu”ﬁnkﬂ,p(gx[5/2,T0]))-
Before proving Theorem 6.4, we need to define the reflection associated to the boundary.
Let Q. = {z € Q| dist(z, ) < e} with e small enough. We define the reflection map by
R:Q. —R" z+—y=2n(z)—uz, (6.4)

where 7 : Q. — 09 is the projection such that 7(z) = z with |z — z| = dist(x, 09). In fact, =
is well-defined and smooth if we choose € small enough, so does R (cf. [17]). For simplicity, we
denote

Q=QUR(Q).

Let u : 2 — R be a function. we define the extension of v and metric gg by using the

transformation of reflection associated to 92 as follows,

(), x €,
wle) = uo R (x), x¢& R(.). (65)

And

which is in W1H>(Q).
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Now we are in position to prove Theorem 6.4.
Proof Our proof is divided into three steps.
Step 1 We show the result when k& = 0. Let 7 be a cut-off function such that 1|0par (o x (0,70])) =
0, where Opar(ax(0,7p)) 18 the parabolic boundary. v = nu satisfies the below equation
v — Av = —u(dy — Ay +2(Vu, V) +nf = f,

(6.6)
V[Opar(ax (0,10]) = 0-

Then, Theorem 6.1 implies

Hunﬁ’l(Q’x[é,To]) < C(S(”f“LP(QX[é/Q,TO]) + |\U||W1,p(nx[5/2,:r0]))~

where Q' x [§, Tp] is the level set of {n =1}.

On the other hand, to get the global regular estimates of u, we need to extend u across
the boundary 0. Let zo be a point on 99, Uy be a neighborhood of 2y in . The Neumann
boundary condition g“,j |ao = 0 implies that u is a strong solution to equation

(0 — Ag)u= f,
on Q() = U() @] R(U()), where

f - f((E), xT e U(),
f(R™ (=), € R(Uo).

Hence, Theorem 6.1 again shows

||u||Wp2‘1(U6><[5,TO]) < C5(||f||LP(U0><[6/2,T0]) + HUHWLP(UOX[S,TO]))’

where U) CC Uy. Then by applying a similar patching process as in Theorem 6.3, the desire
result can be obtained.

Step 2 Higher order estimates by inducting on k.

Assume that the result holds true for any s < k, we will show it also holds true for s = k+1.
In order to apply a similar treatment as that used in Step 2 of Theorem 6.3, we classify the
tangent vector fields on Q into two classes as follows.

(1) A={X € x(Q) | X|oa € x(09) with [X,v] = 0}, where v is the outer normal vector of
). In this case, we mainly take X = aii near the boundary under local coordinates {z;} with
V= ain or X has compact support in .

(2) B={X € x(Q)| X|oa L x(09)}. That is, B is the space of smooth vector field whose
restriction on 92 is orthogonal with the tangent space of 9€2. In this case, we mainly take
X = v near the boundary.

Step 2.1 Estimates for the case X € A.

Let @5 be the solution of the following ordinary differential equation

dps
s~ X(ps) (6.7)

o = identity.

Then, Vxu = 632(’“5:0 and agfubg = Vx(g:ﬂag) + [X, V]’u,|3Q = 0.
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Letting X € A and Y € A, a simple calculation shows

(0 —A)VxVyu=VxVyf+L=fxy,

0 0
VVXVYU|BQ = (vay Z + [V7 X]Vyu + Vy([V, X]u))

B B =0

o0

where
L= > VIX#V Y #V ™.

l4+s+m=4,1<m<4

By applying the assumption of induction, we have

||VXVYU’||W3’C+2”“+1(Q><[§,TO]) < Cé,k(HfXY||W§’<vk(gx[5,TO]) + HVXVYUHWszer(QX[5/2,TO]))-

On the other hand, 0;u satisfies the following evolved equation

(6t — A)Btu = 8tf,

6.9
o Ol =0, o

Then, again the assumption of induction gives

||8tu||W§k+2’k+l(Q><[S,Tg]) < C&k(||5tf||w,?k”“(9x[5/2,T0]) F 10sullizrsip xs/2,15)))-

Step 2.2 Estimates for the case of X € B.
Let xg be a point on 9. Without loss of generality, we assume Uy C ). is a neighborhood
of x¢ in Q such that Uy N 9N C R"~!. By choosing X = v = Bin’ we can show

0?u 02 9
dz? _A“_Zaxg _at“_f_i;axf'

i=1

The estimates in Step 2.1 implies
0%u
0x2

< Cé,k(HatU”ng“vk“(Uéx[g,TO]) + |‘f||wg’c+2”€+1(U6X[g,TO]))

n—1
+ Cs 1 Z
=1

< C&k(”fnwg’““vk“woX[(;/Q,TO]) + ||u||W2k+s,p(U0x[5/2,T0]))’

Wkt RN (U x[6,T0))

9%u
ox

W2 (U x [8,To))

where U/ has compact support in Up.
Then by using a similar patching argument as in Step 2 of Theorem 6.3, the estimates in
Step 2.1 and Step 2.2 imply
lullwzssore sy < Conlllfllwzerziss s omy + ullweres@xs/am))

and

lullyzrransza,, oo m) S Conllflwzrezies oo my + uliren @, xis/2,m0):

where Q' = Q\ Q5.

Therefore, the desired result follows from the above tw estimates. O
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6.3 Applications to the Heat Flow of Self-induced Harmonic Maps

By using the LP-estimates of heat equation we obtained in Theorem 6.3 and Theorem 6.4, we
have the following estimates for heat flows of self-induced harmonic maps, which has been used

in the preceding context.

Theorem 6.5 Let u be a smooth solution of (1.3). We assume that supq o 1) |[Vul(x,t) < C
for some constant C. Then for any 2 < p < oo and 0 < § < Ty, there exists a constant
C(6,C,To, ) such that we have

Hu||W§‘2(Q><[2§,T0]) S 0(57 Ca T07 |Q|)a

where |Q| denotes the volume of ).
Proof Let
fla,u) = |Vul?u+ (ha(u) — (ha(u),u) w).

Since supq y[o,7,) €(,t) < C, we can easily see that for any py € 2, 00)

||f||LP0(Q><[O7TO]) < C(pOa |Q|)

On the other hand, the global LP-estimate in Theorem 6.4 implies

Hunwgél(gx[(s/gjo}) < Cs([fllro + ||U|‘W1,po(QX[O,TO])) < C(po, To, |€2).

The above estimate for u then implies that

||f||W1,P0(Q><[5/2,T0]) S C(p07T07 |Q|);

since
Vi= > Vu#Vu#Viu+ Y Voha(w)#V'u#Vu.
sHlby=2 sHlHvy=1
To show the estimates of ||ullj3.00 + [|O¢|/71.00, We only need to estimate the bounds of
(6‘?})3 and ain Oyu, where {z'} is a chart at a neighborhood Up of any zq € 9 in Q and
ain laonu, = v, since the other components of V3u and V;u can be estimated by an almost
the same method as that in Step 2.1 of Theorem 6.4.

Without loss of generality, we assume Uy N 9Q C R*!. Then 68wun satisfies the following
equation:
ou 0
(0 —4) dxm axj;’
ou (6.10)
N =0.
92" |yynon

The global LP-estimates in Dirichlet case (refer to [13, 28]) implies

ou
ox"

< C(Hf”ﬁ/l,po =+ ”u”Wl,po) < O(po,To, |U0|)7
Wi (U % [8,To))

where Uj CcC U.

Then, by applying a covering argument, we can show

lullyirsro + 0cttllyirne < C(po, To, [€2).
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Hence, this estimate again implies f € W2? with norm controlled by C(po, Tp, |Q|), for any
2 <p<py < o0, since
V= ) VuEVuHVu+ > Vha(u)#FV u#V .
s+i+y=3 s+l+y=2

To get a bound of ||f||W5,1(QX[57TO]), it remains to show the estimate for 0,f. A simple

calculation shows
Ouf = Vu#Vowudtu + |Vul?0pu + ha(9u) + Oputha(u)u.

Since [Vu| + [ha(u)] < C and [|ha(9u) 1.0y < C l|0ullyi.0 gy, there holds

10cf 1l Lo xio,mo)) < N0etllwrox o2 -

Therefore, Theorem 6.4 implies

Il ox 26,1y < CUSF w2t @xsmp) + 1ellwss @xiszn) < €
where C' is only dependent on ps, [Q|, Ty and supq, (o 7] |Vul- O
For the application of Theorem 6.5 to the blow-up analysis in Section 4, we consider the

equation to some scaling of u (a smooth solution of (1.3)). That is, for 0 < A < 1, let
v(z,t) = u(Ax, \*t), where (0,0) € © and A™! = supg (o7, [Vul. A simple calculation shows
that v satisfies the following equation on Qy = {z | Az € Q}:

Opv — Av = [Vo?v +10? (hg (v) — (R (v), v)v),

ov

g0,

v(z,0) = ug(Az) : Q) — S" — R

=0, (6.11)

where h)(v)(w,t) = M2hg(u)(Az,\%t) is a vector-valued function from Q) to R”, and
SUPq, x[0,x-27,] | VV| < 1. Thus, the fine estimates of hg(u) imply
||h2(v)||wk,p(ﬂ/\) < CN? ||'U||Wk,p(Q/\) .

Given any zo € Qy, we assume By (z0) = {x € Q) ||z — x| < 2} C Q. Theorem 6.5 implies

the following result.

Corollary 6.6 Let p € (n,00), and [to,to + 1] C [0, A\"'Tp]. Suppose that v is a smooth
solution to Equation (6.11). Then, there holds

||v||w4 (B3 (z0) x [to+8,to+1]) C (4, p, 19),
for any xo € Q and some small § > 0.
Proof Let pg > n. Then, there holds
_n 1
173 (W) l[wreo (93) < CX (0]l pio () < CA* 70 |9 50.
It implies that for some constant C' there holds true

sup  |h)(v)| < CAPwo
Qx X [0,A—2T0]

Without loss of generality, we assume ¢y = 0. A similar argument as in Theorem 6.5 shows
that there exists C(p, d,po) and po > n such that

10llvir.ro (B woyx(5/2,11) T 100 virnvo (B (o) x(8/2.1) = C(A 6 [€).
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Therefore, Theorem 6.5 implies the result. U

By using the following embedding theorem in [13], we can get the point-wise estimates of
solutions as follows.

Theorem 6.7 Let v € W2HH(Q x [0,Tp]), where 9Q is smooth and | € N. Then, for 0 <

r+2s=pu<2l, ifp> 2"11'2 and ";2 is mot an integer, there holds

0305w € Co(@ x [0, ),
where o = 21 — pu — (n + 2)/p. Moreover, we have
|858;U|CQ(QX[O,T0]) <C ”U”ng-l(QX[O,TD]) )

where C'is only dependent of n, 1, p, 99, diam(Q)~! and T, .

Corollary 6.8 Let u be a smooth solution of Equation (1.3). We assume that supg (o 1] |Vl
(x,t) < C for some constant C. Then, there holds

> 10705l ceax sy < C6,C,To, Q)
0<2s+r<4

for any a € (0,1).

Remark 6.9 (1) Suppose that v is smooth solution to (6.11) with supg 0 x-27,) V0] < 1,
then there exists a constant C' depending only on || and § such that

Z |afa;U|CQ(B;(zo)x[t0+6,t0+1]) < C(6,[9),
0<2s+r<4
for any zo € Qy and [t,to + 1] C [0, \"2Tp).
(2) Let k > 1. Suppose u is a smooth solution of to (1.3) on 2x[0,T) with Supq o,y | Vul(z,
t) < C. By considering the equation of uj, = dFu for any k € N, we can apply an argument of
induction on k to show that for any m > 0, there holds

[ul cm@xis,m)) < C(m, 6, C, [2).
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