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1 Introduction

Let F/F* be a CM extension of number fields with ¢ € Gal(F/FT) a complex conjugation.
In this article, we study deformations of conjugate self-dual Galois representations of F. The
study is twofold. First, we prove an R=T type theorem (Theorem 3.38) for a conjugate self-
dual Galois representation 7 of F' with coefficients in a finite field, satisfying a certain property
called rigid (Definition 3.36). It is worth mentioning that unlike many other references in the
field, we neither assume that the characteristic of the coefficient field is relatively split in F/F*
nor assume that 7 only ramifies at places that are split in F. Second, we study the rigidity
property for the family of residue Galois representations attached to a symmetric power of an
elliptic curve, as well as to a regular algebraic conjugate self-dual cuspidal representation II. In
particular, we show in Theorem 4.8 that if II has a supercuspidal component, then the residue
Galois representation is rigid whenever the characteristic is large enough.

The main purpose of this article is to make preparation for our work [21] in which we prove
major cases toward the Beilinson—Bloch—Kato conjecture on the relation between Selmer groups
and L-functions. To see how Galois deformation is used in the study of Selmer groups, we refer
to that article.

The two main theorems are both technical to state. In order to give some flavor of what
we can prove in this article, we now state a result (Theorem 1.1 below) that follows from the
combination of the two main theorems and is relatively straightforward to formulate. Also, it
seems to us that this kind of result is new in the literature.

More precisely, we consider the following data:

e an RACSDC (that is, regular algebraic conjugate self-dual cuspidal) representation II
of GLy(Ap) for some N > 2, with the archimedean weights £ = ({1 < -+ < & n)r €
(ZN Hom(FC) (Definition 2.8),

e a number field £ C C such that one has a family of Galois representations
{pH,A: Gal(F/F) — GLN(EA)}A

indexed by primes of E satisfying pf; \ ~ py; (1 — N) as in Proposition 2.9 and Definition 2.10
(see Remark 2.11),

e a finite set ¥ of nonarchimedean places of F'* such that for every nonarchimedean place
w of F not above X7, I, is unramified and the underlying rational prime of w is unramified
in F.
For every prime A of E, we write £ its underlying rational prime and O, the ring of integers
of Ex. Let Arp s+ be the set of primes A of E such that either pry x is not residually absolutely
irreducible, or £, underlies X7, or £y — N — 1 is strictly smaller than the maximal distance of
integers in {. For every prime A of F not in Ajj »+, we can define

e a commutative Oy-algebra R";‘;V that classifies conjugate self-dual deformations of the
residue representation of pry ) that are crystalline with regular Fontaine-Laffaille weights at
places above £, and unramified outside ¥ and places above £, and

e a maximal ideal my of TEA} with the residue field O, /X determined by the Satake parameters
of II, where ’]I‘f\,A is the abstract spherical unitary Hecke algebra of rank N away from ¥ and
places above £y.
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Consider pairs (V,K) in which

e V is a (nondegenerate) hermitian space over F' (with respect to c) of rank N that is split
at every nonarchimedean place of F'™ not in 1, and

e K =], K, is a neat open compact subgroup of U(V)(A%, ) such that K, is the stabilizer
of a self-dual lattice for v ¢ 7T,
satisfying that there exists a cuspidal automorphic representation 7 of U(V)(A g+ ) with nonzero
K-invariants whose automorphic base change is II. Every pair (V,K) as above gives a Shimura
variety Sh(V,K), which is a quasi-projective smooth scheme over C of dimension d(V). For
A & A s+, the weights £ give rise to an Oy-linear local system %% x on Sh(V,K); and we let
T be the image of TS in Endg(HEY) (Sh(V,K), Z 1))

We refer to §3.6 for more details of the above constructions.

Theorem 1.1 Let the setup be as above. Suppose that there exists a nonarchimedean place of
F at which 11 is supercuspidal. Then Ap s+ is a finite set. Moreover, there exists a finite set
A'rLEJ, of primes of E containing Ay s+, such that for every A ¢ A'rLEJ, and every pair (V,K)
as above with d(V) <1, we have

(1) There is a canonical isomorphism R(‘;L‘:" = Tam, of local complete intersection commu-
tative Oy -algebras.

(2) The T m,-module H(éit(v)(Sh(V,K),‘,iﬁg)\)mA is finite and free.

The above theorem is a consequence of the two main results of this article, namely, Theo-
rem 3.38 and Theorem 4.8. We have a similar consequence when d(V) is general, but under an
extra assumption on certain vanishing of localized cohomology off middle degree.

The article is organized as follows. In Section 2, we make some preparations for conju-
gate self-dual representations, unitary Hecke algebras, and automorphic representations. In
Section 3, we study both local and global deformations of conjugate self-dual Galois represen-
tations. In Section 4, we study the rigidity property for symmetric powers of elliptic curves and

automorphic Galois representations.
Notations and Conventions
e All rings are commutative and unital; and ring homomorphisms preserve units.

e Throughout the article, we fix an integer N > 1. Denote by My (resp. GLy) the scheme
over Z of N-by-N square matrices (resp. invertible square matrices).

e We fix a CM extension F//F* of number fields and an algebraic closure F' of F, with
c € Gal(F/F*) a complex conjugation. Put I'r := Gal(F/F) and ['p+ = Gal(F/F*).
In this article, all hermitian spaces over F' are with respect to the convolution ¢ and are

nondegenerate.

e Denote by X (resp. £1) the set of complex embeddings of F' (resp. F*). For 7 € ¥,
we denote by 7¢ := T oc € X its conjugation and 7 = 7|p+ € XL the underlying
element.

e For every rational prime p, denote by ¥ the set of all p-adic places of F'*.

e Denote by Egad the union of E; for all p that ramifies in F'.

e Denote by 1 =g p+: T'p+ — {£1} the character associated to the extension F/F*.

e For every prime ¢, denote by €;: I'p+ — Z; the f-adic cyclotomic character.
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e For every place v of F'T, we

— put F, = F Qg+ F\; and define §(v) to be 1 (resp. 2) if v splits (resp. does not
split) in F

— fix an algebraic closure F'[ of F,}" containing F; and put Ty := Gal(F;} /F,}) as a
subgroup of I'p+;

— for a homomorphism 7 from I'p+ to another group, denote by r, the restriction of r
to the subgroup I'p+.

e For every nonarchimedean place w of F', we

— identify the Galois group I'r,, with I'+ NT'p (vesp. ¢(I'p+ NT'p)c), where v is the
underlying place of F*, if the embedding F' — F} induces (resp. does not induce)
the place w;

— let Ip, C ', be the inertia subgroup;

— denote by ¢, € I'r,, an arithmetic Frobenius element.

2 Preparation
2.1 Extension of Essentially Conjugate Self-dual Representations
In this subsection, we collect some notion and facts on the extension of essentially conjugate
self-dual representations.
Notation 2.1 We recall the group scheme ¥y from [14, §1].2) Put
Yy = (GLy x GL1) x {1,¢}
with ¢2 = 1 and
c(g,m)e = ('g™" 1)

for (g, ) € GLy x GL;. In what follows, we will often regard GLy as a subgroup of ¥y via the
embedding g — (g,1,1). Denote by v: ¥y — GL; the homomorphism such that v|gLy x gL, 1S
the projection to the factor GL; and that v(¢) = —1. We have the adjoint action ad of ¥y on
My, given by

ad(g, p)(x) = gzg™", ad(c)(x) =~z
for z € My and (g, ) € GLy x GL;.

Let T be a topological group, and I' C I an open subgroup of index at most two.
Notation 2.2 Let R be a (topological) ring.

e For a (continuous) homomorphism p: I' — GLx(R), we denote by p¥: I' — GLy(R)
the contragredient homomorphism, which is defined by the formula p¥(z) = ‘o(z)~! for every
zel.

e For a (continuous) homomorphism p: I' — GLy(R) and an element € T that normalizes
I, we let p7: T' — GLx(R) be the (continuous) homomorphism defined by p?(z) = p(yzy~!)
for every z € T

e For a (continuous) homomorphism

r: T — 9y (R)

2) In fact, a better notion seems to be the C-group introduced in [7].
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such that the image of r|r lies in GLy(R) x R*, we denote
r: T — GLy(R) x R* — GLy/(R)

the composition of r|r with the projection to GLy (R).
Lemma 2.3 Suppose that [ : T| = 2. Let R be a (topological) ring and x: T — R* a
(continuous) character. We have

(1) If r: T — 9n(R) is a (continuous) homomorphism satisfying v~ (GLyx(R) x RX) =T
and vor =y, then for every v € r \T', we have

Y = Boyr®V o B71,

where B is obtained from r(y) = (B, —x(7),¢).
(2) Let p: T — GLn(R) be a (continuous) homomorphism, v an element in T \ T, and
B € GLy(R) such that p” = Boxp"oB™! and B'B~ = upx(y)~'p(y?) for some up € {+1}.

Then there exists a unique (continuous) homomorphism
r: T — 9n(R)

satisfying r|r = (p,x|r, 1) and r(v) = (B, usx(7),¢)-

(3) Suppose in (2) that R is a field and p is absolutely irreducible. If p7 and xp* are
conjugate, then p induces a (continuous) homomorphism r: T — 9 (R) satisfying r|r = (p, X),
unique up to changing the GLy (R)-component of r(vy) by a scalar in R*.

Proof Part (1) is a special case of [14, Lemma 2.1.1].

For (2), we check that

r(v*) = (B, usx(),¢) - (B, ux(7),¢) = (ux(v)B'B~', x(v%), 1) = (p(*), x(v*), 1).

Since T is generated by T and v, we obtain a unique (continuous) homomorphism r: T' — %y (R)
as in (2).
For (3), by Schur’s lemma, the element B is unique up to scalar in R*, which implies the

existence and also the uniqueness of pp. Thus, (3) follows immediately. O

2.2 Unitary Satake Parameters and Unitary Hecke Algebras

In this subsection, we introduce the notion of unitary Satake parameters and unitary Hecke
algebras.

Definition 2.4 (Abstract Satake parameter) Let L be a ring. For a multi-subset o =

{a1,...,an} C L, we put
N

Po(T) = [[(T — i) € LIT).
i=1
Consider a nonarchimedean place v of F* not in E{)"ad.

(1) Suppose that v is inert in F. We define an (abstract) Satake parameter in L at v of
rank N to be a multi-subset o« C L of cardinality N. We say that o is unitary if P (T) =
(=T)N - Po(T7Y).

(2) Suppose that v splits in F'. We define an (abstract) Satake parameter in L at v of rank
N to be a pair o := (a1; az) of multi-subsets a1, a2 C L of cardinality N, indexed by the two



1604 Liu Y. F. et al.

places wi,wy of F above v. We say that a is unitary if Py, (T) = c- TV - Pa,(T™Y) for some
constant c € L*™.

Let v be a nonarchimedean place of F'* not in Ef)rad. Let Ay, be the unique up to isomor-
phism nondegenerate hermitian module over O, = Op ®0,.y 0] Ft of rank N, and Uy, its
unitary group over Op. Under a suitable basis, the associated hermitian form of AN, is given
by the matrix

0 0 1
0 10
1 0 0

Consider the local spherical Hecke algebra
Tn,o = Z[UN,o(Ops \UNw(F) /UNw(Op)],

with the unit element 1y N0, 1) Let Ay, be the maximal split diagonal subtorus of Uy 4,
and X, (An,) be its cocharacter group. Then there is a well-known Satake transform

T = Z[[ol =2 [An o (F)/An,o (O )] = Z[|o]|**2)[Xo (An,o)] (2.1)

as a homomorphism of algebras. Choose a uniformizer w, of F.

Construction 2.5 Let L be a ring over Z[||v||*0()/2]

. Let a be a unitary Satake parameter
in L at v of rank N. There are two cases.
(1) Suppose that v is inert in F'. Then a set of representatives of An ,(F,")/An,o(Op+) can

be taken as
{(@h, .., wiN) | t,. ..ty € Z satisfying t; +tyi1-; =0 forall 1 <i < N},

Choose an ordering of «v as (au, . . ., ay) satisfying a;an1—; = 1; we have a unique homomor-
phism
ZlolI ) AN (F) /AN (Ops )] = L

N
of rings over Z[||v]|*°(*)/2] sending the class of (w!!,..., @) to HZL:?H at. Composing with
the Satake transform (2.1), we obtain a ring homomorphism

¢al TN,U — L.

It is independent of the choices of the uniformizer w, and the ordering of .

(2) Suppose that v splits in F' into two places wq and we. Then a set of representatives of
AN o(FF)/ANw(Opyt) can be taken as

{ (diag(wl}, ..., @wiV), diag(w, ™,..., @, ™)) |tr,....tn €Z},

where the first diagonal matrix (resp. the second diagonal matrix) is regarded as an ele-
ment in Ay, (Fy,) (resp. Ano(Fy,)). Choose orders in oy and g as (a1,1,...,a1,n) and

(2,1, ..., a9 n) satisfying oy ;a0 v+1—; = 1; we have a unique homomorphism

2ol = AN o (F) /AN (Opt)] — L
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of Z[||v]|**®)/2)-rings sending the class of (diag(w’!,...,w!V), diag(w, 'V, ..., @, ")) to

Hf;l o/ii ;- Composing with the Satake transform (2.1), we obtain a ring homomorphism
¢a: TN, — L.

It is independent of the choices of the uniformizer w,, the order of the two places of F' above

v, and the orders in a7 and as.

Definition 2.6 (Abstract unitary Hecke algebra) For a finite set ¥ of nonarchimedean
places of FT containing E{)"ad, we define the abstract unitary Hecke algebra away from X1 to

T =) Tw.

over all v & X1 UXT with respect to unit elements. It is a ring.

be the restricted tensor product

2.3 Automorphic Representations
In this subsection, we collect some facts concerning automorphic representations.

Notation 2.7 We denote by ZJSV the subset of Z" consisting of nondecreasing sequences. For
a finite set T and an element & = (&;)er € (Z2)T, put

ag = min{ér1},  be = max{&n} + N - 1.

Let w be a nonarchimedean place of F. For every irreducible admissible (complex) rep-
resentation IT of GLy(F,), every rational prime ¢, and every isomorphism ¢,: C — Qp, we
denote by WD(¢,II) the (Frobenius semisimple) Weil-Deligne representation associated to ¢,I1
via the local Langlands correspondence [18].

Definition 2.8 We say that a (complex) representation II of GLy(Ar) is RACSDC (that is,
regular algebraic conjugate self-dual cuspidal) if

(1) II 4s an irreducible cuspidal automorphic representation,;

(2) Moc~11Y

(3) for every archimedean place w of F, I1,, is reqular algebraic (in the sense of [13, Defi-
nition 3.12]).
IfII is RACSDC, then there exists a unique element &n = (§r1,...,&N)r € (ZY )%, which
we call the archimedean weights of II, satisfying &r; = —&re Ny1—4 for every 7 and i, such
that I (as a representation of GLy(C)) is isomorphic to the (irreducible) principal series
representation induced by the characters

1-N+42&- 3—N+42&, N—-3426 N— N—142¢,
+€*1,arg +§,2’” +2¢- N L arg Jrﬁ,N)7

(arg .,arg

where arg: C* — C* is the argument character defined by the formula arg(z) == z/v/2Z.

Proposition 2.9 Let II be an RACSDC representation of GLy(Ap) with the archimedean
weights € = 1.

(1) For every place w of F, IL,, is tempered.

(2) For every rational prime £ and every isomorphism 1o: C = Qy, there is a semisimple

continuous homomorphism
pii,: Tr — GLn(Qp),
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unique up to conjugation, satisfying that

(a) for every nonarchimedean place w of F, the Frobenius semisimplification of the associated
Weil-Deligne representation of pm,.,|rs, is isomorphic to WD(u,I1,,| det |;,;TN)7

(b) for every place w of F' above £, the representation pr,.,|ry, is de Rham (crystalline if
IT, is unramified) with reqular Hodge—Tate weights contained in the range [ag, bel;

(c) pf1,, and pyy,, (1 — N) are conjugate.
Proof Part (1) is [9, Theorem 1.2]. For (2), the Galois representation prr,, is constructed
in [12, Theorem 3.2.3]; the local-global compatibility (2a) is obtained in [9, Theorem 1.1] and
[10, Theorem 1.1]; (2b) is obtained in [12, Theorem 3.2.3]; and (2¢) follows from (2a) and the
Chebotarev density theorem. O

Definition 2.10 Let II be an RACSDC representation of GLy(Ar). We say that a subfield
E C C is a strong coefficient field of IT if E is a number field;, and for every prime X of E,

there exists a continuous homomorphism
prux: I'r — GLN(E)),

necessarily unique up to conjugation, such that for every isomorphism tv;: C = Q inducing
the prime A, pnx ®g, Q¢ and pr,., are conjugate, where pm,, is the homomorphism from
Proposition 2.9 (2).

Remark 2.11 By [12, Proposition 3.2.5], a strong coefficient field of II exists when II is
RACSDC.

Let V be a hermitian space over F of rank N, and 7 an irreducible admissible representation
of U(V)(Ap+). An automorphic base change of 7 is defined to be an automorphic representation
BC(m) of GLy(AFr) that is a finite isobaric sum of discrete automorphic representations such
that BC(r), ~ BC(m,) holds for all but finitely many nonarchimedean places v of F* such
that m, is unramified. By the strong multiplicity one property for GLy [23], if BC(7) exists,
then it is unique up to isomorphism. Moreover, for every nonarchimedean place v of F* that
is nonsplit in F, we have a notion of local base change, which is defined by [24] when N < 3
and by [19, 22] for general N.

Proposition 2.12 Take an RACSDC representation II of GLy(Apr) with &n = (&), the
archimedean weights. Let V be a hermitian space over F' of rank N and 7 = @), m, a cuspidal
automorphic representation of U(V)(Ap+) such that 11 ~ BC(w). Then

(1) For every nonarchimedean place v of F+, BC(m,) ~ II,.

(2) For every T € ¥, T is a discrete series representation of Harish-Chandra parameter

1-N 3-N N-3 N -1
{T +€T,1)T+€T,2)"'7T+€T7N—1’T+§7—7N}

after we identity U(V)(Fy) as a subgroup of GLy(C) via 7: F @p+ , R = C.
Proof This follows from [19, Theorem 1.7.1] for generic packets. g
Corollary 2.13 Take an RACSDC representation 11 of GLy(Ar). Let V be a hermitian

space over F of rank N that is even, and m = @, 7, a cuspidal automorphic representation of
U(V)(Ap+) such that TT ~ BC(x). Ifv is a nonarchimedean place of F¥ that is inert in F (with
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w the unique place of F above it) such that V., is not split and that w, has nonzero invariants
under a special mazimal open compact subgroup of U(V)(F."), then the monodromy operator
of WD(u,1I1,,) is conjugate to (§1) @ In_o for every rational prime { and every isomorphism
Ly C l> @g,

Proof Write N = 2r for a positive integer r. By Proposition 2.12, we know that II,, is
isomorphic to BC(m,). Since I1,, is tempered by Proposition 2.9 (1), 7, is also tempered. Since
7, has nonzero invariants under a special maximal open compact subgroup of U(V)(F,"), the
cuspidal support of 7, is of the form ((F*)"~t x U(V32)(F, ), xX1), where V5 is the anisotropic
hermitian space of rank 2 over F,, and y is a unitary unramified character of (F*)"~1. In
particular, the cuspidal support of II,, is of the form

(FX)"™ x GLa(Fy) x (F*)" 7, x B St R x ),

where Sty denotes the Steinberg representation of GLy(Fy,). The corollary follows immedi-
ately. O

3 Deformation

In this section, we fix an odd rational prime £ and a subfield E C Q; finite over Q,. We denote
by & the ring of integers of E, by A its maximal ideal, and by k := &/ the residue field.
Following [14], we denote by %é the category of Artinian local rings over & with residue field
k, and by % the category of Noetherian complete local rings over & that are inverse limits
of objects of %é. For an object R of €, we shall denote by mpg its maximal ideal. For an
O-valued character, we will use the same notation for its induced R-valued character for every
object R of €. Recall the character n: I'p+ — {£1} associated to the extension F//F* and
the (-adic cyclotomic character e;: '+ — Z, (C 0).

3.1 Deformation Problems

In this subsection, we introduce the notion of deformation problems. Let T' be a topological
group, and I' C [ an open subgroup of index at most two.
Notation 3.1 We consider a pair (7, x), where

e 7: ' — 9x(k) is a homomorphism,

° \: [ — 0> a continuous homomorphism, known as the similitude character,
subject to the relation 71 (GLy (k) x k) =T and vo ¥ = .

The following definition slightly generalizes [14, Definition 2.2.1].
Definition 3.2 A lifting of 7 to an object R of €p is a continuous homomorphism r: T' —
9n(R) satisfying rmodmpg =7 and vor = x. We say that two liftings are equivalent if they
are conjugate by an element in 1 + My(mp) C GLy(R) C 9n(R). By a deformation of 7, we
mean an equivalence class of liftings of 7.%)

Now suppose that I" is topologically finitely generated. Then there exists a universal lifting

,r,univ . f\ N gN(RlFOC)

3) Strictly speaking, a lifting or a deformation of 7 depends on the similitude character x. But we choose to
follow the terminology in [14] by not spelling the characters out, as the relevance on the similitude character is
always clear from the context.



1608 Liu Y. F. et al.

of 7 to an object RI°¢ of € such that, for every object R of €, the set of liftings of 7 to R
is in natural bijection with Homg, (R°¢, R). Since T is topologically finitely generated, it is

well-known that RI°¢ is Noetherian; and there exist natural isomorphisms
Homy, (le?oC/(m?{LOC, \), k) ~ Home,, (R°, k[e]/(e2)) ~ Z}(T, ad 7),

where Zl(f‘, ad 7) denotes the group of 1-cocycles of " with values in the adjoint representation
(ad7,Mpn(k)). Let GLy ¢ be the completion of the group scheme GLy ¢ along its unit section,
which acts naturally on Spf RI°¢ by conjugation.

Definition 3.3 A local deformation problem of 7 is a closed formal subscheme 2 of Spf Rl
that is stable under the action of GLy 6.

Definition 3.4 For a local deformation problem 2 of 7, we define the tangent space of 2,
denoted by L(2), to be the image of the subspace

LY(2) := Homy, (leioc/(m?{Loc, I\, k) C ZHT,ad7)

under the natural map Z*(T',ad7) — HY(T,ad7), where .# C RY¢ is the closed ideal defining
9.

Note that we have the identity
dim; LY(2) = N? + dim L(2) — dim HY(T, ad 7). (3.1)

Remark 3.5 Later, when we consider a nonarchimedean place v of F* and take I' = T’ P
the subgroup I' we implicitly take is always I 0 Ir.

Now we apply Notation 3.1 and Definition 3.2 to the case where I = I'p+ and I' =T'p.
Definition 3.6 A global deformation problem is a tuple (7, x,S,{ %y }ves), where

o (7,x) is a pair as in Notation 3.1;
e S is a finite set of nonarchimedean places of FT containing all (-adic places and those
places v such that 7, is ramified;

e 9, is a local deformation problem of ¥, (Remark 3.5) for each v € S.

We take a global deformation problem . := (7, x, S, {2y }ves). For v € S, we denote by .%,
the closed ideal of R];jf defining 2,. For a subset T C S, put

RS == QRIS (3.2)
veT

where the completed tensor product is taken over &. Recall from [14, Definition 2.2.1] that a
T-framed lifting of ¥ to an object R of @ is a tuple (r; {5, }veT), where r is a lifting of 7 to
R (Definition 3.2), and 8, € 1 + My(mp) for v € T. Two T-framed liftings (r; {8, }veT) and
(r'; {8l }ver) of 7 to R are said to be equivalent, if there exists © € 1+ My (mpg) such that
' =z lorox and B = x71f, for every v € T. A T-framed deformation of ¥ is an equivalence
class of T-framed liftings of 7. We say that a T-framed lifting (r; {8y }ver) is of type .77 if 7,
belongs to 2, for every v € S, and is unramified for every v ¢ S. Note that being of type .7 is
a property invariant under the conjugate action by 1+ My (mg). Thus it makes sense to speak
of T-framed deformation of type .. Let DefE,T : ¢ — Set be the functor that sends an object

R to the set of T-framed deformations of 7 to R of type .7.
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Let I'p+ g be the Galois group of the maximal sub-extension of F/F* that is unramified
outside S. Recall the cohomology group H, (I'p+ g,ad7) for i > 0 introduced after [14,
Definition 2.2.7]. By [14, Lemma 2.3.4], these are finite dimensional k-vector spaces, and satisfy
H';’T(I‘FJF’S,adF) =0 for ¢ > 3.

Proposition 3.7 Assume that T|r, is absolutely irreducible. Then for every subset T C S,
the functor DefE,T 1s represented by a Noetherian ring RE,T in Gg. Put RV = Rg?,

(1) There is a canonical isomorphism
Homy, (mRE,,T /(mégT A, le;c;T), k) ~ H;’T(FFJr’S, ad 7),

where we regard MRige a8 its image under the tautological homomorphism R};’,fT — RE;T. More-
over, if H'QYJ’T(I‘FJF}S, ad7) =0 and for v € S\'T, @, is formally smooth over O, then RE,T is a
power series ring over RIS 1 in dimy, H}%T(FFts, ad7) variables.

(2) The choice of a lifting r'2V: Tp+ — Gn(REY) in the universal deformation determines

an extension of the tautological homomorphism R — RE;T to an isomorphism
) ~ o0
REM [ Xusijlloemi<ijan — RS

such that, for every v € T, the universal frame at v is given by B, = 1+ (Xusi j)i1<ij<n-
Proof These are exactly [14, Proposition 2.2.9 & Corollary 2.2.13] except that they consider

only local deformation problems at split places (that is, they assume that all places in S are

split in F). However, the same argument can be applied to the general case without change. O

3.2 Fontaine-Laffaille Deformations

In this subsection, we study Fontaine—Laffaille deformations at ¢-adic places. We take a place
v of F* above ¢; and let w be the place of F' above v induced by the inclusion F C F.
We assume that £ is unramified in F', and denote by o € Gal(F,,/Qy) the absolute Frobenius
element.

Assumption 3.8 The field E contains the image of every embedding of F,, into Q.

We first assume that E satisfies Assumption 3.8. Put ¥, = Homy,(Op,, €). Following
[14], we use a covariant version of the Fontaine-Laffaille theory [15]. Let .4%¢ ., be the category
of Of,, ®z, O-modules M of finite length equipped with

e a decreasing filtration {Fil’ M};cz by Op, ®7, O-submodules that are O, -direct sum-
mands, satisfying Fil® M = M and Fil*~' M = 0, and

e a Frobenius structure, that is, o ® 1-linear maps ®: Fil' M — M for i € Z, satisfying
the relations ®¢|pyi+1 = (@ and Y, , @ Fil' M = M.

Let A%, be the full subcategory of .#%¢ ,, of objects that are annihilated by A. For every
integer b satisfying 0 < b < ¢ — 2, let Mgﬂ be the full subcategory of .#%¢ ., consisting of
1°+1 M = 0. In particular, we have g:f;g] = MZ 4 by definition.

For an object M of 4% ., there is a canonical decomposition

M= M,

TEX

objects M satisfying Fi
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where M, = M ®0,, @, 6.7@1 - Then we have Fil' M = Fil' M, with Fil' M, =

M, NFil* M, and that ® induces @-linear maps

TED W

L Fil' My — Mooy

TOO —

We put
gr' M, = Fil' M,/ Fil'™* M,
gr* M, = @griMﬂ

gr*M = @ er* M.
TED W

We define the set of 7-Fontaine—Laffaille weights of M to be
HT,. (M) = {i € Z| gr'M, # 0}.

We say that M has reqular Fontaine-Laffaille weights if gr' M, is generated over & by at most
one element for every 7 € ¥, and every i € Z.

Let O[Tg,]"" be the category of ¢-modules of finite length equipped with a continuous
action of I'p

w*

In [14, 2.4.1], the authors defined an exact fully faithful, covariant &-linear
functor
Gu: MF o — Op, |

whose essential image is closed under taking sub-objects and quotient objects. The length of
an object M in .#%¢ . as an O-module equals [F,, : Q] times the length of G, (M) as an

O-module. For two objects My, My of #F ¢ ., we have a canonical isomorphism
Hom 4z, , (M1, Ms) = H°(F,, Homg (G, (M), Gu (Ma)))
and a canonical injective map
Extlyz, (M, My) — Extor, je1 (G (M), Gy (Ms)),
where the target is canonically isomorphic to H!(F,,, Homg (G, (M), Gy (Ms))) if My and My

are both objects of A%, ..
Example 3.9 For an integer b satisfying 0 < b < ¢ — 2 and an object R of %é, we have
an object R{b} of .#%¢ ,, defined as follows: the underlying Op, ®z, €-module is simply
(Op, ®z, R)ey, with the filtration given by

. Or, ®z, R)ey ifi <

Filf Ripy — § O @ e
if ¢ > b.
Finally, the Frobenius structure is determined by ®°(e;) = e;. Then we have
Gu (R{b}) ~ R(=D)|rp,

as O[l'g

w

J]-modules.

Construction 3.10 We construct a functor =7 : #%¢ , — MF e . as follows: for an object
M of M7 w, the underlying Of, ®z, O-module of M7 is Of, ®oy,, o M with the induced
filtration and Frobenius structure. Then we have M? = M, ,,-: for every 7 € ¥,,, and that
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G, (M?) is isomorphic to G, (M) but with the action of T'g,, twisted by the absolute Frobenius
of Fy,: if we denote by p and p, the actions of T'r, on G, (M) and G, (M), respectively, then
they satisfy

po(g) = p(67"95),
where & € Gal(F;}/Qy) is a lift of the absolute Frobenius.

We now let =°: #Fp  — MFe . be the [F : Q]-th iteration of the functor =7 con-
structed above.

For an object R of ‘Ké and an integer b with 0 < b < £ — 2, let g{g(R) be the full
subcategory of W[gﬂ consisting of objects M such that M is finite free over Of, ®z, R and
that the Op, ®z, R-submodule Fil' M is a direct summand for every 7. Let M be an object of
W{gu])(R) Then G, (M) is finite free over R. Thus G, induces a functor G, : W{gﬂ(R) —
R[[g,)f*, where R[['g, ]! denotes the category of finite free R-modules equipped with a
continuous action by I'r,. We have a functor

=V {b}: PN (R)® — P (R)

defined as follows: for an object M of g:ﬂ(R), MV {b} is the object of M{gg(ﬁf) such that:
e its underlying Op, ®z, R-module is Homoy, ®Z£R(M7 O, ®z, R),
o Fil' MV{b} = Homo,, o, r(M/Fil’*' " M,0F, ®z, R),

o for every f € Fil' MV{b} and every m € Fil! M, we have

; , O M) if i+ < b

*(f)(®7(m)) = DU

0 ifi+j5>0.

It is clear that MV{b} is a well-defined object of W[gﬂ(l?) (see [14, p. 34]), and that
G (MY{b}) = G (M) (D).

Now suppose that we have an isomorphism of R[['g, |-modules G, (M) ~ G, (M)Y(-D).
Since the functor Gy, is fully faithful, giving such an isomorphism is equivalent to giving an
isomorphism M€ ~ MV{b} in W[gﬂ(R), or equivalently an Op, ®z, R-bilinear perfect pairing

(,): M°x M — Op, ®z, R, (3.3)
such that the induced R-bilinear perfect pairings (, ),: M, x M, — R for 7 € ¥, satisfy the

following conditions:

(1) For every i,j € Z, every z € Fil' M,, and every y € Fil/ M., (®%cx, DLy) 001 equals
o= =3z, y), (resp. 0) if i +j < b (vesp. i + 7 > b).

(2) For every i € Z, the annihilator of Fil’ M, under (, ), is Fil’™'~" M_c; in particular,
(, ) induces an R-linear isomorphism gr’ M, ~ Hompg(gr®~*M,., R).

From now on, F will not necessarily be subject to Assumption 3.8.

Definition 3.11 Let R be an object of €¢, and p: I'r, — GLN(R) a continuous representa-
tion.

(1) Let a,b be integers satisfying 0 < b—a < {—2. For E satisfying Assumption 3.8, we say
that p is crystalline with (regular) Fontaine-Laffaille weights in [a, b] if, for every quotient R’ of
R in %é, p(a) @r R’ lies in the essential image of the functor G, : W{giz_a] (R') — O[lg, ]t
(and that G,*(p(a) @ R') has regular Fontaine—Laffaille weights).
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(2) For E in general, we say that p is regular Fontaine-Laffaille crystalline if there exists a
finite unramified extension Ey of E contained in Qq that satisfies Assumption 3.8 with the ring
of integer Oy, such that p @ Oy is crystalline with regular Fontaine-Laffaille weights in [a, b]
in the sense of (1) for some integers a,b satisfying 0 <b—a < £ —2.

Now we consider a pair (7, ) from Notation 3.1 with T’ = I'prand I'=Tps NT'p =TF,.
Definition 3.12 Suppose that 7 is reqular Fontaine-Laffaille crystalline. We define 2% to
be the local deformation problem of 7 that classifies the liftings r: I'p+ — Yn(R) of T to objects
R of €¢ such that v° is reqular Fontaine—Laffaille crystalline.

Lemma 3.13 Suppose that 7 is reqular Fontaine—Laffaille crystalline and that x = M€ » for
some c € Z and p € Z/2Z. Then
N(N —1)
2
Proof For this lemma, we may assume that F satisfies Assumption 3.8. After replacing 7 by

dimy, L(2™) — dimy, HY(F,", ad 7) = [F,} : Q]

7(a) for some integer a, we may assume that 77 is crystalline with regular Fontaine Laffaille
weights in [0,b] with 0 < b < ¢ — 2. In this case, 2" simply classifies liftings » such that r? is
crystalline with Fontaine-Laffaille weights in [0, ).

Suppose first that v is split in F. Then we have F,, = F;f, and that a lifting 7 in 2¥(R)
of 7 is of the form r = (p, €7 ,): I'r, — GLy(R) x R* such that for every Artinian quotient
R’ of R, p®pg R’ lies in the essential image of the functor G,,. Then the lemma is exactly [14,
Corollary 2.4.3].

Suppose now that v is inert in F'. Then we must have ¢ = —b. Denote by T/, the Galois
group of the quadratic extension F,/F,". Then the restriction map induces an isomorphism

HY(F},ad7) = HY(F,,ad7) /.

Put M = G' (7). Then the deformations of 7 to k[¢]/(¢?) that lie in the essential image of G,
are classified by Extiﬂ%cyw (M, M), which is canonically a I',, /,-stable subspace of HY(F,,ad7).
Therefore, we have

L(2"") = Extlyz, (M, M) NH (Fy,ad7) /" = Ext!yz, (M, M)"/".

In fact, the induced action of T/, on Ext‘l//ghw(M , M) can be described as follows. Recall
the functor —¢ in Construction 3.10. Then G, (M¢) is isomorphic to 7|, . Since 7*° and
7V (—b) are conjugate, we have M¢ ~ M"Y {b}. We fix such an isomorphism, hence obtain a
pairing (, ) (3.3) with R = k. Then for an element [P] € Ext‘l//gk’w (M, M) represented by an
extension 0 — M — P — M — 0, the image of [P] under the action of the (unique) non-trivial
element in I, /, is obtained by applying the functor (=°)"{b} to 0 = M — P — M — 0.

To compute Exti/gk (M, M)Fwre, we recall first the following long exact sequence in [14,
Lemma 2.4.2): ’

0 — End 4z, , (M) — Fil’ Homo,, o,, (M, M)

= HomOFw ®z,0,081 (gr'M, M)
2 Extlys, (M, M) -0, (3.4)

where
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o Fil° Homo,,, @, 0(M, M) denotes the O, ®z, O-submodule of Homo,, &, ¢(M, M) of
endomorphisms that preserve the filtration;

e the map a takes an element f € Fil° Homo,,, @,,0(M, M) to (f® — ®'f);cz; and

e the map £ is defined as follows: if p = (¢?);ez is a 0 ® 1-linear map from gr* M to M, then
B(y) is given by the extension class of E = M @& M with the filtration Fil' E = Fil' M & Fil' M
and the Frobenius structure
(I)i Spi

oL = ,
0 ¢

To prove the lemma, we need to derive an analogous long exact sequence similar to (3.4)
but with the last term Ext‘l//ghw (M, M)F»/». For the first term, note that we have a canonical
isomorphism End_zz, ,, (M) ~ H°(F,,,ad ), which contains H°(F,}, ad7) as a submodule. For
the second term, let Fil® Homo,., @,,0(M, M)* be the submodule of Fil® Homo,., ,,6(M, M)
consisting of elements f = (f;)rex, such that —f.c is the adjoint of f, under the pairing
(', )r for every 7 € X, For the third term, let Homo,, &, ¢,001(gr*M, M)* denote by the
submodule of Homo,, g, 6,001(gr* M, M) consisting of ¢ = (¢');cz such that

(@(2), 07 (W) + (@), 2277 (y))r = 0 (3.5)
is satisfied for every x € gr' M, and y € gr®=*M,.
Then (3.4) induces an exact sequence
0 — H(F;f,ad7) — Fil’ Homo,, &, ¢(M, M)*
= Homoy, @, 0,001 (2r* M, M)*
2 Extlys, (M, M)Ter — 0

of k-vector spaces. We now compute the dimension of the middle two terms. From the descrip-
tion of Fil° Homo,, @,,¢(M, M)*, it is clear that f,< is determined by f; for every 7 € %,,. On
the other hand, for each fixed 7, all possible choices of f, form a k-vector space of dimension

W. Thus, we have

N(N +1
dimy, Fil® Homo,, @, o (M, M)* = [F, : Q] - %

For Homoy,, @,,0,001(gr® M, M)™, we first note that the map

P oL gr* My — Moo

is an isomorphism for every 7 € X,,. It follows from (3.5) that ¢, = @, ¢%. is determined
by ¢, = @, ¢-. On the other hand, for each fixed 7, all the possible choices of ¢, : gr* M, —

M, o1 form a k-vector space of dimension N2. Thus, we have

dimy Homo,., ,, 0,001 (gr* M, M)* = [F[: Q] - N*.
The lemma follows immediately. U

Proposition 3.14 Suppose that 7 is reqular Fontaine-Laffaille crystalline and that x =

nye;, for some ¢ € Z and p € ZJ2Z. Then the local deformation problem 2% is formally

smooth over Spf € of pure relative dimension N2 + [FF : Q] - W
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Proof By Lemma 3.13, it suffices to show that 2" is formally smooth over ¢. For this,
we may again assume that E satisfies Assumption 3.8. Moreover, we may assume that 7 is
crystalline with regular Fontaine-Laffaille weights in [0,b] with 0 < b < £ — 2 as in the proof
of Lemma 3.13. In this case, 2" simply classifies liftings = such that r? is crystalline with
Fontaine-Laffaille weights in [0, b].

When v is split in F/F*, the proposition has been proved in [14, Lemma 2.4.1].

Now we suppose that v is inert in F. Then we must have ¢ = —b. Fix a subset X, C ¥,
such that ,, = 7 [[ 2. Let R be an object of €2 and I C R an ideal satistying mzI = (0).
Let r be a lifting of 7 to R/I, and put M := G ,'(r?), which is an object of //lg{gﬂ(R/I).

Recall the functor =¢ in Construction 3.10. Then G, (M¢) is isomorphic to 7|, . Since
r®¢ and 7%V (—b) are conjugate, we have M¢ ~ MV {b}. We fix such an isomorphism, hence
obtain a pairing (, ) (3.3) with R = R/I. Let m;1 < --- < m, n be the (regular) 7-Hodge—
Tate weights of M for every 7 € X,. Then there exists a basis e;1,...,e,n of M, over
R/I satisfying Fil™"~¥+1-i M, = @ézl(R/I)em- for every 1 < i < N. By duality, we have
Mare i + My Nt1—; = b. Then we may choose the basis (er;) such that (erc;,er)r = & N+1—;
for every 7 € b and every 1 <4,j < N.

We now define an object M = Dres, M, of W[gg(R) that reduces to M, together with
a perfect pairing M® x M — Op,, ®z, R as in (3.3) that reduces to the pairing (, ), as follows.
As an R-module, we take MT = RPN with the basis (€r,) that lifts the basis (€;;) of M,. We
lift (, ); to an R-bilinear perfect pairing MTC X MT — R such that (€r<;,€r ;)7 = 0i N+1—j
still holds for every 7 € X} and every 1 < 4,5 < N. For the filtration, we put Fil™ MT
= @3:1 Re. ; for m satisfying m. y—; < m < m; n+1—;. Then M@R R/I is isomorphic/ to
M as filtered Op, ® R/I-modules; and the condition (2) in Construction 3.10 holds for M as
well. For the Frobenius structure on M, we first define maps Iy Filmi MT — MTOU—I
for 7 € ¥} by the recursive induction on i. For i = N, we take 7N to be an arbitrary
lift of ®7' 7N : Fil™"¥ M, — M,o,—1 for 7 € ¥F. For i < N — 1, we take ®7 to be a
lift of ®7""": Fil™* M, — M._.,—1 that restricts to (i Ml QI oy R ]/\ZT. By

Nakayama’s lemma, we have

M og-1 = > O (Fil™ M)

for every 7 € XF. Finally, we define ®. : Mye — Mooy forr e ¥F to be the unique R-linear
map satisfying the condition (1) in Construction 3.10 for M. This finishes the construction of
M together with an isomorphism Me ~ Mv{b}, which give rise to a lifting 7 of ¥ to R that
reduces to r by Lemma 2.3. Thus, 2" is formally smooth over &.
The proposition is proved. O
At the end, we remark that in the self-dual (not conjugate self-dual) case, the Fontaine-
Laffaille deformations have been studied in [4].

3.3 Representations of the Tame Group

In this subsection, we study conjugate self-dual representations of the tame group, and define
the notion of minimally ramified deformations of such representations.
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Definition 3.15 Let g > 1 be a positive integer coprime to £. We define the g-tame group,
denoted by T, to be the semidirect product topological group tZe qb% where ¢4 maps t to t9,
that is, ¢qt¢;1 = t9. For every integer b > 1, we identify Ty as a subgroup of Ty topologically
generated by t and ¢p = qbg,

We consider a reductive group G over &, together with a surjective homomorphism v: G —
H over 0, where H is an algebraic group over & of multiplicative type. Consider a pair (g, 1)
in which g: Ty — G(k) and p: Ty — H(O) are continuous homomorphisms satisfying vog = fi
and p(t) = 1. Similar to the case in §3.1, let R°® be the object in ¢ that parameterizes
liftings o of g satisfying v o p = u.*) The following proposition generalizes the tame case of [26,
Theorem 2.5].
Proposition 3.16 The ring ngOC is a local complete intersection, flat and of pure relative

dimension d over O, where d is the relative dimension of the kernel of v over O.

Proof We follow the same line as in the proof of [26, Theorem 2.5]. Let Gy and G; be the
fibers at 1 and p(¢q) of the homomorphism v, respectively. Define the subscheme .#(G, q)
of Gy Xgpec o G1 such that for every object R of €¢, #(G,q)(R) consists of pairs (A, B) €
Go(R) x G1(R) satisfying

BAB ' = A% (3.6)

It suffices to show that .Z(G,q) is a local complete intersection, flat and of pure relative
dimension d over &, since RY® is the completion of .# (G, q) at the k-point (o(t), 5(¢q))-

First, we show that every geometric fiber of .#(G,q) — Spec & is of pure dimension d.
Consider the natural projection

b: %(G7 Q) - GO

to the first factor. Take a geometric point Spec K — Spec ¢. For a point Ay € Go(K) in
the image of p(K), let Z(Ag) be the centralizer of Ag in Gy, x as a closed subscheme of Gy x,
and C(Ayp) the conjugacy class of Ay, which is a locally closed subscheme of G g isomorphic
to Go,x/Z(Ap). Then C(Ap) lies in the image of p(K). For every point A € C(Ap)(K),
the fiber p(K)~!(A) is a torsor under the group Z(A), which is conjugate to Z(Ag). Thus,
p(K)~Y(C(Ayp)) is irreducible of dimension

dim p(K)~H(C(Ap)) = dim C(Ap) + dim Z(Ay)
= dim GO,K
=d.

To continue, we choose an embedding e: Gxg — GL,, x of algebraic groups over K for some
integer m > 1. By (3.6), the image of e(K) o p(K) consists only of matrices whose generalized
eigenvalues are (¢™ — 1)-th roots of unity, hence finitely many conjugacy classes in GL,,(K).
We claim that the image of p(K) consists of finitely many conjugacy classes in Go(K) as well,
which implies that .# (G, q) k is of pure dimension d. In fact, we have the following commutative

4) Here, once again we omit the similitude character p in the ring ngoc, in order to be consistent with the

previous convention.
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diagram
Go(K)Go(K) ——— GLy,,(K) ) GLy,, (K)

| |

(Go,k | Go,x )(K) — (GLm,k /| GLin, k) (K)
of sets, in which the bottom map is finite since the morphism Gy k /Go k — GLm k / GLm i

is; and the left vertical map is also finite due to the finiteness of unipotent conjugacy classes of
a reductive group [27, Théoreme 4.1]; it follows that the upper horizontal map is finite as well.

The above discussion shows that the morphism .#(G,q) — Spec @ is of pure relative
dimension d. Now we take a closed point (A, B) of .# (G, q), which induces a homomorphism

O 1(6.0).(A.B) = Oco, 40606, B
of corresponding complete local rings. As both Gy and G are smooth over & of pure relative
dimension d, both ¢ 4 and O, g are power series rings over ¢ in d variables. The relation
(3.6), or equivalently, the relation A = B~*AYB, is defined by d equations in ﬁGO’A(%ﬁ’ﬁGl’B.
In other words, .#(G,q) is a local complete intersection, hence Cohen—Macaulay. Therefore,
A (G, q) is flat over &. The proposition is proved. d

Take an integer n > 1. Now we apply the above discussion to the homomorphism v: ¥, —
GL, in Notation 2.1. Consider a pair (g, 1) from Notation 3.1 with ' = T, and I' = T,
such that pu(t) = 1. In particular, g: Ty — %,(k) is a homomorphism and p: T, — 0% is a
(continuous) similitude character. Write

ot) = A= (A,1,1), 08(¢q) = B = (B,—pu(¢q),c) (3.7)
for A, B € GL, (k). For a lifting ¢ of g to an object R of €, we write o(t) = A = (A, 1,1) and
o(¢g) = B = (B, —pu(q), ). Then the pair (A4, B) reduce to (A4, B), and satisfy the relation

B'AT'B™! = A (3.8)

Corollary 3.17 The ring ng"c 18 a local complete intersection, flat and of pure relative di-

2

mension n° over O.

Proof This follows immediately from Proposition 3.16 since the kernel of v: 4,, — GL; is of
dimension n?2. O

From now till the end of this subsection, we assume ¢ > n. For every integer m > 1, we
denote by J,, the standard upper triangular nilpotent Jordan block

01 0 0
0 1 0
0 1

0

of size m.
Denote by N, (resp. Uy,) the closed subscheme of M,, (resp. GL,) defined by the equation
X™ =0 (resp. (A—1)" =0). For every object R of €, we have the truncated exponential map
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exp: Np(R) — Uy, (R) defined by the formula

anl

eXpX:1+X—|—"'+m,

which is a bijection. Its inverse is given by the truncated logarithm map log: Un(R) — Ny, (R)
defined by the formula

7

log A = i(—l)iilu.
i=1

Let 3,, be the set of partitions of n. By the classification of nilpotent orbits in GL,,, for
K = k, E, we have canonical surjective maps 7: N, (K) — B,, such that the fibers of 7 are
exactly the orbits in N, (K) under the conjugate action of GL,,(K).

By the continuity of g, we know that A in (3.7) is unipotent, which implies A € U,, (k). Put
X =log A € N, (k). Following [5, Definition 3.9], we define the functor Nilg: ¥ — Set that
sends an object R of 44 to the set of elements X € N, (R) that reduce to X and are of the
form CXoC~1, where X is an element in N, (&) satisfying 7(Xo) = 7(X) and C € GL,(R),
where we regard X, as an element in N, (E) in the notation m(Xj).

Definition 3.18 We say that a lifting o0 of ¢ to an object R of €y is minimally ramified if
there exists an element X € Nilg(R) such that ¢°(t) = exp X.

Let ™ be the local deformation problem of g (Definition 3.3) that classifies minimally
ramified liftings of p.

Proposition 3.19  The local deformation problem @gli“ is formally smooth over Spf & of pure

relative dimension n2.

Proof We follow the approach of [5, Proposition 5.6], where a similar result for symplectic or
orthogonal representations was proved.

Consider the morphism «a: @gli“ — Nilg that sends a lifting o to log A if ¢%(t) = A. In the
definition of Nil ¢, we may fix the nilpotent element X, € N,,(&). Moreover, up to conjugation
in GL,(0), we may assume

Jn,
XO = - )
Jn,

where n = ny + --- + n,. Let Z,(Xo) be the centralizer of Xy in GL,,_ ¢, which is a closed
subscheme of GL, ¢. By [5, Remark 4.18], Z,(Xy) is smooth over ¢. By [5, Lemma 3.11],
Nil ¢ is represented by a formal power series ring over ¢ in n? — dimg Z,,(X,) variables, where
dimg Z,,(Xp) denotes the relative dimension of Z,,(Xg) over €. Thus, it suffices to show that
« is represented by a formal scheme formally smooth of pure relative dimension dimg Z,,(Xo)
over Nil 5.

Take a lifting ¢ of g to an object R of ¥¢. Then p(¢4) has the form (B, —p(¢q), c) with
B € GL,(R) that reduces to B and satisfies

B'XB !'=—¢X (3.9)



1618 Liu Y. F. et al.

by (3.8). For each given X € Nilg, if there exists B € GL, (R) that reduces to B and satisfies
(3.9), then the set of all elements B form a torsor under the group
Zn(X)(R) = {g € 1+ My(mp) | gXg~" = X},

which is isomorphic to the group of R-valued points of the formal completion of the group
scheme Z,,(X) along the unit section. Thus, to finish the proof, it suffices to show that the
equation (3.9) admits at least one solution for B that reduces to B.
Assume first X = X in N,,(R). Then
An,
BQ =

is a solution to (3.9), where

(—q)!

In the general case, we write X = CXoC~! for some C € GL,,(R). Then B := C By 'C satisfies
the equation (3.9). Up to multiplying C' by an element in Z,,(Xo)(R) from the right, we can
make B € GL,(R) to reduce to B. This finishes the proof of the proposition. O

Recall from Definition 3.4 that L(Z™) € H'(T,,ad @) is the tangent space of the local
deformation problem 22",

Corollary 3.20 We have dimy, L(Z3") = dim; H°(T,, ad g).
Proof =~ Suppose that Z2™ = Spf R2*. By (3.1), we have
dimy, mgmin / (A, mﬁgm) = dimy L(Z2"™) 4+ n® — dim; H°(T, ad 9).
From this, the corollary follows immediately from Proposition 3.19. O

To end this subsection, we record the following lemma concerning decomposition of repre-
sentations of the g-tame group, in which part (1) will be used later and part (2) is only for

complement.
Lemma 3.21 Let (p, M) be an unramified representation of T, = t%¢ x ¢% over k of dimension
N. Suppose that M admits a decomposition

M=M®- &M,

stable under the action of p(¢q) such that the characteristic polynomials of p(¢q) on M, are
mutually coprime for 1 <i < s. Let (p, M) be a lifting of (p, M) to an object R of €. Then
(1) There is a unique decomposition

M=M®®&- - &M,

of free R-modules, such that M; is stable under the action of p(¢,) and it is a lifting of M; as
a ¢q-module.
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(2) Write p(t) = (p(t):,;) with p(t);; € Hompg (M, M;). Suppose that q is not an eigenvalue
for the canonical action of ¢, on Homyg(M;, M;) for all i # j. Then we have p(t); ; = 0 for all
i # j; in other words, the decomposition in (1) is stable under the whole group T,.

Proof Part (1) is elementary, which we leave to the readers as an exercise.

For (2), we choose a basis of M over R adapted to the decomposition of M in (1). We
identify p(t) and p(¢4) with their matrices under this basis. We have p(¢g):; = 0 for i # j
since each M; is stable under p(¢4). Let J C R be the ideal generated by the coefficients of
p(t)i,; for i # j. We have to show that J = 0. By Nakayama’s lemma, it suffices to show that
J = mRJ. As

PO = (1+ ((6) = D) = 1+ alp(6) = 1+ 3 (1) ol0) - 1"

a>2

and p(t) =1 modmpg, we have
(1)) = ap(t)s; mod mpJ
for i # j. The relation ¢,t = t9¢, implies that

p(@q)iip(t)i; = (p(1)D)iip(Pq)s5 = ap(t)ijp(¢q)j; mod mplJ.

For every 1 < i < s, denote by P; € R[X] the characteristic polynomial of the square matrix
p(¢q)ii- Then it follows that

p(t)ij Pi(ap(9q)i.i) = Pi(p(¢q)ii)p(t)i; =0 mod mpJ

la is not an eigenvalue of

for i # j. By assumption, if & is an eigenvalue of 5(¢g);,, then ¢~
p(0q)j,5- It follows that P;(gp(¢q); ;) is invertible, hence p(t); ; = 0modmpgJ.

The lemma is proved. O

3.4 Minimally Ramified Deformations

In this subsection, we define and study the minimally ramified deformations at places coprime
to the odd prime ¢. Thus, we take a nonarchimedean place v of '™ that is not above £.

Let Ip+ C I'p+ be the inertia subgroup, and P+ the maximal closed subgroup of I Fif of
pro-order coprime to £. Put T, = I'j+ /P p+- Similarly, for every place w of F' above v, we

have I'r,, Ir,, Pr,, and Ty,. Finally, put T} =T+ /Pp,.
Remark 3.22 The group T, is a ||v|-tame group (Definition 3.15).
e When w is split over v, we have Pr, = P+, Tf =T,, and T, =T} =T,.
e When w is unramified over v, we have Pp, = PF;f, T} =T,, and that the subgroup T,
of T, is a ||v|>-tame group.
e When w is ramified over v, we have PF,T/PFw ~ 7Z./27Z, that the natural map T,, — T, is

an isomorphism, and a canonically split short exact sequence
1 =Py /Pr, = Th =T, — 1.

We first recall some facts about extensions of representations of Pp, from [14]. For an
irreducible representation 7 of P with coefficients in k, we put

w

g

I, ={c€elp, |77 ~71},
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where we recall that 77 denotes the representation given by 77 (g) = 7(cgo~!) for g € P, . Let

T, be the image of I'; in T, =T, /Pp,. As Pp, is normal in I'p+, we may similarly define
It ={oelp |77 =7},

and denote by T} its image in T} .
Lemma 3.23 We have the following properties for T :

(1) the dimension of T is coprime to £; and T has a unique deformation to a representation
7 of Pp, over O}

(2) 7 in (1) admits a unique extension to a representation of 'y N1g, over & whose deter-
minant has order coprime to ¢;

(3) there exists an extension of T in (2) to a representation of Ty over O.
Proof This is [14, Lemma 2.4.11]. O

Now we consider a pair (7, x) from Notation 3.1 with T = I'pr and I'=Tp+ NT'rp =T,
Our first goal is to define the notion of minimally ramified liftings of 7 (Definition 3.29). Recall
from Notation 2.2 that we have the induced homomorphism 7 : T — GLy (k), which satisfies
that 7|p, is semisimple.

When v is split in F', minimally ramified deformations have already been defined and studied
in [14, 2.4.4]. Thus, we now assume that v is nonsplit in F', hence w is the unique prime of F’

above v.

Assumption 3.24 The residue field k of E contains a subfield k” of degree two such that

every irreducible summand of 7 |p, ®k is defined over K.

We first assume that E satisfies Assumption 3.24. For an irreducible representation 7 of

Pp, with coefficients in k, we put
M, (7) = Homyp,, | (T, Fh).

Then 7 ®y, M, () is canonically the T-isotypic component of ¥|p,, . As 7 extends to a represen-
tation of ', the k-vector space M. (7) is equipped with a natural action by T,; and 7 ®y, M, (T)
is equipped with a natural action by I';.

We denote by T = T(7) the set of isomorphism classes of irreducible representations 7 of
Pp, such that M, (7) # 0. Then I'p, acts on T by conjugation, whose orbits we denote by
%/Tp,. For 7 € T, we write [7] for its orbit in T/Tp, .

Choose an element v € I'.+ \ I'r,,. By Lemma 2.3, the homomorphism 7 is determined by
an element U € GLy (k) satisfying

O A Jip-1 = _X(A/)flfh(,ﬁ).

In what follows, we will adopt the following simplified notation: for a representation 7 of
a subgroup of I'p+, we write 7 for x7V. Due to the existence of ¥, we know that if 7 € T,
then 77* € T as well. As v € I'g,, the assignment 7 +— 77* induces an involution on the set
% /T, , which does not depend on the choice of 7.
Construction 3.25 We now would like to construct a I', -stable partition T = T; UToLIT3.
For each subset T;, we will specify, for every 7 € ¥;, an extension of 7 in Lemma 3.23(2) to a
representation of I'; with coefficients in & in a compatible way, specified below.
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We start from the following observation. Suppose that [r] = [77"*] in ¥/T'p,. Then there
exists an element h € I'p,, unique up to left multiplication by an element in I';, such that
TH* ~ Th_l, or equivalently, 7"7 ~ 7*. Then we have (hy)? € T, but hy € I';. Denote by I,
the subgroup of I’ ro generated by I'; and hy, which contains I'> as a subgroup of index two.
Let TT be the image of fT in T$, which contains T, as a subgroup of index two.

(1) We define 7 to be the subset of ¥ consisting of 7 such that [r] # [77*]. We choose a
subset €Y C T such that {r,77* |7 € TV} is a set of representatives for the '--action on T;.
For each element 7 € T7, we choose an extension of 7 in Lemma 3.23 (2) to a representation of
I'; with coefficients in &', which we still denote by 7. For a general element 7 € ¥, there are
two cases. If 7 ~ 7 for (unique) 7, € S? and some h € I'r,, then we choose 7 to be 7', as the
extension to 'y = h™ ', h. If 7 ~ (71)7* for (unique) 71 € ¥Y and some h € T',, then we
choose 7 to be (7)7*, as the extension to I'; = v~ h™1T',, hy.

(2) We define T3 to be the subset of ¥ consisting of 7 such that [r] = [77*], and that the
images of I'; and f‘T inI Fif /I Fi are different. We choose a subset f;? C %5 of representatives
for the I';-action on ¥5. For each element 7 € E; , we choose an extension 7 from Lemma
3.27(1) below to a representation of I'; with coeflicients in &. For 7 € T, in general, we have
7~ 78 for (unique) 7 € fg and some h € T'g, ; and we choose 7 to be 7', as the extension to
I, =h"T,h.

(3) We define T3 to be the subset of T consisting of 7 such that [r] = [77"*], and that the
images of I'; and [,inl Fif Jal Fit are the same. We choose a subset ‘I? C T3 of representatives
for the T';-action on T3. For each element 7 € Ty, we choose an extension 7 from Lemma
3.27(2) below to a representation of I'; with coeflicients in &. For 7 € T3 in general, we have
7~ 7§ for (unique) 73 € fg and some h € T'g, ; and we choose 7 to be 7%, as the extension to
I, =h"T,h.

In addition, we put % = %7 UTy LTy,

Remark 3.26 The partition ¥ = %1 U%, LT3 does not depend on the choice of 7. Moreover,

if ¥3 is nonempty, then w is ramified over v.

Lemma 3.27 Let 7 € ¥ be an element of dimension d.

(1) If 7 € %5, then the representation T in Lemma 3.23 (2) extends to a representation of
T with coefficients in & such that 7'~ 7 still holds for every 4" € T, \T;.

(2) If T € T3, then the representation T in Lemma 3.23 (2) extends to a representation of
T with coefficients in & such that 7'~ 7 still holds for every 4" € T, \T;.
Proof  We fix a splitting '+ ~ P+ x T, and an isomorphism T, >~ Ty = t2e ¢§ with the ¢-
tame group (Definition 3.15) where ¢ = ||v||. Then we have the induced splitting I'; ~ Pp, xT;,
where T, = tZ x ¢Z is a subgroup of Ty, with ¢, = t* and ¢, = ¢! for unique integers a > 0
and b > 0. To extend 7 in Lemma 3.23 (2) to a representation of I';, it suffices to specify 7(¢, ).

For (1), there are two cases.

First, we suppose that w is unramified over v. Then b is even; and T, is the image of
I, in T,. Then T, is generated by T, and an element 4/ € T, of the form (ET,(;&Z/ 2) such
that 7> = (EgWH, ¢b) lies in I'r. As [r] = [77"*], we have 7" ~ 7*. We choose a basis of
T, hence regard 7 as a homomorphism 7: Pr, — GLg(k). By Lemma 3.23 (1)-(2), we have
a continuous homomorphism 7: I'x N Ir, — GLg4(&) such that 7|p, is a lifting of 7, unique
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up to conjugation in 1 4+ My(A). In particular, there is an element B € GL4(€), unique up to

scalar in €%, such that 7' (g) = B7*(g)B~! for every g € 'y N1p, . Since ¢, = f;qb/z_lv’z,
we have
. _ PP VR S PRV
T(orger ') =7(ET "1 gy T
= F(E RO ey TRE T
= F(E; " BE (T gy ) BT R
= F(E (B BT (BB
for every g € Ty N1p,. We put #(¢;) := —x(ot/*)7(I9"*~1)(B'B~1). Then we obtain the

desired extension as in (1).

Second, we suppose that w is ramified over v. By the definition of ¥5, the image of [, in
r Fif /1 F contains q@ as a subgroup of index two. Thus, there exists an element v € I, \ T,
such that 42 = h¢, for some h € I'; N1g, . The remaining argument is same to the above case.

For (2), by the definition of T3, the image of [,inT p+/1p+ coincides with ¢%. In particular,
we can find an element v’ € T, \ I'; contained in I+ \1Ip,. By Lemma 3.23 (1)-(2), we have a
continuous homomorphism 7: I'x NI, — GL4(€) such that 7|p,, is a lifting of 7, unique up to
conjugation in 1+Mg(\). As we have 7" ~ 7% and 7% ~ 7, there are elements A, B € GL4(0)
such that

7' (g) = A7 (9)A7, (3.10)
77(9) = B7(9)B™", (3.11)
for every g € I'; N1p, . It follows from (3.10) that the desired element 7(¢,) € GL4(&) has to
satisfy the equation
X(@r)AF(Gr) AT =760y = 760y 67 )F (), (3.12)
where we note that 'y’qST’y'fqu;l e I'; N1g,. However, by (3.11), we have
o~ r—1 - — _ - - — _ _
P g) = (G 6B () (F (6 6, )B)
for every g € 'y N1Ig,. On the other hand, by (3.10) and (3.11), we have
7 (g) = (ABTI AT (AB AT

for every g € I'x N1p,. Since 7 is absolutely irreducible, it follows that there exists g € 0~
such that
ABT AT =677y 9B,

T

Take an element o € 0* such that a? = B3x(¢#,), which is possible by Assumption 3.24. Then
it is clear that 7(¢,) = aB € GL4(0) is a solution to (3.12).
The lemma is proved. O
Using Construction 3.25, we now discuss the structure of liftings of 7. Let r: I'p+ — 9n(R)
be a lifting of 7 to an object R of €. By Lemma 2.3, to give such a lifting r is equivalent to
giving an element ¥ € GLy(R) that reduces to ¥ and satisfies

Y = Wo B o Tl W = ()T rE(42).
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For every 7 € T, put
M (r) = Homgp, (T ®¢ R, ),

which is a finite free R-module equipped with the induced continuous action by T,. Denote by
m, > 1 the rank of M, (r). Let 7 € ¥ be the unique element such that 77 ~ 7*. Choose an

~ %

isomorphism ¢, : 77 = 7*, which, by Construction 3.25, lifts to an isomorphism ¢z: 77 = 7
of representations of I';. Then we have successive isomorphisms
M-(r)” = Hompp,, (77 ®¢ R,r*7)
= Hompgp, (7" ®¢ R, i)
= Homppp,, (1,7 @6 R),

where the second isomorphism is induced by ¢z and W. As 7 is absolutely irreducible, we obtain
a perfect R-bilinear pairing

M (r)? x M.(r) — Endgp, 1(Z®¢ R) = R,
which induces an isomorphism

0z 0 M. (r)Y = M,(r)" = Hompg(M,(r),R)
of R[T;]-modules. In particular, we have

Th = < @ (Ind?f‘“ (7- 7 M-r("")) (&5 Ind?ij’ (7:77* Re MT(T.)’y,\/))>

TGT?

® ( P md(Fes MT(T))) (3.13)
TETTUTY
as representations of I'g, .
Now for every 7, we fix an isomorphism b, : M, (7) = k®™r of k-vector spaces, and let
T, — GL,,, (k) be the induced homomorphism. There are two cases.
(a) Suppose that 7 € T;. Then M, (r) is determined by M, (r). If we choose an isomorphism
M. (r) ~ R®™r of R-modules that reduces to b,, then we obtain a continuous homomorphism

0r: Tr — GL,, (R)

that reduces to T, — GL,,_(k).

(b) Suppose that 7 € T U T3. Let h be element from Construction 3.25. Then 60 ,
induces an isomorphism M, (r)" = M,(7)V of R[T,]-modules. Applying Lemma 2.3 (3) to
T, — GL,,_(k), we obtain a homomorphism

or: T‘r - ng (k)

satisfying 07 (GLy,, (k) x k*) = T, and v o g, = n= for some u, € Z/27 determined by 7.%)
In general, if we choose an isomorphism M, (r) ~ R®™ of R-modules that reduces to b,, then
we obtain a continuous homomorphism

or: Tr = G (R)

5) In fact, when 7 € T3, one can always modify 7 to make pr = 0; but when 7 € T3, ur is determined by 7.
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that reduces to g, and satisfies v o p, = nh~.
The following proposition is the counterpart of [14, Corollary 2.4.13] when v is nonsplit in
F.

Proposition 3.28 Suppose that E satisfies Assumption 3.24. We keep the choices of v €
Ipr \T'p,, those in Construction 3.25, v., and b,. For every object R of €p, the assignment

re (QT)TE‘IO

establishes a bijection between deformations of T to R and equivalence classes of tuples (0r)res<
where

(a) for T € XY, 07: Tr — GLy, (R) is a continuous homomorphism that reduces to oy

(b) for 7 € 5 UZY, 0r: Ty — % (R) is a continuous homomorphism that reduces to g,
and satisfies v o p;r = nhi~.
Here, two tuples (0;)rcxo and (o.),cxo are said to be equivalent if or and o, are conjugate by

elements in 1 + M,,_(mpg) for every 7 € TV.

Proof We now attach to every tuple (0;),cgv as in the statement a lifting r explicitly. Denote
by M, the R[T,]-module corresponding to g,. Consider

M= ( P (Indp™ (7 @5 M) & Indp™ (7 ©4 MTW))>
T€TY
@ ( P md™(Fos MT)),
TETFUTY
which is a free R-module of rank N, equipped with a continuous action by I'r,. Moreover, we
have M ®p R/mp ~ 7 as representations of 'z, by (3.13). Thus, we may fix an isomorphism
M ~ R®V such that the induced continuous homomorphism p = pps: I'r, — GLx(R) reduces
to 4. Thus, by Lemma 2.3, to construct the desired lifting  from p, it amounts to finding an
element ¥ € GLy(R) satisfying

P =Toxp o U™, T =—x(7)"p(y?). (3.14)

We will construct ¥ as a direct sum of ¥, for 7 € TV.

For 7 € T7, we note that 7(v~2) ® g,(y~2) induces an isomorphism
—2 2 2 J— %~ w [~
Ind” : Ind?iﬂz (7" ®p M) = (Indp.™ (77 ©p MJV))"* = Indp™ (7 @6 M), (3.15)
Thus, we obtain an isomorphism
(Indp™ (7 @6 M) @ Indp™ (77 @4 M)
s Indp ™ (7 @6 M) @ Indp™ (7 @6 M) (3.16)
as the composition of the canonical isomorphism
(Ind?fw (7: Q6 M‘r) @ Ind;fﬁ:’ (71%* R0 M:,\/))%*
o~ Ind?f;“ (F* ®¢ MZ’V) @ (Indgf;u (F* ®¢ MZ’V))W’*,
and the isomorphism

Ind.™ (77 @p M) & (Indp™ (77" @6 M7V))T
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~ Pry (= Pry (= ) )
= Indp"™ (7 ®¢ M;) @ Indp"™ (77" @ M])"Y)

given by the matrix
0 —x(7)Ind""
1 0

in which Ind”  is the isomorphism (3.15). We now let ¥, be the matrix representing the

isomorphism
(Indp™ (7 ® M) @ Indp.™ (77 @5 M))*
=5 (Indp™ (7 @ M) @ Indp™ (77 @6 M)
induced from (3.16) by duality.
For 7 € ‘IQQ U ‘Igo, let h be the element in Construction 3.25. Put +' := hvy, which is an
element in T'; \I';. The homomorphism g, : T — %, (R) induces an isomorphism M2 = MY

by Lemma 2.3 (1), which induces an isomorphism M2 = Mffl. On the other hand, by
Lemma 3.27, we have an isomorphism 77* ~ R Thus, we obtain an isomorphism

(Indp™ (F ®4 M;))"* = Indp™ (7 @6 M) (3.17)
as the composition of the canonical isomorphism
(Indp" (7 @ M) = Indp 2 (77 @0 M),

the isomorphism

Indp " (77 @0 M) & Indgf:j ey M
specified above, and the isomorphism
r 1 -1y~ Try, /~
Indrf;“_l (F" ®e M) S Ind ™ (F @6 M)
given by the action of h~1. We now let ¥, be the matrix representing the isomorphism
(Indp" (7 ©0 M;))” = (Indp" (7 @0 M)

induced from (3.17) by duality.
Finally, we put ¥ := @ _.co V,. Then (3.14) follows by construction. In other words,
we have assigned a lifting r from the tuple (o;),es>. It is straightforward to check that such

assignment is inverse to the assignment in the proposition. The proposition follows. O

From now on, E will not necessarily be subject to Assumption 3.24. Using Proposition 3.28,

we can define minimally ramified liftings of 7 for E in general.

Definition 3.29 Suppose that | > N. Choose a finite unramified extension Ei of I contained
in Qg that satisfies Assumption 3.24, with the ring of integers Oy and the residue field ky. We
also keep the choices of v € FF:r \I'g,, those in Construction 3.25, v., and b, as in Proposition
3.28 (with respect to E).

We say that a lifting v of ¥ to some object R of € is minimally ramified if in the tuple
(0r)rexo corresponding to the lifting r ® ¢ O from Proposition 3.28, every homomorphism o,

is a minimally ramified lifting of o in the following sense.
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(1) For T € ‘I?, minimally ramified liftings of o, is defined in Definition 3.18 (which is
equivalent to [14, Definition 2.4.14]).

(2) ForT € 520, note that T is isomorphic to the q,-tame group for some power g, of [l
under which the subgroup T, is the ¢>-tame group. Thus, we may define minimally ramified
liftings of o, using Definition 3.18 (with respect to the similitude character ni=, which is trivial
on T;);

(3) For 1 € ‘Ig, note that T, ~ T, X Z/27. Then, by Lemma 2.3, we may regard the
homomorphism o, as a continuous homomorphism o,: T, — G(R), where G is a symplectic
(resp. orthogonal) group of rank m, if pr is 0 (resp. 1). Thus, we may define minimally ramified
liftings of 0. using [5, Definition 5.4].

Remark 3.30 It is straightforward to check that Definition 3.29 do not depend on the choices
of By, v € I'p+ \ 'z, , those in Construction 3.25, ¢,, and b,.

Now we allow v to be a nonarchimedean place of F'* that is not above £, but not necessarily

nonsplit in F. Again, we consider a pair (7,x) from Notation 3.1 with [' = Fp+ and I' =
Ips NTp.
Corollary 3.31 Let w be a place of F above v and suppose that € 1 Hi\il(q; —1). Let
te: C 55 Qp be an isomorphism, and R an object of € contained in Qq. Let r1 and 7o be two
R-valued liftings of 7. If I1; and Iy are two irreducible admissible representations of GLy (Fy,)
such that TE ®r Qy is the induced representation of WD(1eIL;) for i = 1,2, then II; and Iy are
in the same Bernstein component.

Proof Choose a finite unramified extension E; of E contained in Qy satisfying Assumption
3.24, with the ring of integers ; and the residue field kt. Let Ry be the subring of Q; generated
by R and O, which is an object of €,. Then both 71 ® g Ry and ro @ g Ry are liftings of 7@y k.
By Proposition 3.28 (resp. Lemma 3.23) when v is nonsplit (resp. split) in F' and the condition
that ¢ { vazl(qfu — 1), WD(¢eI1y)|1,,, and WD(eeIlo)|1,, are conjugate. Then it is well-known
that II; and ITz are in the same Bernstein component (see, for example, [29, Lemma 3.2] for a
proof). O

Definition 3.32 When £ > N, we define 2™™ to be the local deformation problem of ¥ that
classifies minimally ramified liftings in the sense of Definition 3.29 (resp. [14, Definition 2.4.14])
when v is nonsplit (resp. split) in F.
Proposition 3.33 We have

(1) The ring RI°¢ is a reduced local complete intersection, flat and of pure relative dimension
N2 over 0.

(2) Bvery irreducible component of Spf RI°¢ is a local deformation problem (Definition 3.3).

(3) When £ > N, 2™ s an irreducible component of Spf RI°¢ and is formally smooth over
Spf & of pure relative dimension N2.

Proof For this proposition, we may assume that F satisfies Assumption 3.24.
For (1), when v splits in F', this is [26, Theorem 2.5]. Thus, we may assume that v is

nonsplit in F. By Proposition 3.28, RI°° is a power series ring over

—

) Rye.

TETY
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We now claim that for every 7 € T, Rléof a local complete intersection, flat and equidimensional.
Indeed, for T € T?, this is [26, Theorem 2.5]; for 7 € ‘3:;9, this is Corollary 3.17; for 7 € ‘I?, this
is Proposition 3.16 for G a symplectic or orthogonal group with the trivial similitude character.
On the other hand, by [3, Theorem 3.3.2] or [6, Theorem 1], we know that RI°¢[1//] is reduced
and of pure dimension dim%y = N2. Thus, R is a local complete intersection, flat and of
pure relative dimension N2 over €. Since RI°¢ is generically reduced and Cohen-Macaulay, it
is reduced. (1) is proved.

For (2), take an irreducible component 2 of Spf RI°¢, and let .Zx be the formal completion of
GLn, ¢ along the unit section. Then the conjugation action induces a homomorphism £ X gpf
9 — Spf RI°¢ whose image contains 2. Since .Zy is irreducible, the image is irreducible, hence
has to be 2. In other words, Z is a local deformation problem.

For (3), since 2™ is Zariski closed in Spf RI°¢ from its definition, it suffices to show that
9™ is formally smooth over Spf & of pure relative dimension N2. When v splits in F, this
is [14, Corollary 2.4.21]. Thus, we may assume that v is nonsplit in F. For 7 € TV, let ng’“
be the local deformation problem of g, classifying minimally ramified liftings of g, in various
cases in Definition 3.29. By Proposition 3.28 and Definition 3.29, 2™ is formally smooth over

I 7
TETY
We claim that for every 7 € TV, @gji“ is formally smooth over Spf &. Indeed, for 7 € T?, this
is [14, Lemma 2.4.19]; for 7 € 5, this is Proposition 3.19; for 7 € ‘I?, this is a part of [5,
Theorem 1.1]. Thus, 2™ is formally smooth over Spf &.
It remains to compute the dimension. By (3.1), it suffices to show that

dimy L(2™") = dimy, H°(F;F, ad 7). (3.18)
For every 7 € TV, let L(@gf“) be the tangent space of the deformation problem ng“, which is a
subspace of H' (T, ad g) (resp. H'(T,,ad g)) if 7 € T} (resp. 7 € 5 UTy ). By Proposition 3.28,
we have

dimg L(Z™") = > dimy, L(Z3™). (3.19)

TEXY

We claim that
dimy H(T,,ad g,) if 7 € T7;

_ 3.20
dim; HY(T,,ad g,) if 7€ Ty LTy, (3:20)

dimy, L(Z3"™) = {

Indeed, for 7 € T?, this is [14, Corollary 2.4.20]; for 7 € ‘I;?, this is Corollary 3.20; for 7 € T?,
this is a part of [5, Theorem 1.1] as dimy H(T,,ad g,) = dimy, H*(T,,ad’ g,). By (3.13) (for

7) and the fact that 7 ®;, M. (7) is canonically the T-isotypic component of #|p,, , we have
HO(FJvadF): ( @ HO(T‘rvadQ-r)> D < @ HO(TTva’dQT))'
€Ty TETSUTY

Together with (3.19) and (3.20), we obtain (3.18).
The proposition is proved. O
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3.5 Level-raising Deformations

In this subsection, we discuss level-raising deformations. Assume ¢ > N > 2. We take a
nonarchimedean place v of F'* that is inert in F' and not above £. Let w be the unique place of
F above v. Recall that we have T, = I‘Ejf/l:’F;r and T, =T'g, /Pp,. Then T, is isomorphic to
the g-tame group and the subgroup T,, is the ¢?-tame group (Definition 3.15), where ¢ = ||v||.

We consider a pair (7, x) from Notation 3.1 with ' = Iprand I'=T'p+ NT'p =Tp,, such

that 7 is unramified and x = nl*e; ™" for some p € Z/27Z. Then by Lemma 3.23 (1), every lifting
r of 7 to an object R of €y factors through T,. In particular, we may apply the discussion in
§3.3 to the pair (7, x).

Now assume £ 1 (¢*> — 1) and that the generalized eigenvalues of #(¢,,) in Fy contain the
pair {¢g=V, ¢~ N T2} exactly once. By Lemma 3.21 (1), for every lifting r of ¥ to an object R of

%¢, we have a canonical decomposition
RON = My & M, (3.21)

of free R-modules stable under the action of 7%(¢,,), such that if we write Py(T) for the char-
acteristic polynomial of r#(¢,,) on My, then Py(T) = (T — ¢ V) (T — ¢~ N+?) mod mp.
Definition 3.34 Let (7, x) be as above. We define 2™ to be the local deformation problem
of ¥ (Definition 3.3) that classifies liftings r to an object R of € such that in the decomposition
(3.21), 7i(Ig,) preserves My and acts trivially on M,.9)

We define

(1) 2" to be the local deformation problem contained in ™% such that the action of
ri(Ip,) on My is also trivial;

(2) 2™ to be the local deformation problem contained in ™% such that the equality
Py(T) = (T — ¢ V) (T — ¢ N*2) holds in R[T).

It is clear that 2" coincides with 2™ from Definition 3.32.

Proposition 3.35 Suppose that £ 1 (¢> — 1) and that the generalized eigenvalues of 7 (¢y)
in Ty contain the pair {g=~,q N*2} exactly once. Then the formal scheme 2™ is formally
smooth over Spf O|[zo, x1]]/(wox1) of pure relative dimension N? — 1 such that the irreducible
components defined by o = 0 and x1 = 0 are """ and ™™, respectively. In particular, 2™
is formally smooth over Spf € of pure relative dimension N2.

Proof We fix an isomorphism T, ~ T, = t%¢ x qb% such that ¢, = ¢2. We write kY = My &

N and ¢~ N*2 on My. Without loss of generality, we may

M; such that 7 (¢2) has eigenvalues ¢~
assume that My is spanned by the first two factors and M is spanned by the last N — 2 factors.
Thus, we obtain two unramified homomorphisms 7o: T, — %(k) and 71: Ty, — In_2(k).
Let 2y be the local deformation problem of 7y classifying liftings of 7o. Let Z; be the local
deformation problem of 7; classifying unramified liftings.
Suppose that N > 3. We say that lifting r of 7 to an object R of € is standard if
Ag 0 By O

ri(t) = , 1(¢g) = (=D N e
0 ].N,Q 0 Bl

6) Note that since £} (¢> — 1), the characteristic polynomial of r(t) on My is automatically (T — 1)2 for every
telp,.



Deformation of Rigid Conjugate Self-dual Galois Representations 1629

for some Ag, By € GLa(R) and By € GLy_2(R). Let Z5* € 2™ be the locus of standard
liftings. Then we have a natural isomorphism

mi
.@0,1)( ~ _@0 XSpfﬁ .@1

of formal schemes over Spf 0.
For n > 1, denote by .Z,, the formal completion of GL,, ¢ along the unit section. Then £y
acts on 2™ by conjugation. We claim that 9&1{" generates 2™ under the action of #y. For

this, it suffices to show that for every lifting r of ¥ to an object R of €, the maps
B: My — R®N — My, B: M; — R®N = M,

induced by B from Lemma 2.3 (1) for v = ¢,, are both zero. Since the two maps intertwine
the actions rf and v ® e}*N of Ty, it suffices to show that the generalized eigenvalues of
gV e, (¢2) and the generalized eigenvalues of 7 (¢2) are disjoint. However, this follows from
the condition that the generalized eigenvalues of 7(¢,,) in Fy contain the pair {g=V, ¢~ V+?}
exactly once.

The above claim induces a canonical isomorphism
@&I{X XSpfﬁ (gg XSpfﬁ XN,Q\XN) — @mlx.

By Proposition 3.19, 2, is formally smooth over Spf & of pure relative dimension (N — 2)2.
Now since % Xgpreo ZLn—2\-Zn is formally smooth over Spf & of pure relative dimension
N2 — (N —2)? — 4, it suffices to prove the proposition for N = 2.

Now we assume N = 2. After changing a basis, we may assume

_ _ 0 (—1)wtt
H6) = (B, (-1 N o, = (0 Y
q 0
Then we have
by .2 1.1-Nptp-1 gV 0
F(2) = (—1)H VBB Vo

For every object R of €, the set Z™*(R) is bijective to the set of pairs (B, X) where B €
GL2(R) and X € My(mpg) satisfying B = Bmodmg, that the characteristic polynomial of X
is T2, and the relation

B'XB™!' = —¢X. (3.22)

Indeed, the bijection is given by 7(¢,) = (B, (—=1)**1¢' =V ¢) and r¥(t) = 1o + X. We let Z
be the subscheme of 2™ defined by the condition that r#(¢2) = (—1)*"¢"VB'B~!is a
diagonal matrix. Take a lifting r € Z5"*(R) corresponding to the pair (B, X); we must have

B_ 0 (=) + )
q(1+y) 0

e N1 +2)1+y) ! 0

ri(¢2) =
(%) 0 ¢ N1 +y)(1+2)7!
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for some z,y € mp. Then by (3.22), X = (2 §) for some zy € mp satisfying (z — y)zo = 0.
Put z; := 2 — y. Then we obtain an isomorphism

@(I)nix ~ Spf ﬁ[[l’o,xla y]]/(xoxl)

such that

e 2y = 0 if and only if r is unramified;

e v = 0 if and only if Py(T) = (T — ¢ V)(T — ¢~ N*2), where Py is the characteristic
polynomial of 7(¢,,) = rh(¢§).

Finally, note that % acts on 2™ by conjugation, which induces a canonical isomorphism
D> xspt o (L1 Xspt 0 L1\ Lo) — D™,

The proposition (for N = 2) follows as .21 Xspt ¢ -Z1\-25 is formally smooth over Spf & of pure

relative dimension 2. The entire proposition is now proved. O

3.6 An Almost Minimal R=T Theorem

In this subsection, we prove a version of the R=T theorem for a global Galois representation.
Assume N > 2.

We take an element & = (&;), € (ZY)*®= satisfying &; = —&re N1 for every T and i.
Assume ¢ > (be — a¢) + 2 (Notation 2.7)_ and that ¢ is unramified in F'. Fix an isomorphism
t¢: C = Qg and assume that the complex algebraic representation of Res /o GLy determined
by & can be defined over I,ZlE.

We consider a pair (7, x) from Notation 3.1 with ' = Ty and I' = T'p, in which y = n#e;
for some p € Z/27. We take two finite sets . and ¥, of nonarchimedean places of F* such
that

e Xt 3, and X} are mutually disjoint;

e X, contains X} ;
e every place v € ;" is inert in F and satisfies £{ (||v||> — 1).

Definition 3.36 We say that 7 is rigid for (X ) if the following are satisfied:
(1) For v in St . every lifting of 7, is minimally mmzﬁed (Definition 3.29).
(2) For v in %
llv]|=N*+2} ezactly once, where w is the unique place of F above v.

(3) Forv in Sf, 7

min?’

F, the generalized eigenvalues of 75 (¢w) in Fe contain the pair {|lv|| =,

is reqular Fontaine—Laffaille crystalline (Definition 3.11).

v

(4) For a nonarchimedean place v of F+ not in £, U USF, the homomorphism T, is

unramified.

Suppose now that 7 is rigid for (X, ¥%). Consider a global deformation problem

(Definition 3.6)

min’

S = (77777”6[ N 3 UE+ UE+ {2, }ve2+ U2+u2+)

min
min

where
e for v € X1, | 9, is the local deformation problem classifying all liftings of 7,;
o for v € Zf;, 9, is the local deformation problem 2™ of 7, from Definition 3.34;

e forv e ZZ, 9, is the local deformation problem 2F" of 7, from Definition 3.12.

Then we have the global universal deformation ring R from Proposition 3.7.
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) and (X}

Remark 3.37 1t is possible that 7 is rigid for two pairs (X7, | L S). Then
RZY and RV are different in general, where . denotes the corresponding global deformation
problem for (Eym, .

Now we state an R=T theorem. Let V be a hermitian space over F' of rank N such that V,,
is not split for v € ;7. Let (p, ql)T€E+ be the signature of V, and put d(V) == s+ prgr.

shust, ust
Take a self-dual J[ g5+ o+ us Op,-lattice A in V ®p Ap™ "™ """ and a neat open

min

compact subgroup K of U(V)(A%,) of the form

K= J] Kux 11 U(A)(Opy)

vext, ust vguLust ust

min min

in which K, is special maximal for v € 3;7. We have the system of (complex) Shimura varieties
{Sh(V,K’) |[K’ C K} associated to Resp+ g U(V) indexed by open compact subgroups K’ C K,
which are quasi-projective smooth complex schemes of dimension d(V).7) The element & gives

rise to a continuous homomorphism

[T U(A)(Op+) — GLo(Le)

UGEZr

where L¢ is a finite free €-module, hence induces an O-linear (étale) local system Z¢ on
Sh(V,K’) for every K’ C K, compatible under restriction.

Let X be a finite set of nonarchimedean places of F'* containing ¥}, UX, . In particular,
we have the abstract unitary Hecke algebra T% (Definition 2.6). Let ¢: T% — k be the
homomorphism such that

e for every nonarchimedean place v of F™ not in X% that induces one place w of F, we
have ¢|ry , = ¢a (Construction 2.5) where a = (a1,...,an) is the unitary abstract Hecke
parameter at v (Definition 2.4) satisfying that {a1|v||NV =L, ... ay||v||N 1} are the generalized
eigenvalues of 79 (¢ 1) in Fy;

e for every nonarchimedean place v of F' not in X7 that splits into two places w; and wo
of F, we have ¢|ty, = ¢a (Construction 2.5) where a = ((a1,1,...,a1,n); (2,1,..., 02 N))
is the unitary abstract Hecke parameter at v (Definition 2.4) satisfying that for ¢ = 1,2,
{aillo]| 7=, ..., ain|lv]| 7=} are the generalized eigenvalues of 7 (¢, 1) in Fy.

We write m for the kernel of ¢.
Theorem 3.38 Suppose that Ef; =0 if N is odd. Under the above setup, we assume
(DO) (already assumed) £ is odd, £ > (be — ag) + 2, and £ is unramified in F;
D1) ¢>2(N +1);
D2) fh|Ga1(7/F(Q)) is absolutely irreducible;
D3) S5 (Definition 3.36);
)

D4) for every finite set X' of nonarchimedean places of F* containing X7, and every

7 is rigid for (31

min’

(
(
(
(

7) Strictly, we need to choose a CM type ® of F' to define the Deligne homomorphism for the Shimura varieties.
More precisely, the Deligne homomorphism h: Resc/r Gm — (Resp+ o U(V)) ®g R = HreE; U(Vr) is the
one such that for z € (Resc/r Gm)(R) = C*, the r-component of h(z) equals 1,, @ (E/z)lq_l after we identify
U(V)(Fg'oo) with a subgroup of GLy(C) via a complex basis of V ®p » C under which the hermitian form is
given by 1p, @ —1g,, where 7 is the unique place of F' above T in ®.
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open compact subgroup K' C K satisfying K., = K,, for v € ¥V, we have

HY, (Sh(V,K'), % ®0 k) -0

T Am

when d # d(V).%)
Let T be the image of T%+ in Endﬁ’(Hgt(V)(Sh(V,K),g&)). If Ty £ 0, then

~

(1) There is a canonical isomorphism R = Ty, of local complete intersection rings over
0.

(2) The Tn-module HZEV)(Sh(V,K),fg)m is finite and free.

(3) We have p = N mod 2.

The rest of this subsection is devoted to the proof of the theorem. We will use the Taylor—
Wiles patching argument following [14] and [28]. Put S := ¥F, U X U, To prove the
theorem, we may replace E by a finite unramified extension in Q,. Thus, we may assume that
k contains all eigenvalues of matrices in 7 (I'r).

Remark 3.39 By (DO0), we know that F is not contained in FT(¢;). Thus, by [28, Theo-
rem A.9], (D1) and (D2) imply that #(Gal(F/F*({,))) is adequate in the sense of [28, Defini-
tion 2.3].

Recall that a prime v of F'* is called a Taylor-Wiles prime for the global deformation
problem .& if

e v ¢ S;wvsplitsin F; and |[v]] =1 mod¥;

e 7, is unramified;

e 7 (¢y) is not a scalar and admits an eigenvalue &, € k, called special eigenvalue, such
that 7 (¢, ) acts semisimply on the generalized eigenspace for @,, where w is the place of F
above v induced by the inclusion F' C Fj

A Taylor-Wiles system is a tuple (Q, {& }veq) where Q is a (possibly empty) finite set of
Taylor—Wiles primes, and @, is a special eigenvalue for every v € Q. For such a system, we
write 7§ = r8 @12 for every v € Q, where 7% (resp. r2) is the generalized eigenspace for &, (resp.
for generalized eigenvalues other than «,). Then we have another global deformation problem
(see [28, Definition 4.1])

y(Q) = (fv 7’]#6%71\77 SuU Qv {-@’U}UGSUQ)

where 2, is the same as in . for v € S; and for v € Q, 2, is the local deformation problem of
7, that classifies liftings 7, such that 7% is of the form r® @ r9 in which ¢ is a lifting of 7* on
which I, acts by scalars, and r; is an unramified lifting of 7.

For each v € Q, we

e put d, == dimy 7y;

e let Py, C GLy be the standard upper-triangular parabolic subgroup corresponding to the
partition (N — d,, d,);

e let ki, be the residue field of S, and A, the maximal quotient of kX of f-power order;

e fix an isomorphism K, ~ GLx (O FJ) and denote by K, ¢ C K, the parahoric subgroup

corresponding to Py, ;

8) This is automatic when d(V) = 0, and follows from (D2) when d(V) = 1.
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o let K, 1 be the kernel of the canonical map

K,0 — Pa, (ko) — GLg, (k) <5 kX = A,.

We then

e put Aq = [[,cq Av; and let ag be the augmentation ideal of O[Aq];
e put mg '=mnN Ti+UQ;

e put

Ki(Q) = [[ Ko x [] Ko

v€Q veQ
for ¢ = 0,1, which are open compact subgroups of K.
In particular, K;(Q) is a normal subgroup of Ky(Q); and we have a canonical isomorphism

Ko(Q)/K1(Q) = Aq. (3.23)
Note that when Q = 0§, Ko(Q) = K1(Q) = K.
For i = 0,1, we put
Hy,(q) = Homs(HEY) (Sh(V, Ki(Q)), %), 0).

By (3.23), Hk, (q) is canonically a module over 0[Aq].
Lemma 3.40 Let the situation be as in Theorem 3.38. The O[Aq]-module Hx, (q),m, is finite

and free. Moreover, the canonical map

Hi, (Q).me/9Q = Hi,(Q).mq

is an isomorphism.
Proof For a smooth complex scheme X and an abelian group A, we denote by X®" the under-
lying complex manifold and Co(X?", A) the complex of singular chains for X*" with coefficients
in A.

For i = 0,1 and every positive integer m, we denote by K" (Q) the kernel of the composite
map

Ki(Q) = K —upn =[] U@)(©Og; /™).
UEEZ'
Then K7*(Q) acts trivially on L¢ ® ¢ /™, hence £ ®¢ O /™ becomes constant on Sh(V,
K7(Q)). By (D4), we have
Hl ™ (Sh(V, Ki(Q), Ze)mq = lim HE (Sh(V, K}'(Q), Le @0 6/ )i,

m
and is O-torsion free. By Artin’s comparison theorem between the singular cohomology and
the étale cohomology, the dual complex

Homg (Co(Sh(V, K" (Q))™, Le @0 0/C™), 0/L™)
calculates Hg, (Sh(V,K™(Q)), Le ®¢ €/£™). By (D4), we have
Ha(Sh(V,K{"(Q))™, Le ®6 O /™ )mq =0
for d # d(V).
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On the other hand, K7 (Q) is neat, which implies that ¢t=*U(V)(FT)t N K™(Q) has no
torsion elements for every ¢ € U(V)(A%, ). By (the same proof of) [20, Lemma 6.9], for every
m > 1, Co(Sh(V,K1"(Q))*, L¢ ®¢ /™) is a perfect complex of free (€/0™)[Aq]-modules;
and there is a canonical isomorphism

Ce(Sh(V, KT (Q)™, Le @0 /™) @paq) O1Aq]/aq = Co(Sh(V, K" (Q))™, Le ®6 O/1™)
of complexes of (& /ém)[T]Z\,+UQ]—modu1es. It follows easily that the canonical map

(Hk, (Q).mq ®6 O/0™) [aq = Hko(Q)mg @0 O/

is an isomorphism, after localizing at mq and taking u,,-invariants.

Then the lemma follows by passing to the limit for m. O

We now discuss the existence of Taylor—Wiles systems. For each v € S, we have the
tangent space L(2,) C H'(F.f,ad ) from Definition 3.4. Let L(Z,)* C HY(F,,ad#(1)) be the
annihilator of L(%,) under the local Tate duality induced by the perfect pairing ad 7 x ad #(1) —
k(1) sending (x,y) to tr(zy). Recall that I'p+ g is the Galois group of the maximal sub-extension
of F/F* that is unramified outside S. For every subset T C S, we define H%L’T(FF+75, ad (1))
to be the kernel of the natural map

H' (Tp+ g,ad7(1)) — @ H'(F,,ad7(1))/L(Z)".
veS\T
Recall the rings R};‘fT (3.2) and Rg?Q) from Proposition 3.7. Moreover, Rg?Q) is naturally an
algebra over Rl}‘iT.

Lemma 3.41 Let the situation be as in Theorem 3.38. Let T be a subset of S. For every
integer b > dimy, H}zL’T(I‘FﬂS, ad 7(1)) and every integer n > 1, there is a Taylor—Wiles system
(Q’m {&v}veQn) Satisfying

(1) 1Qn| =b;

(2) |lv]] = 1 mod £™;

(3) R:DyT(Qn) can be topologically generated over R};F}T by

N(N - 1) 14 (—1)r+1=N

g0 =b— Z [Fy Q] 2

ﬂ.)ETﬂEZr

— N[FT: Q]

elements.
Proof By (3.1), Proposition 3.14 for v € Ej, Proposition 3.33 for v € £, (which is applicable

by (D3)), and Proposition 3.35 for v € X7, we have for every v € S that

Ir»
{[F; L QYW= if g | g

dimy, L(2,) — dimy H°(FF, ad7(1)) =
<1 (%) + 1) 0 if vt

Then the lemma follows from [28, Proposition 4.4] in view of Remark 3.39.% g
Proof of Theorem 3.38 By definition, we have

Hg m = Homg (HIY) (Sh(V, K), Z)m, 0),

9) Strictly speaking, the set S in [28, Proposition 4.4] consists of only places split in F'. But the same argument
works in our case as well.
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under which Ty, is identified with the image of T%+ in End g (Hk m) since Hgt(v) (Sh(V,K), Zt)m
is O-torsion free by (D4).

First, we need to construct a canonical homomorphism R — Ty,. It is well-known that
Tm[1/4] is a reduced ring finite over E. As Hk n is a finite free &-module, Ty, is a reduced
ring finite flat over &. Via v, every (closed) point = of Spec T, [1/4] gives rise to an RACSDC
representation I, of GLy(Afr) (Definition 2.8), satisfying that

(a) the associated Galois representation pr,,,, from Proposition 2.9 (2) is residually isomor-
phic to 7 @, F; (hence residually absolutely irreducible by (D2));

(b) I = BC(w) for a cuspidal automorphic representation 7 of U(V)(Ag+) satisfying that
(7>°)X appears (nontrivially) in HA")(Sh(V, K), % ®g,-1 C);

(¢) the archimedean weights of IT equals &, which follows from (b) and Proposition 2.12.

The representation pr, ,, induces a continuous homomorphism
pz: T — GLN(T,),

where T, denotes the localization of Tiy[1/€] at 2. By a theorem of Carayol [11, Théoréme 2],

the product homomorphism

[  pe:Tr—GLy (HTI)

z€Spec T [1/4]

is conjugate to some continuous homomorphism pg: T'r — GLy(Ty) that is a lifting of 7.
Moreover, by Proposition 2.9 (2)(c) and Lemma 2.3, we obtain a continuous homomorphism

Tm: Lpr — 9N (Tw)

satisfying r‘hn = pm that is a lifting of 7. We claim that r, satisfies the global deformation

problem .. Indeed, by (b) and Proposition 2.12, Il ,, is unramified for nonarchimedean
places w of F not above ¥, UX;". Thus, by (c) and Proposition 2.9 (2)(b), 7w, belongs to
ZEL for v € £ ; and by Proposition 2.9 (2)(a), 7, is unramified for v ¢ S. By (b), Corollary
2.13, and Proposition 2.9 (2)(a), 7m,, belongs to 2™ for v € ;.10

Therefore, by the universal property of R2", we obtain a canonical homomorphism
©: RZY - Ty, (3.24)

of rings over ¢. Moreover, it is clear that our homomorphism ry, satisfies [14, Proposi-
tion 3.4.4 (2)—(3)] as well, which implies that ¢ is surjective. Thus, it remains to show that ¢
is injective.

We follow the strategy for [28, Theorem 6.8]. Fix a subset T C S. We take an integer n > 1,
and a Taylor-Wiles system (Qy, {@y }veq, ) from Lemma 3.41. For each v € Q,,, we

o let Art,: FX — F;l} be the local Artin map;

e let @, € F,f be the uniformizer such that Art,(w,) coincides with the image of ¢, ! in
L

e let pr_, be the commuting projection defined in [28, Propositions 5.9 & 5.12];

10) This is not correct if N is odd, which is the only reason that we suppose that Elt = if N is odd in the
statement of the theorem.
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e for every a € O; 4, let Vo € Z[K,,1\Ky,0/Ky,1] be the characteristic function of the double
coset

For ¢+ = 0,1, we put

ZQn = < H pr )HKl(Qn),anv

veEQR
and let T; g, be the image of TiﬂJQ" in Endg(M;,q, ). We also put
M = HK,m-

Then the canonical map M — Hk mq, is an isomorphism, hence we obtain canonical surjective
homomorphisms

TLQn - T07Qn - Tm
of rings over &. Similar to Ty,, we obtain a continuous homomorphism

7,Q, Urv = 9n(Tiq,),

which is a lifting of 7, for i = 0,1. We have the following two claims:
(1) For every v € Qy, there is a continuous character v,, O;j — T{, that factors through
A, such that

e for every a € O, the actions of V¢ and v,(«) on M q, coincide;

F+ ’
o r?)QmU has a (unique) decomposition 1} o, , ®7] o , such that 77 o  is a lifting of 73
on which I+ acts via the character v, o Art,, ! and 77 Q, . 18 an unramified lifting of 7.

(2) The composite map

I1

vEQn Plwy
M = HK,an - HKO(Q - MOin

n)MQy,
is an isomorphism. In particular, the canonical homomorphism Ty g, — Tw is an isomorphism;
and 19 q, and 7y are equivalent liftings of 7.
Indeed, these claims follow easily from [28, Propositions 5.9 & 5.12].

It follows from (1) that r; q, satisfies the global deformation problem .(Q,,), which induces
a canonical surjective homomorphism

on: RPQ,) = Tra.

of rings over €. We regard T1,q, as an 0[Aq,]-module by (1). Now we claim that R‘“‘(lQ ) s
naturally an 0[Aq,]-module as well, and that ¢,, is O[Aq,]-linear. Indeed, take a universal

lifting T};l(ién) for 7 over R?E‘é ) Then for each v € Q,,, there is a unique character vi"iv: A, —

(RYG,.)) such that I+ acts on 7’};1&') via the character
Art ! X X vy univ X
Ly — OF+ — Ry = Ay —— ( Y(Qn)) .
R,
Moreover, ¢, is a homomorphism of rings over 0[Aq, | by the local- global compatibility. By

Then R?E‘é ) becomes a ring over 0[Aq,] via the character [[,cq, v vinive Ag - —
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(2) and Lemma 3.40, we obtain a canonical commutative diagram

Runiv ~

PG/ 9. R

«pn/ain lﬂ"

Tiq./0q, —Toq, —— T

of rings over &, where all horizontal arrows are isomorphisms.

Choose universal liftings

PV Tpe — IvREY), 20, Trr = IN(RYG,)
for 7 over R and R;lé‘én), respectively, such that r'2V = r“yr}(ién) mod aq,,. By Proposition
3.7(2), we obtain isomorphisms
RYV[Xuiglleetasisen = RS, REG ) [Xuijllerazijen = RJ4q )

of rings over &. In particular, we have a surjective homomorphism RE,T — R2Y, which makes
R an algebra over R ..
We put
Soo = O[[Xoiijllveri<ij<n([Y1,. .., Ya]l;

and let a, C S be the augmentation ideal. Put
R = R];’C,T[[Zlv SERE) Zgb,T]]

where g, v is the number appearing in Lemma 3.41. Applying the usual patching lemma (see
the proof of [1, Theorem 3.6.1], or [28, Lemma 6.10]), we have the following:

e There exists a homomorphism S, — R of rings over & such that we have a surjective
homomorphism R /dec Roe — R of rings over R};‘fT.

e There exist an Roo-module M, and an isomorphism My, /oo Mo, =~ M of Ryﬁ"—modules.

e As an S,,-module, M, is finite and free.

In particular, we have

depthp (Ms) > dim So = 1+ |T|N? +b.
On the other hand, by Proposition 3.14 for v € T N ZZ, Proposition 3.33 for v € TNXF.
(which is applicable by (D3)), and Proposition 3.35 for v € T N %", we know that Rl}‘fT is a

formal power series ring over & in

TN+ > [FF Q]

veTNEy

N(N - 1)
2

variables. It follows that R, is a regular local ring of dimension

N(N -1
D D ot AR
veTNs)
14 (—1)uti-N
:1+|T|N2+b—N[F+:@]%.

As dim Ry > depthg (M), we obtain Theorem 3.38(3). By the Auslander-Buchsbaum
theorem, M, is a finite free R..-module.
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Now we claim that the surjection Reo/tooRo0 — R;‘iv is an isomorphism. Indeed, the
Roo-module M = My /asoMs is finite free over R /000 Roo; but the action of Ry /oo Roo
factors through the surjective map R /000 Roo — Rg}iv, implying that this surjection must be
an isomorphism. From the claim, we know that M is a finite free R}?iv—module. In particular,
the surjective homomorphism ¢ (3.24) is injective, hence an isomorphism. Theorem 3.38 (1)—(2)
are proved. a

4 Rigidity
4.1 Rigidity of Symmetric Powers of Elliptic Curves
In this subsection, we study rigidity of symmetric powers of elliptic curves.

Let A be an elliptic curve over F'T. For every rational prime ¢, we fix an isomorphism
H} (A7, Z¢) ~ Z?Q, hence obtain a continuous homomorphism pa ¢: I'p+ — GL2(Z¢). Suppose
that NV > 2. We obtain a continuous homomorphism

TAL: FF+ — gN(Zg) = (GLN(ZZ) X Z;) X {l,C}

by the formula 4 () = (Sym™ * pA,g(W),nf)V’le,a;N(’y), (7)), where ¢(y) = ¢ (resp. ¢(y) = 1)

if y € T'p+ \T'p (resp. v € I'p). Denote by 74, the composition of 4, and the projection
YGN(Ze) — Gn(F).

Proposition 4.1 Let v be a nonarchimedean place of F. For all but finitely many rational
primes £ > N, every lifting of Ta s, to an object R of €z, (with respect to the similitude

character nf)ve,%;N) is minimally ramified in the sense of Definition 3.29.

Proof For simplicity, we only prove the proposition for v nonsplit in F. The split case is
similar and easier, which we leave to the readers. Thus, let w be the unique place of F' above
v. Fix a finite totally ramified extension F of F,, in F} such that A’ := A® r+ I, has either
good or multiplicative reduction. Let T/, be the image of the subgroup Gal(F} /F") of I'r, in
Ty =g, /Pr,. We fix an isomorphism T,, ~ T, = t%¢ x qb% with the g-tame group, where
q = ||w||. We now assume ¢ 1 [F}, : F},] and W[Hf\;l(qi —1). Then T}, = T,,. Let T =% (Faew)
be the set of isomorphism classes of absolutely irreducible representations of Pz, appearing in
fix,z,v as before.

We first consider the case where A’ has multiplicative reduction. Let u be the valuation of
the j-invariant j(A) in F,,, which is a negative integer. Assume further that ¢ is coprime to w.
Then pas ¢(t) is conjugate to either 1+ Jo = (1) or —(1+ J2) in GLa(Z¢), which implies that
Sym™ ! pas 4(t) is conjugate to 1+ Jy or (—1)N~1(1 + Jy) in GLy(Z¢). Tt follows that T is a
singleton, say {7}; and every lifting o, of 9, is minimally ramified since ¢ { Hi\il (¢* —1). Thus,
every lifting r of ¥4 ¢, is minimally ramified.

We then consider the case where A’ has good reduction. Let o, 8 € Q; be the two eigenvalues
of pare(dg). Then a, f are Weil ¢~ '/2-numbers in @, which depend only on A’, not on £. We
further assume that ¢ satisfies that o, 3 € (Z(@)X, and that the image of the set

{(a/B)N 1 (/BN (/BN (a/B) N Y
in FZX does not contain ¢. It follows that for every 7 € ¥, every lifting o, of g, is actually

unramified by Lemma 3.21(2) as £ { Hf;l(qi —1), hence minimally ramified. Thus, every lifting
7 of T4,¢,» is minimally ramified.
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Since in both cases, we only exclude finitely many rational primes ¢, the proposition fol-
lows. O

The proposition has the following immediate corollary.

Corollary 4.2 Let X1 be a finite set of nonarchimedean places of F™ containing Ef)rad such
that A has good reduction outside Xt. Then for all but finitely many rational primes ¢, T4 ¢ is
rigid for (X7,0) (Definition 3.36 with 0 = Zj).

Proof We need to show that each of the four conditions in Definition 3.36 excludes only
finitely many rational primes ¢. By Proposition 4.1, Condition (1) excludes only finitely many
¢. Condition (2) is empty. Condition (3) holds if ¢ satisfies £ > N + 1 and &/ NI+ = 0.
Condition (4) is automatic. O

4.2 Rigidity of Automorphic Galois Representations

In this subsection, we study rigidity of reduction of automorphic Galois representations.

Let IT be an RACSDC representation of GLy(Ar) (Definition 2.8) for N > 2, and denote
by Eﬁ the smallest (finite) set of nonarchimedean places of F'™ containing E:)rad such that II,,
is unramified for every nonarchimedean place w of F' not above Eﬁ. Let E C C be a strong
coefficient field of II (Definition 2.10). Then for every prime A of E, we have a continuous
homomorphism pr x: I'r — GLy(EN).

When prr, is residually absolutely irreducible, by Proposition 2.9 (2)(c) and Lemma 2.3 (3),

we have an extension

PI A+ - g+ — gN(OE/)\)

of the residue representation prr x of prr x, with the similitude character x = nN eéfN .

Conjecture 4.3 Let II and E be as above. Fix a finite set X+ of nonarchimedean place of
F* containing 214—1'. Then for all but finitely many primes \ of E, we have

(1) pm,x is residually absolutely irreducible;

(2) ﬁH,>\|Ga1(F/F(Q)) is absolutely irreducible, where £ is the underlying rational prime of \;

(3) Fra = pria+ is rigid for (X1,0) (Definition 3.36 with O the ring of integers of Ey).
Remark 4.4 When N = 2, Conjecture 4.3 is not hard to verify. Part (3) of Conjecture 4.3
was also studied in [17] under several simplifying restrictions.

Concerning Conjecture 4.3 (1)—(2), we have the following proposition.
Proposition 4.5 Let Il and E be as above. Suppose that there exists a nonarchimedean place
w of F such that I1,, is supercuspidal. Then

(1) There exists a finite set Ay of primes of E depending on IL, only, such that for every
A& Ay, pry is residually absolutely irreducible.

(2) There exists a finite set Ay containing Ay from (1) such that for every N € Ao, the
restriction ﬁH,A|Ga1(F/F(4£)) remains absolutely irreducible.

The proof of part (2) was suggested to us by Toby Gee. Originally, our alternative argument

needs to further assume for (2) that II is a twist of the Steinberg representation at some

nonarchimedean place of F not above ;" ..
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Proof Let Wg, be the Weil group of Fy,. Since II,, is supercuspidal, we have the induced
continuous representation pr,, : Wg, — GLy(C) via the local Langlands correspondence, which
is irreducible. Fix an arithmetic Frobenius element ¢,, in W, , which determines a natural
quotient map Wg, — Z sending ¢,, to 1. For every integer b > 1, let W% be the inverse image

of bZ. Then there exist an absolutely irreducible representation 7 of I, and a character x of
Wr,

W&, | such that py, is isomorphic to Indy,” 7 ® x, where b is the smallest positive integer
w Fy

satisfying %% ~ 1. We may choose a finite extension E’ of E inside C, and a finite set A’ of
primes of E’, such that both 7 and x are defined over Op (a/). In particular, the image of pri,
is contained in GLx(Og (a7)), up to conjugation.
Now let A} be the smallest set of primes of E’ containing A’ such that every A" ¢ A} satisfies
e w does not divide ¢;

e the underlying rational prime does not divide b[If, / ker pry

w w |?

® Tx =T Q0 a1 Og/ /N remains irreducible;
b
e b remains the smallest positive integer that satisfies %ff“ ~ Ty

Then A} is a finite set, satisfying that the composite map
pu,x 't Wr, — GLN(Opr (1)) — GLn(Opr /XN)

is irreducible for X ¢ A}. Let £ = & be the archimedean weights of II (Definition 2.8).

For (1), we let A; be the set of primes of E underlying A}; and then (1) follows by Proposition
2.9(2a).

For (2), let Ag be the union of A; constructed in (1) above and all primes A of F' whose
underlying rational prime ¢ satisfies either £ < N(be —ag) + 1 or £ N S # (). Take a prime
A& Ay By (1), prx is absolutely irreducible, whose coefficients we may assume to be just O /.
Since the degree of the extension F'(¢;)/F' is coprime to ¢, the representation ﬁH)\'Gal(f/Fﬁg)) is
semisimple. We claim that pry » is an induction of an irreducible representation p’ of Gal(F/F’)
for some field extensions F' C F’ C F((;) such that [F’ : F| equals the number of irreducible
summands of g, >\|Ga1(F IF(C))- By [8, Lemma 4.3], it suffices to show that the irreducible
summands of pr, /\|Ga1(f /F(¢,)) Are pairwise non-isomorphic. Since w is unramified in F({p), it
suffices to check that the irreducible summands of pr 1., are pairwise non-isomorphic, which
is already known by our choice of A} above.

By our definition of Ay and Proposition 2.9 (2)(b), g, is crystalline with regular Fontaine—
Laffaille weights in [a¢, be] and £ > N(bg —a¢) +1 > (be — a¢) + 2. Thus, we must have F' = F
by Lemma 4.7 below. Therefore, pr|ga#/r(c,)) remains absolutely irreducible, hence (2)
follows.

The proposition is proved. U

To finish the proof of Proposition 4.5 (2), we need two lemmas, both of which are suggested
to us by Toby Gee. We start with some notation. For every finite extension L of Q; contained
in Q, we put I'z, := Gal(Qy/L), denote by I, C I'y, the inertia subgroup and by Py C I, the
wild inertia subgroup, and put Ty, :=T'p/Py.

Lemma 4.6 Let p: ', — GLy(F,) be a continuous homomorphism such that p(Pr) = {1}.
Then there exists a finite unramified extension L' of L inside Qp such that plr,, is a direct sum

of characters.
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Proof Lett €1, /Py be a topological generator and ¢ € T, a lift of the arithmetic Frobenius.
Then we have T, = tllozeZe 5 2 subject to the relation ¢top~—! = t*", where £ is the residue
cardinality of L. We regard p as a representation of Tr. As I /Py, has pro-order prime to ¢,
the element p(t) is semisimple. Let b > 1 be an integer such that the eigenvalues of p(t) are
contained in F,, C F). Then p(¢") commutes with p(t). Let ¢ > 1 be an integer such that
p(¢%°) is semisimple. Then the unique unramified extension of L inside Q, of degree bc satisfies
the requirement of the lemma. O

Lemma 4.7 Consider a field tower Q; C L C L' C Qy in which L/Qy is finite unramified and
L'/L is finite Galois. Let 1: T'py — GL,,(Fy) be a continuous homomorphism for some integer
m > 1, and put p == Ind?i, 1. Suppose that

(a) p is crystalline with regular Fontaine—Laffaille weights in [a,b] (Definition 3.11) for some
integers a and b satisfying 0 <b—a <€ —2; and

(b) (b—a)[L' : L] < £—1.
Then L' is unramified over L.
Proof We may assume a = 0. We assume on the contrary that L'/L is ramified. Up to
replacing L by the maximal subfield of L’ that is unramified over L, we may assume that
L'/L is totally ramified. Up to replacing 1) by its semisimplification, we may assume that
is semisimple. Since |I',/T'r/| = [L' : L] is coprime to £, p = Ind?i/(iﬁ) is also semisimple. As
P is a pro-£ normal subgroup of I'z,, we have p(Pr) = {1} by [25, Proposition 4]. By Lemma
4.6, there exists a finite unramified extension L” /L inside Q, such that plr,, is a direct sum of
characters. Up to replacing L by L” and L’ by L' L”, we may assume that p itself is a direct sum
of characters of 'y, say x1,...,xn: [ — FZX. On the other hand, since p = Ind?i, (¢), there
exist two distinct characters x; and x; such that Xixjfl is trivial on Iz/, which is the unique
subgroup of Iy, of index [L' : L]. However, Condition (a) implies that lexjfl is a crystalline
character of Fontaine-Laffaille weights contained in [—b,b]. By the Fontaine-Laffaille theory,

-1 _ br
XZXJ |IL - ® wry

7: L—Qy

we have

where w,: I — FZX is the fundamental character of level 1 corresponding to 7, and b, is an
integer in [—b, b]. Since the Fontaine-Laffaille weights of p are regular, we have b, # 0 for all 7.
Now condition (b) implies that xix;1 can not be trivial on Iy,, which is a contradiction. The
lemma is proved. O
Concerning the entire Conjecture 4.3, we have the following theorem.
Theorem 4.8 Let Il and E be as above. Suppose that there exists a nonarchimedean place of
F at which 11 is supercuspidal. Then Conjecture 4.3 holds for Il and E.
Proof Let £ = & be the archimedean weights of II (Definition 2.8). Let Az be the set in
Proposition 4.5 (2). It suffices to prove (3) of Conjecture 4.3. We need to show that each of
the four conditions in Definition 3.36 excludes only finitely many primes A. Condition (2) is
empty. Condition (3) holds if the underlying rational prime ¢ of A satisfies £ > (be — ag) + 2
and ¥ N X+ = () by Proposition 2.9 (2)(b). Condition (4) is automatic.
It remains to consider Condition (1). Let A be a prime of E not in Ay whose underlying



1642 Liu Y. F. et al.

rational prime /¢ satisfies
SEOST =0, £>2N+1), £>(be—ae)+2, (>qY

for every place w of F' above ¥, In particular, we have
(a) £ is unramified in F;
(b) IL,, is unramified for every place w of F' above ¢;
(¢) PualGaiF/F(c,)) i absolutely irreducible, which implies that o (Gal(F/F*(())) is
adequate by Remark 3.39;
(d) Proposition 3.14 holds for the local deformation problem 2% of 71,5 ,, for every v € X;
(e) Proposition 3.33 holds for 7y 5, for every v € X7
loc

For a collection s+ = {%, |v € ¥1} in which 2, is an irreducible component of Spf R

for v € £, we define a global deformation problem (Definition 3.6)
S (Ds+) = (rupn™ eV TP USE A} enront)

where for v € X7, 9, is the prescribed irreducible component (which is a local deformation
problem by Proposition 3.33 (2)) in Z5+; and for v € Ezr, 9, is the local deformation problem
DL of 711 z,» from Definition 3.12. Now by (a)—(e), and the same proof of [28, Theorem 10.1]
(which assumes that E*UEZ consists only of places split in F'), we know that the global universal
deformation ring R};}(i‘éw) is a finite -module. Moreover, we have y = N mod 2. By (d)—(e)
and the same proof of [16, Lemma 5.1.3] (which assumes that X+ U X/ consists only of places

iv

split in F), we know that the Krull dimension of R(%,, ) 15 at least one. Thus, R;lé"@w)[l /Y]
is nonzero. Fix an isomorphism ¢,: C =5 Q. By choosing a Q,-point of Spec R;lé"@w) [1/4], we
obtain an RACSDC representation II(Zs+) of GLy(AF) satisfying

o [[(Zs+) is unramified outside X7;

e for every place w of F' above X7, there is an open compact subgroup U, of GLy(Fy,)
depending only on II,,, such that II(Zs+ )Y £ {0};

e the archimedean weights of II(Zs+ ) are contained in [ag, be — N + 1J;

® P24 ) 20d priy @, Q¢ are residually isomorphic.
In fact, the second property is a consequence of Proposition 2.9 (2)(a), Corollary 3.31 (which
is applicable since £ > ¢X), and the fact that irreducible admissible representations lying on
a given Bernstein component have a common level. Note that there are only finitely many
RACSDC representations of GLy (Ar) up to isomorphism, satisfying the first three properties.
By the strong multiplicity one property for GLy [23], we know that for £ large enough, II is the
only RACSDC representation of GLy (Ag) up to isomorphism, satisfying all the four properties.

Now we claim that for two different collections 5+ and %, , the RACSDC representations
II(Zs,+) and II(Z5,, ) are not isomorphic. Assuming this claim, then for £ large enough, we have
only one collection, which is { 2™ |y € X}, that is, Definition 3.36 (1) is satisfied. The theorem
is proved.

For the claim itself, we take a place v € XT. Then the local components of II(Zx+ ) above
v give rise to a continuous homomorphism r: T+ — ¥n(Qy), which corresponds to a Qg-point

loc

x, in SpecR¥¢ [1/f]. Now the dimension of the tangent space of SpecRYX¢ [1//] at =, is

TII,\,v TII,\,v
equal to

N? + dimg, H'(F,}, adr) — dimg, H*(F,}, ad r)



Deformation of Rigid Conjugate Self-dual Galois Representations 1643

= N? + dimg, H*(F,", adr)
= N2y dimg, HO(FF, (adr)(1))
< N? + dimg, H*(F,, (adr#)(1)),

where w is the place of F' induced by the embedding F' — F. However, since II(Zs+ ), is
generic, we have dimg, HO(F,, (adr%)(1)) = 0 by [2, Lemma 1.3.2(1)]. Thus, by Proposition

3.33(1), Spec RIFOFEM [1/¢] is smooth at x,, which implies that z, can not lie on two irreducible

components. The claim then follows. O
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