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1 Introduction

Let F/F+ be a CM extension of number fields with c ∈ Gal(F/F+) a complex conjugation.
In this article, we study deformations of conjugate self-dual Galois representations of F . The
study is twofold. First, we prove an R=T type theorem (Theorem 3.38) for a conjugate self-
dual Galois representation r̄ of F with coefficients in a finite field, satisfying a certain property
called rigid (Definition 3.36). It is worth mentioning that unlike many other references in the
field, we neither assume that the characteristic of the coefficient field is relatively split in F/F+

nor assume that r̄ only ramifies at places that are split in F . Second, we study the rigidity
property for the family of residue Galois representations attached to a symmetric power of an
elliptic curve, as well as to a regular algebraic conjugate self-dual cuspidal representation Π. In
particular, we show in Theorem 4.8 that if Π has a supercuspidal component, then the residue
Galois representation is rigid whenever the characteristic is large enough.

The main purpose of this article is to make preparation for our work [21] in which we prove
major cases toward the Beilinson–Bloch–Kato conjecture on the relation between Selmer groups
and L-functions. To see how Galois deformation is used in the study of Selmer groups, we refer
to that article.

The two main theorems are both technical to state. In order to give some flavor of what
we can prove in this article, we now state a result (Theorem 1.1 below) that follows from the
combination of the two main theorems and is relatively straightforward to formulate. Also, it
seems to us that this kind of result is new in the literature.

More precisely, we consider the following data:
• an RACSDC (that is, regular algebraic conjugate self-dual cuspidal) representation Π

of GLN (AF ) for some N ≥ 2, with the archimedean weights ξ = (ξτ,1 ≤ · · · ≤ ξτ,N)τ ∈
(ZN )Hom(F,C) (Definition 2.8),
• a number field E ⊆ C such that one has a family of Galois representations

{ρΠ,λ : Gal(F/F )→ GLN (Eλ)}λ
indexed by primes of E satisfying ρcΠ,λ � ρ∨Π,λ(1−N) as in Proposition 2.9 and Definition 2.10
(see Remark 2.11),
• a finite set Σ+ of nonarchimedean places of F+ such that for every nonarchimedean place

w of F not above Σ+, Πw is unramified and the underlying rational prime of w is unramified
in F .
For every prime λ of E, we write �λ its underlying rational prime and Oλ the ring of integers
of Eλ. Let ΛΠ,Σ+ be the set of primes λ of E such that either ρΠ,λ is not residually absolutely
irreducible, or �λ underlies Σ+, or �λ −N − 1 is strictly smaller than the maximal distance of
integers in ξ. For every prime λ of E not in ΛΠ,Σ+ , we can define
• a commutative Oλ-algebra Runiv

Sλ
that classifies conjugate self-dual deformations of the

residue representation of ρΠ,λ that are crystalline with regular Fontaine–Laffaille weights at
places above �λ and unramified outside Σ+ and places above �λ, and
• a maximal ideal mλ of T

�λ

N with the residue fieldOλ/λ determined by the Satake parameters
of Π, where T

�λ

N is the abstract spherical unitary Hecke algebra of rank N away from Σ+ and
places above �λ.
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Consider pairs (V,K) in which
• V is a (nondegenerate) hermitian space over F (with respect to c) of rank N that is split

at every nonarchimedean place of F+ not in Σ+, and
• K =

∏
v Kv is a neat open compact subgroup of U(V)(A∞

F+ ) such that Kv is the stabilizer
of a self-dual lattice for v �∈ Σ+,
satisfying that there exists a cuspidal automorphic representation π of U(V)(AF+ ) with nonzero
K-invariants whose automorphic base change is Π. Every pair (V,K) as above gives a Shimura
variety Sh(V,K), which is a quasi-projective smooth scheme over C of dimension d(V). For
λ �∈ ΛΠ,Σ+ , the weights ξ give rise to an Oλ-linear local system Lξ,λ on Sh(V,K); and we let
Tλ be the image of T

�λ

N in EndO(Hd(V)
ét (Sh(V,K),Lξ,λ)).

We refer to §3.6 for more details of the above constructions.

Theorem 1.1 Let the setup be as above. Suppose that there exists a nonarchimedean place of
F at which Π is supercuspidal. Then ΛΠ,Σ+ is a finite set. Moreover, there exists a finite set
Λ′

Π,Σ+ of primes of E containing ΛΠ,Σ+ , such that for every λ �∈ Λ′
Π,Σ+ and every pair (V,K)

as above with d(V) ≤ 1, we have
(1) There is a canonical isomorphism Runiv

Sλ

∼−→ Tλ,mλ
of local complete intersection commu-

tative Oλ-algebras.
(2) The Tλ,mλ

-module Hd(V)
ét (Sh(V,K),Lξ,λ)mλ

is finite and free.

The above theorem is a consequence of the two main results of this article, namely, Theo-
rem 3.38 and Theorem 4.8. We have a similar consequence when d(V) is general, but under an
extra assumption on certain vanishing of localized cohomology off middle degree.

The article is organized as follows. In Section 2, we make some preparations for conju-
gate self-dual representations, unitary Hecke algebras, and automorphic representations. In
Section 3, we study both local and global deformations of conjugate self-dual Galois represen-
tations. In Section 4, we study the rigidity property for symmetric powers of elliptic curves and
automorphic Galois representations.

Notations and Conventions

• All rings are commutative and unital; and ring homomorphisms preserve units.

• Throughout the article, we fix an integer N ≥ 1. Denote by MN (resp. GLN ) the scheme
over Z of N -by-N square matrices (resp. invertible square matrices).

• We fix a CM extension F/F+ of number fields and an algebraic closure F of F , with
c ∈ Gal(F/F+) a complex conjugation. Put ΓF := Gal(F/F ) and ΓF+ := Gal(F/F+).
In this article, all hermitian spaces over F are with respect to the convolution c and are
nondegenerate.

• Denote by Σ∞ (resp. Σ+
∞) the set of complex embeddings of F (resp. F+). For τ ∈ Σ∞,

we denote by τc := τ ◦ c ∈ Σ∞ its conjugation and τ := τ |F+ ∈ Σ+
∞ the underlying

element.

• For every rational prime p, denote by Σ+
p the set of all p-adic places of F+.

• Denote by Σ+
bad the union of Σ+

p for all p that ramifies in F .

• Denote by η := ηF/F+ : ΓF+ → {±1} the character associated to the extension F/F+.

• For every prime �, denote by ε� : ΓF+ → Z
×
� the �-adic cyclotomic character.
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• For every place v of F+, we

– put Fv := F ⊗F+ F+
v ; and define δ(v) to be 1 (resp. 2) if v splits (resp. does not

split) in F ;
– fix an algebraic closure F+

v of F+
v containing F ; and put ΓF+

v
:= Gal(F+

v /F
+
v ) as a

subgroup of ΓF+ ;
– for a homomorphism r from ΓF+ to another group, denote by rv the restriction of r

to the subgroup ΓF+
v

.

• For every nonarchimedean place w of F , we

– identify the Galois group ΓFw with ΓF+
v
∩ ΓF (resp. c(ΓF+

v
∩ ΓF )c), where v is the

underlying place of F+, if the embedding F ↪→ F+
v induces (resp. does not induce)

the place w;
– let IFw ⊆ ΓFw be the inertia subgroup;
– denote by φw ∈ ΓFw an arithmetic Frobenius element.

2 Preparation

2.1 Extension of Essentially Conjugate Self-dual Representations

In this subsection, we collect some notion and facts on the extension of essentially conjugate
self-dual representations.

Notation 2.1 We recall the group scheme GN from [14, §1].2) Put

GN := (GLN ×GL1) � {1, c}
with c2 = 1 and

c(g, μ)c = (μ tg−1, μ)

for (g, μ) ∈ GLN ×GL1. In what follows, we will often regard GLN as a subgroup of GN via the
embedding g �→ (g, 1, 1). Denote by ν : GN → GL1 the homomorphism such that ν|GLN ×GL1 is
the projection to the factor GL1 and that ν(c) = −1. We have the adjoint action ad of GN on
MN , given by

ad(g, μ)(x) = gxg−1, ad(c)(x) = − tx

for x ∈MN and (g, μ) ∈ GLN ×GL1.

Let Γ̃ be a topological group, and Γ ⊆ Γ̃ an open subgroup of index at most two.

Notation 2.2 Let R be a (topological) ring.
• For a (continuous) homomorphism ρ : Γ → GLN (R), we denote by ρ∨ : Γ → GLN (R)

the contragredient homomorphism, which is defined by the formula ρ∨(x) = tρ(x)−1 for every
x ∈ Γ.
• For a (continuous) homomorphism ρ : Γ→ GLN (R) and an element γ ∈ Γ̃ that normalizes

Γ, we let ργ : Γ → GLN (R) be the (continuous) homomorphism defined by ργ(x) = ρ(γxγ−1)
for every x ∈ Γ.
• For a (continuous) homomorphism

r : Γ̃→ GN (R)

2) In fact, a better notion seems to be the C-group introduced in [7].
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such that the image of r|Γ lies in GLN(R)×R×, we denote

r� : Γ→ GLN (R)×R× → GLN (R)

the composition of r|Γ with the projection to GLN (R).

Lemma 2.3 Suppose that [Γ̃ : Γ] = 2. Let R be a (topological) ring and χ : Γ̃ → R× a
(continuous) character. We have

(1) If r : Γ̃ → GN (R) is a (continuous) homomorphism satisfying r−1(GLN (R) × R×) = Γ
and ν ◦ r = χ, then for every γ ∈ Γ̃ \ Γ, we have

r�,γ = B ◦ χr�,∨ ◦B−1,

where B is obtained from r(γ) = (B,−χ(γ), c).
(2) Let ρ : Γ → GLN (R) be a (continuous) homomorphism, γ an element in Γ̃ \ Γ, and

B ∈ GLN (R) such that ργ = B ◦χρ∨◦B−1 and B tB−1 = μBχ(γ)−1ρ(γ2) for some μB ∈ {±1}.
Then there exists a unique (continuous) homomorphism

r : Γ̃→ GN (R)

satisfying r|Γ = (ρ, χ|Γ, 1) and r(γ) = (B,μBχ(γ), c).
(3) Suppose in (2) that R is a field and ρ is absolutely irreducible. If ργ and χρ∨ are

conjugate, then ρ induces a (continuous) homomorphism r : Γ̃→ GN(R) satisfying r|Γ = (ρ, χ),
unique up to changing the GLN (R)-component of r(γ) by a scalar in R×.

Proof Part (1) is a special case of [14, Lemma 2.1.1].
For (2), we check that

r(γ2) = (B,μBχ(γ), c) · (B,μBχ(γ), c) = (μBχ(γ)B tB−1, χ(γ2), 1) = (ρ(γ2), χ(γ2), 1).

Since Γ̃ is generated by Γ and γ, we obtain a unique (continuous) homomorphism r : Γ̃→ GN (R)
as in (2).

For (3), by Schur’s lemma, the element B is unique up to scalar in R×, which implies the
existence and also the uniqueness of μB. Thus, (3) follows immediately. �

2.2 Unitary Satake Parameters and Unitary Hecke Algebras

In this subsection, we introduce the notion of unitary Satake parameters and unitary Hecke
algebras.

Definition 2.4 (Abstract Satake parameter) Let L be a ring. For a multi-subset α =
{α1, . . . , αN} ⊆ L, we put

Pα(T ) :=
N∏

i=1

(T − αi) ∈ L[T ].

Consider a nonarchimedean place v of F+ not in Σ+
bad.

(1) Suppose that v is inert in F . We define an (abstract) Satake parameter in L at v of
rank N to be a multi-subset α ⊆ L of cardinality N . We say that α is unitary if Pα(T ) =
(−T )N · Pα(T−1).

(2) Suppose that v splits in F . We define an (abstract) Satake parameter in L at v of rank
N to be a pair α := (α1; α2) of multi-subsets α1,α2 ⊆ L of cardinality N , indexed by the two
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places w1, w2 of F above v. We say that α is unitary if Pα1(T ) = c · TN · Pα2(T−1) for some
constant c ∈ L×.

Let v be a nonarchimedean place of F+ not in Σ+
bad. Let ΛN,v be the unique up to isomor-

phism nondegenerate hermitian module over OFv = OF ⊗O
F+ OF+

v
of rank N , and UN,v its

unitary group over OF+
v

. Under a suitable basis, the associated hermitian form of ΛN,v is given
by the matrix ⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 · · · 0 1

0 · · · 1 0
... . .

. ...
...

1 · · · 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Consider the local spherical Hecke algebra

TN,v := Z[UN,v(OF+
v

)\UN,v(F+
v )/UN,v(OF+

v
)],

with the unit element �UN,v(O
F

+
v

). Let AN,v be the maximal split diagonal subtorus of UN,v,
and X∗(AN,v) be its cocharacter group. Then there is a well-known Satake transform

TN,v → Z[‖v‖±δ(v)/2][AN,v(F+
v )/AN,v(OF+

v
)] � Z[‖v‖±δ(v)/2][X∗(AN,v)] (2.1)

as a homomorphism of algebras. Choose a uniformizer �v of F+
v .

Construction 2.5 Let L be a ring over Z[‖v‖±δ(v)/2]. Let α be a unitary Satake parameter
in L at v of rank N . There are two cases.

(1) Suppose that v is inert in F . Then a set of representatives of AN,v(F+
v )/AN,v(OF+

v
) can

be taken as

{(�t1
v , . . . , �

tN
v ) | t1, . . . , tN ∈ Z satisfying ti + tN+1−i = 0 for all 1 ≤ i ≤ N}.

Choose an ordering of α as (α1, . . . , αN ) satisfying αiαN+1−i = 1; we have a unique homomor-
phism

Z[‖v‖±δ(v)/2][AN,v(F+
v )/AN,v(OF+

v
)]→ L

of rings over Z[‖v‖±δ(v)/2] sending the class of (�t1
v , . . . , �

tN
v ) to

∏�N
2 �

i=1 αti

i . Composing with
the Satake transform (2.1), we obtain a ring homomorphism

φα : TN,v → L.

It is independent of the choices of the uniformizer �v and the ordering of α.
(2) Suppose that v splits in F into two places w1 and w2. Then a set of representatives of

AN,v(F+
v )/AN,v(OF+

v
) can be taken as

{(
diag(�t1

v , . . . , �
tN
v ), diag(�−tN

v , . . . , �−t1
v )

)∣
∣ t1, . . . , tN ∈ Z

}
,

where the first diagonal matrix (resp. the second diagonal matrix) is regarded as an ele-
ment in AN,v(Fw1) (resp. AN,v(Fw2)). Choose orders in α1 and α2 as (α1,1, . . . , α1,N ) and
(α2,1, . . . , α2,N ) satisfying α1,iα2,N+1−i = 1; we have a unique homomorphism

Z[‖v‖±δ(v)/2][AN,v(F+
v )/AN,v(OF+

v
)]→ L
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of Z[‖v‖±δ(v)/2]-rings sending the class of (diag(�t1
v , . . . , �

tN
v ), diag(�−tN

v , . . . , �−t1
v )) to

∏N
i=1 α

ti

1,i. Composing with the Satake transform (2.1), we obtain a ring homomorphism

φα : TN,v → L.

It is independent of the choices of the uniformizer �v, the order of the two places of F above
v, and the orders in α1 and α2.

Definition 2.6 (Abstract unitary Hecke algebra) For a finite set Σ+ of nonarchimedean
places of F+ containing Σ+

bad, we define the abstract unitary Hecke algebra away from Σ+ to
be the restricted tensor product

T
Σ+

N :=
⊗

v

′
TN,v

over all v �∈ Σ+
∞ ∪ Σ+ with respect to unit elements. It is a ring.

2.3 Automorphic Representations

In this subsection, we collect some facts concerning automorphic representations.

Notation 2.7 We denote by Z
N
≤ the subset of Z

N consisting of nondecreasing sequences. For
a finite set T and an element ξ = (ξτ )τ∈T ∈ (ZN

≤ )T , put

aξ := min
τ∈T
{ξτ,1}, bξ := max

τ∈T
{ξτ,N}+N − 1.

Let w be a nonarchimedean place of F . For every irreducible admissible (complex) rep-
resentation Π of GLN (Fw), every rational prime �, and every isomorphism ι� : C

∼−→ Q�, we
denote by WD(ι�Π) the (Frobenius semisimple) Weil–Deligne representation associated to ι�Π
via the local Langlands correspondence [18].

Definition 2.8 We say that a (complex) representation Π of GLN (AF ) is RACSDC (that is,
regular algebraic conjugate self-dual cuspidal) if

(1) Π is an irreducible cuspidal automorphic representation;
(2) Π ◦ c � Π∨;
(3) for every archimedean place w of F , Πw is regular algebraic (in the sense of [13, Defi-

nition 3.12]).
If Π is RACSDC, then there exists a unique element ξΠ = (ξτ,1, . . . , ξτ,N)τ ∈ (ZN

≤ )Σ∞ , which
we call the archimedean weights of Π, satisfying ξτ,i = −ξτ c,N+1−i for every τ and i, such
that Πτ (as a representation of GLN (C)) is isomorphic to the (irreducible) principal series
representation induced by the characters

(arg1−N+2ξτ,1 , arg3−N+2ξτ,2 , . . . , argN−3+2ξτ,N−1 , argN−1+2ξτ,N ),

where arg : C
× → C

× is the argument character defined by the formula arg(z) := z/
√
zz.

Proposition 2.9 Let Π be an RACSDC representation of GLN (AF ) with the archimedean
weights ξ = ξΠ.

(1) For every place w of F , Πw is tempered.
(2) For every rational prime � and every isomorphism ι� : C

∼−→ Q�, there is a semisimple
continuous homomorphism

ρΠ,ι�
: ΓF → GLN (Q�),
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unique up to conjugation, satisfying that
(a) for every nonarchimedean place w of F , the Frobenius semisimplification of the associated

Weil–Deligne representation of ρΠ,ι�
|ΓFw

is isomorphic to WD(ι�Πw| det |
1−N

2
w );

(b) for every place w of F above �, the representation ρΠ,ι�
|ΓFw

is de Rham (crystalline if
Πw is unramified) with regular Hodge–Tate weights contained in the range [aξ, bξ];

(c) ρcΠ,ι�
and ρ∨Π,ι�

(1−N) are conjugate.

Proof Part (1) is [9, Theorem 1.2]. For (2), the Galois representation ρΠ,ι�
is constructed

in [12, Theorem 3.2.3]; the local-global compatibility (2a) is obtained in [9, Theorem 1.1] and
[10, Theorem 1.1]; (2b) is obtained in [12, Theorem 3.2.3]; and (2c) follows from (2a) and the
Chebotarev density theorem. �

Definition 2.10 Let Π be an RACSDC representation of GLN (AF ). We say that a subfield
E ⊆ C is a strong coefficient field of Π if E is a number field; and for every prime λ of E,
there exists a continuous homomorphism

ρΠ,λ : ΓF → GLN (Eλ),

necessarily unique up to conjugation, such that for every isomorphism ι� : C
∼−→ Q� inducing

the prime λ, ρΠ,λ ⊗Eλ
Q� and ρΠ,ι�

are conjugate, where ρΠ,ι�
is the homomorphism from

Proposition 2.9 (2).

Remark 2.11 By [12, Proposition 3.2.5], a strong coefficient field of Π exists when Π is
RACSDC.

Let V be a hermitian space over F of rank N , and π an irreducible admissible representation
of U(V)(AF+). An automorphic base change of π is defined to be an automorphic representation
BC(π) of GLN (AF ) that is a finite isobaric sum of discrete automorphic representations such
that BC(π)v � BC(πv) holds for all but finitely many nonarchimedean places v of F+ such
that πv is unramified. By the strong multiplicity one property for GLN [23], if BC(π) exists,
then it is unique up to isomorphism. Moreover, for every nonarchimedean place v of F+ that
is nonsplit in F , we have a notion of local base change, which is defined by [24] when N ≤ 3
and by [19, 22] for general N .

Proposition 2.12 Take an RACSDC representation Π of GLN (AF ) with ξΠ = (ξτ )τ the
archimedean weights. Let V be a hermitian space over F of rank N and π =

⊗
v πv a cuspidal

automorphic representation of U(V)(AF+) such that Π � BC(π). Then
(1) For every nonarchimedean place v of F+, BC(πv) � Πv.
(2) For every τ ∈ Σ∞, πτ is a discrete series representation of Harish-Chandra parameter

{
1−N

2
+ ξτ,1,

3−N
2

+ ξτ,2, . . . ,
N − 3

2
+ ξτ,N−1,

N − 1
2

+ ξτ,N

}

after we identity U(V)(Fτ ) as a subgroup of GLN (C) via τ : F ⊗F+,τ R
∼−→ C.

Proof This follows from [19, Theorem 1.7.1] for generic packets. �

Corollary 2.13 Take an RACSDC representation Π of GLN (AF ). Let V be a hermitian
space over F of rank N that is even, and π =

⊗
v πv a cuspidal automorphic representation of

U(V)(AF+) such that Π � BC(π). If v is a nonarchimedean place of F+ that is inert in F (with
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w the unique place of F above it) such that Vv is not split and that πv has nonzero invariants
under a special maximal open compact subgroup of U(V)(F+

v ), then the monodromy operator
of WD(ι�Πw) is conjugate to ( 1 1

0 1 ) ⊕ 1N−2 for every rational prime � and every isomorphism
ι� : C

∼−→ Q�.

Proof Write N = 2r for a positive integer r. By Proposition 2.12, we know that Πw is
isomorphic to BC(πv). Since Πw is tempered by Proposition 2.9 (1), πv is also tempered. Since
πv has nonzero invariants under a special maximal open compact subgroup of U(V)(F+

v ), the
cuspidal support of πv is of the form ((F×)r−1×U(V2)(F+

v ), χ�1), where V2 is the anisotropic
hermitian space of rank 2 over Fw and χ is a unitary unramified character of (F×)r−1. In
particular, the cuspidal support of Πw is of the form

((F×)r−1 ×GL2(Fw)× (F×)r−1, χ� St2 � χ−1),

where St2 denotes the Steinberg representation of GL2(Fw). The corollary follows immedi-
ately. �

3 Deformation

In this section, we fix an odd rational prime � and a subfield E ⊆ Q� finite over Q�. We denote
by O the ring of integers of E, by λ its maximal ideal, and by k := O/λ the residue field.
Following [14], we denote by C f

O the category of Artinian local rings over O with residue field
k, and by CO the category of Noetherian complete local rings over O that are inverse limits
of objects of C f

O . For an object R of CO , we shall denote by mR its maximal ideal. For an
O-valued character, we will use the same notation for its induced R-valued character for every
object R of CO . Recall the character η : ΓF+ → {±1} associated to the extension F/F+ and
the �-adic cyclotomic character ε� : ΓF+ → Z

×
� (⊆ O×).

3.1 Deformation Problems

In this subsection, we introduce the notion of deformation problems. Let Γ̃ be a topological
group, and Γ ⊆ Γ̃ an open subgroup of index at most two.

Notation 3.1 We consider a pair (r̄, χ), where
• r̄ : Γ̃→ GN(k) is a homomorphism,
• χ : Γ̃→ O× a continuous homomorphism, known as the similitude character,

subject to the relation r̄−1(GLN (k)× k×) = Γ and ν ◦ r̄ = χ.

The following definition slightly generalizes [14, Definition 2.2.1].

Definition 3.2 A lifting of r̄ to an object R of CO is a continuous homomorphism r : Γ̃ →
GN (R) satisfying rmod mR = r̄ and ν ◦ r = χ. We say that two liftings are equivalent if they
are conjugate by an element in 1 + MN (mR) ⊂ GLN (R) ⊂ GN(R). By a deformation of r̄, we
mean an equivalence class of liftings of r̄.3)

Now suppose that Γ is topologically finitely generated. Then there exists a universal lifting

runiv : Γ̃→ GN (Rloc
r̄ )

3) Strictly speaking, a lifting or a deformation of r̄ depends on the similitude character χ. But we choose to

follow the terminology in [14] by not spelling the characters out, as the relevance on the similitude character is

always clear from the context.
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of r̄ to an object Rloc
r̄ of CO such that, for every object R of CO , the set of liftings of r̄ to R

is in natural bijection with HomCO (Rloc
r̄ , R). Since Γ is topologically finitely generated, it is

well-known that Rloc
r̄ is Noetherian; and there exist natural isomorphisms

Homk(mRloc
r̄
/(m2

Rloc
r̄
, λ), k) � HomCO (Rloc

r̄ , k[ε]/(ε2)) � Z1(Γ̃, ad r̄),

where Z1(Γ̃, ad r̄) denotes the group of 1-cocycles of Γ̃ with values in the adjoint representation
(ad r̄,MN (k)). Let ĜLN,O be the completion of the group scheme GLN,O along its unit section,
which acts naturally on Spf Rloc

r̄ by conjugation.

Definition 3.3 A local deformation problem of r̄ is a closed formal subscheme D of Spf Rloc
r̄

that is stable under the action of ĜLN,O.

Definition 3.4 For a local deformation problem D of r̄, we define the tangent space of D ,
denoted by L(D), to be the image of the subspace

L1(D) := Homk(mRloc
r̄
/(m2

Rloc
r̄
,I , λ), k) ⊆ Z1(Γ̃, ad r̄)

under the natural map Z1(Γ̃, ad r̄) → H1(Γ̃, ad r̄), where I ⊆ Rloc
r̄ is the closed ideal defining

D .

Note that we have the identity

dimk L1(D) = N2 + dimk L(D)− dimk H0(Γ̃, ad r̄). (3.1)

Remark 3.5 Later, when we consider a nonarchimedean place v of F+ and take Γ̃ = ΓF+
v

,
the subgroup Γ we implicitly take is always ΓF+

v
∩ ΓF .

Now we apply Notation 3.1 and Definition 3.2 to the case where Γ̃ = ΓF+ and Γ = ΓF .

Definition 3.6 A global deformation problem is a tuple (r̄, χ, S, {Dv}v∈S), where
• (r̄, χ) is a pair as in Notation 3.1;
• S is a finite set of nonarchimedean places of F+ containing all �-adic places and those

places v such that r̄v is ramified;
• Dv is a local deformation problem of r̄v (Remark 3.5) for each v ∈ S.

We take a global deformation problem S := (r̄, χ, S, {Dv}v∈S). For v ∈ S, we denote by Iv

the closed ideal of Rloc
r̄v

defining Dv. For a subset T ⊆ S, put

Rloc
S ,T :=

⊗̂

v∈T

Rloc
r̄v
/Iv, (3.2)

where the completed tensor product is taken over O. Recall from [14, Definition 2.2.1] that a
T-framed lifting of r̄ to an object R of CO is a tuple (r; {βv}v∈T), where r is a lifting of r̄ to
R (Definition 3.2), and βv ∈ 1 + MN (mR) for v ∈ T. Two T-framed liftings (r; {βv}v∈T) and
(r′; {β′

v}v∈T) of r̄ to R are said to be equivalent, if there exists x ∈ 1 + MN (mR) such that
r′ = x−1 ◦ r ◦x and β′

v = x−1βv for every v ∈ T. A T-framed deformation of r̄ is an equivalence
class of T-framed liftings of r̄. We say that a T-framed lifting (r; {βv}v∈T) is of type S if rv
belongs to Dv for every v ∈ S, and is unramified for every v /∈ S. Note that being of type S is
a property invariant under the conjugate action by 1 + MN (mR). Thus it makes sense to speak
of T-framed deformation of type S . Let Def�T

S : CO → Set be the functor that sends an object
R to the set of T-framed deformations of r̄ to R of type S .
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Let ΓF+,S be the Galois group of the maximal sub-extension of F/F+ that is unramified
outside S. Recall the cohomology group Hi

S ,T(ΓF+,S, ad r̄) for i ≥ 0 introduced after [14,
Definition 2.2.7]. By [14, Lemma 2.3.4], these are finite dimensional k-vector spaces, and satisfy
Hi

S ,T(ΓF+,S, ad r̄) = 0 for i > 3.

Proposition 3.7 Assume that r̄|ΓF is absolutely irreducible. Then for every subset T ⊆ S,
the functor Def�T

S is represented by a Noetherian ring R�T
S in CO . Put Runiv

S := R
�∅
S .

(1) There is a canonical isomorphism

Homk(m
R

�T
S

/(m2

R
�T
S

, λ,mRloc
S ,T

), k) � H1
S ,T(ΓF+,S, ad r̄),

where we regard mRloc
S ,T

as its image under the tautological homomorphism Rloc
S ,T → R�T

S . More-

over, if H2
S ,T(ΓF+,S, ad r̄) = 0 and for v ∈ S \T, Dv is formally smooth over O, then R�T

S is a
power series ring over Rloc

S ,T in dimk H1
S ,T(ΓF+,S, ad r̄) variables.

(2) The choice of a lifting runiv
S : ΓF+ → GN (Runiv

S ) in the universal deformation determines
an extension of the tautological homomorphism Runiv

S → R�T
S to an isomorphism

Runiv
S [[Xv;i,j ]]v∈T;1≤i,j≤N

∼−→ R�T
S

such that, for every v ∈ T, the universal frame at v is given by βv = 1 + (Xv;i,j)1≤i,j≤N .

Proof These are exactly [14, Proposition 2.2.9 & Corollary 2.2.13] except that they consider
only local deformation problems at split places (that is, they assume that all places in S are
split in F ). However, the same argument can be applied to the general case without change. �

3.2 Fontaine–Laffaille Deformations

In this subsection, we study Fontaine–Laffaille deformations at �-adic places. We take a place
v of F+ above �; and let w be the place of F above v induced by the inclusion F ⊆ F+

v .
We assume that � is unramified in F , and denote by σ ∈ Gal(Fw/Q�) the absolute Frobenius
element.

Assumption 3.8 The field E contains the image of every embedding of Fw into Q�.

We first assume that E satisfies Assumption 3.8. Put Σw := HomZ�
(OFw ,O). Following

[14], we use a covariant version of the Fontaine–Laffaille theory [15]. Let MFO,w be the category
of OFw ⊗Z�

O-modules M of finite length equipped with

• a decreasing filtration {FiliM}i∈Z by OFw ⊗Z�
O-submodules that are OFw -direct sum-

mands, satisfying Fil0M = M and Fil�−1M = 0, and

• a Frobenius structure, that is, σ ⊗ 1-linear maps Φi : FiliM → M for i ∈ Z, satisfying
the relations Φi|Fili+1 M = �Φi+1 and

∑
i∈Z

Φi Fili M = M .
Let MFk,w be the full subcategory of MFO,w of objects that are annihilated by λ. For every
integer b satisfying 0 ≤ b ≤ � − 2, let MF

[0,b]
O,w be the full subcategory of MFO,w consisting of

objects M satisfying Filb+1M = 0. In particular, we have MF
[0,�−2]
O,w = MFO,w by definition.

For an object M of MFO,w, there is a canonical decomposition

M =
⊕

τ∈Σw

Mτ ,
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where Mτ := M ⊗OFw⊗Z�
O,τ⊗1 O. Then we have FiliM =

⊕
τ∈Σw

FiliMτ with Fili Mτ =
Mτ ∩ FiliM , and that Φi induces O-linear maps

Φi
τ : Fili Mτ →Mτ◦σ−1 .

We put

griMτ := FiliMτ/Fili+1Mτ ,

gr•Mτ :=
⊕

i

griMτ ,

gr•M :=
⊕

τ∈Σw

gr•Mτ .

We define the set of τ-Fontaine–Laffaille weights of M to be

HTτ (M) := {i ∈ Z | griMτ �= 0}.
We say that M has regular Fontaine–Laffaille weights if griMτ is generated over O by at most
one element for every τ ∈ Σw and every i ∈ Z.

Let O[ΓFw ]f.l. be the category of O-modules of finite length equipped with a continuous
action of ΓFw . In [14, 2.4.1], the authors defined an exact fully faithful, covariant O-linear
functor

Gw : MFO,w → O[ΓFw ]f.l.

whose essential image is closed under taking sub-objects and quotient objects. The length of
an object M in MFO,w as an O-module equals [Fw : Q�] times the length of Gw(M) as an
O-module. For two objects M1,M2 of MFO,w, we have a canonical isomorphism

HomMFO,w
(M1,M2)

∼−→ H0(Fw,HomO(Gw(M1),Gw(M2)))

and a canonical injective map

Ext1MFO,w
(M1,M2) ↪→ Ext1O[ΓFw ]f.l.(Gw(M1),Gw(M2)),

where the target is canonically isomorphic to H1(Fw ,Homk(Gw(M1),Gw(M2))) if M1 and M2

are both objects of MFk,w .

Example 3.9 For an integer b satisfying 0 ≤ b ≤ � − 2 and an object R of C f
O , we have

an object R{b} of MFO,w defined as follows: the underlying OFw ⊗Z�
O-module is simply

(OFw ⊗Z�
R)eb, with the filtration given by

Fili R{b} =

{
(OFw ⊗Z�

R)eb if i ≤ b;
0 if i > b.

Finally, the Frobenius structure is determined by Φb(eb) = eb. Then we have

Gw(R{b}) � R(−b)|ΓFw

as O[ΓFw ]-modules.

Construction 3.10 We construct a functor –σ : MFO,w →MFO,w as follows: for an object
M of MFO,w, the underlying OFw ⊗Z�

O-module of Mσ is OFw ⊗OFw ,σ M with the induced
filtration and Frobenius structure. Then we have Mσ

τ = Mτ◦σ−1 for every τ ∈ Σw, and that



Deformation of Rigid Conjugate Self-dual Galois Representations 1611

Gw(Mσ) is isomorphic to Gw(M) but with the action of ΓFw twisted by the absolute Frobenius
of Fw : if we denote by ρ and ρσ the actions of ΓFw on Gw(M) and Gw(Mσ), respectively, then
they satisfy

ρσ(g) = ρ(σ̃−1gσ̃),

where σ̃ ∈ Gal(F+
v /Q�) is a lift of the absolute Frobenius.

We now let –c : MFO,w → MFO,w be the [F+
v : Q�]-th iteration of the functor –σ con-

structed above.

For an object R of C f
O and an integer b with 0 ≤ b ≤ � − 2, let MF

[0,b]
O,w(R) be the full

subcategory of MF
[0,b]
O,w consisting of objects M such that M is finite free over OFw ⊗Z�

R and
that the OFw ⊗Z�

R-submodule FiliM is a direct summand for every i. Let M be an object of
MF

[0,b]
O,w(R). Then Gw(M) is finite free over R. Thus Gw induces a functor Gw : MF

[0,b]
O,w(R)→

R[ΓFw ]f.r., where R[ΓFw ]f.r. denotes the category of finite free R-modules equipped with a
continuous action by ΓFw . We have a functor

–∨{b} : MF
[0,b]
O,w(R)op →MF

[0,b]
O,w(R)

defined as follows: for an object M of MF
[0,b]
O,w(R), M∨{b} is the object of MF

[0,b]
O,w(R) such that:

• its underlying OFw ⊗Z�
R-module is HomOFw⊗Z�

R(M,OFw ⊗Z�
R),

• Fili M∨{b} = HomOFw⊗Z�
R(M/Filb+1−i M,OFw ⊗Z�

R),
• for every f ∈ FiliM∨{b} and every m ∈ Filj M , we have

Φi(f)(Φj(m)) =

{
�b−i−jf(m)σ if i+ j ≤ b;
0 if i+ j > b.

It is clear that M∨{b} is a well-defined object of MF
[0,b]
O,w(R) (see [14, p. 34]), and that

Gw(M∨{b}) = Gw(M)∨(−b).
Now suppose that we have an isomorphism of R[ΓFw ]-modules Gw(M c) � Gw(M)∨(−b).

Since the functor Gw is fully faithful, giving such an isomorphism is equivalent to giving an
isomorphism M c �M∨{b} in MF

[0,b]
O,w(R), or equivalently an OFw⊗Z�

R-bilinear perfect pairing

〈 , 〉 : M c ×M → OFw ⊗Z�
R, (3.3)

such that the induced R-bilinear perfect pairings 〈 , 〉τ : Mτ c ×Mτ → R for τ ∈ Σw satisfy the
following conditions:

(1) For every i, j ∈ Z, every x ∈ FiliMτ , and every y ∈ Filj Mτ , 〈Φi
τ cx,Φj

τy〉τ◦σ−1 equals
�b−i−j〈x, y〉τ (resp. 0) if i+ j ≤ b (resp. i+ j > b).

(2) For every i ∈ Z, the annihilator of FiliMτ under 〈 , 〉τ is Filb+1−iMτ c ; in particular,
〈 , 〉τ induces an R-linear isomorphism griMτ � HomR(grb−iMτ c , R).

From now on, E will not necessarily be subject to Assumption 3.8.

Definition 3.11 Let R be an object of CO, and ρ : ΓFw → GLN (R) a continuous representa-
tion.

(1) Let a, b be integers satisfying 0 ≤ b−a ≤ �−2. For E satisfying Assumption 3.8, we say
that ρ is crystalline with (regular) Fontaine–Laffaille weights in [a, b] if, for every quotient R′ of
R in C f

O , ρ(a)⊗R R
′ lies in the essential image of the functor Gw : MF

[0,b−a]
O,w (R′)→ O[ΓFw ]f.l.

(and that G−1
w (ρ(a) ⊗R R

′) has regular Fontaine–Laffaille weights).
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(2) For E in general, we say that ρ is regular Fontaine–Laffaille crystalline if there exists a
finite unramified extension E† of E contained in Q� that satisfies Assumption 3.8 with the ring
of integer O†, such that ρ ⊗O O† is crystalline with regular Fontaine–Laffaille weights in [a, b]
in the sense of (1) for some integers a, b satisfying 0 ≤ b− a ≤ �− 2.

Now we consider a pair (r̄, χ) from Notation 3.1 with Γ̃ = ΓF+
v

and Γ = ΓF+
v
∩ ΓF = ΓFw .

Definition 3.12 Suppose that r̄� is regular Fontaine–Laffaille crystalline. We define DFL to
be the local deformation problem of r̄ that classifies the liftings r : ΓF+

v
→ GN (R) of r̄ to objects

R of CO such that r� is regular Fontaine–Laffaille crystalline.

Lemma 3.13 Suppose that r̄� is regular Fontaine–Laffaille crystalline and that χ = ημ
v ε

c
�,v for

some c ∈ Z and μ ∈ Z/2Z. Then

dimk L(DFL)− dimk H0(F+
v , ad r̄) = [F+

v : Q�] · N(N − 1)
2

.

Proof For this lemma, we may assume that E satisfies Assumption 3.8. After replacing r̄ by
r̄(a) for some integer a, we may assume that r̄� is crystalline with regular Fontaine–Laffaille
weights in [0, b] with 0 ≤ b ≤ �− 2. In this case, DFL simply classifies liftings r such that r� is
crystalline with Fontaine–Laffaille weights in [0, b].

Suppose first that v is split in F . Then we have Fw = F+
v , and that a lifting r in DFL(R)

of r̄ is of the form r = (ρ, εc�,v) : ΓFw → GLN (R) × R× such that for every Artinian quotient
R′ of R, ρ⊗R R

′ lies in the essential image of the functor Gw. Then the lemma is exactly [14,
Corollary 2.4.3].

Suppose now that v is inert in F . Then we must have c = −b. Denote by Γw/v the Galois
group of the quadratic extension Fw/F

+
v . Then the restriction map induces an isomorphism

H1(F+
v , ad r̄) ∼−→ H1(Fw , ad r̄)Γw/v .

Put M := G−1
w (r̄�). Then the deformations of r̄ to k[ε]/(ε2) that lie in the essential image of Gw

are classified by Ext1MFk,w
(M,M), which is canonically a Γw/v-stable subspace of H1(Fw , ad r̄).

Therefore, we have

L(DFL) = Ext1MFk,w
(M,M) ∩H1(Fw, ad r̄)Γw/v = Ext1MFk,w

(M,M)Γw/v .

In fact, the induced action of Γw/v on Ext1MFk,w
(M,M) can be described as follows. Recall

the functor –c in Construction 3.10. Then Gw(M c) is isomorphic to r̄�,c|ΓFw
. Since r̄�,c and

r̄�,∨(−b) are conjugate, we have M c � M∨{b}. We fix such an isomorphism, hence obtain a
pairing 〈 , 〉 (3.3) with R = k. Then for an element [P ] ∈ Ext1MFk,w

(M,M) represented by an
extension 0→M → P →M → 0, the image of [P ] under the action of the (unique) non-trivial
element in Γw/v is obtained by applying the functor (–c)∨{b} to 0→M → P →M → 0.

To compute Ext1MFk,w
(M,M)Γw/v , we recall first the following long exact sequence in [14,

Lemma 2.4.2]:

0→ EndMFk,w
(M)→ Fil0 HomOFw⊗Z�

O(M,M)
α−→ HomOFw⊗Z�

O,σ⊗1(gr•M,M)
β−→ Ext1MFk,w

(M,M)→ 0, (3.4)

where
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• Fil0 HomOFw⊗Z�
O(M,M) denotes the OFw ⊗Z�

O-submodule of HomOFw⊗Z�
O(M,M) of

endomorphisms that preserve the filtration;
• the map α takes an element f ∈ Fil0 HomOFw⊗Z�

O(M,M) to (fΦi − Φif)i∈Z; and
• the map β is defined as follows: if ϕ = (ϕi)i∈Z is a σ⊗1-linear map from gr•M to M , then

β(ϕ) is given by the extension class of E = M ⊕M with the filtration Fili E = FiliM ⊕Fili M
and the Frobenius structure

Φi
E :=

⎛

⎝
Φi ϕi

0 Φi

⎞

⎠ .

To prove the lemma, we need to derive an analogous long exact sequence similar to (3.4)
but with the last term Ext1MFk,w

(M,M)Γw/v . For the first term, note that we have a canonical
isomorphism EndMFk,w

(M) � H0(Fw , ad r̄), which contains H0(F+
v , ad r̄) as a submodule. For

the second term, let Fil0 HomOFw⊗Z�
O(M,M)+ be the submodule of Fil0 HomOFw⊗Z�

O(M,M)
consisting of elements f = (fτ )τ∈Σw such that −fτ c is the adjoint of fτ under the pairing
〈 , 〉τ for every τ ∈ Σw. For the third term, let HomOFw⊗Z�

O,σ⊗1(gr•M,M)+ denote by the
submodule of HomOFw⊗Z�

O,σ⊗1(gr•M,M) consisting of ϕ = (ϕi)i∈Z such that

〈Φi
τ c(x), ϕb−i

τ (y)〉τ + 〈ϕi
τ c(x),Φb−i

τ (y)〉τ = 0 (3.5)

is satisfied for every x ∈ griMτ c and y ∈ grb−iMτ .
Then (3.4) induces an exact sequence

0→ H0(F+
v , ad r̄)→ Fil0 HomOFw⊗Z�

O(M,M)+

α−→ HomOFw⊗Z�
O,σ⊗1(gr•M,M)+

β−→ Ext1MFk,w
(M,M)Γw/v → 0

of k-vector spaces. We now compute the dimension of the middle two terms. From the descrip-
tion of Fil0 HomOFw⊗Z�

O(M,M)+, it is clear that fτ c is determined by fτ for every τ ∈ Σw. On
the other hand, for each fixed τ , all possible choices of fτ form a k-vector space of dimension
N(N+1)

2 . Thus, we have

dimk Fil0 HomOFw⊗Z�
O(M,M)+ = [F+

v : Q�] · N(N + 1)
2

.

For HomOFw⊗Z�
O,σ⊗1(gr•M,M)+, we first note that the map

⊕

i

Φi
τ : gr•Mτ →Mτ◦σ−1

is an isomorphism for every τ ∈ Σw. It follows from (3.5) that ϕτ c :=
⊕

i ϕ
i
τ c is determined

by ϕτ :=
⊕

i ϕ
i
τ . On the other hand, for each fixed τ , all the possible choices of ϕτ : gr•Mτ →

Mτ◦σ−1 form a k-vector space of dimension N2. Thus, we have

dimk HomOFw⊗Z�
O,σ⊗1(gr•M,M)+ = [F+

v : Q�] ·N2.

The lemma follows immediately. �

Proposition 3.14 Suppose that r̄� is regular Fontaine–Laffaille crystalline and that χ =
ημ

v ε
c
�,v for some c ∈ Z and μ ∈ Z/2Z. Then the local deformation problem DFL is formally

smooth over Spf O of pure relative dimension N2 + [F+
v : Q�] · N(N−1)

2 .
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Proof By Lemma 3.13, it suffices to show that DFL is formally smooth over O. For this,
we may again assume that E satisfies Assumption 3.8. Moreover, we may assume that r̄� is
crystalline with regular Fontaine–Laffaille weights in [0, b] with 0 ≤ b ≤ � − 2 as in the proof
of Lemma 3.13. In this case, DFL simply classifies liftings r such that r� is crystalline with
Fontaine–Laffaille weights in [0, b].

When v is split in F/F+, the proposition has been proved in [14, Lemma 2.4.1].

Now we suppose that v is inert in F . Then we must have c = −b. Fix a subset Σ+
w ⊂ Σw

such that Σw = Σ+
w

∐
Σ+,c

w . Let R be an object of C f
O and I ⊂ R an ideal satisfying mRI = (0).

Let r be a lifting of r̄ to R/I, and put M := G−1
w (r�), which is an object of MF

[0,b]
O,w(R/I).

Recall the functor –c in Construction 3.10. Then Gw(M c) is isomorphic to r�,c|ΓFw
. Since

r�,c and r�,∨(−b) are conjugate, we have M c � M∨{b}. We fix such an isomorphism, hence
obtain a pairing 〈 , 〉 (3.3) with R = R/I. Let mτ,1 < · · · < mτ,N be the (regular) τ -Hodge–
Tate weights of M for every τ ∈ Σw. Then there exists a basis eτ,1, . . . , eτ,N of Mτ over
R/I satisfying Filmτ,N+1−i Mτ =

⊕i
j=1(R/I)eτ,j for every 1 ≤ i ≤ N . By duality, we have

mτ c,i + mτ,N+1−i = b. Then we may choose the basis (eτ,i) such that 〈eτ c,i, eτ,j〉τ = δi,N+1−j

for every τ ∈ Σ+
w and every 1 ≤ i, j ≤ N .

We now define an object M̃ =
⊕

τ∈Σw
M̃ τ of MF

[0,b]
O,w(R) that reduces to M , together with

a perfect pairing M̃c × M̃ → OFw ⊗Z�
R as in (3.3) that reduces to the pairing 〈 , 〉, as follows.

As an R-module, we take M̃τ = R⊕N with the basis (ẽτ,i) that lifts the basis (ẽτ,i) of Mτ . We
lift 〈 , 〉τ to an R-bilinear perfect pairing M̃τ c × M̃ τ → R such that 〈ẽτ c,i, ẽτ,j〉τ = δi,N+1−j

still holds for every τ ∈ Σ+
w and every 1 ≤ i, j ≤ N . For the filtration, we put Film M̃ τ :

=
⊕i

j=1 Rẽτ,j for m satisfying mτ,N−i < m ≤ mτ,N+1−i. Then M̃ ⊗R R/I is isomorphic to
M as filtered OFw ⊗ R/I-modules; and the condition (2) in Construction 3.10 holds for M̃ as
well. For the Frobenius structure on M̃ , we first define maps Φ̃mτ,i

τ : Filmτ,i M̃ τ → M̃ τ◦σ−1

for τ ∈ Σ+
w by the recursive induction on i. For i = N , we take Φ̃mτ,N

τ to be an arbitrary
lift of Φmτ,N

τ : Filmτ,N Mτ → Mτ◦σ−1 for τ ∈ Σ+
w . For i ≤ N − 1, we take Φ̃mτ,i

τ to be a
lift of Φmτ,i

τ : Filmτ,i Mτ → Mτ◦σ−1 that restricts to �mτ,i−mτ,i+1Φ̃mτ,i+1
τ on Filmτ,i+1 M̃ τ . By

Nakayama’s lemma, we have

M̃ τ◦σ−1 =
∑

i

Φ̃mτ,i
τ (Filmτ,i M̃ τ )

for every τ ∈ Σ+
w . Finally, we define Φ̃i

τ c : M̃ τ c → M̃τ c◦σ−1 for τ ∈ Σ+
w to be the unique R-linear

map satisfying the condition (1) in Construction 3.10 for M̃ . This finishes the construction of
M̃ together with an isomorphism M̃c � M̃∨{b}, which give rise to a lifting r̃ of r̄ to R that
reduces to r by Lemma 2.3. Thus, DFL is formally smooth over O.

The proposition is proved. �
At the end, we remark that in the self-dual (not conjugate self-dual) case, the Fontaine–

Laffaille deformations have been studied in [4].

3.3 Representations of the Tame Group

In this subsection, we study conjugate self-dual representations of the tame group, and define
the notion of minimally ramified deformations of such representations.
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Definition 3.15 Let q ≥ 1 be a positive integer coprime to �. We define the q-tame group,
denoted by Tq, to be the semidirect product topological group tZ� � φẐ

q where φq maps t to tq,
that is, φqtφ

−1
q = tq. For every integer b ≥ 1, we identify Tqb as a subgroup of Tq topologically

generated by t and φqb = φb
q.

We consider a reductive group G over O, together with a surjective homomorphism ν : G→
H over O, where H is an algebraic group over O of multiplicative type. Consider a pair (�̄, μ)
in which �̄ : Tq → G(k) and μ : Tq → H(O) are continuous homomorphisms satisfying ν ◦ �̄ = μ̄

and μ(t) = 1. Similar to the case in §3.1, let Rloc

̄ be the object in CO that parameterizes

liftings � of �̄ satisfying ν ◦ � = μ.4) The following proposition generalizes the tame case of [26,
Theorem 2.5].

Proposition 3.16 The ring Rloc

̄ is a local complete intersection, flat and of pure relative

dimension d over O, where d is the relative dimension of the kernel of ν over O.

Proof We follow the same line as in the proof of [26, Theorem 2.5]. Let G0 and G1 be the
fibers at 1 and μ(φq) of the homomorphism ν, respectively. Define the subscheme M (G, q)
of G0 ×SpecO G1 such that for every object R of CO , M (G, q)(R) consists of pairs (A,B) ∈
G0(R)×G1(R) satisfying

BAB−1 = Aq. (3.6)

It suffices to show that M (G, q) is a local complete intersection, flat and of pure relative
dimension d over O, since Rloc


̄ is the completion of M (G, q) at the k-point (�̄(t), �̄(φq)).

First, we show that every geometric fiber of M (G, q) → Spec O is of pure dimension d.
Consider the natural projection

p : M (G, q)→ G0

to the first factor. Take a geometric point SpecK → Spec O. For a point A0 ∈ G0(K) in
the image of p(K), let Z(A0) be the centralizer of A0 in G0,K as a closed subscheme of G0,K ,
and C(A0) the conjugacy class of A0, which is a locally closed subscheme of G0,K isomorphic
to G0,K/Z(A0). Then C(A0) lies in the image of p(K). For every point A ∈ C(A0)(K),
the fiber p(K)−1(A) is a torsor under the group Z(A), which is conjugate to Z(A0). Thus,
p(K)−1(C(A0)) is irreducible of dimension

dim p(K)−1(C(A0)) = dimC(A0) + dimZ(A0)

= dimG0,K

= d.

To continue, we choose an embedding e : GK → GLm,K of algebraic groups over K for some
integer m ≥ 1. By (3.6), the image of e(K) ◦ p(K) consists only of matrices whose generalized
eigenvalues are (qm! − 1)-th roots of unity, hence finitely many conjugacy classes in GLm(K).
We claim that the image of p(K) consists of finitely many conjugacy classes in G0(K) as well,
which implies that M (G, q)K is of pure dimension d. In fact, we have the following commutative

4) Here, once again we omit the similitude character μ in the ring Rloc
� , in order to be consistent with the

previous convention.
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diagram
G0(K)//G0(K) ��

��

GLm(K)//GLm(K)

��
(G0,K//G0,K)(K) �� (GLm,K //GLm,K)(K)

of sets, in which the bottom map is finite since the morphism G0,K//G0,K → GLm,K //GLm,K

is; and the left vertical map is also finite due to the finiteness of unipotent conjugacy classes of
a reductive group [27, Théorème 4.1]; it follows that the upper horizontal map is finite as well.

The above discussion shows that the morphism M (G, q) → Spec O is of pure relative
dimension d. Now we take a closed point (Ā, B̄) of M (G, q), which induces a homomorphism

OM (G,q),(Ā,B̄) → OG0,Ā⊗̂OOG1,B̄

of corresponding complete local rings. As both G0 and G1 are smooth over O of pure relative
dimension d, both OG0,Ā and OG1,B̄ are power series rings over O in d variables. The relation
(3.6), or equivalently, the relation A = B−1AqB, is defined by d equations in OG0,Ā⊗̂OOG1,B̄.
In other words, M (G, q) is a local complete intersection, hence Cohen–Macaulay. Therefore,
M (G, q) is flat over O. The proposition is proved. �

Take an integer n ≥ 1. Now we apply the above discussion to the homomorphism ν : Gn →
GL1 in Notation 2.1. Consider a pair (�̄, μ) from Notation 3.1 with Γ̃ = Tq and Γ = Tq2 ,
such that μ(t) = 1. In particular, �̄ : Tq → Gn(k) is a homomorphism and μ : Tq → O× is a
(continuous) similitude character. Write

�̄(t) = Ā = (Ā, 1, 1), �̄(φq) = B̄ = (B̄,−μ(φq), c) (3.7)

for Ā, B̄ ∈ GLn(k). For a lifting � of �̄ to an object R of CO , we write �(t) = A = (A, 1, 1) and
�(φq) = B = (B,−μ(φq), c). Then the pair (A,B) reduce to (Ā, B̄), and satisfy the relation

B tA−1B−1 = Aq. (3.8)

Corollary 3.17 The ring Rloc

̄ is a local complete intersection, flat and of pure relative di-

mension n2 over O.

Proof This follows immediately from Proposition 3.16 since the kernel of ν : Gn → GL1 is of
dimension n2. �

From now till the end of this subsection, we assume � ≥ n. For every integer m ≥ 1, we
denote by Jm the standard upper triangular nilpotent Jordan block

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 · · · 0

0 1 · · · 0
. . .

. . .
...

0 1

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

of size m.
Denote by Nn (resp. Un) the closed subscheme of Mn (resp. GLn) defined by the equation

Xn = 0 (resp. (A− 1)n = 0). For every object R of CO , we have the truncated exponential map
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exp: Nn(R)→ Un(R) defined by the formula

expX = 1 +X + · · ·+ Xn−1

(n− 1)!
,

which is a bijection. Its inverse is given by the truncated logarithm map log : Un(R) → Nn(R)
defined by the formula

logA =
n−1∑

i=1

(−1)i−1 (A− 1)i

i
.

Let Pn be the set of partitions of n. By the classification of nilpotent orbits in GLn, for
K = k,E, we have canonical surjective maps π : Nn(K) → Pn such that the fibers of π are
exactly the orbits in Nn(K) under the conjugate action of GLn(K).

By the continuity of �̄, we know that Ā in (3.7) is unipotent, which implies Ā ∈ Un(k). Put
X̄ := log Ā ∈ Nn(k). Following [5, Definition 3.9], we define the functor NilX̄ : CO → Set that
sends an object R of CO to the set of elements X ∈ Nn(R) that reduce to X̄ and are of the
form CX0C

−1, where X0 is an element in Nn(O) satisfying π(X0) = π(X̄) and C ∈ GLn(R),
where we regard X0 as an element in Nn(E) in the notation π(X0).

Definition 3.18 We say that a lifting � of �̄ to an object R of CO is minimally ramified if
there exists an element X ∈ NilX̄(R) such that ��(t) = expX.

Let Dmin

̄ be the local deformation problem of �̄ (Definition 3.3) that classifies minimally

ramified liftings of �̄.

Proposition 3.19 The local deformation problem Dmin

̄ is formally smooth over Spf O of pure

relative dimension n2.

Proof We follow the approach of [5, Proposition 5.6], where a similar result for symplectic or
orthogonal representations was proved.

Consider the morphism α : Dmin

̄ → NilX̄ that sends a lifting � to logA if ��(t) = A. In the

definition of NilX̄ , we may fix the nilpotent element X0 ∈ Nn(O). Moreover, up to conjugation
in GLn(O), we may assume

X0 =

⎛

⎜
⎜
⎜
⎝

Jn1

. . .

Jnr

⎞

⎟
⎟
⎟
⎠
,

where n = n1 + · · · + nr. Let Zn(X0) be the centralizer of X0 in GLn,O , which is a closed
subscheme of GLn,O . By [5, Remark 4.18], Zn(X0) is smooth over O. By [5, Lemma 3.11],
NilX̄ is represented by a formal power series ring over O in n2− dimO Zn(X0) variables, where
dimO Zn(X0) denotes the relative dimension of Zn(X0) over O. Thus, it suffices to show that
α is represented by a formal scheme formally smooth of pure relative dimension dimO Zn(X0)
over NilX̄ .

Take a lifting � of �̄ to an object R of CO . Then �(φq) has the form (B,−μ(φq), c) with
B ∈ GLn(R) that reduces to B̄ and satisfies

B tXB−1 = −qX (3.9)
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by (3.8). For each given X ∈ NilX̄ , if there exists B ∈ GLn(R) that reduces to B̄ and satisfies
(3.9), then the set of all elements B form a torsor under the group

Ẑn(X)(R) := {g ∈ 1 + Mn(mR) | gXg−1 = X},
which is isomorphic to the group of R-valued points of the formal completion of the group
scheme Zn(X0) along the unit section. Thus, to finish the proof, it suffices to show that the
equation (3.9) admits at least one solution for B that reduces to B̄.

Assume first X = X0 in Nn(R). Then

B0 :=

⎛

⎜
⎜
⎜
⎝

An1

. . .

Anr

⎞

⎟
⎟
⎟
⎠

is a solution to (3.9), where

Ani
:=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

(−q)ni−1

. .
.

−q
1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

In the general case, we write X = CX0C
−1 for some C ∈ GLn(R). Then B := CB0

tC satisfies
the equation (3.9). Up to multiplying C by an element in Zn(X0)(R) from the right, we can
make B ∈ GLn(R) to reduce to B̄. This finishes the proof of the proposition. �

Recall from Definition 3.4 that L(Dmin

̄ ) ⊆ H1(Tq, ad �̄) is the tangent space of the local

deformation problem Dmin

̄ .

Corollary 3.20 We have dimk L(Dmin

̄ ) = dimk H0(Tq, ad �̄).

Proof Suppose that Dmin

̄ = Spf Rmin


̄ . By (3.1), we have

dimk mRmin
�̄
/(λ,m2

Rmin
�̄

) = dimk L(Dmin

̄ ) + n2 − dimk H0(Tq, ad �̄).

From this, the corollary follows immediately from Proposition 3.19. �
To end this subsection, we record the following lemma concerning decomposition of repre-

sentations of the q-tame group, in which part (1) will be used later and part (2) is only for
complement.

Lemma 3.21 Let (ρ̄, M̄) be an unramified representation of Tq = tZ� �φẐ
q over k of dimension

N . Suppose that M̄ admits a decomposition

M̄ = M̄1 ⊕ · · · ⊕ M̄s

stable under the action of ρ̄(φq) such that the characteristic polynomials of ρ̄(φq) on Mi are
mutually coprime for 1 ≤ i ≤ s. Let (ρ,M) be a lifting of (ρ̄, M̄) to an object R of CO . Then

(1) There is a unique decomposition

M = M1 ⊕ · · · ⊕Ms

of free R-modules, such that Mi is stable under the action of ρ(φq) and it is a lifting of M̄i as
a φq-module.
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(2) Write ρ(t) = (ρ(t)i,j) with ρ(t)i,j ∈ HomR(Mj ,Mi). Suppose that q is not an eigenvalue
for the canonical action of φq on Homk(M̄j , M̄i) for all i �= j. Then we have ρ(t)i,j = 0 for all
i �= j; in other words, the decomposition in (1) is stable under the whole group Tq.

Proof Part (1) is elementary, which we leave to the readers as an exercise.
For (2), we choose a basis of M over R adapted to the decomposition of M in (1). We

identify ρ(t) and ρ(φq) with their matrices under this basis. We have ρ(φq)i,j = 0 for i �= j

since each Mi is stable under ρ(φq). Let J ⊂ R be the ideal generated by the coefficients of
ρ(t)i,j for i �= j. We have to show that J = 0. By Nakayama’s lemma, it suffices to show that
J = mRJ . As

ρ(t)q = (1 + (ρ(t)− 1))q = 1 + q(ρ(t)− 1) +
∑

a≥2

(
q

a

)

(ρ(t)− 1)a,

and ρ(t) ≡ 1 mod mR, we have

(ρ(t)q)i,j ≡ qρ(t)i,j mod mRJ

for i �= j. The relation φqt = tqφq implies that

ρ(φq)i,iρ(t)i,j = (ρ(t)q)i,jρ(φq)j,j ≡ qρ(t)i,jρ(φq)j,j mod mRJ.

For every 1 ≤ i ≤ s, denote by Pi ∈ R[X ] the characteristic polynomial of the square matrix
ρ(φq)i,i. Then it follows that

ρ(t)i,jPi(qρ(φq)j,j) ≡ Pi(ρ(φq)i,i)ρ(t)i,j ≡ 0 mod mRJ

for i �= j. By assumption, if ᾱ is an eigenvalue of ρ̄(φq)i,i, then q−1ᾱ is not an eigenvalue of
ρ̄(φq)j,j . It follows that Pi(qρ(φq)j,j) is invertible, hence ρ(t)i,j ≡ 0 modmRJ .

The lemma is proved. �

3.4 Minimally Ramified Deformations

In this subsection, we define and study the minimally ramified deformations at places coprime
to the odd prime �. Thus, we take a nonarchimedean place v of F+ that is not above �.

Let IF+
v
⊆ ΓF+

v
be the inertia subgroup, and PF+

v
the maximal closed subgroup of IF+

v
of

pro-order coprime to �. Put Tv := ΓF+
v
/PF+

v
. Similarly, for every place w of F above v, we

have ΓFw , IFw , PFw , and Tw. Finally, put T+
w := ΓF+

v
/PFw .

Remark 3.22 The group Tv is a ‖v‖-tame group (Definition 3.15).
• When w is split over v, we have PFw = PF+

v
, T+

w = Tv, and Tw = T+
w = Tv.

• When w is unramified over v, we have PFw = PF+
v

, T+
w = Tv, and that the subgroup Tw

of Tv is a ‖v‖2-tame group.
•When w is ramified over v, we have PF+

v
/PFw � Z/2Z, that the natural map Tw → Tv is

an isomorphism, and a canonically split short exact sequence

1→ PF+
v
/PFw → T+

w → Tv → 1.

We first recall some facts about extensions of representations of PFw from [14]. For an
irreducible representation τ of PFw with coefficients in k, we put

Γτ := {σ ∈ ΓFw | τσ � τ},
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where we recall that τσ denotes the representation given by τσ(g) = τ(σgσ−1) for g ∈ PFw . Let
Tτ be the image of Γτ in Tw = ΓFw/PFw . As PFw is normal in ΓF+

v
, we may similarly define

Γ+
τ := {σ ∈ ΓF+

v
| τσ � τ},

and denote by T+
τ its image in T+

w .

Lemma 3.23 We have the following properties for τ :
(1) the dimension of τ is coprime to �; and τ has a unique deformation to a representation

τ̃ of PFw over O;
(2) τ̃ in (1) admits a unique extension to a representation of Γτ ∩ IFw over O whose deter-

minant has order coprime to �;
(3) there exists an extension of τ̃ in (2) to a representation of Γτ over O.

Proof This is [14, Lemma 2.4.11]. �
Now we consider a pair (r̄, χ) from Notation 3.1 with Γ̃ = ΓF+

v
and Γ = ΓF+

v
∩ ΓF = ΓFw .

Our first goal is to define the notion of minimally ramified liftings of r̄ (Definition 3.29). Recall
from Notation 2.2 that we have the induced homomorphism r̄� : ΓFw → GLN (k), which satisfies
that r̄�|PFw

is semisimple.
When v is split in F , minimally ramified deformations have already been defined and studied

in [14, 2.4.4]. Thus, we now assume that v is nonsplit in F , hence w is the unique prime of F
above v.

Assumption 3.24 The residue field k of E contains a subfield k� of degree two such that
every irreducible summand of r̄� |PFw

⊗kk is defined over k�.

We first assume that E satisfies Assumption 3.24. For an irreducible representation τ of
PFw with coefficients in k, we put

Mτ (r̄) := Homk[PFw ](τ, r̄�).

Then τ ⊗kMτ (r̄) is canonically the τ -isotypic component of r̄�|PFw
. As τ extends to a represen-

tation of Γτ , the k-vector space Mτ (r̄) is equipped with a natural action by Tτ ; and τ ⊗kMτ (r̄)
is equipped with a natural action by Γτ .

We denote by T = T(r̄) the set of isomorphism classes of irreducible representations τ of
PFw such that Mτ (r̄) �= 0. Then ΓFw acts on T by conjugation, whose orbits we denote by
T/ΓFw . For τ ∈ T, we write [τ ] for its orbit in T/ΓFw .

Choose an element γ ∈ ΓF+
v
\ ΓFw . By Lemma 2.3, the homomorphism r̄ is determined by

an element Ψ̄ ∈ GLN (k) satisfying

r̄�,γ = Ψ̄ ◦ χr̄�,∨ ◦ Ψ̄−1, Ψ̄ tΨ̄−1 = −χ(γ)−1r̄�(γ2).

In what follows, we will adopt the following simplified notation: for a representation τ of
a subgroup of ΓF+

v
, we write τ∗ for χτ∨. Due to the existence of Ψ̄, we know that if τ ∈ T,

then τγ,∗ ∈ T as well. As γ2 ∈ ΓFw , the assignment τ �→ τγ,∗ induces an involution on the set
T/ΓFw , which does not depend on the choice of γ.

Construction 3.25 We now would like to construct a ΓFw -stable partition T = T1�T2�T3.
For each subset Ti, we will specify, for every τ ∈ Ti, an extension of τ̃ in Lemma 3.23 (2) to a
representation of Γτ with coefficients in O in a compatible way, specified below.
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We start from the following observation. Suppose that [τ ] = [τγ,∗] in T/ΓFw . Then there
exists an element h ∈ ΓFw , unique up to left multiplication by an element in Γτ , such that
τγ,∗ � τh−1

, or equivalently, τhγ � τ∗. Then we have (hγ)2 ∈ Γτ but hγ �∈ Γτ . Denote by Γ̃τ

the subgroup of ΓF+
v

generated by Γτ and hγ, which contains Γτ as a subgroup of index two.
Let T̃τ be the image of Γ̃τ in T+

w , which contains Tτ as a subgroup of index two.
(1) We define T1 to be the subset of T consisting of τ such that [τ ] �= [τγ,∗]. We choose a

subset T♥
1 ⊆ T1 such that {τ, τγ,∗ | τ ∈ T♥

1 } is a set of representatives for the Γτ -action on T1.
For each element τ ∈ T♥

1 , we choose an extension of τ̃ in Lemma 3.23 (2) to a representation of
Γτ with coefficients in O, which we still denote by τ̃ . For a general element τ ∈ T1, there are
two cases. If τ � τh

1 for (unique) τ1 ∈ T♥
1 and some h ∈ ΓFw , then we choose τ̃ to be τ̃h

1 , as the
extension to Γτ = h−1Γτ1h. If τ � (τh

1 )γ,∗ for (unique) τ1 ∈ T♥
1 and some h ∈ ΓFw , then we

choose τ̃ to be (τ̃h
1 )γ,∗, as the extension to Γτ = γ−1h−1Γτ1hγ.

(2) We define T2 to be the subset of T consisting of τ such that [τ ] = [τγ,∗], and that the
images of Γτ and Γ̃τ in ΓF+

v
/IF+

v
are different. We choose a subset T♥

2 ⊆ T2 of representatives
for the Γτ -action on T2. For each element τ ∈ T♥

2 , we choose an extension τ̃ from Lemma
3.27 (1) below to a representation of Γτ with coefficients in O. For τ ∈ T2 in general, we have
τ � τh

2 for (unique) τ2 ∈ T♥
2 and some h ∈ ΓFw ; and we choose τ̃ to be τ̃h

2 , as the extension to
Γτ = h−1Γτ2h.

(3) We define T3 to be the subset of T consisting of τ such that [τ ] = [τγ,∗], and that the
images of Γτ and Γ̃τ in ΓF+

v
/IF+

v
are the same. We choose a subset T♥

3 ⊆ T3 of representatives
for the Γτ -action on T3. For each element τ ∈ T♥

3 , we choose an extension τ̃ from Lemma
3.27 (2) below to a representation of Γτ with coefficients in O. For τ ∈ T3 in general, we have
τ � τh

3 for (unique) τ3 ∈ T♥
3 and some h ∈ ΓFw ; and we choose τ̃ to be τ̃h

3 , as the extension to
Γτ = h−1Γτ3h.

In addition, we put T♥ := T♥
1 � T♥

2 � T♥
3 .

Remark 3.26 The partition T = T1�T2 �T3 does not depend on the choice of γ. Moreover,
if T3 is nonempty, then w is ramified over v.

Lemma 3.27 Let τ ∈ T be an element of dimension d.
(1) If τ ∈ T2, then the representation τ̃ in Lemma 3.23 (2) extends to a representation of

Γτ with coefficients in O such that τ̃γ′ � τ̃∗ still holds for every γ′ ∈ Γ̃τ \ Γτ .
(2) If τ ∈ T3, then the representation τ̃ in Lemma 3.23 (2) extends to a representation of

Γτ with coefficients in O such that τ̃γ′ � τ̃∗ still holds for every γ′ ∈ Γ̃τ \ Γτ .

Proof We fix a splitting ΓF+
v
� PF+

v
�Tv and an isomorphism Tv � Tq = tZ� �φẐ

q with the q-
tame group (Definition 3.15) where q = ‖v‖. Then we have the induced splitting Γτ � PFw �Tτ ,
where Tτ = tZ�

τ � φẐ
τ is a subgroup of Tq, with tτ = t�

a

and φτ = φb
q for unique integers a ≥ 0

and b > 0. To extend τ̃ in Lemma 3.23 (2) to a representation of Γτ , it suffices to specify τ̃ (φτ ).
For (1), there are two cases.
First, we suppose that w is unramified over v. Then b is even; and T̃τ is the image of

Γ̃τ in Tv. Then T̃τ is generated by Tτ and an element γ′ ∈ Tv of the form (t̃τ , φ
b/2
q ) such

that γ′2 = (t̃q
b/2+1

τ , φb
q) lies in Γτ . As [τ ] = [τγ,∗], we have τγ′ � τ∗. We choose a basis of

τ , hence regard τ as a homomorphism τ : PFw → GLd(k). By Lemma 3.23 (1)–(2), we have
a continuous homomorphism τ̃ : Γτ ∩ IFw → GLd(O) such that τ̃ |PFw

is a lifting of τ , unique
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up to conjugation in 1 + Md(λ). In particular, there is an element B ∈ GLd(O), unique up to
scalar in O×, such that τ̃γ′

(g) = Bτ̃∗(g)B−1 for every g ∈ Γτ ∩ IFw . Since φτ = t̃−qb/2−1
τ γ′2,

we have

τ̃ (φτgφ
−1
τ ) = τ̃ (t̃−qb/2−1

τ γ′2gγ′−2
t̃q

b/2+1
τ )

= τ̃ (t̃−qb/2−1
τ )τ̃ (γ′2gγ′−2)τ̃ (t̃q

b/2+1
τ )

= τ̃ (t̃−qb/2−1
τ )Bτ̃∗(γ′−1

gγ′)B−1τ̃(t̃q
b/2+1

τ )

= τ̃ (t̃−qb/2−1
τ )(B tB−1)τ̃ (g)(tBB−1)τ̃ (t̃q

b/2+1
τ )

for every g ∈ Γτ ∩ IFw . We put τ̃ (φτ ) := −χ(φb/2
q )τ̃ (t̃−qb/2−1

τ )(B tB−1). Then we obtain the
desired extension as in (1).

Second, we suppose that w is ramified over v. By the definition of T2, the image of Γ̃τ in
ΓF+

v
/IF+

v
contains φẐ

τ as a subgroup of index two. Thus, there exists an element γ′ ∈ Γ̃τ \ Γτ

such that γ2 = hφτ for some h ∈ Γτ ∩ IFw . The remaining argument is same to the above case.
For (2), by the definition of T3, the image of Γ̃τ in ΓF+

v
/IF+

v
coincides with φẐ

τ . In particular,
we can find an element γ′ ∈ Γ̃τ \ Γτ contained in IF+

v
\ IFw . By Lemma 3.23 (1)–(2), we have a

continuous homomorphism τ̃ : Γτ ∩IFw → GLd(O) such that τ̃ |PFw
is a lifting of τ , unique up to

conjugation in 1+Md(λ). As we have τγ′ � τ∗ and τφτ � τ , there are elements A,B ∈ GLd(O)
such that

τ̃γ′
(g) = Aτ̃∗(g)A−1, (3.10)

τ̃φτ (g) = Bτ̃ (g)B−1, (3.11)

for every g ∈ Γτ ∩ IFw . It follows from (3.10) that the desired element τ̃ (φτ ) ∈ GLd(O) has to
satisfy the equation

χ(φτ )A tτ̃(φτ )−1A−1 = τ̃ (γ′φτγ
′−1) = τ̃ (γ′φτγ

′−1
φ−1

τ )τ̃ (φτ ), (3.12)

where we note that γ′φτγ
′−1

φ−1
τ ∈ Γτ ∩ IFw . However, by (3.11), we have

τ̃γ′φτ γ′−1
(g) = (τ̃ (γ′φτγ

′−1
φ−1

τ )B)τ̃ (g)(τ̃ (γ′φτγ
′−1

φ−1
τ )B)−1

for every g ∈ Γτ ∩ IFw . On the other hand, by (3.10) and (3.11), we have

τ̃γ′φτ γ′−1
(g) = (A tB−1A−1)τ̃ (g)(A tB−1A−1)−1

for every g ∈ Γτ ∩ IFw . Since τ is absolutely irreducible, it follows that there exists β ∈ O×

such that
A tB−1A−1 = β · τ̃ (γ′φτγ

′−1
φ−1

τ )B.

Take an element α ∈ O× such that α2 = βχ(φτ ), which is possible by Assumption 3.24. Then
it is clear that τ̃ (φτ ) = αB ∈ GLd(O) is a solution to (3.12).

The lemma is proved. �
Using Construction 3.25, we now discuss the structure of liftings of r̄. Let r : ΓF+

v
→ GN (R)

be a lifting of r̄ to an object R of CO . By Lemma 2.3, to give such a lifting r is equivalent to
giving an element Ψ ∈ GLN (R) that reduces to Ψ̄ and satisfies

r�,γ = Ψ ◦ χr�,∨ ◦Ψ−1, Ψ tΨ−1 = −χ(γ)−1r�(γ2).
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For every τ ∈ T, put
Mτ (r) := HomR[PFw ](τ̃ ⊗O R, r�),

which is a finite free R-module equipped with the induced continuous action by Tτ . Denote by
mτ ≥ 1 the rank of Mτ (r). Let τ ∈ T be the unique element such that τγ � τ∗. Choose an
isomorphism ιτ : τγ ∼−→ τ∗, which, by Construction 3.25, lifts to an isomorphism ιτ̃ : τ̃γ ∼−→ τ̃∗

of representations of Γτ . Then we have successive isomorphisms

Mτ (r)γ ∼−→ HomR[PFw ](τ̃γ ⊗O R, r�,γ)
∼−→ HomR[PFw ](τ̃∗ ⊗O R, r�,∗)
∼−→ HomR[PFw ](r�, τ̃ ⊗O R),

where the second isomorphism is induced by ιτ̃ and Ψ. As τ is absolutely irreducible, we obtain
a perfect R-bilinear pairing

Mτ (r)γ ×Mτ (r)→ EndR[PFw ](τ̃ ⊗O R) = R,

which induces an isomorphism

θτ̃ ,r : Mτ (r)γ ∼−→Mτ (r)∨ := HomR(Mτ (r), R)

of R[Tτ ]-modules. In particular, we have

r� �
( ⊕

τ∈T♥
1

(IndΓFw

Γτ
(τ̃ ⊗O Mτ (r)) ⊕ IndΓFw

Γτγ
(τ̃γ,∗ ⊗O Mτ (r)γ,∨))

)

⊕
( ⊕

τ∈T♥
2 �T♥

3

IndΓFw

Γτ
(τ̃ ⊗O Mτ (r))

)

(3.13)

as representations of ΓFw .
Now for every τ , we fix an isomorphism bτ : Mτ (r̄) ∼−→ k⊕mτ of k-vector spaces, and let

Tτ → GLmτ (k) be the induced homomorphism. There are two cases.
(a) Suppose that τ ∈ T1. Then Mτ (r) is determined by Mτ (r). If we choose an isomorphism

Mτ (r) � R⊕mτ of R-modules that reduces to bτ , then we obtain a continuous homomorphism

�τ : Tτ → GLmτ (R)

that reduces to Tτ → GLmτ (k).
(b) Suppose that τ ∈ T2 � T3. Let h be element from Construction 3.25. Then θτ̃ ,r

induces an isomorphism Mτ (r)hγ ∼−→ Mτ (τ)∨ of R[Tτ ]-modules. Applying Lemma 2.3 (3) to
Tτ → GLmτ (k), we obtain a homomorphism

�̄τ : T̃τ → Gmτ (k)

satisfying �̄−1
τ (GLmτ (k)× k×) = Tτ and ν ◦ �̄τ = ημτ

v for some μτ ∈ Z/2Z determined by τ̃ .5)

In general, if we choose an isomorphism Mτ (r) � R⊕mτ of R-modules that reduces to bτ , then
we obtain a continuous homomorphism

�τ : T̃τ → Gmτ (R)

5) In fact, when τ ∈ T2, one can always modify τ̃ to make μτ = 0; but when τ ∈ T3, μτ is determined by τ .
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that reduces to �̄τ and satisfies ν ◦ ρτ = ημτ
v .

The following proposition is the counterpart of [14, Corollary 2.4.13] when v is nonsplit in
F .

Proposition 3.28 Suppose that E satisfies Assumption 3.24. We keep the choices of γ ∈
ΓF+

v
\ ΓFw , those in Construction 3.25, ιτ , and bτ . For every object R of CO , the assignment

r �→ (�τ )τ∈T♥

establishes a bijection between deformations of r̄ to R and equivalence classes of tuples (�τ )τ∈T♥

where
(a) for τ ∈ T♥

1 , �τ : Tτ → GLmτ (R) is a continuous homomorphism that reduces to �̄τ ;
(b) for τ ∈ T♥

2 � T♥
3 , �τ : T̃τ → Gmτ (R) is a continuous homomorphism that reduces to �̄τ

and satisfies ν ◦ ρτ = ημτ
v .

Here, two tuples (�τ )τ∈T♥ and (�′τ )τ∈T♥ are said to be equivalent if �τ and �′τ are conjugate by
elements in 1 + Mmτ (mR) for every τ ∈ T♥.

Proof We now attach to every tuple (�τ )τ∈T♥ as in the statement a lifting r explicitly. Denote
by Mτ the R[Tτ ]-module corresponding to �τ . Consider

M :=
( ⊕

τ∈T♥
1

(IndΓFw

Γτ
(τ̃ ⊗O Mτ )⊕ IndΓFw

Γτγ
(τ̃γ,∗ ⊗O Mγ,∨

τ ))
)

⊕
( ⊕

τ∈T♥
2 �T♥

3

IndΓFw

Γτ
(τ̃ ⊗O Mτ )

)

,

which is a free R-module of rank N , equipped with a continuous action by ΓFw . Moreover, we
have M ⊗R R/mR � r̄� as representations of ΓFw by (3.13). Thus, we may fix an isomorphism
M � R⊕N such that the induced continuous homomorphism ρ = ρM : ΓFw → GLN (R) reduces
to r̄�. Thus, by Lemma 2.3, to construct the desired lifting r from ρ, it amounts to finding an
element Ψ ∈ GLN (R) satisfying

ργ = Ψ ◦ χρ∨ ◦Ψ−1, Ψ tΨ−1 = −χ(γ)−1ρ(γ2). (3.14)

We will construct Ψ as a direct sum of Ψτ for τ ∈ T♥.
For τ ∈ T♥

1 , we note that τ̃ (γ−2)⊗ �τ (γ−2) induces an isomorphism

Indγ−2
: IndΓFw

Γ
τγ2

(τ̃γ2 ⊗O Mγ2

τ ) � (IndΓFw

Γτγ
(τ̃γ,∗ ⊗O Mγ,∨

τ ))γ,∗ ∼−→ IndΓFw

Γτ
(τ̃ ⊗O Mτ ). (3.15)

Thus, we obtain an isomorphism

(IndΓFw

Γτ
(τ̃ ⊗O Mτ )⊕ IndΓFw

Γτγ
(τ̃γ,∗ ⊗O Mγ,∨

τ ))γ,∗

∼−→ IndΓFw

Γτ
(τ̃ ⊗O Mτ )⊕ IndΓFw

Γτγ
(τ̃γ,∗ ⊗O Mγ,∨

τ ) (3.16)

as the composition of the canonical isomorphism

(IndΓFw

Γτ
(τ̃ ⊗O Mτ )⊕ IndΓFw

Γτγ
(τ̃γ,∗ ⊗O Mγ,∨

τ ))γ,∗

∼−→ IndΓFw

Γτγ
(τ̃γ,∗ ⊗O Mγ,∨

τ )⊕ (IndΓFw

Γτγ
(τ̃γ,∗ ⊗O Mγ,∨

τ ))γ,∗,

and the isomorphism

IndΓFw

Γτγ
(τ̃γ,∗ ⊗O Mγ,∨

τ )⊕ (IndΓFw

Γτγ
(τ̃γ,∗ ⊗O Mγ,∨

τ ))γ,∗
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∼−→ IndΓFw

Γτ
(τ̃ ⊗O Mτ )⊕ IndΓFw

Γτγ
(τ̃γ,∗ ⊗O Mγ,∨

τ )

given by the matrix ⎛

⎝
0 −χ(γ) Indγ−2

1 0

⎞

⎠

in which Indγ−2
is the isomorphism (3.15). We now let Ψτ be the matrix representing the

isomorphism

(IndΓFw

Γτ
(τ̃ ⊗O Mτ )⊕ IndΓFw

Γτγ
(τ̃γ,∗ ⊗O Mγ,∨

τ ))∗

∼−→ (IndΓFw

Γτ
(τ̃ ⊗O Mτ )⊕ IndΓFw

Γτγ
(τ̃γ,∗ ⊗O Mγ,∨

τ ))γ

induced from (3.16) by duality.
For τ ∈ T♥

2 � T♥
3 , let h be the element in Construction 3.25. Put γ′ := hγ, which is an

element in Γ̃τ \Γτ . The homomorphism �τ : T̃τ → Gmτ (R) induces an isomorphismMγ′
τ

∼−→M∨
τ

by Lemma 2.3 (1), which induces an isomorphism Mγ,∨
τ

∼−→ Mh−1

τ . On the other hand, by
Lemma 3.27, we have an isomorphism τ̃γ,∗ � τ̃h−1

. Thus, we obtain an isomorphism

(IndΓFw

Γτ
(τ̃ ⊗O Mτ ))γ,∗ ∼−→ IndΓFw

Γτ
(τ̃ ⊗O Mτ ) (3.17)

as the composition of the canonical isomorphism

(IndΓFw

Γτ
(τ̃ ⊗O Mτ ))γ,∗ ∼−→ IndΓFw

Γτγ
(τ̃γ,∗ ⊗O Mγ,∨

τ ),

the isomorphism

IndΓFw

Γτγ
(τ̃γ,∗ ⊗O Mγ,∨

τ ) ∼−→ IndΓFw

Γ
τh−1

(τ̃h−1 ⊗O Mh−1

τ )

specified above, and the isomorphism

IndΓFw

Γ
τh−1

(τ̃h−1 ⊗O Mh−1

τ ) ∼−→ IndΓFw

Γτ
(τ̃ ⊗O Mτ )

given by the action of h−1. We now let Ψτ be the matrix representing the isomorphism

(IndΓFw

Γτ
(τ̃ ⊗O Mτ ))∗ ∼−→ (IndΓFw

Γτ
(τ̃ ⊗O Mτ ))γ

induced from (3.17) by duality.
Finally, we put Ψ :=

⊕
τ∈T♥ Ψτ . Then (3.14) follows by construction. In other words,

we have assigned a lifting r from the tuple (�τ )τ∈T♥ . It is straightforward to check that such
assignment is inverse to the assignment in the proposition. The proposition follows. �

From now on, E will not necessarily be subject to Assumption 3.24. Using Proposition 3.28,
we can define minimally ramified liftings of r̄ for E in general.

Definition 3.29 Suppose that l ≥ N . Choose a finite unramified extension E† of E contained
in Q� that satisfies Assumption 3.24, with the ring of integers O† and the residue field k†. We
also keep the choices of γ ∈ ΓF+

v
\ΓFw , those in Construction 3.25, ιτ , and bτ , as in Proposition

3.28 (with respect to E).
We say that a lifting r of r̄ to some object R of CO is minimally ramified if in the tuple

(�τ )τ∈T♥ corresponding to the lifting r ⊗O O† from Proposition 3.28, every homomorphism �τ

is a minimally ramified lifting of �̄τ in the following sense.
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(1) For τ ∈ T♥
1 , minimally ramified liftings of �̄τ is defined in Definition 3.18 (which is

equivalent to [14, Definition 2.4.14]).
(2) For τ ∈ T♥

2 , note that T̃τ is isomorphic to the qτ -tame group for some power qτ of ‖v‖
under which the subgroup Tτ is the q2τ -tame group. Thus, we may define minimally ramified
liftings of �̄τ using Definition 3.18 (with respect to the similitude character ημτ

v , which is trivial
on Tτ );

(3) For τ ∈ T♥
3 , note that T̃τ � Tτ × Z/2Z. Then, by Lemma 2.3, we may regard the

homomorphism �τ as a continuous homomorphism �τ : Tτ → G(R), where G is a symplectic
(resp. orthogonal) group of rank mτ if μτ is 0 (resp. 1). Thus, we may define minimally ramified
liftings of �̄τ using [5, Definition 5.4].

Remark 3.30 It is straightforward to check that Definition 3.29 do not depend on the choices
of E†, γ ∈ ΓF+

v
\ ΓFw , those in Construction 3.25, ιτ , and bτ .

Now we allow v to be a nonarchimedean place of F+ that is not above �, but not necessarily
nonsplit in F . Again, we consider a pair (r̄, χ) from Notation 3.1 with Γ̃ = ΓF+

v
and Γ =

ΓF+
v
∩ ΓF .

Corollary 3.31 Let w be a place of F above v and suppose that � �
∏N

i=1(q
i
w − 1). Let

ι� : C
∼−→ Q� be an isomorphism, and R an object of CO contained in Q�. Let r1 and r2 be two

R-valued liftings of r̄. If Π1 and Π2 are two irreducible admissible representations of GLN (Fw)
such that r�

i ⊗R Q� is the induced representation of WD(ι�Πi) for i = 1, 2, then Π1 and Π2 are
in the same Bernstein component.

Proof Choose a finite unramified extension E† of E contained in Q� satisfying Assumption
3.24, with the ring of integers O† and the residue field k†. Let R† be the subring of Q� generated
by R and O†, which is an object of CO† . Then both r1⊗RR† and r2⊗RR† are liftings of r̄⊗kk†.
By Proposition 3.28 (resp. Lemma 3.23) when v is nonsplit (resp. split) in F and the condition
that � �

∏N
i=1(q

i
w − 1), WD(ι�Π1)|IFw

and WD(ι�Π2)|IFw
are conjugate. Then it is well-known

that Π1 and Π2 are in the same Bernstein component (see, for example, [29, Lemma 3.2] for a
proof). �

Definition 3.32 When � ≥ N , we define Dmin to be the local deformation problem of r̄ that
classifies minimally ramified liftings in the sense of Definition 3.29 (resp. [14, Definition 2.4.14])
when v is nonsplit (resp. split) in F .

Proposition 3.33 We have
(1) The ring Rloc

r̄ is a reduced local complete intersection, flat and of pure relative dimension
N2 over O.

(2) Every irreducible component of Spf Rloc
r̄ is a local deformation problem (Definition 3.3).

(3) When � ≥ N , Dmin is an irreducible component of Spf Rloc
r̄ and is formally smooth over

Spf O of pure relative dimension N2.

Proof For this proposition, we may assume that E satisfies Assumption 3.24.
For (1), when v splits in F , this is [26, Theorem 2.5]. Thus, we may assume that v is

nonsplit in F . By Proposition 3.28, Rloc
r̄ is a power series ring over

⊗̂

τ∈T♥
Rloc


̄τ
.
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We now claim that for every τ ∈ T♥, Rloc

̄τ

a local complete intersection, flat and equidimensional.
Indeed, for τ ∈ T♥

1 , this is [26, Theorem 2.5]; for τ ∈ T♥
2 , this is Corollary 3.17; for τ ∈ T♥

3 , this
is Proposition 3.16 for G a symplectic or orthogonal group with the trivial similitude character.
On the other hand, by [3, Theorem 3.3.2] or [6, Theorem 1], we know that Rloc

r̄ [1/�] is reduced
and of pure dimension dim GN = N2. Thus, Rloc

r̄ is a local complete intersection, flat and of
pure relative dimension N2 over O. Since Rloc

r̄ is generically reduced and Cohen–Macaulay, it
is reduced. (1) is proved.

For (2), take an irreducible component D of Spf Rloc
r̄ , and let LN be the formal completion of

GLN,O along the unit section. Then the conjugation action induces a homomorphism LN×Spf O

D → Spf Rloc
r̄ whose image contains D . Since LN is irreducible, the image is irreducible, hence

has to be D . In other words, D is a local deformation problem.
For (3), since Dmin is Zariski closed in Spf Rloc

r̄ from its definition, it suffices to show that
Dmin is formally smooth over Spf O of pure relative dimension N2. When v splits in F , this
is [14, Corollary 2.4.21]. Thus, we may assume that v is nonsplit in F . For τ ∈ T♥, let Dmin


̄τ

be the local deformation problem of �̄τ classifying minimally ramified liftings of �̄τ in various
cases in Definition 3.29. By Proposition 3.28 and Definition 3.29, Dmin is formally smooth over

∏

τ∈T♥
Dmin


̄τ
.

We claim that for every τ ∈ T♥, Dmin

̄τ

is formally smooth over Spf O. Indeed, for τ ∈ T♥
1 , this

is [14, Lemma 2.4.19]; for τ ∈ T♥
2 , this is Proposition 3.19; for τ ∈ T♥

3 , this is a part of [5,
Theorem 1.1]. Thus, Dmin is formally smooth over Spf O.

It remains to compute the dimension. By (3.1), it suffices to show that

dimk L(Dmin) = dimk H0(F+
v , ad r̄). (3.18)

For every τ ∈ T♥, let L(Dmin

̄τ

) be the tangent space of the deformation problem Dmin

̄τ

, which is a
subspace of H1(Tτ , ad �̄) (resp. H1(T̃τ , ad �̄)) if τ ∈ T♥

1 (resp. τ ∈ T♥
2 �T♥

3 ). By Proposition 3.28,
we have

dimk L(Dmin) =
∑

τ∈T♥
dimk L(Dmin


̄τ
). (3.19)

We claim that

dimk L(Dmin

̄τ

) =

{
dimk H0(Tτ , ad �̄τ ) if τ ∈ T♥

1 ;

dimk H0(T̃τ , ad �̄τ ) if τ ∈ T♥
2 � T♥

3 .
(3.20)

Indeed, for τ ∈ T♥
1 , this is [14, Corollary 2.4.20]; for τ ∈ T♥

2 , this is Corollary 3.20; for τ ∈ T♥
3 ,

this is a part of [5, Theorem 1.1] as dimk H0(T̃τ , ad �̄τ ) = dimk H0(Tτ , ad0 �̄τ ). By (3.13) (for
r̄) and the fact that τ ⊗k Mτ (r̄) is canonically the τ -isotypic component of r̄�|PFw

, we have

H0(F+
v , ad r̄) �

( ⊕

τ∈T♥
1

H0(Tτ , ad �̄τ )
)

⊕
( ⊕

τ∈T♥
2 �T♥

3

H0(T̃τ , ad �̄τ )
)

.

Together with (3.19) and (3.20), we obtain (3.18).
The proposition is proved. �
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3.5 Level-raising Deformations

In this subsection, we discuss level-raising deformations. Assume � ≥ N ≥ 2. We take a
nonarchimedean place v of F+ that is inert in F and not above �. Let w be the unique place of
F above v. Recall that we have Tv = ΓF+

v
/PF+

v
and Tw = ΓFw/PFw . Then Tv is isomorphic to

the q-tame group and the subgroup Tw is the q2-tame group (Definition 3.15), where q = ‖v‖.
We consider a pair (r̄, χ) from Notation 3.1 with Γ̃ = ΓF+

v
and Γ = ΓF+

v
∩ ΓF = ΓFw , such

that r̄ is unramified and χ = ημ
v ε

1−N
�,v for some μ ∈ Z/2Z. Then by Lemma 3.23 (1), every lifting

r of r̄ to an object R of CO factors through Tv. In particular, we may apply the discussion in
§3.3 to the pair (r̄, χ).

Now assume � � (q2 − 1) and that the generalized eigenvalues of r̄�(φw) in F� contain the
pair {q−N , q−N+2} exactly once. By Lemma 3.21 (1), for every lifting r of r̄ to an object R of
CO , we have a canonical decomposition

R⊕N = M0 ⊕M1 (3.21)

of free R-modules stable under the action of r�(φw), such that if we write P0(T ) for the char-
acteristic polynomial of r�(φw) on M0, then P0(T ) ≡ (T − q−N )(T − q−N+2)mod mR.

Definition 3.34 Let (r̄, χ) be as above. We define Dmix to be the local deformation problem
of r̄ (Definition 3.3) that classifies liftings r to an object R of CO such that in the decomposition
(3.21), r�(IFw ) preserves M0 and acts trivially on M1.6)

We define
(1) Dunr to be the local deformation problem contained in Dmix such that the action of

r�(IFw) on M0 is also trivial;
(2) Dram to be the local deformation problem contained in Dmix such that the equality

P0(T ) = (T − q−N )(T − q−N+2) holds in R[T ].

It is clear that Dunr coincides with Dmin from Definition 3.32.

Proposition 3.35 Suppose that � � (q2 − 1) and that the generalized eigenvalues of r̄�(φw)
in F� contain the pair {q−N , q−N+2} exactly once. Then the formal scheme Dmix is formally
smooth over Spf O[[x0, x1]]/(x0x1) of pure relative dimension N2 − 1 such that the irreducible
components defined by x0 = 0 and x1 = 0 are Dunr and Dram, respectively. In particular, Dram

is formally smooth over Spf O of pure relative dimension N2.

Proof We fix an isomorphism Tv � Tq = tZ� �φẐ
q such that φw = φ2

q . We write k⊕N = M̄0⊕
M̄1 such that r̄�(φ2

q) has eigenvalues q−N and q−N+2 on M̄0. Without loss of generality, we may
assume that M̄0 is spanned by the first two factors and M̄1 is spanned by the last N−2 factors.
Thus, we obtain two unramified homomorphisms r̄0 : Tq → G2(k) and r̄1 : Tq → GN−2(k).
Let D0 be the local deformation problem of r̄0 classifying liftings of r̄0. Let D1 be the local
deformation problem of r̄1 classifying unramified liftings.

Suppose that N ≥ 3. We say that lifting r of r̄ to an object R of CO is standard if

r�(t) =

⎛

⎝
A0 0

0 1N−2

⎞

⎠ , r(φq) =

⎛

⎝

⎛

⎝
B0 0

0 B1

⎞

⎠ , (−1)μ+1q1−N , c

⎞

⎠

6) Note that since � � (q2 − 1), the characteristic polynomial of r�(t) on M0 is automatically (T − 1)2 for every

t ∈ IFw .
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for some A0, B0 ∈ GL2(R) and B1 ∈ GLN−2(R). Let Dmix
0,1 ⊆ Dmix be the locus of standard

liftings. Then we have a natural isomorphism

Dmix
0,1 � D0 ×Spf O D1

of formal schemes over Spf O.
For n ≥ 1, denote by Ln the formal completion of GLn,O along the unit section. Then LN

acts on Dmix by conjugation. We claim that Dmix
0,1 generates Dmix under the action of LN . For

this, it suffices to show that for every lifting r of r̄ to an object R of CO , the maps

B : M0 → R⊕N →M1, B : M1 → R⊕N →M0

induced by B from Lemma 2.3 (1) for γ = φq, are both zero. Since the two maps intertwine
the actions r� and r�,∨ ⊗ ε1−N

� of Tq2 , it suffices to show that the generalized eigenvalues of
r�,∨
0 ⊗ε1−N

� (φ2
q) and the generalized eigenvalues of r�

1(φ
2
q) are disjoint. However, this follows from

the condition that the generalized eigenvalues of r̄�(φw) in F� contain the pair {q−N , q−N+2}
exactly once.

The above claim induces a canonical isomorphism

Dmix
0,1 ×Spf O (L2 ×Spf O LN−2\LN) ∼−→ Dmix.

By Proposition 3.19, D1 is formally smooth over Spf O of pure relative dimension (N − 2)2.
Now since L2 ×Spf O LN−2\LN is formally smooth over Spf O of pure relative dimension
N2 − (N − 2)2 − 4, it suffices to prove the proposition for N = 2.

Now we assume N = 2. After changing a basis, we may assume

r̄(φq) = (B̄, (−1)μ+1q1−N , c), B̄ =

⎛

⎝
0 (−1)μ+1

q 0

⎞

⎠ .

Then we have

r̄�(φ2
q) = (−1)μ+1q1−N B̄

t
B̄−1 =

⎛

⎝
q−N 0

0 q−N+2

⎞

⎠ .

For every object R of CO , the set Dmix(R) is bijective to the set of pairs (B,X) where B ∈
GL2(R) and X ∈ M2(mR) satisfying B ≡ B̄modmR, that the characteristic polynomial of X
is T 2, and the relation

B tXB−1 = −qX. (3.22)

Indeed, the bijection is given by r(φq) = (B, (−1)μ+1q1−N , c) and r�(t) = 12 +X . We let Dmix
0

be the subscheme of Dmix defined by the condition that r�(φ2
q) = (−1)μ+1q1−NB tB−1 is a

diagonal matrix. Take a lifting r ∈ Dmix
0 (R) corresponding to the pair (B,X); we must have

B =

⎛

⎝
0 (−1)μ+1(1 + x)

q(1 + y) 0

⎞

⎠ ,

r�(φ2
q) =

⎛

⎝
q−N (1 + x)(1 + y)−1 0

0 q−N+2(1 + y)(1 + x)−1

⎞

⎠
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for some x, y ∈ mR. Then by (3.22), X = ( 0 0
x0 0 ) for some x0 ∈ mR satisfying (x − y)x0 = 0.

Put x1 := x− y. Then we obtain an isomorphism

Dmix
0 � Spf O[[x0, x1, y]]/(x0x1)

such that
• x0 = 0 if and only if r is unramified;
• x1 = 0 if and only if P0(T ) = (T − q−N )(T − q−N+2), where P0 is the characteristic

polynomial of r�(φw) = r�(φ2
q).

Finally, note that L2 acts on Dmix by conjugation, which induces a canonical isomorphism

Dmix
0 ×Spf O (L1 ×Spf O L1\L2)

∼−→ Dmix.

The proposition (for N = 2) follows as L1×Spf O L1\L2 is formally smooth over Spf O of pure
relative dimension 2. The entire proposition is now proved. �

3.6 An Almost Minimal R=T Theorem

In this subsection, we prove a version of the R=T theorem for a global Galois representation.
Assume N ≥ 2.

We take an element ξ = (ξτ )τ ∈ (ZN
≤ )Σ∞ satisfying ξτ,i = −ξτ c,N+1−i for every τ and i.

Assume � ≥ (bξ − aξ) + 2 (Notation 2.7) and that � is unramified in F . Fix an isomorphism
ι� : C

∼−→ Q� and assume that the complex algebraic representation of ResF/Q GLN determined
by ξ can be defined over ι−1

� E.
We consider a pair (r̄, χ) from Notation 3.1 with Γ̃ = ΓF+ and Γ = ΓF , in which χ = ημε1−N

�

for some μ ∈ Z/2Z. We take two finite sets Σ+
min and Σ+

lr of nonarchimedean places of F+ such
that
• Σ+

min, Σ+
lr , and Σ+

� are mutually disjoint;
• Σ+

min contains Σ+
bad;

• every place v ∈ Σ+
lr is inert in F and satisfies � � (‖v‖2 − 1).

Definition 3.36 We say that r̄ is rigid for (Σ+
min,Σ

+
lr ) if the following are satisfied:

(1) For v in Σ+
min, every lifting of r̄v is minimally ramified (Definition 3.29).

(2) For v in Σ+
lr , the generalized eigenvalues of r̄�

v(φw) in F� contain the pair {‖v‖−N ,

‖v‖−N+2} exactly once, where w is the unique place of F above v.
(3) For v in Σ+

� , r̄�
v is regular Fontaine–Laffaille crystalline (Definition 3.11).

(4) For a nonarchimedean place v of F+ not in Σ+
min ∪ Σ+

lr ∪ Σ+
� , the homomorphism rv is

unramified.

Suppose now that r̄ is rigid for (Σ+
min, Σ+

lr ). Consider a global deformation problem
(Definition 3.6)

S := (r̄, ημε1−N
� ,Σ+

min ∪ Σ+
lr ∪ Σ+

� , {Dv}v∈Σ+
min∪Σ+

lr∪Σ+
�
)

where
• for v ∈ Σ+

min, Dv is the local deformation problem classifying all liftings of r̄v;
• for v ∈ Σ+

lr , Dv is the local deformation problem Dram of r̄v from Definition 3.34;
• for v ∈ Σ+

� , Dv is the local deformation problem DFL of r̄v from Definition 3.12.
Then we have the global universal deformation ring Runiv

S from Proposition 3.7.
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Remark 3.37 It is possible that r̄ is rigid for two pairs (Σ+
min,Σ

+
lr ) and (Σ+′

min,Σ
+′
lr ). Then

Runiv
S and Runiv

S ′ are different in general, where S ′ denotes the corresponding global deformation
problem for (Σ+′

min,Σ
+′
lr ).

Now we state an R=T theorem. Let V be a hermitian space over F of rank N such that Vv

is not split for v ∈ Σ+
lr . Let (pτ , qτ )τ∈Σ+∞ be the signature of V, and put d(V) :=

∑
τ∈Σ+∞ pτqτ .

Take a self-dual
∏

v �∈Σ+∞∪Σ+
min∪Σ+

lr
OFv -lattice Λ in V ⊗F A

Σ+
∞∪Σ+

min∪Σ+
lr

F and a neat open
compact subgroup K of U(V)(A∞

F+ ) of the form

K =
∏

v∈Σ+
min∪Σ+

lr

Kv ×
∏

v �∈Σ+∞∪Σ+
min∪Σ+

lr

U(Λ)(OF+
v

)

in which Kv is special maximal for v ∈ Σ+
lr . We have the system of (complex) Shimura varieties

{Sh(V,K′) |K′ ⊆ K} associated to ResF+/Q U(V) indexed by open compact subgroups K′ ⊆ K,
which are quasi-projective smooth complex schemes of dimension d(V).7) The element ξ gives
rise to a continuous homomorphism

∏

v∈Σ+
�

U(Λ)(OF+
v

)→ GLO(Lξ)

where Lξ is a finite free O-module, hence induces an O-linear (étale) local system Lξ on
Sh(V,K′) for every K′ ⊆ K, compatible under restriction.

Let Σ+ be a finite set of nonarchimedean places of F+ containing Σ+
min∪Σ+

lr . In particular,
we have the abstract unitary Hecke algebra T

Σ+

N (Definition 2.6). Let φ : T
Σ+

N → k be the
homomorphism such that
• for every nonarchimedean place v of F+ not in Σ+ that induces one place w of F , we

have φ|TN,v = φα (Construction 2.5) where α = (α1, . . . , αN ) is the unitary abstract Hecke
parameter at v (Definition 2.4) satisfying that {α1‖v‖N−1, . . . , αN‖v‖N−1} are the generalized
eigenvalues of r̄�

v(φ−1
w ) in F�;

• for every nonarchimedean place v of F+ not in Σ+ that splits into two places w1 and w2

of F , we have φ|TN,v = φα (Construction 2.5) where α = ((α1,1, . . . , α1,N ); (α2,1, . . . , α2,N ))
is the unitary abstract Hecke parameter at v (Definition 2.4) satisfying that for i = 1, 2,
{αi,1‖v‖N−1

2 , . . . , αi,N‖v‖N−1
2 } are the generalized eigenvalues of r̄�

v(φ−1
wi

) in F�.
We write m for the kernel of φ.

Theorem 3.38 Suppose that Σ+
lr = ∅ if N is odd. Under the above setup, we assume

(D0) (already assumed) � is odd, � ≥ (bξ − aξ) + 2, and � is unramified in F ;
(D1) � ≥ 2(N + 1);
(D2) r̄�|Gal(F/F (ζ�))

is absolutely irreducible;
(D3) r̄ is rigid for (Σ+

min,Σ
+
lr ) (Definition 3.36);

(D4) for every finite set Σ+′ of nonarchimedean places of F+ containing Σ+, and every

7) Strictly, we need to choose a CM type Φ of F to define the Deligne homomorphism for the Shimura varieties.

More precisely, the Deligne homomorphism h: ResC/R Gm → (ResF+/Q
U(V)) ⊗Q R =

∏
τ∈Σ+∞

U(Vτ ) is the

one such that for z ∈ (ResC/R Gm)(R) = C×, the τ -component of h(z) equals 1pτ ⊕ (z/z)1qτ after we identify

U(V)(F+
τ∞ ) with a subgroup of GLN (C) via a complex basis of V ⊗F,τ C under which the hermitian form is

given by 1pτ ⊕−1qτ , where τ is the unique place of F above τ in Φ.
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open compact subgroup K′ ⊆ K satisfying K′
v = Kv for v �∈ Σ+′, we have

Hd
ét(Sh(V,K′),Lξ ⊗O k)

TΣ+′
N ∩m

= 0

when d �= d(V).8)

Let T be the image of T
Σ+

N in EndO(Hd(V)
ét (Sh(V,K),Lξ)). If Tm �= 0, then

(1) There is a canonical isomorphism Runiv
S

∼−→ Tm of local complete intersection rings over
O.

(2) The Tm-module Hd(V)
ét (Sh(V,K),Lξ)m is finite and free.

(3) We have μ ≡ N mod 2.

The rest of this subsection is devoted to the proof of the theorem. We will use the Taylor–
Wiles patching argument following [14] and [28]. Put S := Σ+

min ∪ Σ+
lr ∪ Σ+

� . To prove the
theorem, we may replace E by a finite unramified extension in Q�. Thus, we may assume that
k contains all eigenvalues of matrices in r̄�(ΓF ).

Remark 3.39 By (D0), we know that F is not contained in F+(ζ�). Thus, by [28, Theo-
rem A.9], (D1) and (D2) imply that r̄(Gal(F/F+(ζ�))) is adequate in the sense of [28, Defini-
tion 2.3].

Recall that a prime v of F+ is called a Taylor–Wiles prime for the global deformation
problem S if
• v /∈ S; v splits in F ; and ‖v‖ ≡ 1 mod �;
• r̄v is unramified;
• r̄�

v(φw) is not a scalar and admits an eigenvalue ᾱv ∈ k, called special eigenvalue, such
that r̄�

v(φw) acts semisimply on the generalized eigenspace for ᾱv, where w is the place of F
above v induced by the inclusion F ⊆ F+

v .
A Taylor–Wiles system is a tuple (Q, {ᾱv}v∈Q) where Q is a (possibly empty) finite set of

Taylor–Wiles primes, and ᾱv is a special eigenvalue for every v ∈ Q. For such a system, we
write r�

v = r•v⊕r◦v for every v ∈ Q, where r•v (resp. r◦v) is the generalized eigenspace for ᾱv (resp.
for generalized eigenvalues other than αv). Then we have another global deformation problem
(see [28, Definition 4.1])

S (Q) := (r̄, ημε1−N
� , S ∪Q, {Dv}v∈S∪Q)

where Dv is the same as in S for v ∈ S; and for v ∈ Q, Dv is the local deformation problem of
r̄v that classifies liftings rv such that r�

v is of the form r•v ⊕ r◦v in which r•v is a lifting of r̄•v on
which IFw acts by scalars, and r◦v is an unramified lifting of r̄◦v .

For each v ∈ Q, we
• put dv := dimk r̄

•
v ;

• let Pdv ⊆ GLN be the standard upper-triangular parabolic subgroup corresponding to the
partition (N − dv, dv);
• let κv be the residue field of F+

v , and Δv the maximal quotient of κ×v of �-power order;
• fix an isomorphism Kv � GLN (OF+

v
) and denote by Kv,0 ⊆ Kv the parahoric subgroup

corresponding to Pdv ;

8) This is automatic when d(V) = 0, and follows from (D2) when d(V) = 1.
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• let Kv,1 be the kernel of the canonical map

Kv,0 → Pdv(κv)→ GLdv(κv) det−−→ κ×v → Δv.

We then
• put ΔQ :=

∏
v∈Q Δv; and let aQ be the augmentation ideal of O[ΔQ];

• put mQ := m ∩ T
Σ+∪Q
N ;

• put
Ki(Q) =

∏

v �∈Q

Kv ×
∏

v∈Q

Kv,i

for i = 0, 1, which are open compact subgroups of K.
In particular, K1(Q) is a normal subgroup of K0(Q); and we have a canonical isomorphism

K0(Q)/K1(Q) ∼−→ ΔQ. (3.23)

Note that when Q = ∅, K0(Q) = K1(Q) = K.
For i = 0, 1, we put

HKi(Q) := HomO(Hd(V)
ét (Sh(V,Ki(Q)),Lξ),O).

By (3.23), HK1(Q) is canonically a module over O[ΔQ].

Lemma 3.40 Let the situation be as in Theorem 3.38. The O[ΔQ]-module HK1(Q),mQ is finite
and free. Moreover, the canonical map

HK1(Q),mQ/aQ → HK0(Q),mQ

is an isomorphism.

Proof For a smooth complex scheme X and an abelian group A, we denote by Xan the under-
lying complex manifold and C•(Xan, A) the complex of singular chains for Xan with coefficients
in A.

For i = 0, 1 and every positive integer m, we denote by Km
i (Q) the kernel of the composite

map
Ki(Q)→ K→ um :=

∏

v∈Σ+
�

U(Λ)(OF+
v
/�m).

Then Km
i (Q) acts trivially on Lξ ⊗O O/�m, hence Lξ ⊗O O/�m becomes constant on Sh(V,

Km
i (Q)). By (D4), we have

Hd(V)
ét (Sh(V,Ki(Q)),Lξ)mQ = lim←−

m

Hd(V)
ét (Sh(V,Km

i (Q)), Lξ ⊗O O/�m)um
mQ

and is O-torsion free. By Artin’s comparison theorem between the singular cohomology and
the étale cohomology, the dual complex

HomO(C•(Sh(V,Km
i (Q))an, Lξ ⊗O O/�m),O/�m)

calculates H•
ét(Sh(V,Km

i (Q)), Lξ ⊗O O/�m). By (D4), we have

Hd(Sh(V,Km
i (Q))an, Lξ ⊗O O/�m)mQ = 0

for d �= d(V).
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On the other hand, Km
i (Q) is neat, which implies that t−1U(V)(F+)t ∩ Km

i (Q) has no
torsion elements for every t ∈ U(V)(A∞

F+ ). By (the same proof of) [20, Lemma 6.9], for every
m ≥ 1, C•(Sh(V,Km

1 (Q))an, Lξ ⊗O O/�m) is a perfect complex of free (O/�m)[ΔQ]-modules;
and there is a canonical isomorphism

C•(Sh(V,Km
1 (Q))an, Lξ ⊗O O/�m)⊗O[ΔQ] O[ΔQ]/aQ � C•(Sh(V,Km

0 (Q))an, Lξ ⊗O O/�m)

of complexes of (O/�m)[TΣ+∪Q
N ]-modules. It follows easily that the canonical map

(
HK1(Q),mQ ⊗O O/�m

)
/aQ → HK0(Q),mQ ⊗O O/�m

is an isomorphism, after localizing at mQ and taking um-invariants.
Then the lemma follows by passing to the limit for m. �
We now discuss the existence of Taylor–Wiles systems. For each v ∈ S, we have the

tangent space L(Dv) ⊆ H1(F+
v , ad r̄) from Definition 3.4. Let L(Dv)⊥ ⊆ H1(F+

v , ad r̄(1)) be the
annihilator of L(Dv) under the local Tate duality induced by the perfect pairing ad r̄×ad r̄(1)→
k(1) sending (x, y) to tr(xy). Recall that ΓF+,S is the Galois group of the maximal sub-extension
of F/F+ that is unramified outside S. For every subset T ⊆ S, we define H1

L ⊥,T(ΓF+,S, ad r̄(1))
to be the kernel of the natural map

H1(ΓF+,S, ad r̄(1))→
⊕

v∈S\T
H1(F+

v , ad r̄(1))/L(Dv)⊥.

Recall the rings Rloc
S ,T (3.2) and R�T

S (Q) from Proposition 3.7. Moreover, R�T
S (Q) is naturally an

algebra over Rloc
S ,T.

Lemma 3.41 Let the situation be as in Theorem 3.38. Let T be a subset of S. For every
integer b ≥ dimk H1

L ⊥,T(ΓF+,S, ad r̄(1)) and every integer n ≥ 1, there is a Taylor–Wiles system
(Qn, {ᾱv}v∈Qn) satisfying

(1) |Qn| = b;
(2) ‖v‖ ≡ 1 mod �n;
(3) R�T

S (Qn) can be topologically generated over Rloc
S ,T by

gb,T := b−
∑

v∈T∩Σ+
�

[F+
v : Q�]

N(N − 1)
2

−N [F+ : Q]
1 + (−1)μ+1−N

2

elements.

Proof By (3.1), Proposition 3.14 for v ∈ Σ+
� , Proposition 3.33 for v ∈ Σ+

min (which is applicable
by (D3)), and Proposition 3.35 for v ∈ Σ+

lr , we have for every v ∈ S that

dimk L(Dv)− dimk H0(F+
v , ad r̄(1)) =

{
[F+

v : Q�]
N(N−1)

2 if v | �;
0 if v � �.

Then the lemma follows from [28, Proposition 4.4] in view of Remark 3.39.9) �
Proof of Theorem 3.38 By definition, we have

HK,m = HomO(Hd(V)
ét (Sh(V,K),Lξ)m,O),

9) Strictly speaking, the set S in [28, Proposition 4.4] consists of only places split in F . But the same argument

works in our case as well.
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under which Tm is identified with the image of T
Σ+

N in EndO(HK,m) since Hd(V)
ét (Sh(V,K),Lξ)m

is O-torsion free by (D4).
First, we need to construct a canonical homomorphism Runiv

S → Tm. It is well-known that
Tm[1/�] is a reduced ring finite over E. As HK,m is a finite free O-module, Tm is a reduced
ring finite flat over O. Via ι�, every (closed) point x of Spec Tm[1/�] gives rise to an RACSDC
representation Πx of GLN (AF ) (Definition 2.8), satisfying that

(a) the associated Galois representation ρΠx,ι�
from Proposition 2.9 (2) is residually isomor-

phic to r̄� ⊗k F� (hence residually absolutely irreducible by (D2));
(b) Π = BC(π) for a cuspidal automorphic representation π of U(V)(AF+) satisfying that

(π∞)K appears (nontrivially) in Hd(V)
ét (Sh(V,K),Lξ ⊗O,ι−1

�
C);

(c) the archimedean weights of Π equals ξ, which follows from (b) and Proposition 2.12.
The representation ρΠx,ι�

induces a continuous homomorphism

ρx : ΓF → GLN (Tx),

where Tx denotes the localization of Tm[1/�] at x. By a theorem of Carayol [11, Théorème 2],
the product homomorphism

∏

x∈SpecTm[1/�]

ρx : ΓF → GLN

( ∏

x

Tx

)

is conjugate to some continuous homomorphism ρm : ΓF → GLN (Tm) that is a lifting of r̄�.
Moreover, by Proposition 2.9 (2)(c) and Lemma 2.3, we obtain a continuous homomorphism

rm : ΓF+ → GN (Tm)

satisfying r�
m = ρm that is a lifting of r̄. We claim that rm satisfies the global deformation

problem S . Indeed, by (b) and Proposition 2.12, Πx,w is unramified for nonarchimedean
places w of F not above Σ+

min ∪ Σ+
lr . Thus, by (c) and Proposition 2.9 (2)(b), r̄m,v belongs to

DFL
v for v ∈ Σ+

� ; and by Proposition 2.9 (2)(a), r̄m,v is unramified for v �∈ S. By (b), Corollary
2.13, and Proposition 2.9 (2)(a), r̄m,v belongs to Dram

v for v ∈ Σ+
lr .

10)

Therefore, by the universal property of Runiv
S , we obtain a canonical homomorphism

ϕ : Runiv
S → Tm (3.24)

of rings over O. Moreover, it is clear that our homomorphism rm satisfies [14, Proposi-
tion 3.4.4 (2)–(3)] as well, which implies that ϕ is surjective. Thus, it remains to show that ϕ
is injective.

We follow the strategy for [28, Theorem 6.8]. Fix a subset T ⊆ S. We take an integer n ≥ 1,
and a Taylor–Wiles system (Qn, {ᾱv}v∈Qn) from Lemma 3.41. For each v ∈ Qn, we
• let Artv : F×

v → Γab
F+

v
be the local Artin map;

• let �v ∈ F+
v be the uniformizer such that Artv(�v) coincides with the image of φ−1

v in
Γab

F+
v

;
• let pr�v

be the commuting projection defined in [28, Propositions 5.9 & 5.12];

10) This is not correct if N is odd, which is the only reason that we suppose that Σ+
lr = ∅ if N is odd in the

statement of the theorem.
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• for every α ∈ O×
F+

v
, let Vα

v ∈ Z[Kv,1\Kv,0/Kv,1] be the characteristic function of the double
coset

Kv,1

⎛

⎝
1N−1 0

0 α

⎞

⎠Kv,1.

For i = 0, 1, we put

Mi,Qn
:=

( ∏

v∈Qn

pr�v

)

HKi(Qn),mQn
,

and let Ti,Qn be the image of T
Σ+∪Qn

N in EndO(Mi,Qn). We also put

M := HK,m.

Then the canonical map M → HK,mQn
is an isomorphism, hence we obtain canonical surjective

homomorphisms
T1,Qn � T0,Qn � Tm

of rings over O. Similar to Tm, we obtain a continuous homomorphism

ri,Qn : ΓF+ → GN (Ti,Qn),

which is a lifting of r̄, for i = 0, 1. We have the following two claims:
(1) For every v ∈ Qn, there is a continuous character vv : O×

F+
v
→ T×

1,Qn
that factors through

Δv such that
• for every α ∈ O×

F+
v

, the actions of Vα
v and vv(α) on M1,Qn coincide;

• r�
1,Qn,v has a (unique) decomposition r•1,Qn,v ⊕ r◦1,Qn,v such that r•1,Qn,v is a lifting of r̄•v

on which IF+
v

acts via the character vv ◦Art−1
v , and r◦1,Qn,v is an unramified lifting of r̄◦v .

(2) The composite map

M = HK,mQn
→ HK0(Qn),mQn

∏
v∈Qn

pr�v−−−−−−−−→M0,Qn

is an isomorphism. In particular, the canonical homomorphism T0,Qn → Tm is an isomorphism;
and r0,Qn and rm are equivalent liftings of r̄.
Indeed, these claims follow easily from [28, Propositions 5.9 & 5.12].

It follows from (1) that r1,Qn satisfies the global deformation problem S (Qn), which induces
a canonical surjective homomorphism

ϕn : Runiv
S (Qn) � T1,Qn

of rings over O. We regard T1,Qn as an O[ΔQn ]-module by (1). Now we claim that Runiv
S (Qn) is

naturally an O[ΔQn ]-module as well, and that ϕn is O[ΔQn ]-linear. Indeed, take a universal
lifting runiv

S (Qn) for r̄ over Runiv
S (Qn). Then for each v ∈ Qn, there is a unique character vuniv

v : Δv →
(Runiv

S (Qn))
× such that IF+

v
acts on runiv,•

S (Qn),v via the character

IF+
v

Art−1
v−−−−→ O×

F+
v
→ κ×v → Δv

vuniv
v−−−→ (Runiv

S (Qn))
×.

Then Runiv
S (Qn) becomes a ring over O[ΔQn ] via the character

∏
v∈Qn

vuniv
v : ΔQn → (Runiv

S (Qn))
×.

Moreover, ϕn is a homomorphism of rings over O[ΔQn ] by the local-global compatibility. By
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(2) and Lemma 3.40, we obtain a canonical commutative diagram

Runiv
S (Qn)/aQn

∼ ��

ϕn/aQn

��

Runiv
S

ϕ

��
T1,Qn/aQn

∼ �� T0,Qn

∼ �� Tm

of rings over O, where all horizontal arrows are isomorphisms.
Choose universal liftings

runiv
S : ΓF+ → GN(Runiv

S ), runiv
S (Qn) : ΓF+ → GN (Runiv

S (Qn))

for r̄ over Runiv
S and Runiv

S (Qn), respectively, such that runiv
S = runiv

S (Qn) mod aQn . By Proposition
3.7 (2), we obtain isomorphisms

Runiv
S [[Xv;i,j ]]v∈T;1≤i,j≤N

∼−→ R�T
S , Runiv

S (Qn)[[Xv;i,j ]]v∈T;1≤i,j≤N
∼−→ R�T

S (Qn)

of rings over O. In particular, we have a surjective homomorphism R�T
S → Runiv

S , which makes
Runiv

S an algebra over Rloc
S ,T.

We put
S∞ := O[[Xv;i,j ]]v∈T;1≤i,j≤N [[Y1, . . . , Yb]];

and let a∞ ⊆ S∞ be the augmentation ideal. Put

R∞ := Rloc
S ,T[[Z1, . . . , Zgb,T ]]

where gb,T is the number appearing in Lemma 3.41. Applying the usual patching lemma (see
the proof of [1, Theorem 3.6.1], or [28, Lemma 6.10]), we have the following:
• There exists a homomorphism S∞ → R∞ of rings over O such that we have a surjective

homomorphism R∞/a∞R∞ → Runiv
S of rings over Rloc

S ,T.
• There exist an R∞-module M∞ and an isomorphism M∞/a∞M∞ �M of Runiv

S -modules.
• As an S∞-module, M∞ is finite and free.

In particular, we have

depthR∞(M∞) ≥ dimS∞ = 1 + |T|N2 + b.

On the other hand, by Proposition 3.14 for v ∈ T ∩ Σ+
� , Proposition 3.33 for v ∈ T ∩ Σ+

min

(which is applicable by (D3)), and Proposition 3.35 for v ∈ T ∩ Σ+
lr , we know that Rloc

S ,T is a
formal power series ring over O in

|T|N2 +
∑

v∈T∩Σ+
�

[F+
v : Q�]

N(N − 1)
2

variables. It follows that R∞ is a regular local ring of dimension

1 + |T|N2 +
∑

v∈T∩Σ+
�

[F+
v : Q�]

N(N − 1)
2

+ gb,T

= 1 + |T|N2 + b−N [F+ : Q]
1 + (−1)μ+1−N

2
.

As dimR∞ ≥ depthR∞(M∞), we obtain Theorem 3.38 (3). By the Auslander–Buchsbaum
theorem, M∞ is a finite free R∞-module.
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Now we claim that the surjection R∞/a∞R∞ → Runiv
S is an isomorphism. Indeed, the

R∞-module M = M∞/a∞M∞ is finite free over R∞/a∞R∞; but the action of R∞/a∞R∞
factors through the surjective map R∞/a∞R∞ → Runiv

S , implying that this surjection must be
an isomorphism. From the claim, we know that M is a finite free Runiv

S -module. In particular,
the surjective homomorphism ϕ (3.24) is injective, hence an isomorphism. Theorem 3.38 (1)–(2)
are proved. �

4 Rigidity

4.1 Rigidity of Symmetric Powers of Elliptic Curves

In this subsection, we study rigidity of symmetric powers of elliptic curves.
Let A be an elliptic curve over F+. For every rational prime �, we fix an isomorphism

H1
ét(AF ,Z�) � Z

⊕2
� , hence obtain a continuous homomorphism ρA,� : ΓF+ → GL2(Z�). Suppose

that N ≥ 2. We obtain a continuous homomorphism

rA,� : ΓF+ → GN (Z�) = (GLN (Z�)× Z
×
� ) � {1, c}

by the formula rA,�(γ) = (SymN−1 ρA,�(γ), ηN−1
v ε1−N

�,v (γ), c(γ)), where c(γ) = c (resp. c(γ) = 1)
if γ ∈ ΓF+ \ ΓF (resp. γ ∈ ΓF ). Denote by r̄A,� the composition of rA,� and the projection
GN (Z�)→ GN(F�).

Proposition 4.1 Let v be a nonarchimedean place of F . For all but finitely many rational
primes � ≥ N , every lifting of r̄A,�,v to an object R of CZ�

(with respect to the similitude
character ηN

v ε
1−N
�v

) is minimally ramified in the sense of Definition 3.29.

Proof For simplicity, we only prove the proposition for v nonsplit in F . The split case is
similar and easier, which we leave to the readers. Thus, let w be the unique place of F above
v. Fix a finite totally ramified extension F ′

w of Fw in F+
v such that A′ := A⊗F+

v
F ′

w has either
good or multiplicative reduction. Let T′

w be the image of the subgroup Gal(F+
v /F

′
w) of ΓFw in

Tw = ΓFw/PFw . We fix an isomorphism Tw � Tq = tZ� � φẐ
q with the q-tame group, where

q = ‖w‖. We now assume � � [F ′
w : Fw ] and � �

∏N
i=1(q

i− 1). Then T′
w = Tw. Let T = T(r̄A,�,v)

be the set of isomorphism classes of absolutely irreducible representations of PFw appearing in
r̄�
A,�,v as before.

We first consider the case where A′ has multiplicative reduction. Let u be the valuation of
the j-invariant j(A) in Fw, which is a negative integer. Assume further that � is coprime to u.
Then ρA′,�(t) is conjugate to either 1 + J2 = ( 1 1

0 1 ) or −(1 + J2) in GL2(Z�), which implies that
SymN−1 ρA′,�(t) is conjugate to 1 + JN or (−1)N−1(1 + JN ) in GLN (Z�). It follows that T is a
singleton, say {τ}; and every lifting �τ of �̄τ is minimally ramified since � �

∏N
i=1(q

i− 1). Thus,
every lifting r of r̄A,�,v is minimally ramified.

We then consider the case where A′ has good reduction. Let α, β ∈ Q� be the two eigenvalues
of ρA′,�(φq). Then α, β are Weil q−1/2-numbers in Q, which depend only on A′, not on �. We
further assume that � satisfies that α, β ∈ (Z(�))×, and that the image of the set

{
(α/β)N−1, (α/β)N−3, . . . , (α/β)3−N , (α/β)1−N

}

in F
×
� does not contain q. It follows that for every τ ∈ T, every lifting �τ of �̄τ is actually

unramified by Lemma 3.21 (2) as � �
∏N

i=1(q
i−1), hence minimally ramified. Thus, every lifting

r of r̄A,�,v is minimally ramified.
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Since in both cases, we only exclude finitely many rational primes �, the proposition fol-
lows. �

The proposition has the following immediate corollary.

Corollary 4.2 Let Σ+ be a finite set of nonarchimedean places of F+ containing Σ+
bad such

that A has good reduction outside Σ+. Then for all but finitely many rational primes �, r̄A,� is
rigid for (Σ+, ∅) (Definition 3.36 with O = Z�).

Proof We need to show that each of the four conditions in Definition 3.36 excludes only
finitely many rational primes �. By Proposition 4.1, Condition (1) excludes only finitely many
�. Condition (2) is empty. Condition (3) holds if � satisfies � ≥ N + 1 and Σ+

� ∩ Σ+ = ∅.
Condition (4) is automatic. �

4.2 Rigidity of Automorphic Galois Representations

In this subsection, we study rigidity of reduction of automorphic Galois representations.

Let Π be an RACSDC representation of GLN (AF ) (Definition 2.8) for N ≥ 2, and denote
by Σ+

Π the smallest (finite) set of nonarchimedean places of F+ containing Σ+
bad such that Πw

is unramified for every nonarchimedean place w of F not above Σ+
Π. Let E ⊆ C be a strong

coefficient field of Π (Definition 2.10). Then for every prime λ of E, we have a continuous
homomorphism ρΠ,λ : ΓF → GLN (Eλ).

When ρΠ,λ is residually absolutely irreducible, by Proposition 2.9 (2)(c) and Lemma 2.3 (3),
we have an extension

ρ̄Π,λ,+ : ΓF+ → GN (OE/λ)

of the residue representation ρ̄Π,λ of ρΠ,λ, with the similitude character χλ := ηN ε1−N
� .

Conjecture 4.3 Let Π and E be as above. Fix a finite set Σ+ of nonarchimedean place of
F+ containing Σ+

Π. Then for all but finitely many primes λ of E, we have

(1) ρΠ,λ is residually absolutely irreducible;

(2) ρ̄Π,λ|Gal(F/F (ζ�))
is absolutely irreducible, where � is the underlying rational prime of λ;

(3) r̄Π,λ := ρ̄Π,λ,+ is rigid for (Σ+, ∅) (Definition 3.36 with O the ring of integers of Eλ).

Remark 4.4 When N = 2, Conjecture 4.3 is not hard to verify. Part (3) of Conjecture 4.3
was also studied in [17] under several simplifying restrictions.

Concerning Conjecture 4.3 (1)–(2), we have the following proposition.

Proposition 4.5 Let Π and E be as above. Suppose that there exists a nonarchimedean place
w of F such that Πw is supercuspidal. Then

(1) There exists a finite set Λ1 of primes of E depending on Πw only, such that for every
λ �∈ Λ1, ρΠ,λ is residually absolutely irreducible.

(2) There exists a finite set Λ2 containing Λ1 from (1) such that for every λ �∈ Λ2, the
restriction ρ̄Π,λ|Gal(F/F (ζ�))

remains absolutely irreducible.

The proof of part (2) was suggested to us by Toby Gee. Originally, our alternative argument
needs to further assume for (2) that Π is a twist of the Steinberg representation at some
nonarchimedean place of F not above Σ+

bad.
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Proof Let WFw be the Weil group of Fw. Since Πw is supercuspidal, we have the induced
continuous representation ρΠw : WFw → GLN (C) via the local Langlands correspondence, which
is irreducible. Fix an arithmetic Frobenius element φw in WFw , which determines a natural
quotient map WFw → Z sending φw to 1. For every integer b ≥ 1, let Wb

Fw
be the inverse image

of bZ. Then there exist an absolutely irreducible representation τ of IFw and a character χ of
Wb

Fw
, such that ρΠw is isomorphic to IndWFw

Wb
Fw

τ ⊗ χ, where b is the smallest positive integer

satisfying τφb
w � τ . We may choose a finite extension E′ of E inside C, and a finite set Λ′ of

primes of E′, such that both τ and χ are defined over OE′,(Λ′). In particular, the image of ρΠw

is contained in GLN (OE′,(Λ′)), up to conjugation.
Now let Λ′

1 be the smallest set of primes of E′ containing Λ′ such that every λ′ �∈ Λ′
1 satisfies

• w does not divide �;
• the underlying rational prime does not divide b|IFw/ ker ρΠw |;
• τ̄λ′ := τ ⊗OE′,(Λ′) OE′/λ′ remains irreducible;

• b remains the smallest positive integer that satisfies τ̄φb
w

λ′ � τ̄λ′ .
Then Λ′

1 is a finite set, satisfying that the composite map

ρ̄Πw,λ′ : WFw → GLN(OE′,(Λ′))→ GLN (OE′/λ′)

is irreducible for λ′ �∈ Λ′
1. Let ξ = ξΠ be the archimedean weights of Π (Definition 2.8).

For (1), we let Λ1 be the set of primes ofE underlying Λ′
1; and then (1) follows by Proposition

2.9(2a).
For (2), let Λ2 be the union of Λ1 constructed in (1) above and all primes λ of F whose

underlying rational prime � satisfies either � ≤ N(bξ − aξ) + 1 or Σ+
� ∩ Σ+

Π �= ∅. Take a prime
λ �∈ Λ2. By (1), ρ̄Π,λ is absolutely irreducible, whose coefficients we may assume to be justOE/λ.
Since the degree of the extension F (ζ�)/F is coprime to �, the representation ρ̄Π,λ|Gal(F/F (ζ�))

is
semisimple. We claim that ρ̄Π,λ is an induction of an irreducible representation ρ′ of Gal(F/F ′)
for some field extensions F ⊆ F ′ ⊆ F (ζ�) such that [F ′ : F ] equals the number of irreducible
summands of ρ̄Π,λ|Gal(F/F (ζ�))

. By [8, Lemma 4.3], it suffices to show that the irreducible
summands of ρ̄Π,λ|Gal(F/F (ζ�))

are pairwise non-isomorphic. Since w is unramified in F (ζ�), it
suffices to check that the irreducible summands of ρ̄Π,λ|IFw

are pairwise non-isomorphic, which
is already known by our choice of Λ′

1 above.
By our definition of Λ2 and Proposition 2.9 (2)(b), ρ̄Π,λ is crystalline with regular Fontaine–

Laffaille weights in [aξ, bξ] and � > N(bξ − aξ) + 1 ≥ (bξ − aξ) + 2. Thus, we must have F ′ = F

by Lemma 4.7 below. Therefore, ρ̄Π,λ|Gal(F/F (ζ�))
remains absolutely irreducible, hence (2)

follows.
The proposition is proved. �
To finish the proof of Proposition 4.5 (2), we need two lemmas, both of which are suggested

to us by Toby Gee. We start with some notation. For every finite extension L of Q� contained
in Q�, we put ΓL := Gal(Q�/L), denote by IL ⊆ ΓL the inertia subgroup and by PL ⊆ IL the
wild inertia subgroup, and put TL := ΓL/PL.

Lemma 4.6 Let ρ̄ : ΓL → GLN (F�) be a continuous homomorphism such that ρ̄(PL) = {1}.
Then there exists a finite unramified extension L′ of L inside Q� such that ρ̄|ΓL′ is a direct sum
of characters.



Deformation of Rigid Conjugate Self-dual Galois Representations 1641

Proof Let t ∈ IL/PL be a topological generator and φ ∈ TL a lift of the arithmetic Frobenius.
Then we have TL = t

∏
p �=� Zp � φẐ subject to the relation φtφ−1 = t�

a

, where �a is the residue
cardinality of L. We regard ρ̄ as a representation of TL. As IL/PL has pro-order prime to �,
the element ρ̄(t) is semisimple. Let b ≥ 1 be an integer such that the eigenvalues of ρ̄(t) are
contained in F

×
�ab ⊆ F

×
� . Then ρ̄(φb) commutes with ρ̄(t). Let c ≥ 1 be an integer such that

ρ̄(φbc) is semisimple. Then the unique unramified extension of L inside Q� of degree bc satisfies
the requirement of the lemma. �

Lemma 4.7 Consider a field tower Q� ⊆ L ⊆ L′ ⊆ Q� in which L/Q� is finite unramified and
L′/L is finite Galois. Let ψ̄ : ΓL′ → GLm(F�) be a continuous homomorphism for some integer
m ≥ 1, and put ρ̄ := IndΓL

ΓL′ ψ̄. Suppose that
(a) ρ̄ is crystalline with regular Fontaine–Laffaille weights in [a, b] (Definition 3.11) for some

integers a and b satisfying 0 ≤ b− a ≤ �− 2; and
(b) (b− a)[L′ : L] < �− 1.

Then L′ is unramified over L.

Proof We may assume a = 0. We assume on the contrary that L′/L is ramified. Up to
replacing L by the maximal subfield of L′ that is unramified over L, we may assume that
L′/L is totally ramified. Up to replacing ψ̄ by its semisimplification, we may assume that ψ̄
is semisimple. Since |ΓL/ΓL′ | = [L′ : L] is coprime to �, ρ̄ = IndΓL

ΓL′ (ψ̄) is also semisimple. As
PL is a pro-� normal subgroup of ΓL, we have ρ̄(PL) = {1} by [25, Proposition 4]. By Lemma
4.6, there exists a finite unramified extension L′′/L inside Q� such that ρ̄|ΓL′′ is a direct sum of
characters. Up to replacing L by L′′ and L′ by L′L′′, we may assume that ρ̄ itself is a direct sum
of characters of ΓL, say χ1, . . . , χN : ΓL → F

×
� . On the other hand, since ρ̄ = IndΓL

ΓL′ (ψ̄), there
exist two distinct characters χi and χj such that χiχ

−1
j is trivial on IL′ , which is the unique

subgroup of IL of index [L′ : L]. However, Condition (a) implies that χiχ
−1
j is a crystalline

character of Fontaine–Laffaille weights contained in [−b, b]. By the Fontaine–Laffaille theory,
we have

χiχ
−1
j |IL =

⊗

τ : L↪→Q�

ωbτ
τ ,

where ωτ : IL → F
×
� is the fundamental character of level 1 corresponding to τ , and bτ is an

integer in [−b, b]. Since the Fontaine–Laffaille weights of ρ̄ are regular, we have bτ �= 0 for all τ .
Now condition (b) implies that χiχ

−1
j can not be trivial on IL′ , which is a contradiction. The

lemma is proved. �
Concerning the entire Conjecture 4.3, we have the following theorem.

Theorem 4.8 Let Π and E be as above. Suppose that there exists a nonarchimedean place of
F at which Π is supercuspidal. Then Conjecture 4.3 holds for Π and E.

Proof Let ξ = ξΠ be the archimedean weights of Π (Definition 2.8). Let Λ2 be the set in
Proposition 4.5 (2). It suffices to prove (3) of Conjecture 4.3. We need to show that each of
the four conditions in Definition 3.36 excludes only finitely many primes λ. Condition (2) is
empty. Condition (3) holds if the underlying rational prime � of λ satisfies � ≥ (bξ − aξ) + 2
and Σ+

� ∩ Σ+ = ∅ by Proposition 2.9 (2)(b). Condition (4) is automatic.
It remains to consider Condition (1). Let λ be a prime of E not in Λ2 whose underlying
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rational prime � satisfies

Σ+
� ∩ Σ+ = ∅, � ≥ 2(N + 1), � ≥ (bξ − aξ) + 2, � ≥ qN

w

for every place w of F above Σ+. In particular, we have
(a) � is unramified in F ;
(b) Πw is unramified for every place w of F above �;
(c) ρ̄Π,λ|Gal(F/F (ζ�))

is absolutely irreducible, which implies that r̄Π,λ(Gal(F/F+(ζ�))) is
adequate by Remark 3.39;

(d) Proposition 3.14 holds for the local deformation problem DFL of r̄Π,λ,v for every v ∈ Σ+
� ;

(e) Proposition 3.33 holds for r̄Π,λ,v for every v ∈ Σ+.
For a collection DΣ+ = {Dv |v ∈ Σ+} in which Dv is an irreducible component of Spf Rloc

r̄Π,λ,v

for v ∈ Σ+, we define a global deformation problem (Definition 3.6)

S (DΣ+) := (r̄Π,λ, η
N ε1−N

� ,Σ+ ∪ Σ+
� , {Dv}v∈Σ+∪Σ+

�
)

where for v ∈ Σ+, Dv is the prescribed irreducible component (which is a local deformation
problem by Proposition 3.33 (2)) in DΣ+ ; and for v ∈ Σ+

� , Dv is the local deformation problem
DFL of r̄Π,λ,v from Definition 3.12. Now by (a)–(e), and the same proof of [28, Theorem 10.1]
(which assumes that Σ+∪Σ+

� consists only of places split in F ), we know that the global universal
deformation ring Runiv

S (DΣ+) is a finite O-module. Moreover, we have μ ≡ N mod 2. By (d)–(e)
and the same proof of [16, Lemma 5.1.3] (which assumes that Σ+ ∪ Σ+

� consists only of places
split in F ), we know that the Krull dimension of Runiv

S (DΣ+) is at least one. Thus, Runiv
S (DΣ+)[1/�]

is nonzero. Fix an isomorphism ι� : C
∼−→ Q�. By choosing a Q�-point of Spec Runiv

S (DΣ+ )[1/�], we
obtain an RACSDC representation Π(DΣ+) of GLN (AF ) satisfying
• Π(DΣ+) is unramified outside Σ+;
• for every place w of F above Σ+, there is an open compact subgroup Uw of GLN (Fw)

depending only on Πw, such that Π(DΣ+ )Uw
w �= {0};

• the archimedean weights of Π(DΣ+ ) are contained in [aξ, bξ −N + 1];
• ρΠ(DΣ+),ι�

and ρΠ,λ ⊗Eλ
Q� are residually isomorphic.

In fact, the second property is a consequence of Proposition 2.9 (2)(a), Corollary 3.31 (which
is applicable since � ≥ qN

w ), and the fact that irreducible admissible representations lying on
a given Bernstein component have a common level. Note that there are only finitely many
RACSDC representations of GLN (AF ) up to isomorphism, satisfying the first three properties.
By the strong multiplicity one property for GLN [23], we know that for � large enough, Π is the
only RACSDC representation of GLN (AF ) up to isomorphism, satisfying all the four properties.

Now we claim that for two different collections DΣ+ and D ′
Σ+ , the RACSDC representations

Π(DΣ+) and Π(D ′
Σ+) are not isomorphic. Assuming this claim, then for � large enough, we have

only one collection, which is {Dmin
v |v ∈ Σ+}, that is, Definition 3.36 (1) is satisfied. The theorem

is proved.
For the claim itself, we take a place v ∈ Σ+. Then the local components of Π(DΣ+ ) above

v give rise to a continuous homomorphism r : ΓF+
v
→ GN(Q�), which corresponds to a Q�-point

xr in Spec Rloc
r̄Π,λ,v

[1/�]. Now the dimension of the tangent space of Spec Rloc
r̄Π,λ,v

[1/�] at xr is
equal to

N2 + dim
Q�

H1(F+
v , ad r) − dim

Q�
H0(F+

v , ad r)



Deformation of Rigid Conjugate Self-dual Galois Representations 1643

= N2 + dim
Q�

H2(F+
v , ad r)

= N2 + dim
Q�

H0(F+
v , (ad r)(1))

≤ N2 + dim
Q�

H0(Fw, (ad r�)(1)),

where w is the place of F induced by the embedding F ↪→ F+
v . However, since Π(DΣ+)w is

generic, we have dim
Q�

H0(Fw, (ad r�)(1)) = 0 by [2, Lemma 1.3.2 (1)]. Thus, by Proposition
3.33 (1), Spec Rloc

r̄Π,λ,v
[1/�] is smooth at xr, which implies that xr can not lie on two irreducible

components. The claim then follows. �
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