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1 Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ ·‖. Let C be a nonempty,
closed and convex subset of H. Let F : H → H be a single-valued continuous mapping. We
consider classical variational inequality (VI) in the sense of Fichera [13] and Stampacchia [24]
(see also Kinderlehrer and Stampacchia [19], Facchinei and Pang [12]) which is formulated as
follows: Find a point x∗ ∈ C such that

〈Fx∗, x − x∗〉 ≥ 0, ∀x ∈ C. (1.1)

We denote by Sol(C, F ) the solution set of the VI (1.1), which is assumed to be nonempty.
From the characterization of the projection, it follows that x∗ is a solution of (1.1) if and

only if it solves the following fixed point equation:

x∗ = PC(x∗ − τFx∗), (1.2)

where τ is any positive real number and PC denotes the metric projection onto C. Using (1.2),
one can easily construct the following iterative scheme which is generally called as the gradient
projection method:

xn+1 = PC(xn − τFxn),

where the positive number τ is the stepsize. The projected gradient method converges provided
that the mapping F is Lipschitz continuous and strongly monotone.
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To avoid the hypotheses of the strong monotonicity in the gradient projection method,
Korpelevich [20] (also by Antipin [2] independently) introduced the extragradient method for
solving monotone VIs, which requires two projections onto the feasible set in each iteration.
Let F : C → H be monotone and L-Lipschitz continuous operator. The extragradient method
has the following form: ⎧

⎨

⎩

yn = PC(xn − τnFxn),

xn+1 = PC(xn − τnFyn),
(1.3)

where τn ∈ (0, 1/L) or τn is updated by an adaptive rule such that

τn‖Fxn − Fyn‖ ≤ μ‖xn − yn‖, μ ∈ (0, 1). (1.4)

Observe that the extragradient method requires the evaluation of two orthogonal projections
onto C per iteration. The first method which overcomes this obstacle is the projection and
contraction method (PC) of He [16] and Sun [25]. For each iteration n ∈ N generates point yn

in the spirit of (1.3):
yn = PC(xn − τnFxn),

and then the next iteration xn+1 is generated via the following

xn+1 = xn − γηnd(xn, yn),

where γ ∈ (0, 2),

ηn :=
〈xn − yn, d(xn, yn)〉

‖d(xn, yn)‖2
,

and
d(xn, yn) := xn − yn − τn(Fxn − Fyn),

where F : C → H is a monotone and L-Lipschitz continuous operator and τn ∈ (0, 1/L)
or τn is updated by some adaptive rule like (1.4). Recently, projection and contraction type
methods for solving VI have received great attention from many authors, see, e.g., [4, 10]. A
combination of these extensions has been recently considered in [10], which takes advantage of
both the projection contraction method and the inertial method [23]. However, a drawback
of this method is that, to determine stepsizes, it requires line-search procedures containing
many additional projections, and its convergence analysis is performed under the assumptions
of Lipschitz continuity as well as the monotonicity of the cost operator. Motivated and inspired
by [6, 7, 10, 11, 29, 30], and by the ongoing research in these directions, in the present paper,
we revisit the algorithm in [10] for solving variational inequalities with uniformly continuous
pseudomonotone operators. In particular, we use an Armijo-type line search in order to relax
both of these assumptions, Lipschitz continuity as well as the monotonicity. This improvement
allows the algorithm to be applied to a wider class of nonlinear mappings. Moreover, the
linear convergence rate of the algorithm is presented under strong pseudomonotonicity and
Lipschitz continuity assumptions of the variational inequality mapping, which is not known in
the literature. The article is organized as follows: in Section 2, we recall some concepts and
lemmas which will be used in the proof of main results and, in Section 3, a general inertial
projection and contraction method with a line-search procedure is introduced and its weak
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convergence is proved. In Section 4, the linear convergence of the proposed algorithm is proved.
In Section 5, a numerical example is reported to illustrate the performance of the proposed
algorithm. In Section 6, the final conclusions are given.

2 Preliminaries

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. The weak convergence
of {xn} to x is denoted by xn ⇀ x as n → ∞, while the strong convergence of {xn} to x is
written as xn → x as n → ∞. For all x, y ∈ H we have

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉.

Definition 2.1 ([5]) Let T : H → H be an operator. Then
(1) T is called L-Lipschitz continuous with constant L > 0 if

‖Tx − Ty‖ ≤ L‖x − y‖, ∀x, y ∈ H,

if L = 1 then the operator T is called nonexpansive and if L ∈ (0, 1), T is called a contraction;
(2) T is called monotone if

〈Tx − Ty, x − y〉 ≥ 0, ∀x, y ∈ H;

(3) T is called pseudomonotone in the sense of Karamardian [17] if

〈Tx, y − x〉 ≥ 0 =⇒ 〈Ty, y − x〉 ≥ 0, ∀x, y ∈ H; (2.1)

(4) T is called α-strongly monotone if there exists a constant α > 0 such that

〈Tx − Ty, x − y〉 ≥ α‖x − y‖2, ∀x, y ∈ H;

(5) T is called α-strongly pseudomonotone if there exists a constant α > 0 such that

〈Tx, y − x〉 ≥ 0 =⇒ 〈Ty, y − x〉 ≥ α‖x − y‖2, ∀x, y ∈ H;

(6) The operator T is called sequentially weakly continuous if for each sequence {xn} we
have: xn converges weakly to x implies Txn converges weakly to Tx.

Definition 2.2 Let (X, d) and (Y, ρ) be metric spaces and let B be a subset of X. A function
f : X → Y is said to be uniformly continuous on B if ∀ ε > 0, there exists δ > 0 such that if
x, y ∈ B and d(x, y) < δ then ρ(f(x), f(y)) < ε.

We note that (2.1) is only one of the definitions of pseudomonotonicity which can be found
in the literature. For every point x ∈ H, there exists a unique nearest point in C, denoted by
PCx such that ‖x − PCx‖ ≤ ‖x − y‖, ∀y ∈ C. PC is called the metric projection of H onto
C. It is known that PC is nonexpansive. For properties of the metric projection, the interested
reader could be referred to Section 3 in [15].

We need to recall the following lemmas, which are useful for the later convergence analysis.

Lemma 2.3 ([15]) Let C be a nonempty closed convex subset of a real Hilbert space H. Given
x ∈ H and z ∈ C, then z = PCx ⇐⇒ 〈x − z, z − y〉 ≥ 0, ∀y ∈ C. Moreover,

‖PCx − PCy‖2 ≤ 〈PCx − PCy, x − y〉, ∀x, y ∈ C.
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Lemma 2.4 ([8]) Consider the problem Sol(C, F ) with C being a nonempty, closed, convex
subset of a real Hilbert space H and F : C → H being pseudomonotone and continuous. Then,
x∗ is a solution of Sol(C, F ) if and only if

〈Fx, x − x∗〉 ≥ 0, ∀x ∈ C.

Lemma 2.5 ([9]) Let F : C → H be a mapping. For x ∈ H and α ≥ β > 0 the following
inequalities hold:

‖x − PC(x − αFx)‖
α

≤ ‖x − PC(x − βFx)‖
β

,

‖x − PC(x − βFx)‖ ≤ ‖x − PC(x − αFx)‖.
Lemma 2.6 ([1]) Let {ϕn}, {δn} and {αn} be sequences in [0, +∞) such that

ϕn+1 ≤ ϕn + αn(ϕn − ϕn−1) + δn, ∀n ≥ 1,
+∞∑

n=1

δn < +∞,

and there exists a real number α with 0 ≤ αn ≤ α < 1 for all n ∈ N. Then the following hold:
(i)

∑+∞
n=1[ϕn − ϕn−1]+ < +∞, where [t]+ := max{t, 0};

(ii) there exists ϕ∗ ∈ [0, +∞) such that limn→+∞ ϕn = ϕ∗.

Lemma 2.7 ([21]) Let C be a nonempty set of H and {xn} be a sequence in H such that the
following two conditions hold:

(i) for every x ∈ C, limn→∞ ‖xn − x‖ exists;
(ii) every sequential weak cluster point of {xn} is in C.

Then {xn} converges weakly to a point in C.

Definition 2.8 ([22]) Let {xn} be a sequence in H.

(i) {xn} is said to converge R-linearly to x∗ with rate ρ ∈ [0, 1) if there is a constant c > 0
such that

‖xn − x∗‖ ≤ cρn, ∀n ∈ N.

(ii) {xn} is said to converge Q-linearly to x∗ with rate ρ ∈ [0, 1) if

‖xn+1 − x∗‖ ≤ ρ‖xn − x∗‖, ∀n ∈ N.

3 Weak Convergence Analysis

In this section, we propose a modified gradient projection method for solving VIs. We assume
that the following conditions hold:

Condition 1 The solution set Sol(C, F ) is nonempty.

Condition 2 The mapping F : H → H is pseudomonotone on H, that is,

〈Fx, y − x〉 ≥ 0 =⇒ 〈Fy, y − x〉 ≥ 0, ∀x, y ∈ H.

In addition, the mapping F : H → H satisfies the condition

{zn} ⊂ C, zn ⇀ z =⇒ ‖Fz‖ ≤ lim inf
n→∞ ‖Fzn‖. (3.1)

Condition 3 F : H → H is uniformly continuous on bounded subsets of H.
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Algorithm 3.1

Initialization: Given ρ, l ∈ (0, 1), μ ∈ (0, 1), γ ∈ (0, 2), θ ∈ [0, 1), α ∈ (0, 1). Let s0, s1 ∈ H be
arbitrary.
Iterative Steps: Given the current iterate sn, calculate sn+1 as follows:
Step 1 Compute wn = sn + θ(sn − sn−1),

yn = PC(wn − τnFwn),

where τn is chosen to be the largest τ ∈ {ρ, ρl, ρl2, . . .} satisfying

τ‖Fyn − Fwn‖ ≤ μ‖yn − wn‖2. (3.2)

If wn = yn or Fwn = 0 then stop and wn is a solution of (1.1). Otherwise
Step 2 Compute

sn+1 = wn − γηndn,

where

ηn :=

⎧
⎪⎨

⎪⎩

〈wn − yn, dn〉
‖dn‖2

if dn �= 0,

0 if dn = 0,

and

dn := wn − yn − τn(Fwn − Fyn).

Set n := n + 1 and go to Step 1.

Remark 3.2 It notes that we can use the technique of the subgradient extragradient method
to compute {sn+1} as follows:

sn+1 = PTn
(wn − γτnηnFyn),

where

Tn = {x ∈ H | 〈wn − τnFwn − yn, x − yn〉 ≤ 0}.

In this case, Algorithm 3.1 is called the inertial subgradient extragradient method [26]. The
weak convergence was studied in [26] under the assumptions that the cost operator F : H → H

is monotone and L-Lipschitz continuous. However, here we only need to assume that the
operator F is pseudomonotone and non-Lipschitz continuous. Moreover, the inertial technique
also applies to accelerate the convergence of the algorithm.

Lemma 3.3 Assume that the mapping F : H → H is uniformly continuous on bounded
subsets of H. The Armijo-line search rule (3.2) is well defined. In addition, we have τn ≤ γ.

Proof If wn ∈ Sol(C, F ) then wn = PC(wn − γFwn) and mn = 0. We consider the situation
wn /∈ Sol(C, F ) and assume the contrary that for all m we have

γlm‖FPC(wn − γlmFwn) − Fwn‖ > μ‖PC(wn − γlmFwn) − wn‖. (3.3)
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This implies that

‖FPC(wn − γlmFwn) − Fwn‖ > μ
‖PC(wn − γlmFwn) − wn‖

γlm
. (3.4)

Now, we consider the two cases of wn. First, if wn ∈ C then from PC is continuous, we
have limm→∞ ‖PC(wn − γlmFwn) − wn‖ = 0. From the uniform continuity of the operator F

on bounded subsets of C it implies that

lim
m→∞ ‖FPC(wn − γlmFwn) − Fwn‖ = 0. (3.5)

Combining (3.4) and (3.5) we get

lim
m→∞

‖PC(wn − γlmFwn) − wn‖
γlm

= 0. (3.6)

Assume that zm = PC(wn − γlmFwn) we have

〈zm − wn + γlmFwn, x − zm〉 ≥ 0, ∀x ∈ C.

This implies that
〈

zm − wn

γlm
, x − zm

〉

+ 〈Fwn, x − zm〉 ≥ 0, ∀x ∈ C. (3.7)

Taking the limit m → ∞ in (3.7) and using (3.6) we obtain

〈Fwn, x − wn〉 ≥ 0, ∀x ∈ C,

which implies that wn ∈ Sol(C, F ) this is a contraction.
If wn /∈ C, then we have

lim
m→∞ ‖wn − PC(wn − γlmFwn)‖ = ‖wn − PCwn‖ > 0,

and
lim

m→∞ γlm‖Fwn − FPC(wn − γlmFwn)‖ = 0,

which, in view of (3.3), also leads to a contradiction. This completes the proof. �

Lemma 3.4 Assume that Conditions 1 and 2 hold. Let {sn} be a sequence generated by
Algorithm 3.1. Then

‖sn+1 − x∗‖2 ≤ ‖wn − x∗‖2 − 2 − γ

γ
‖wn − sn+1‖2, ∀x∗ ∈ Sol(C, F ). (3.8)

Proof From the formula yn = PC(wn − τnFwn) we get

〈wn − yn − τnFwn, yn − x∗〉 ≥ 0, (3.9)

By the monotonicity of F and x∗ ∈ Sol(C, F ) we have

〈Fyn, yn − x∗〉 ≥ 〈Fx∗, yn − x∗〉 ≥ 0. (3.10)

Adding (3.9) and (3.10) we get

〈yn − x∗, wn − yn − τn(Fwn − Fyn)〉 ≥ 0. (3.11)

That is
〈yn − x∗, dn〉 ≥ 0. (3.12)
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Using the inequality (3.12) we get

〈wn − x∗, dn〉 = 〈wn − yn, dn〉 + 〈yn − x∗, dn〉 ≥ 〈wn − yn, dn〉. (3.13)

On the other hand, we have

‖sn+1 − x∗‖2 = ‖wn − γηndn − x∗‖2 = ‖wn − x∗‖2 − 2γηn〈wn − x∗, dn〉 + γ2η2
n‖dn‖2. (3.14)

It implies from (3.13) and (3.14) that

‖sn+1 − x∗‖2 ≤ ‖wn − x∗‖2 − 2γηn(1 − μ)〈wn − yn, dn〉 + γ2η2
n‖dn‖2. (3.15)

Since ηn = 〈wn−yn,dn〉
‖dn‖2 , we get

ηn‖dn‖2 = 〈wn − yn, dn〉. (3.16)

Substituting (3.16) into (3.15), we get

‖sn+1 − x∗‖2 ≤ ‖wn − x∗‖2 − 2γηn〈wn − yn, dn〉 + γ2ηn〈wn − yn, dn〉
= ‖wn − x∗‖2 − (2 − γ)γηn〈wn − yn, dn〉
= ‖wn − x∗‖2 − γ(2 − γ)‖ηndn‖2

= ‖wn − x∗‖2 − 2 − γ

γ
‖γηndn‖2

= ‖wn − x∗‖2 − 2 − γ

γ
‖wn − sn+1‖2. �

Lemma 3.5 Assume that Conditions 1 and 2 hold and let the sequence {sn} be generated by
Algorithm 3.1. Then

‖wn − yn‖2 ≤ (1 + μ)2

[(1 − μ)γ]2
‖wn − sn+1‖2.

Proof First, we show that

(1 − μ)‖wn − yn‖ ≤ ‖dn‖ ≤ (1 + μ)‖wn − yn‖. (3.17)

Indeed, we have

‖dn‖ = ‖wn − yn − τn(Fwn − Fyn)‖
≥ ‖wn − yn‖ − τn‖Fwn − Fyn‖
≥ ‖wn − yn‖ − μ‖wn − yn‖
= (1 − μ) ‖wn − yn‖,

and it is easy to see that ‖dn‖ ≤ (1 + μ)‖wn − yn‖. Now, we will prove the lemma. We have

〈wn − yn, dn〉 = 〈wn − yn, wn − yn − τn(Fwn − Fyn)〉
= ‖wn − yn‖2 − τn〈wn − yn, Fwn − Fyn〉
≥ (1 − μ)‖wn − yn‖2. (3.18)

This implies that

‖wn − yn‖2 ≤ 1
1 − μ

〈wn − yn, dn〉 =
1

1 − μ
ηn‖dn‖2

=
1

ηn(1 − μ)
‖ηndn‖2 =

1
ηn(1 − μ)γ2

‖wn − zn‖2. (3.19)
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Using the definition of {ηn}, (3.18) and (3.17) we get

1
ηn

=
‖dn‖2

〈wn − yn, dn〉 ≤ 1
1 − μ

‖dn‖2

‖wn − yn‖2
≤ (1 + μ)2

(1 − μ)
. (3.20)

Substituting (3.20) into (3.19) we obtain

‖wn − yn‖2 ≤ (1 + μ)2

[(1 − μ)γ]2
‖wn − sn+1‖2. �

Lemma 3.6 Assume that Conditions 1–3 hold. Let {wn} be any sequence generated by Al-
gorithm 3.1. If there exists a subsequence {wnk

} of {wn} such that {wnk
} converges weakly to

z ∈ C and limk→∞ ‖wnk
− ynk

‖ = 0 then z ∈ Sol(C, F ).

Proof We have ynk
= PC(wnk

− τnk
Fwnk

) thus,

〈wnk
− τnk

Fwnk
− ynk

, x − ynk
〉 ≤ 0, ∀x ∈ C.

or equivalently
1

τnk

〈wnk
− ynk

, x − ynk
〉 ≤ 〈Fwnk

, x − ynk
〉, ∀x ∈ C.

This implies that
1

τnk

〈wnk
− ynk

, x − ynk
〉 + 〈Fwnk

, ynk
− wnk

〉 ≤ 〈Fwnk
, x − wnk

〉, ∀x ∈ C. (3.21)

Now, we show that
lim inf
k→∞

〈Fwnk
, x − wnk

〉 ≥ 0. (3.22)

For showing this, we consider two possible cases. Suppose first that lim infk→∞ τnk
> 0.

We have {wnk
} is a bounded sequence, F is uniformly continuous on bounded subsets of H. By

Lemma 2.4, we get that {Fwnk
} is bounded. Taking k → ∞ in (3.21) since ‖wnk

− ynk
‖ → 0,

we get
lim inf
k→∞

〈Fwnk
, x − wnk

〉 ≥ 0.

Now, we assume that lim infk→∞ τnk
= 0. Assume znk

= PC(wnk
− τnk

l−1Fwnk
), we have

τnk
l−1 > τnk

. Applying Lemma 2.5, we obtain

‖wnk
− znk

‖ ≤ 1
l
‖wnk

− ynk
‖ → 0 as k → ∞.

Consequently, znk
⇀ z ∈ C. This implies that {znk

} is bounded, from which and the uniformly
continuity of the operator F on bounded subsets of C it follows that

‖Fwnk
− Fznk

‖ → 0 as k → ∞. (3.23)

By the Armijo line-search rule (3.2) we have

τnk
.l−1‖Fwnk

− FPC(wnk
− τnk

l−1Fwnk
)‖ > μ‖wnk

− PC(vnk − τnk
l−1Fwnk

)‖.
That is,

1
μ
‖Fwnk

− Fznk
‖ >

‖wnk
− znk

‖
τnk

l−1
. (3.24)

Combining (3.23) and (3.24) we obtain

lim
k→∞

‖wnk
− znk

‖
τnk

l−1
= 0.
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Furthermore, we have

〈wnk
− τnk

l−1Fwnk
− znk

, x − znk
〉 ≤ 0, ∀x ∈ C.

This implies that
1

τnk
l−1

〈wnk
− znk

, x − znk
〉 + 〈Fwnk

, znk
− wnk

〉 ≤ 〈Fwnk
, x − wnk

〉, ∀x ∈ C. (3.25)

Taking the limit k → ∞ in (3.25) we get

lim inf
k→∞

〈Fwnk
, x − wnk

〉 ≥ 0.

Therefore, the inequality (3.22) is proved. Next, we show that z ∈ Sol(C, F ).
Now we choose a sequence {εk} of positive numbers decreasing and tending to 0. For each

k, we denote by Nk the smallest positive integer such that

〈Fwnj
, x − wnj

〉 + εk ≥ 0, ∀j ≥ Nk, (3.26)

where the existence of Nk follows from (3.22). Since {εk} is decreasing, it is easy to see that
the sequence {Nk} is increasing. Furthermore, for each k, since {wNk

} ⊂ C we have FwNk
�= 0

and, setting

qNk
=

FwNk

‖FwNk
‖2

,

we have 〈FwNk
, wNk

〉 = 1 for each k. Now, we can deduce from (3.26) that for each k

〈FwNk
, x + εkqNk

− wNk
〉 ≥ 0.

By the fact that F is pseudo-monotone, we get

〈F (x + εkqNk
), x + εkqNk

− wNk
〉 ≥ 0.

This implies that

〈Fx, x − wNk
〉 ≥ 〈Fx − F (x + εkqNk

), x + εkqNk
− wNk

〉 − εk〈Fx, qNk
〉. (3.27)

Now, we show that limk→∞ εkqNk
= 0. Indeed, we have wnk

⇀ z as k → ∞ and F satisfies
the condition (3.1), which imply that

0 < ‖Fz‖ ≤ lim inf
k→∞

‖Fwnk
‖ (note that Fz �= 0 otherwise, z is a solution).

Since {wNk
} ⊂ {wnk

} and εk → 0 as k → ∞, we obtain

0 ≤ lim sup
k→∞

‖εkqNk
‖ = lim sup

k→∞

(
εk

‖Fwnk
‖
)

≤ lim supk→∞ εk

lim infk→∞ ‖Fwnk
‖ = 0,

which implies that limk→∞ εkqNk
= 0.

Now, letting k → ∞, then the right hand side of (3.27) tends to zero by F is uniformly
continuous, {wNk

}, {qNk
} are bounded and limk→∞ εkqNk

= 0. Thus, we get

lim inf
k→∞

〈Fx, x − wNk
〉 ≥ 0.

Hence, for all x ∈ C we have

〈Fx, x − z〉 = lim
k→∞

〈Fx, x − wNk
〉 = lim inf

k→∞
〈Fx, x − wNk

〉 ≥ 0.

By Lemma 2.4 we obtain z ∈ Sol(C, F ) and the proof is complete. �
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Theorem 3.7 Assume that Conditions 1–3 hold. If the factor γ of Algorithm 3.1 is chosen
such that γ ∈ (0, 2(1−θ)2

1−θ+2θ2 ) then the sequence {sn} generated by Algorithm 3.1 converges weakly
to an element z ∈ Sol(C, F ).

Proof From Lemma 3.4, we get

‖sn+1 − x∗‖ ≤ ‖wn − x∗‖ − 2 − γ

γ
‖sn+1 − wn‖2. (3.28)

On the other hand, from the definition of wn, we get

‖wn − x∗‖2 = ‖sn + θ(sn − sn−1) − x∗‖2

= ‖(1 + θ)(sn − x∗) − θ(sn−1 − x∗)‖2

= (1 + θ)‖sn − x∗‖2 − θ‖sn−1 − x∗‖2 + (1 + θ)θ‖sn − sn−1‖2 (3.29)

and

‖sn+1 − wn‖2 = ‖sn+1 − sn − θ(sn − sn−1)‖2

= ‖sn+1 − sn‖2 + θ2‖sn − sn−1‖2 − 2θ 〈sn+1 − sn, sn − sn−1〉
≥ ‖sn+1 − sn‖2 + θ2‖sn − sn−1‖2 − 2θ‖sn+1 − sn‖‖sn − sn−1‖
≥ ‖sn+1 − sn‖2 + θ2‖sn − sn−1‖2 − θ‖sn+1 − sn‖2 − θ‖sn − sn−1‖2

≥ (1 − θ)‖sn+1 − sn‖2 − θ(1 − θ)‖sn − sn−1‖2. (3.30)

Substituting (3.29) and (3.30) into (3.28), we have

‖sn+1 − x∗‖2 ≤ (1 + θ)‖sn − x∗‖2 − θ‖sn−1 − x∗‖2 + (1 + θ)θ‖sn − sn−1‖2

− (1 − θ)
2 − γ

γ
‖sn+1 − sn‖2 + θ(1 − θ)

2 − γ

γ
‖sn − sn−1‖2. (3.31)

It follows from (3.31) that

‖sn+1 − x∗‖2 − θ‖sn − x∗‖2 + (1 − θ)
2 − γ

γ
‖sn+1 − sn‖2

≤ ‖sn − x∗‖2 − θ‖sn−1 − x∗‖2 + (1 − θ)
2 − γ

γ
‖sn − sn−1‖2

−
(

(1 − θ)
2 − γ

γ
− θ(1 − θ)

2 − γ

γ
− (1 + θ)θ

)

‖sn − sn−1‖2. (3.32)

Let
Λn := ‖sn − x∗‖2 − θ‖sn−1 − x∗‖2 + (1 − θ)

2 − γ

γ
‖sn − sn−1‖2.

Using (3.32), we get

Λn+1 − Λn ≤ −
(

(1 − θ)
2 − γ

γ
− θ(1 − θ)

2 − γ

γ
− (1 + θ)θ

)

‖sn − sn−1‖2.

Now, let ε := (1 − θ) 2−γ
γ − θ(1 − θ) 2−γ

γ − (1 + θ)θ. Using the assumption γ ∈ (0, 2(1−θ)2

1−θ+2θ2 ) we
deduce

ε := (1 − θ)
2 − γ

γ
− θ(1 − θ)

2 − γ

γ
− (1 + θ)θ > 0. (3.33)

Using (3.33), we get
Λn+1 − Λn < −ε‖sn+1 − sn‖2. (3.34)
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Therefore, we have

Λn = ‖sn − x∗‖2 − θ‖sn−1 − x∗‖2 + (1 − θ)
2 − γ

γ
‖sn − sn−1‖2

≥ ‖sn − x∗‖2 − θ‖sn−1 − x∗‖2.

This follows that

‖sn − x∗‖2 ≤ θ‖sn−1 − x∗‖2 + Λn

≤ θ‖sn−1 − x∗‖2 + Λ1

≤ · · · · · ·
≤ θn−1‖s1 − x∗‖2 + Λ1(θn−1 + · · · + 1)

≤ θn−1‖s1 − x∗‖2 +
Λ1

1 − θ
. (3.35)

We also have

Λn+1 ≥ ‖sn+1 − x∗‖2 − θ‖sn − x∗‖2

≥ −θ‖sn − x∗‖2. (3.36)

From (3.35) and (3.36), we obtain

−Λn+1 ≤ θ‖sn − x∗‖2 ≤ θn‖s1 − x∗‖2 +
θΛ1

1 − θ
.

It follows from (3.34) that

ε
k∑

n=1

‖sn+1 − sn‖2 ≤ Λ1 − Λk+1

≤ θk‖s1 − x∗‖2 +
Λ1

1 − θ

≤ ‖s1 − x∗‖2 +
Λ1

1 − θ
, ∀k > 0.

This implies
∞∑

n=1

‖sn+1 − sn‖2 < +∞. (3.37)

This follows that
lim

n→∞ ‖sn+1 − sn‖ = 0. (3.38)

Moreover, from (3.37) and Lemma 2.6, we have

lim
n→∞ ‖sn − x∗‖2 = l.

On the other hand, by (3.29), we get

lim
n→∞ ‖wn − x∗‖2 = l.

Since (3.28) we get
lim

n→∞ ‖sn+1 − wn‖ = 0. (3.39)

Combining (3.38) and (3.39) we deduce

lim
n→∞ ‖sn − wn‖ = 0. (3.40)
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It follows from Lemma 3.5 and (3.39) that

lim
n→∞ ‖wn − yn‖ = 0. (3.41)

The sequence {sn} converges weakly to an element of Sol(C, F ). Indeed, since limn→∞ ‖sn−
x∗‖ exists, it follows that the sequence {sn} is bounded. Now, we choose a subsequence {snk

}
of {sn} such that snk

⇀ z∗. By (3.40), we have wnk
⇀ z∗. Since Lemma 3.6 and (3.41) we

get z∗ ∈ Sol(C, F ). Therefore, we proved that, for all x∗ ∈ Sol(C, F ), limn→∞ ‖sn − x∗‖ exists
and each sequential weak cluster point of the sequence {sn} is in Sol(C, F ). By Lemma 2.7,
the sequence {sn} converges weakly to an element of Sol(C, F ). This completes the proof. �

Remark 3.8 Our result improves the related results in the literature and hence might be
applied to a wider class of mappings. For example, we present the advantage of our method
compared with the recent result [10, Theorem 3.1]. Our Theorem 3.7, F : H → H is assumed
to be pseudomonotone on H instead of monotone on H in [10]. In particular, unlike [10, Algo-
rithm 3.1] the weak convergence is proved with the variational inequality mapping is uniformly
continuous on bounded subsets of H instead of F is Lipschitz continuous.

4 Convergence Rate

In this section, we provide a result on the convergence rate of the iterative sequence generated
by Algorithm 3.1.

Theorem 4.1 Assume that F is L-Lipschitz continuous on H and κ-strongly pseudomonotone
on C. Let δ ∈ (0, 1) be arbitrary and θ be such that

0 ≤ θ ≤ min
{

ξ

2 + ξ
,

√
(1 + δξ)2 + 4δξ − (1 + δξ)

2
, (1 − δ)

(

1 − (1 − ξ)(1 − μ)
2(1 + μ)

)}

, (4.1)

where ξ := θ 2−γ
γ . Then the sequence {sn} generated by Algorithm 3.1 converges strongly to the

unique solution x∗ of (1.1) with an R-linear rate.

Proof Under assumptions made, it was proved that (1.1) has a unique solution [18]. From the
κ-strong pseudomonotonicity of F , we have

〈Fyn, yn − x∗〉 ≥ κ‖yn − x∗‖2. (4.2)

Adding (3.9) and (4.2), we obtain

〈yn − x∗, wn − yn − τn(Fwn − Fyn)〉 ≥ τnκ‖yn − x∗‖2. (4.3)

Adding (3.13) and (4.3), we obtain

〈wn − x∗, dn〉 ≥ (1 − μ)‖wn − yn‖2 + τnκ‖yn − x∗‖2. (4.4)

Combining (3.14) and (4.4), we deduce

‖sn+1 − x∗‖2 ≤ ‖wn − x∗‖2 − 2γηn(1 − μ)‖wn − yn‖2 − 2γηnτnκ‖yn − x∗‖2 + γ2η2
n‖dn‖2

≤ ‖wn − x∗‖2 − 2 − γ

γ
‖wn − sn+1‖2 − 2γηnτnκ‖yn − x∗‖2. (4.5)

It is easy to see that

ηn =
〈wn − yn, dn〉

‖dn‖2
≥ 1 − μ

(1 + μ)2
. (4.6)
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Again, substituting (4.6) into (4.5), we have

‖sn+1 − x∗‖2 ≤ ‖wn − x∗‖2 − 2 − γ

γ
‖wn − sn+1‖2 − 2γ

(1 − μ)
(1 + μ)2

τnκ‖yn − x∗‖2. (4.7)

Now we show that τn > μl
L for all n. Indeed, by the search rule (3.2), we know that τn

l must
violate inequality (3.2), i.e.,

‖Fyn − Fwn‖ >
μ
τn

l

‖yn − wn‖.

This follows that

L‖yn − wn‖ >
μ
τn

l

‖yn − wn‖.

Thus

L >
μ
τn

l

,

that is

τn >
μl

L
, ∀n. (4.8)

Combining (4.7) and (4.8) we get

‖sn+1 − x∗‖2 ≤ ‖wn − x∗‖2 − 2 − γ

γ
‖wn − sn+1‖2 − 2γ

(1 − μ)
(1 + μ)2

μl

L
κ‖yn − x∗‖2

= ‖wn − x∗‖2 − θ
2 − γ

γ
‖wn − sn+1‖2 − (1 − θ)

2 − γ

γ
‖wn − sn+1‖2

− 2γ
(1 − μ)
(1 + μ)2

μl

L
κ‖yn − x∗‖2. (4.9)

Substituting (3.8) into (4.9), we get

‖sn+1 − x∗‖2 ≤ ‖wn − x∗‖2 − θ
2 − γ

γ
‖wn − sn+1‖2 − (1 − θ)(2 − γ)γ

(1 − μ)2

(1 + μ)2
‖wn − yn‖2

− 2γ
(1 − μ)
(1 + μ)2

μl

L
κ‖yn − x∗‖2

= ‖wn − x∗‖2 − θ
2 − γ

γ
‖wn − sn+1‖2 − 2β(‖wn − yn‖2 + ‖yn − x∗‖2)

≤ ‖wn − x∗‖2 − θ
2 − γ

γ
‖wn − sn+1‖2 − β‖wn − x∗‖2

= (1 − β)‖wn − x∗‖2 − θ
2 − γ

γ
‖wn − sn+1‖2, (4.10)

where β := 1
2 min{(1 − ξ)(2 − γ)γ (1−μ)2

(1+μ)2 ; 2γ (1−μ)
(1+μ)2

μl
L κ}. Let ϕ := 1 − β and ξ := θ 2−γ

γ . From
(4.10) we get

‖sn+1 − x∗‖2 ≤ ϕ‖wn − x∗‖2 − ξ‖wn − sn+1‖2. (4.11)

We have

‖wn − x∗‖2 = ‖(1 + θ)(sn − x∗) − θ(sn−1 − x∗)‖2

= (1 + θ)‖sn − x∗‖2 − θ‖sn−1 − x∗‖2 + θ(1 + θ)‖sn − sn−1‖2 (4.12)
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and

‖sn+1 − wn‖2 = ‖sn+1 − sn − θ(sn − sn−1)‖2

= ‖sn+1 − sn‖2 + θ2‖sn − sn−1‖2 − 2θ 〈sn+1 − sn, sn − sn−1〉
≥ ‖sn+1 − sn‖2 + θ2‖sn − sn−1‖2 − 2θ‖sn+1 − sn‖‖sn − sn−1‖
≥ ‖sn+1 − sn‖2 + θ2‖sn − sn−1‖2 − θ‖sn+1 − sn‖2 − θ‖sn − sn−1‖2

≥ (1 − θ)‖sn+1 − sn‖2 − θ(1 − θ)‖sn − sn−1‖2. (4.13)

Substituting the inequalities (4.12) and (4.13) into (4.11), we obtain

‖sn+1 − x∗‖2 ≤ ϕ(1 + θ)‖sn − x∗‖2 − ϕθ‖sn−1 − x∗‖2 + ϕθ(1 + θ)‖sn − sn−1‖2

− ξ(1 − θ)‖sn+1 − sn‖2 + ξθ(1 − θ)‖sn − sn−1‖2,

or equivalently

‖sn+1 − x∗‖2 − ϕθ‖sn − x∗‖2 + ξ(1 − θ)‖sn+1 − sn‖2

≤ ϕ[‖sn − x∗‖2 − θ‖sn−1 − x∗‖2 + ξ(1 − θ)‖sn − sn−1‖2]

− (ϕξ(1 − θ) − ϕθ(1 + θ) − ξθ(1 − θ))‖sn − sn−1‖2.

Setting
an := ‖sn − x∗‖2 − θ‖sn−1 − x∗‖2 + ξ(1 − θ)‖sn − sn−1‖2,

since ϕ ∈ (0, 1) we can write

an+1 ≤ ‖sn+1 − x∗‖2 − ϕθ‖sn − x∗‖2 + ξ(1 − θ)‖sn+1 − sn‖2

≤ ϕan − (ϕξ(1 − θ) − ϕθ(1 + θ) − ξθ(1 − θ)) ‖sn − sn−1‖2.

Note that from (4.1) we have

θ ≤ (1 − δ)
(

1 − (1 − ξ)(1 − μ)
2(1 + μ)

)

≤ (1 − δ)(1 − β) = (1 − δ)ϕ,

which implies
ξθ(1 − θ) ≤ (1 − δ)ϕξ(1 − θ). (4.14)

Since

θ ≤
√

(1 + δξ)2 + 4δξ − (1 + δξ)
2

it holds
θ2 + (1 + δξ)θ − δξ ≤ 0,

or equivalently
θ(1 + θ) ≤ δξ(1 − θ).

Hence
ϕθ(1 + θ) ≤ δϕξ(1 − θ). (4.15)

From (4.14) and (4.15) we deduce

ϕξ(1 − θ) − ϕθ(1 + θ) − ξθ(1 − θ) ≥ 0.
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Moreover, since θ ≤ ξ
2+ξ , we have θ ≤ ξ(1−θ)

2 , which implies

an = (1 − ξ(1 − θ))‖sn − x∗‖2 + ξ(1 − θ)
(‖sn − x∗‖2 + ‖sn − sn−1‖2

) − θ‖sn−1 − x∗‖2

≥ (1 − ξ(1 − θ))‖sn − x∗‖2 +
ξ(1 − θ)

2
‖sn−1 − x∗‖2 − θ‖sn−1 − x∗‖2

≥ (1 − ξ(1 − θ))‖sn − x∗‖2 ≥ 0.

Therefore, we deduce

an+1 ≤ ϕan ≤ · · · ≤ ϕna1.

This follows that

‖sn − x∗‖2 ≤ a1

ϕ(1 − ξ(1 − θ))
ϕn,

which implies that {sn} converges R-linearly to x∗. �

5 Numerical Illustrations

In this section, we illustrate the convergence of Algorithm 3.1 (Alg. 1 in Figs. 1–4) and compare
it with other algorithms. All the numerical experiments are performed on an HP laptop with
Intel(R) Core(TM) i5-6200U CPU 2.3GHz with 4 GB RAM. All the programs are written in
Matlab2015a.
Example 4.1 Let F (x) := Mx + q where

M = BBT + C + D,

and B is an m × m matrix, C is an m × m skew-symmetric matrix, D is an m × m diagonal
matrix, whose diagonal entries are nonnegative (so M is positive semidefinite), q is a vector in
R

m. The feasible set C ⊂ R
m is a box constraints in R

m defined by

C := {x ∈ R
m : 0 ≤ x ≤ 2}.

It is clear that F is monotone and Lipschitz-continuous with constant L = ‖M‖. Let q = 0.
Then, we obtain the solution set Γ = {0}. The parameters are chosen as follows:

Algorithm 3.1: ρ = 0.01, μ = 0.5, l = 0.5, θ = 0.4, γ = 1.8.

Algorithm 2 in [28]: γ = 0.01, μ = 0.5, l = 0.5, βn = 1
n+2 .

Algorithm 3.1 in [3]: f(x) = 0.8x, γ = 0.01, μ = 0.5, l = 0.5, βn = 1
n+2 .

Algorithm 3.2 in [14]: f(x) = 0.8x, λ = 0.01, γ = 1.8, μ = 0.5, l = 0.5, βn = 1
n+2 .

Algorithm 3.1 in [27]: τ0 = 0.001, μ = 0.5, αn = 1
n+2 , βn = 0.99(1 − αn). For experiment,

all entries of B, C and D are generated randomly from a normal distribution with mean zero
and unit variance. The process is started with the initial x0 = (1, . . . , 1)T ∈ R

m and x1 = 0.9x0.
We use stopping rule ‖xn‖ < 10−7 or Iter ≥ 1000 for all algorithms. The numerical results are
described in Table 1 and Figures 1–2.
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Methods m = 100 m = 200

Sec. Iter. Error Sec. Iter. Error

Algorithm 3.1 0.0330 49 7.9682e-08 0.1060 49 8.4458e-08

Algorithm 2 in [28] 0.036 82 9.4183e-08 0.1260 75 8.1403e-08

Algorithm 3.1 in [3] 0.8390 1000 0.0028 4.1920 1000 0.0063

Algorithm 3.2 in [14] 0.1430 422 9.8859e-08 0.4460 254 8.9049e-08

Algorithm 3.1 in [27] 0.1470 1000 4.5955e-04 0.5680 1000 5.6284e-04

Table 1 Numerical results obtained by other algorithms

Number of iterations
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x
n
||
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Alg 3.2 of Gibali
Alg. 1

Figure 1 Comparison of all algorithms with m = 100

Number of iterations

0 100 200 300 400 500 600 700 800 900 1000

||
x
n
||
2

10-8

10-6

10-4

10-2

100

102

Alg 3.1 of Cai
Alg. 2
Alg 3.1 of ThongHieu
Alg 3.2 of Gibali
Alg. 1

Figure 2 Comparison of all algorithms with m = 200
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Figures 1–2 and Table 1 demonstrate that Algorithm 3.1 performs better than Algorithm
2 in [28], Algorithm 3.1 in [3], Algorithm 3.2 in [14] and Algorithm 3.1 in [27].
Example 4.2 Consider the following fractional programming problem:

min f(x) =
xT Qx + aT x + a0

bT x + b0

subject tox ∈ X := {x ∈ R
m : bT x + b0 > 0},

where Q is an m × m symmetric matrix, a, b ∈ R
m, and a0, b0 ∈ R. It is well known that f is

pseudoconvex on X when Q is positive-semidefinite.
For experiment, let matrix A : R

m×m → R
m×m, vectors c, d, y0 ∈ R

m and c0, d0 are gener-
ated from a normal distribution with mean zero and unit variance. We put e = (1, 1, ..., 1)T ∈
R

m, Q = AT A + I, a := e + c, b := e + d, a0 = 1 + c0, b0 = 1 + d0. We minimize f over
C := {x ∈ R

m : 0 ≤ xi ≤ 2, i = 1, . . . , m} ⊂ X. Matrix Q is symmetric and positive definite in
R

m and consequently f is pseudo-convex on X.
The process is started with the initial x0 := (1, 1, . . . , 1)T and x1 = 0.9 ∗ x0 and stopping

conditions is Residual := ‖sn+1 − sn‖ ≤ 10−7 or the number of iterations ≥ 1000 for all
algorithms. We choose θ = 10−3 for Algorithm 3.1 and other parameters as Example 4.1. The
numerical results are described in Figures 3–4 and Table 2.

Methods m = 30 m = 50

Sec. Iter. Error Sec. Iter. Error

Algorithm 3.1 0.044 286 7.0118e-08 0.15 451 9.8304e-08

Algorithm 3.1 in [3] 0.3050 1000 1.6016e-05 0.57 1000 4.5064e-06

Algorithm 3.2 in [14] 0.1890 1000 8.5671e-07 0.3460 1000 1.0000e-05

Algorithm 3.1 in [27] 0.09 1000 7.3282e-07 0.17 1000 1.1839e-05

Table 2 Numerical results obtained by other algorithms
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Figure 3 Comparison of all algorithms with m = 30
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Figure 4 Comparison of all algorithms with m = 50

6 Conclusions

In this paper, based on the inertial method and projection and contraction method we intro-
duce a class of inertial projection methods for solving a variational inequality problem involving
pseudomonotone and non-Lipschitz continuous mappings in Hilbert spaces. We improve their
line search conditions and some parameters to obtain the convergence results. We show that
the infinite sequences generated by the algorithm globally weakly converge to some solution of
the variational inequality problem and establish the linear convergence of the algorithm, respec-
tively. The proposed algorithm can be considered as continuous versions of the existing ones
for variational inequalities. Numerical experiments are presented to illustrate the performance
of the proposed method.
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