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Abstract Establishing the accurate relationship between fractional calculus and fractals is an impor-

tant research content of fractional calculus theory. In the present paper, we investigate the relationship

between fractional calculus and fractal functions, based only on fractal dimension considerations. Frac-

tal dimension of the Riemann–Liouville fractional integral of continuous functions seems no more than

fractal dimension of functions themselves. Meanwhile fractal dimension of the Riemann–Liouville frac-

tional differential of continuous functions seems no less than fractal dimension of functions themselves

when they exist. After further discussion, fractal dimension of the Riemann–Liouville fractional integral

is at least linearly decreasing and fractal dimension of the Riemann–Liouville fractional differential is at

most linearly increasing for the Hölder continuous functions. Investigation about other fractional cal-

culus, such as the Weyl–Marchaud fractional derivative and the Weyl fractional integral has also been

given elementary. This work is helpful to reveal the mechanism of fractional calculus on continuous

functions. At the same time, it provides some theoretical basis for the rationality of the definition of

fractional calculus. This is also helpful to reveal and explain the internal relationship between fractional

calculus and fractals from the perspective of geometry.

Keywords Fractional calculus, fractal functions, fractal dimension, fractional calculus equation, re-

lationship
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1 Introduction

In [33], a topic about “Fractional Calculus: Quo Vadimus? (Where are we going?)” had been
discussed by some most famous scientists who work about fractional calculus and its applica-
tions. The intention was to pose open problems, challenging hypotheses and questions “Where
to go”, to discuss them and try to find ways to resolve. From 2.9 (Kiryakova), 2.13 (Mathai)
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and 2.16 (Nigmatullin) in the paper, scholars want to establish the accurate relationship be-
tween fractional calculus and fractals. Thus in the present paper, we will make research on the
relationship between fractional calculus, such as the Riemann–Liouville fractional calculus and
the Weyl–Marchaud fractional derivative, and fractal functions. In fact, similar to the study of
classical calculus on continuous functions, many scholars make research on the mechanism of
fractional calculus on fractal functions, and pay attention to its consistency with the classical
case. Another aspect is to test the rationality and applicability of many definitions of fractional
calculus. Of course, fractional calculus has a lot of effective applications in fractional operators,
fractional control, especially in fractional calculus equations, but its main research direction is
the mechanism of continuous functions such as fractal functions.

Revealing the relationship between fractional calculus and fractals or fractal functions has
become the core content of fractional calculus theory [1, 8]. The description of physical meaning
and geometric structure, as well as other aspects of exploration such as geometric interpolation,
are the important research contents of fractional calculus and fractals. However, the exact
effect of fractional calculus on fractal structure is still unknown. In [3], authors showed certain
relationship between fractional calculus and fractals, based only on physical and geometrical
considerations. The link had been found in the physical origins of the power-laws, ruling the
evolution of many natural phenomena, whose long memory and hereditary properties were
mathematically modelled by differential operators of non integer order from certain examples
elementary. By [40, 41], relationships between the averaging procedure of a smooth function over
1D-fractal sets and fractional integral of the Riemann–Liouville-type had been established. The
numerical verifications were realized for confirmation of the analytical results and the physical
meaning of these obtained formulas had been discussed. Most of these works are explored from
the perspective of physical meaning, and the internal relationship between them is not studied
from the perspective of mathematical theory. We think it is necessary to discuss and explore
this relationship from the perspective of mathematical theory.

On the basis of previous work, we will explore the relationship between order of fractional
calculus and fractal dimension of fractal functions, and reveal the relationship between fractional
calculus and fractals from the perspective of fractal dimension from point of view of geometric
meaning.

1.1 Problem

The purpose of extending order of calculus from integer to non integer is to characterize the local
variation structure of non differentiable functions. While the local structure of non differentiable
functions is often described by the fractal dimension [6]. Therefore, scholars put forward an
important scientific problem of fractional calculus theory. How fractional calculus changes
the fractal dimension of continuous functions. From this, people begin to study the objective
relationship between the fractal dimension of continuous functions and the fractal dimension of
their fractional calculus. We express this problem in the following mathematical language.

Let f(x) be a continuous function defined on a closed interval [a, b] (a < b). Write dim f as
the fractal dimension of f(x) on [a, b]. D−νf(x) and Dμf(x) mean fractional integral of f(x)
of positive order ν and fractional differential of f(x) of positive order μ respectively when they
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exist on [a, b]. So the problem that we study belongs to the correct estimation of

dimD−νf and dimDμf.

On this basis, the relationship among dim f , dimD−νf and dimDμf could be further stud-
ied. In Ref. [54], Tatom discussed the fractal dimension of fractional calculus of some special
functions and curves, and gave certain numerical results and simulation curves. He thought
that graph lines of these functions or curves became smoother under the action of fractional
integral, while the numerical results showed that the fractal dimension decreased. At the same
time, their fractional differential became more rough, while the numerical results showed that
the fractal dimension increased. Thus for the reasonable definition of the fractional calculus,
we think there are the following basic conclusions.
Problem one Let f(x) be a continuous function and dim f be the fractal dimension of f(x)
on [a, b] (a < b). If fractional integral of f(x) of positive order ν as D−νf(x) exists on [a, b],

dimD−νf ≤ dim f.

If fractional differential of f(x) of positive order μ as Dμf(x) exists on [a, b],

dim f ≤ dimDμf.

Problem one given above reflects the consistency of the action mechanism between the
fractional calculus and classical calculus to a certain extent. That is, from the perspective
of the fractal dimension, a fractional integral function is smoother than the original function
and a fractional differential function is rougher than the original one. In fact, this conclusion
holds for the Riemann–Liouville fractional calculus which has been given in the following several
sections. On the basis of Refs. [75, 76], Zähle considered that the fractal dimension of continuous
functions may keep a linear relationship with the fractal dimension of their fractional calculus.
It has been written as follows.
Problem two Let f(x) be a continuous function and dim f be the fractal dimension of f(x)
on [a, b] (a < b). If fractional integral of f(x) of positive order ν as D−νf(x) exists on [a, b],

dimD−νf = 1

when dim f = 1. Furthermore, if f(x) is a regular fractal function,

dimD−νf = dim f − ν (ν ≤ dim f − 1)

when dim f > 1. Meanwhile if fractional differential of f(x) of positive order μ as Dμf(x)
exists on [a, b],

dimDμf = dim f + μ (μ ≤ 2 − dim f)

when dim f < 2.
Problem two shows that fractional integral of one-dimensional continuous functions must

still be one-dimensional continuous functions. Fractional integral of non one-dimensional con-
tinuous functions which are regular decreases linearly with respect to order, while fractional
differential of non two-dimensional continuous functions which are regular increases linearly
with respect to order if they exist.
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For problems given above, scholars mainly considered special continuous functions with real
expressions such as the Weierstrass function, the Besicovitch function and the linear fractal
interpolation functions before 2010. After 2010, people began to make research on the fractional
calculus of ordinary continuous functions without real expressions. Through the unremitting
efforts of many scholars, the conclusion of problems has been partially solved and important
research progress has been made. Therefore, progress of the work over the past two decades and
the problems still to be solved are summarized above for further study by scholars. Thus the
accurate relationship between fractional calculus and fractal functions could be established. It
is helpful to further explore the geometric interpretation and physical significance of this kind
of relationship.

1.2 Previous Work

For the problems raised in the last subsection, scholars have made a lot of efforts and made
rich progress in the past 30 years. Before 2000, many people had been trying to use fractional
calculus to study the local structure and the fractal dimension of special fractal functions and
curves. Works on the fractal dimension estimation for the fractional calculus of special fractal
curves and functions were probably first given by Tatom in 1995 [54]. The fractal dimension
of certain functions and curves is shown to be a linear function of order of fractional integro-
differentiation with the numerical simulation while he did not provide a proof of theory. In
the conclusion Tatom insisted that there appears to be a very interesting relationship between
fractional calculus and fractals.

Patzschke and Zähle [43] studied the fractional derivatives of self-affine functions in 1993. In
the following work, Zähle [76] described the Weyl–Marchaud fractional derivative of the Weier-
strass function and the Weierstrass–Mandelbrot function, and mainly gave numerical results in
1996. At the same time, in [75], he used the Riemann–Liouville fractional calculus to describe
fractal functions, curves and surfaces with actual background, and revealed certain relationship
between the fractal dimension of function images and fractional order of the Riemann–Liouville
fractional calculus by means of computer numerical fitting and software simulation in 1997.
Kolwankar and Gangal [17, 18] mainly discussed the local derivative of a class of continuous
functions represented by the Weierstrass function, and gave the upper and lower bounds of the
fractal dimension of the local derivative in 1997. These important research results indicate that
there is a certain connection between order of fractional calculus and the fractal dimension of
fractal functions and fractal curves. These numerical simulations give a preliminary result and
provide a theoretical basis for the corresponding mathematical proof.

From 2000 to 2010, scholars used different methods to accurately characterize the fractal
dimension of fractional calculus of some special fractal functions, and preliminarily revealed
the relationship between the fractal dimension of functions and their fractional calculus fractal
dimension. The earliest discussion may be seen from Sun’s 2002 work of Ref. [53] on the basic
estimation of the fractal dimension of a class of continuous functions fractional calculus. They
gave the corresponding example of the Weierstrass function fractional calculus. In 2004, Yao
proved that there is a linear relationship between the Box dimension of the Weierstrass function
and the Box dimension of its Riemann–Liouville fractional calculus in [74]. We [19, 20] had
discussed fractal dimension of fractional calculus of the Besicovitch function in 2008 elementary.
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In 2009, Ruan [48] gave the Box dimension and the Riemann–Liouville fractional integral of
the linear fractal interpolation functions.

From 2010, based on the investigation of special continuous functions, such as the Weier-
strass function and the linear fractal interpolation function, scholars began to further study the
fractal dimension of general continuous functions fractional calculus. In [21], we have proved
that the Riemann–Liouville fractional integral of a continuous function with bounded variation
on a closed interval is still a continuous function of bounded variation in 2010. Therefore, the
Riemann–Liouville fractional integral can maintain the invariance of the fractal dimension of the
bounded variation function. Results given in [22] show that the fractal dimension of fractional
integral of any continuous functions is no more than that of functions themselves uniformly
in 2018. Thus if fractional differential of any continuous functions exists, its fractal dimension
must be no less than that of functions themselves uniformly. Verma and Viswanathan [58]
studied the bounded variation function with the Katugampola fractional integral, and obtained
that the fractal dimension of the corresponding fractional integral is still one in 2018. At the
same time, a class of one-dimensional unbounded variation functions was constructed, and a
nontrivial upper bound of the Katugampola fractional integral was given. On this basis, they
[59] discussed the case of multivariate functions and obtained the result consistent with one-
dimensional functions in 2020. Other works about the fractal dimension estimation of fractional
calculus of functions can be found in Ref. [77]. In 2020, the Box dimension for the Weyl frac-
tional integral of the Hölder continuous functions had been estimated and certain relationship
had been got by Tian in [57]. In the same year, Wu had discussed the Riemann–Liouville
fractional integral of certain continuous functions in Refs. [65, 66]. We made research on the
fractal dimension of the Riemann–Liouville fractional integral of fractal functions elementary
in [30].

Many other attempts have been proposed in the last decade. Relevant researches were
carried out in discrete spaces by Su in [52], especially in the estimation of the fractal dimension
of functions fractional calculus in p-adic domain, and “fractal calculus” was constructed. Similar
discussion can also be found in Refs. [64, 65]. By using the ability of fractional calculus to
control the fractal dimension of fractal functions, Navascués applied it to the approximation
by the fractal interpolation functions and their fractional calculus [38, 39]. We have also done
a simple work on the fractal interpolation functions and their approximation by fractional
calculus. The relationship between the fractal dimension of the Von Koch curve and fractional
differential of its complex-valued expression had been investigated in [28]. Other works about
the fractal dimension estimation of fractal functions and their fractional calculus can be found
in Ref. [29].

2 Preliminary

As is known to all, fractional calculus can act on various objects, such as fractal curves or fractal
functions whether they are certain or uncertain. In the present paper, we mainly make research
on continuous functions defined on closed intervals whether they are of bounded variation or
not. Thus in the following first subsection, we will introduce certain continuous functions
which will be discussed below. Then, we give certain definitions of fractal dimension such
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as the Box dimension and the Hausdroff dimension. Definitions of the Riemann–Liouville
fractional calculus and the Weyl–Marchaud fractional derivative have also been shown in the
third subsection. Other definitions and notations which will be used have been given in the last
part of the present section.

2.1 Functions

Functions discussed in this paper are all continuous on closed intervals. We write all continuous
functions defined on the unit closed interval I = [0, 1] as the set

CI = {f(x) : f(x) is continuous on I, x ∈ I}.
If f(x) belongs to CI , it is either differentiable or not. We write C ′

I as the set of all differentiable
functions and C0,I as the set of all non differentiable functions. Thus

CI = C ′
I ∪ C0,I .

In the following discussion, we mainly investigate functions in C0,I by the fractional calcu-
lus. For convenience of discussion, let BCI mean all continuous functions on I with bounded
variation and UCI mean all continuous functions on I with unbounded variation. That is,

CI = BCI ∪ UCI .

It is obvious that
UCI ⊂ C0,I and C ′

I ⊂ BCI .

Here we give some examples of UCI .

Example 2.1 ([6, 34]) The Weierstrass function:
Let 0 < α < 1, λ > 4. The Weierstrass function is defined as

W (x) =
∞∑

j=1

λ−αj sin(λjx).

From definition of the Weierstrass function given in Example 2.1 above, one can get

W (x) ∈ UCI ⊂ C0,I .

In fact, W (x) is a differentiable nowhere on I and its fractal dimension is greater than its
topological dimension.

Example 2.2 ([2]) The Bush function:
Let b be a positive integer no less than 3. If x ∈ I, its b-adic fraction is

x = 0.x1x2x3 · · ·xn · · · =
∞∑

n=1

xn

bn
, xn ∈ {0, 1, 2, . . . , b− 1}.

Write the Bush function f(x) as

f(x) =
∞∑

n=1

μn(x)
λn

where λn ≥ 2 is a determined constant and μ1(x) = 1. Define μn (n > 1) as un−1 when
xn = xn−1 and μn = (1 − λ)μn−1 when xn �= xn−1. For suitably chosen λn, f(x) is continuous
but differentiable nowhere on I.
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Example 2.2 shows the Bush function could be a nowhere differentiable function. With
different parameters, the fractal dimension of the Bush function can be taken to certain value
larger than its topological dimension.

Example 2.3 ([32]) The linear fractal interpolation function:
Let N(∈ N) be no less than one and 0 = x0 < x1 < · · · < xN = 1 be real numbers. For

i ∈ D = {1, 2, . . . , N}, Li(x) is the linear map satisfying

Li(0) = xi−1, Li(1) = xi.

Let K = I × R and {yi}N
i=0 be a certain data set. A continuous map Fi : K → R is defined as

Fi(0, y0) = yi−1, Fi(1, yN ) = yi.

For α ∈ (0, 1), Fi satisfies

|Fi(x, t) − Fi(x, u)| ≤ α|t− u|, ∀x ∈ I, ∀t, u ∈ R.

Let functions ψi : K → K be defined as ψi(x, y) = (Li(x), Fi(x, y)). Then {K,ψi : i ∈ D} is an
iterated function system. It has a unique attractor

G =
N⋃

i=1

ψi(G).

Γ(G, I) can be looked as graph of certain continuous function g : I → R which satisfies g(xi) =
yi. It is called as the fractal interpolation function. Let |di| < 1 and qi be continuous with
Fi(x, y) = diy + qi(x). Then, a fractal interpolation function g(x) defined as above is called as
a linear fractal interpolation function.

From definition of a linear fractal interpolation function given above, it must belong to UCI .
Of course, it is differentiable nowhere on I.

For continuous functions with fractal structure on closed intervals and definition of fractal
functions, please refer to Ref. [23].

2.2 Fractal Dimension

In the present paper, continuous functions are typically characterized using the Box dimension
and the Hausdorff dimension defined below. The reason is that the Box dimension has the
largest value and the Hausdorff dimension has the smallest value generally.

Definition 2.4 ([6, 63]) Let F ( �= ∅) be any bounded subset of R
2 and Nδ(F ) be the smallest

number of sets of diameter at most δ which can cover F . The lower Box dimension and the
upper Box dimension of F respectively are defined as

dimB(F ) = lim
δ→0

logNδ(F )
− log δ

(2.1)

and
dimB(F ) = lim

δ→0

logNδ(F )
− log δ

. (2.2)

If (2.1) and (2.2) are equal we refer to the common value as the Box dimension of F

dimB(F ) = lim
δ→0

logNδ(F )
− log δ

. (2.3)
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Diameter of U is defined as

|U | = sup{|x− y| : x, y ∈ U},

i.e., the greatest distance apart of any pair of points in U . If {Ui} is a countable collection of
sets of diameter at most δ that cover F , i.e., F ⊂ ⋃∞

i=1 Ui with 0 < |Ui| ≤ δ for each i, we say
that {Ui} is a δ-cover of F . Suppose that F ⊂ R

n and s ≥ 0. For any δ > 0 define

Hs
δ (F ) = inf

{ ∞∑

i=1

|Ui|s : {Ui} is a δ-cover of F
}
.

Write

Hs(F ) = lim
δ→0

Hs
δ (F ).

Hs
δ (F ) is called as the s-dimensional Hausdorff measure of F . The Hausdorff dimension of F

is given as follows.

Definition 2.5 ([6]) Let F ⊂ R
n and s ≥ 0. The Hausdorff dimension of F is

dimH(F ) = inf{s : Hs(F ) = 0} = sup{s : Hs(F ) = ∞}.

For the Weierstrass function W (x), we know that its Box dimension is 2 − α by Example
11.3 of [6] and its Hausdorff dimension is 2 − α too by [50]. The lower Box dimension of the
Bush function is bigger than one and the upper Box dimension of the Bush function is less than
two. In other words, its Hausdorff dimension is between one and its lower Box dimension. All
univariate real valued continuous functions have topological dimension one and exist in two-
dimensional plane. Therefore, the minimum fractal dimension is one and the maximum is two.
x and sinx have the Box and Hausdroff dimension one while functions constructed in [69, 70]
have the Box and Hausdroff dimension two.

In addition to these two fractal dimensions given above, people also use the Packing dimen-
sion [6] and the K-dimension [10, 11] in specific research.

2.3 Fractional Calculus

The Riemann–Liouville fractional calculus is the most widely used fractional calculus in both
practical and theoretical calculations, especially in terms of the fractional calculus equations.

Definition 2.6 ([35, 47]) Let f(x) ∈ CI , ν > 0. Let D−νf(0) = 0, and for x ∈ (0, 1], we call

D−νf(x) =
1

Γ(ν)

∫ x

0

(x− t)ν−1f(t)dt

the Riemann–Liouville fractional integral of f(x) of order ν. For μ > 0, let Dμf(0) = 0. For
x ∈ (0, 1], we call

Dμf(x) = D(Dμ−1f(x)) =
1

Γ(1 − μ)
d

dx

∫ x

0

(x− t)−μf(t)dt

the Riemann–Liouville fractional differential of f(x) of order μ when it exists.

Its physical and geometric significance can be seen in Refs. [44, 45]. Definitions of the Weyl–
Marchaud fractional derivative and the Weyl fractional integral have been given as follows.
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Definition 2.7 ([35, 42]) Let f(x) be a continuous function defined on R and 0 < μ < 1.
Write

Dμf(x) =
μ

Γ(1 − μ)

∫ ∞

0

f(x) − f(x− t)
t1+μ

dt

as the Weyl–Marchaud fractional derivative of f(x) of order μ when it exists.

Definition 2.8 ([42]) Let f(x) be a continuous function defined on R and 0 < ν < 1. Then if

Wνf(x) = Γ(ν)W νf(x) =
∫ ∞

x

(t− x)ν−1f(t)dt

is well defined, it is called as the Weyl fractional integral of f(x) of order ν.

Other definitions of fractional integral and differential can be found in Refs. [14, 16, 49, 55].

2.4 Other Notations

In addition to the fact that the fractal dimension can explain some structural characteristics
of continuous functions, we sometimes need variation to describe functions. Definition of total
variation of continuous functions on closed intervals is given as follows.

Definition 2.9 ([80]) Let f(x) ∈ CI and {xi}n
i=0 be arbitrary points which satisfy

0 = x0 < x1 < x2 < · · · < xn = 1.

Write

Vf (x0, x1, . . . , xn) =
n∑

k=1

|f(xk) − f(xk−1)|.

It is called as variation of f(x) about {xi}n
i=0 on I. Let

V 1
0 f = sup {Vf (x0, x1, . . . , xn) : 0 = x0 < x1 < x2 < · · · < xn = 1} .

V 1
0 f is called as total variation of f(x) on I. If V 1

0 f < +∞, we say f(x) is of bounded variation
on I. If V 1

0 f = +∞, we say f(x) is of unbounded variation on I.

The Weierstrass function, the Bush function and the linear fractal interpolation functions
given in Subsection 2.2 are all of unbounded variation on I. It is obvious that functions such
as x and sinx are all of bounded variation on I.

For a point on the closed interval of a continuous function, the following definition is given
to determine the local structure near the point which are called as bounded variation points
and unbounded variation points of the functions.

Definition 2.10 Let f(x) ∈ C[a,b] and s ∈ [a, b].
(1) If s = a and there exists a closed subinterval J = [a, a′] (a < a′ ≤ b) of [a, b] such that

variation of f(x) on J being of bounded variation, we say s = a is a bounded variation point of
f(x), or we say s = a is an unbounded variation point of f(x).

(2) If s = b and there exists a closed subinterval J = [b′, b] (a ≤ b′ < b) of [a, b] such that
variation of f(x) on J being of bounded variation, we say s = b is a bounded variation point of
f(x), or we say s = b is an unbounded variation point of f(x).

(3) If a < s < b and there exists a closed subinterval J = [a′, b′] (a ≤ a′ < s < b′ ≤ b)
of [a, b] such that variation of f(x) on J being of bounded variation, we say s is a bounded
variation point of f(x), or we say s is an unbounded variation point of f(x).
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Points of the Weierstrass function, the Bush function and the linear fractal interpolation
functions are all of unbounded variation. It is obvious that all points of functions, such as x,
sinx, are of bounded variation.

Let Γ(f, I) be graph of f(x) on I as

Γ(f, I) = {(x, f(x)), x ∈ I}.
Thus the lower Box dimension, the upper Box dimension, the Box dimension and the Hausdorff
dimension of graph of f(x) on I can be written as

dimBΓ(f, I), dimBΓ(f, I), dimB Γ(f, I) and dimH Γ(f, I),

respectively. Write Rf for the maximum range of f(x) over [a, b] as

Rf [a, b] = sup
a≤x<y≤b

|f(x) − f(y)|.

3 Works about the Riemann–Liouville Fractional Calculus

The Riemann–Liouville fractional calculus is the most common one among the numerous frac-
tional calculus used to study general continuous functions and fractal functions. Therefore,
here we first discuss the relationship between the fractal dimension of continuous functions and
the fractal dimension of their Riemann–Liouville fractional calculus, that is, the mechanism of
the Riemann–Liouville fractional calculus on the local structure of functions which have been
discussed. Check whether it is consistent with the problems mentioned above.

3.1 Special Functions and Curves

Works about the fractal dimension estimation of the Riemann–Liouville fractional calculus
of fractal functions and fractal curves is the earliest available in Refs. [17, 54]. Tatom made
research on the relationship between the Riemann–Liouville fractional calculus and fractals such
as the Von Koch curve by numerical results and computer simulation in 1995 [54]. Kolwankar
discussed the connection between critical order of the Riemann–Liouville fractional differential
and the Box dimension of certain fractal curve such as graph of the Weierstrass function in
1996 [17]. These work laid the foundation for the later theoretical proof.

In 2002, Sun and Su investigated the relationship between order of the Riemann–Liouville
fractional integral and the fractal dimension of certain continuous functions [53]. A numerical
result about the Weierstrass function had been given basically. Subsequently, Yao gave the linear
connection between order of the Riemann–Liouville fractional calculus and the Box dimension
of the Weierstrass function [74] as follows in 2004.

Theorem 3.1 ([74]) Let W (x) be given as Example 2.1 and 0 < μ < α, 0 < ν < 1 − α. It
holds

dimB Γ(D−νW, I) = dimB Γ(W, I) − ν

and

dimB Γ(DμW, I) = dimB Γ(W, I) + μ.

The discussion of the above theorem shows that the fractal dimension of the Riemann–
Liouville fractional calculus of the Weierstrass function changes linearly compared with that of
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the Weierstrass function itself. This proves Zähle’s conjecture about the fractal dimension of
fractional calculus of fractal functions and curves changes linearly [76] to certain extent.

Discussion about the relationship between the fractal dimension of the Besicovitch function
and order of the Riemann–Liouville fractional calculus can be found in Ref. [19]. Here we give
certain part of the theorem.

Theorem 3.2 ([19]) Let B(x) be defined as

B(x) =
∞∑

j=1

λ−α
j sin (λjx), 0 < α < 1, λj ↗ ∞.

Whether the Box dimension of B(x) exists or not, one can lead the following conclusions

dimBΓ(D−νB, I) = dimBΓ(B, I) − ν, dimBΓ(DμB, I) = dimBΓ(B, I) + μ

for 0 < ν < 1 − α and 0 < μ < α.

Theorem 3.2 tells us that the upper Box dimension of the Riemann–Liouville fractional
calculus of the Besicovitch function is linear with order. We also give corresponding conclusion
about linear fractal interpolation functions.

Theorem 3.3 ([32, 48]) Let g(x) be given as Example 2.3 and 0 < μ < α, 0 < ν < 1−α. For

dimB Γ(g, I) = s (1 < s < 2),

it holds
dimB Γ(D−νg, I) = dimB Γ(g, I) − ν

and
dimB Γ(Dμg, I) = dimB Γ(g, I) + μ.

Theorem 3.3 means the linear relationship between order of the Riemann–Liouville fractional
calculus and the Box dimension of linear fractal interpolation functions. Ref. [28] majored on
estimation of the fractal dimension of the Riemann–Liouville fractional calculus of the Von
koch curve elementary. The related research on the connection between order of the Riemann–
Liouville fractional calculus and the fractal dimension of Weierstrass-type function can be seen
in Refs. [28, 62].

We find that for some special fractal functions, fractal dimension of functions themselves
has a corresponding linear relationship with the fractal dimension of their fractional calculus,
which is consistent with part of Problem two. Investigation about the fractal dimension of the
Riemann–Liouville fractional calculus of other fractal functions, such as the Bush function and
the Takagi function, could be further made.

3.2 One-dimensional Continuous Functions

Before considering general continuous functions, we first discuss a class of simple continuous
functions, that is, continuous functions with the Box dimension one. In order to be consistent
with Problem one and two, a basic expected conclusion is that the Riemann–Liouville fractional
integral of any order of one-dimensional continuous functions still has Box dimension one. If
their Riemann–Liouville fractional derivative exists, the corresponding upper Box dimension
increases linearly at most.



548 Liang Y. S. and Su W. Y.

For a continuous function with Box dimension one, it is generally considered to be bounded.
Even if there is no bounded variation, the fractal dimension estimation of the Riemann–Liouville
fractional calculus should be very simple. But that’s not the case, and as the research continues,
more interesting results emerge. For example, it is widely believed that the fractal dimension of
the Riemann–Liouville fractional integral of a continuous function of bounded variation must
still be one. But this seemingly simple result was not proved to be true until 2010 in [21].

Theorem 3.4 ([21]) If f(x) ∈ BCI ,

dimH Γ(D−νf, I) = dimB Γ(D−νf, I) = 1

for any positive order ν and D−νf(x) ∈ BCI .

As we all know, the Box dimension of a continuous function with bounded variation must be
one, but a continuous function having the Box dimension one may not be of bounded variation.
In Ref. [77], Zhang constructed a continuous function with only one unbounded variable point,
and proved that the Box dimension of any order of the Riemann–Liouville fractional integral of
this function is still one. In fact, there exist one-dimensional continuous functions with infinite
but countable unbounded variation points [61] and one-dimensional continuous functions with
uncountable but zero measure unbounded variation points [31]. To our surprise, there even
exist one-dimensional full measure functions which have no bounded variation points [24].

It has been proved that the Box dimension of Riemann–Liouville fractional integral is still
one-dimensional for all kinds of one-dimensional continuous functions with different local struc-
tures. In 2018, we reached a consensus on the calculation of fractal dimension of the Riemann–
Liouville fractional integral of any one-dimensional continuous functions which is in accordance
with first part of Problem two as follows.

Theorem 3.5 ([22]) Let f(x) ∈ CI and

dimB Γ(f, I) = 1.

Then
dimH Γ(D−νf, I) = dimB Γ(D−νf, I) = 1

for any positive order ν.

Theorem 3.5 finally solved the problem that the Box dimension of any order of the Riemann–
Liouville fractional integral of a one-dimensional continuous function is still one. But the work is
far from over, and new problems are emerging. For example, whether variation of the Riemann–
Liouville fractional integral of a one-dimensional continuous function is finite or not. Under
what condition they are differentiable. Here we give an example of the Riemann–Liouville
fractional calculus of the Lipschitz continuous functions.

Theorem 3.6 Let f(x) be a Lipschitz continuous function on I and f(0) = 0, 0 < ν < 1.
Then D−νf(x) ∈ C ′

I and

dimBΓ
(
d

dx
D−νf, I

)
≤ 2 − ν.

Dμf(x) must exist on I for 0 < μ < 1 and

dimBΓ(Dμf, I) ≤ 1 + μ.
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Proof Let 0 ≤ x < x+ 2h ≤ 1. Since f(x) is a Lipschitz continuous function on I,

|f(x+ h) − f(x)| ≤Mh

for certain positive number M unanimously. By 0 < ν < 1,

|D−νf(x+ 2h) − 2D−νf(x+ h) +D−νf(x)|

=
1

Γ(ν)

∣∣∣∣
∫ x+2h

0

(x+ 2h− t)ν−1f(t)dt− 2
∫ x+h

0

(x+ h− t)ν−1f(t)dt+
∫ x

0

(x− t)ν−1f(t)dt
∣∣∣∣

=
1

Γ(ν)

∣∣∣∣
∫ x+h

h

(x+ 2h− t)ν−1f(t)dt−
∫ x

0

(x+ h− t)ν−1f(t)dt−
∫ x+h

h

(x+ h− t)ν−1f(t)dt

+
∫ x

0

(x− t)ν−1f(t)dt+
∫ h

0

(x+ 2h− t)ν−1f(t)dt+
∫ x+2h

x+h

(x+ 2h− t)ν−1f(t)dt

−
∫ h

0

(x+ h− t)ν−1f(t)dt−
∫ x+h

x

(x+ h− t)ν−1f(t)dt
∣∣∣∣.

Through variable translation,

|D−νf(x+ 2h) − 2D−νf(x+ h) +D−νf(x)|

=
1

Γ(ν)

∣∣∣∣
∫ x

0

(x+ h− t)ν−1f(t+ h)dt−
∫ x

0

(x+ h− t)ν−1f(t)dt−
∫ x

0

(x− t)ν−1f(t+ h)dt

+
∫ x

0

(x− t)ν−1f(t)dt+
∫ h

0

(x+ 2h− t)ν−1f(t)dt+
∫ x+h

x

(x+ h− t)ν−1f(t+ h)dt

−
∫ h

0

(x+ h− t)ν−1f(t)dt−
∫ x+h

x

(x+ h− t)ν−1f(t)dt
∣∣∣∣

=
1

Γ(ν)

∣∣∣∣
∫ x

0

[(x+ h− t)ν−1 − (x− t)ν−1][f(t+ h) − f(t)]dt

+
∫ h

0

[(x+ 2h− t)ν−1 − (x+ h− t)ν−1]f(t)dt

+
∫ x+h

x

(x+ h− t)ν−1[f(t+ h) − f(t)]dt
∣∣∣∣.

Thus,
∣∣∣∣
∫ x

0

[(x+ h− t)ν−1 − (x− t)ν−1][f(t+ h) − f(t)]dt
∣∣∣∣

≤
∫ x

0

|(x+ h− t)ν−1 − (x− t)ν−1| · |f(t+ h) − f(t)|dt

≤Mh

∫ x

0

[(x+ h− t)ν−1 − (x− t)ν−1]dt

≤ M

ν
h · hν

and
∣∣∣∣
∫ x+h

x

(x+ h− t)ν−1[f(t+ h) − f(t)]dt
∣∣∣∣

≤Mh

∫ x+h

x

(x+ h− t)ν−1dt
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≤ M

ν
h · hν .

Since f(0) = 0, it holds
∣∣∣∣
∫ h

0

[(x+ 2h− t)ν−1 − (x+ h− t)ν−1]f(t)dt
∣∣∣∣

≤
∫ h

0

|(x+ 2h− t)ν−1 − (x+ h− t)ν−1| · |f(t) − f(0)|dt

≤Mh

∫ x

0

[(x+ h− t)ν−1 − (x+ 2h− t)ν−1]dt

≤ M

ν
h · hν .

So one can get

|D−νf(x+ 2h) − 2D−νf(x+ h) +D−νf(x)|

≤ 1
Γ(ν)

(
M

ν
h · hν +

M

ν
h · hν +

M

ν
h · hν

)

≤ 3M
Γ(ν + 1)

hν+1.

By Propositions 8 and 9 of [51], D−νf(x) is a differentiable function on I while
∣∣∣∣
d

dx
D−νf(x+ h) − d

dx
D−νf(x)

∣∣∣∣ ≤ Nhν

for certain positive number N unanimously. This means d
dxD

−νf(x) satisfies the Hölder con-
dition of order ν. Since 0 < ν < 1, using Corollary 11.2 (a) of [6],

dimBΓ
(
d

dx
D−νf(x), I

)
≤ 2 − ν.

For 0 < μ < 1, by [42]

Dμf(x) = D[Dμ−1f(x)]

=
d

dx
{Dμ−1f(x)}

=
d

dx
{D−(1−μ)f(x)}.

Let 1 − μ = ν′. Then,
D−(1−μ)f(x) = D−ν′

f(x)

while 0 < ν′ < 1. Since f(x) is a Lipschitz continuous function on I, D−ν′
f(x) is a differentiable

function which means
d

dx
{D−(1−μ)f(x)}

exists on I. Furthermore,

dimBΓ(Dμf, I) = dimBΓ
(
d

dx
{D−(1−μ)f(x)}, I

)

= dimBΓ
(
d

dx
{D−ν′

f(x)}, I
)

≤ 2 − ν = 1 + μ. �
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Theorem 3.6 means that derivative of the Riemann–Liouville fractional integral of certain
order ν of a Lipschitz continuous function exists, and the upper Box dimension of its differential
does not exceed 2 − ν when 0 < ν < 1. Meanwhile the upper Box dimension of the Riemann–
Liouville fractional differntial of order μ does not exceed 1 + μ when 0 < μ < 1. This is in
consistent with part of Problems one and two.

The Riemann–Liouville fractional differential of a differentiable function on I has been given
in the following example.

Example 3.7 If f(x) ∈ C ′
I , D

μf(x) exists on (0, 1] for μ ∈ (0, 1). Furthermore, if f(0) = 0,
Dμf(x) exists on I.

The latest progress in fractal dimension estimation and other related work of the Riemann–
Liouville fractional calculus for one-dimensional continuous functions can be seen in Refs. [24,
26]. At the end of this subsection, we present certain open problems about one-dimensional
continuous functions and their Riemann–Liouville fractional calculus to be solved for further
study.

Remark 3.8 Let f(x) ∈ CI and dimB Γ(f, I) = 1. Problem one: Under what conditions, the
Riemann–Liouville fractional integral of f(x) is of bounded variation on I?

Problem two: Under what conditions, the Riemann–Liouville fractional integral of f(x) is
differentiable on I? (This means the Riemann–Liouville fractional derivative of f(x) exists on
I.)

Problem three: Under what conditions, fractal dimension of the Riemann–Liouville fractional
differential of f(x) increases linearly?

3.3 The Hölder Continuous Functions

With the development of fractal dimension estimation and other research work of one-
dimensional continuous functions Riemann–Liouville fractional calculus, scholars have grad-
ually begun to explore the change law of fractal dimension of general non expression continuous
functions Riemann–Liouville fractional calculus and other related problems. By simply calcu-
lation, the upper Box dimension of the Riemann–Liouville fractional integral of f(x) ∈ CI of
order ν (0 < ν < 1) is no more than 2− ν. While in Ref. [27], by using the method of auxiliary
function and the basis of previous studies, the following results are obtained for the Hölder
continuous functions in 2016.

Theorem 3.9 ([27]) Let f(x) ∈ CI and

|f(x) − f(y)| ≤M |x− y|α (x, y ∈ I, 0 < α < 1)

for certain positive M unanimously. Then

dimBΓ(D−νf, I) ≤ 2 − ν

1 − α

for 0 < ν < 1 − α.

Results given in Theorem 3.9 show that the upper Box dimension of graph of D−νf(x) is no
more than 2 − ν

1−α which is strictly less than 2 − ν when f(x) is a Hölder continuous function
on I.
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Theorem 3.10 Let f(x) ∈ CI satisfy the Hölder condition of order α ∈ (0, 1) and f(0) = 0.
Then dimBΓ(D−νf, I) for order ν ∈ (0, 1 − α) is no more than 2 − α− ν and dimBΓ(Dμf, I)
for order μ ∈ (0, α) is no more than 2 − α+ μ.

Proof We consider the Riemann–Liouville fractional differential of f(x) first. Because f(x) ∈
CI satisfies the Hölder condition of order α ∈ (0, 1),

|f(x) − f(y)| ≤M |x− y|α

for a positive constant M unanimously for arbitrary x, y ∈ I. From [42], if the Riemann–
Liouville fractional derivative of f(x) of order μ ∈ (0, α) exists,

Dμf(x) = D[Dμ−1f(x)] =
d

dx
{Dμ−1f(x)} =

d

dx
{D−(1−μ)f(x)}.

Because 0 < 1 − μ < 1, D−(1−μ)f(x) can also be written as

D−(1−μ)f(x) = D−(α−μ)[D−(1−α)f(x)].

Let 0 ≤ x < x+ 2h ≤ 1. We have

|D−(1−α)f(x+ 2h) − 2D−(1−α)f(x+ h) +D−(1−α)f(x)|

=
1

Γ(1 − α)

∣∣∣∣
∫ x+h

h

f(t)dt
(x+ 2h− t)α

−
∫ x

0

f(t)dt
(x+ h− t)α

−
∫ x+h

h

f(t)dt
(x+ h− t)α

+
∫ x

0

f(t)dt
(x− t)α

+
∫ h

0

f(t)dt
(x+ 2h− t)α

+
∫ x+2h

x+h

f(t)dt
(x+ 2h− t)α

−
∫ h

0

f(t)dt
(x+ h− t)α

−
∫ x+h

x

f(t)dt
(x+ h− t)α

∣∣∣∣ =: I.

Through variable substitution,

I =
1

Γ(1 − α)

∣∣∣∣

( ∫ x

0

f(t+ h)dt
(x+ h− t)α

−
∫ x

0

f(t)dt
(x+ h− t)α

−
∫ x

0

f(t+ h)dt
(x− t)α

+
∫ x

0

f(t)dt
(x− t)α

)

+
( ∫ h

0

f(t)dt
(x+ 2h− t)α

−
∫ h

0

f(t)dt
(x+ h− t)α

)
+

(∫ x+h

x

f(t+ h)dt
(x+ h− t)α

−
∫ x+h

x

f(t)dt
(x+ h− t)α

)∣∣∣∣

≤ 1
Γ(1 − α))

∣∣∣∣
∫ x

0

[(x+ h− t)−α − (x− t)−α][f(t+ h) − a(t)]dt
∣∣∣∣

+
1

Γ(1 − α)

∣∣∣∣
∫ x+h

x

[f(t+ h) − f(t)]dt
(x+ h− t)α

∣∣∣∣

+
1

Γ(1 − α)

∣∣∣∣
∫ h

0

1
(x+ 2h− t)α

− 1
(x+ h− t)α

∣∣∣∣f(t)dt.

Thus,
∣∣∣∣
∫ x

0

[(x+ h− t)−α − (x− t)−α][f(t+ h) − f(t)]dt
∣∣∣∣

≤Mhα

∫ x

0

|(x+ h− t)−α − (x− t)−α|dt

≤ Mh

1 − α
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and ∣∣∣∣
∫ x+h

x

[f(t+ h) − f(t)]dt
(x+ h− t)α

∣∣∣∣ ≤Mhα

∫ x+h

x

(x+ h− t)−αdt ≤ Mh

1 − α
.

Meanwhile for h(0) = 0,
∣∣∣∣
∫ h

0

[(x+ 2h− t)−α − (x+ h− t)−α]f(t)dt
∣∣∣∣

=
∣∣∣∣
∫ h

0

[(x+ 2h− t)−α − (x+ h− t)−α][f(t) − f(0)]dt
∣∣∣∣

≤Mhα

∫ h

0

|(x+ 2h− t)−α − (x+ h− t)−α|dt

≤ Mh

1 − α
.

Thus

I ≤ 1
Γ(1 − α)

(
Mh

1 − α
+

Mh

1 − α
+

Mh

1 − α

)
=

3Mh

Γ(2 − α)
,

which means

|D−(1−α)f(x+ 2h) − 2D−(1−α)f(x+ h) +D−(1−α)f(x)| ≤ 3Mh

Γ(2 − α)
.

From Proposition 8 of [51],

|D−(1−α)f(x+ h) −D−(1−α)f(x)| ≤M ′ · h,
which shows

|D−(1−α)f(x) −D−(1−α)f(y)| ≤M ′|x− y| (∀x, y ∈ I)

holds for M ′ = 3M
Γ(2−α) . Thus D−(1−α)f(x) is a Lipschitz continuous function.

Write g(x) = D−(1−α)f(x). Then, D−(1−μ)f(x) = D−(α−μ)g(x). From Theorem 3.5,
D−(1−μ)a(x) is a differentiable function. Furthermore, derivative of D−(1−μ)f(x) is a Hölder
continuous function of order α− μ. This means for any 0 ≤ x < x+ h ≤ 1,

∣∣∣∣
d

dx
D−(1−μ)f(x+ h) − d

dx
D−(1−μ)f(x)

∣∣∣∣ ≤ Nlα−μ,

while N is a positive constant. By 11.2 (a) of [6],

dimBΓ(Dμf, I) = dimBΓ
(
d

dx
D−(1−μ)f, I

)
≤ 2 − α+ μ. �

Corollary 3.11 Let f(x) ∈ CI satisfy the Hölder condition of order α ∈ (0, 1) and f(0) = 0.
Then dimB Γ(Dα−1f, I) exists and equals to one.

Proof Since f(x) ∈ CI and f(x) satisfies the Hölder condition of order α ∈ (0, 1) on I, by
Theorem 3.10 the upper Box dimension of the Riemann–Liouville fractional integral of f(x) of
order 1 − α is no more than 2 − α− (1 − α) = 1 as

dimBΓ(Dα−1f, I) ≤ 1.

By Definition 2.4,
dimBΓ(Dα−1f, I) ≥ 1.
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Thus

dimB Γ(Dα−1f, I) = 1. �

From Corollary 3.11, if a continuous function on I satisfies the Hölder condition of order
α ∈ (0, 1) having the Box dimension 2 − α, its Riemann–Liouville fractional integral decreases
linearly with order 1 − α.

Corollary 3.12 Let f(x) ∈ CI satisfy the Hölder condition of order α ∈ (0, 1) and f(0) = 0.
Then the Box dimension of the Riemann–Liouville fractional integral of f(x) of order ν ≥ 1−α
exists and equals to one.

Proof From Theorem 3.5 and Corollary 3.11, we can immediately get the conclusion of the
present corollary.

Other works about the fractal dimension estimation of the Riemann–Liouville fractional
calculus of the Hölder continuous functions can be found in Refs. [30, 65, 66]. The fractal
dimension of the Riemann–Liouville fractional integral of a bivariate continuous function of
bounded variation in the sense of Arzelá has been investigated in [59]. �

Remark 3.13 Let f(x) ∈ CI satisfy the Hölder and the count Hölder condition with the
same order α ∈ (0, 1) and f(0) = 0.

Problem one: Is the lower Box dimension of the Riemann–Liouville fractional integral of f(x)
of order ν ∈ (0, 1−α) no less than 2−α− ν? (This means the Box dimension of the Riemann–
Liouville fractional integral of f(x) of order ν ∈ (0, 1 − α) is 2 − α− ν.)

Problem two: Is the lower Box dimension of the Riemann–Liouville fractional derivative of f(x)
of order μ ∈ (0, α) no less than 2 − α + μ? (This means the Box dimension of the Riemann–
Liouville fractional derivative of f(x) of order μ ∈ (0, α) is 2 − α+ μ.)

If conclusions of Remark 3.13 hold, the linear relationship between the Box dimension of
continuous functions satisfying the Hölder and certain order of the Riemann–Liouville fractional
calculus could be set up. A similar conclusion about the count Hölder condition can also be
proved. This is consistent with the conclusion of Problem two.

3.4 Ordinary Continuous Functions

Now we make research on the estimation of fractal dimension of the Riemann–Liouville frac-
tional calculus for any continuous functions defined on I. Using definition of the upper Box
dimension given in Definition 2.4, we get the following conclusion by simple calculation.

Theorem 3.14 Let f(x) ∈ CI and ν > 0.

(1) If 0 < ν < 1,

1 ≤ dimH Γ(f, I) ≤ dimBΓ(f, I) ≤ 2 − ν < 2.

(2) If ν ≥ 1,

1 = dimH Γ(f, I) = dimB Γ(f, I) = 1.

In Ref. [22], by using definition of the upper Box dimension, one can get the following
results.
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Theorem 3.15 ([22]) Let f(x) ∈ CI and ν > 0.

dimBΓ(D−νf, I) ≤ dimBΓ(f, I).

If Dμf(x) exists for certain positive μ,

dimBΓ(Dμf, I) ≥ dimBΓ(f, I).

Theorem 3.15 settles the conclusion of Problem one about the Riemann–Liouville fractional
calculus, but it is still far from the conclusion of Problem two.

Remark 3.16 Let f(x) ∈ CI and

dimB Γ(f, I) = s (1 < s < 2).

Problem one: Is dimBΓ(D−νf, I) for order ν ∈ (0, s− 1) no more than s− ν?
Problem two: Is dimBΓ(D−νf, I) for order ν ∈ (0, s − 1) no less than 2 − ν? (This means
dimB Γ(D−νf, I) for order ν ∈ (0, s− 1) is s− ν which is the conclusion of Problem two.)
Problem three: Is dimBΓ(D−μf, I) for order μ ∈ (0, 2− s) no more than s+μ if it exists on I?
Problem four: Is dimBΓ(D−μf, I) for order μ ∈ (0, 2 − s) no less than s + μ if it exists on I?
(This means dimB Γ(D−νf, I) for order μ ∈ (0, 2 − s) is s+ μ when it exists on I which is the
conclusion of Problem two.)

At present we are exploring the proposition that fractal dimension of the Riemann–Liouville
fractional integral of any continuous functions is at least linearly decreasing and we have made
some preliminary progress.

3.5 Two-dimensional Continuous Functions

By [69, 70], we know there exist two-dimensional continuous functions on closed intervals. By
simply calculation, one can get the following conclusion.

Theorem 3.17 Let f(x) ∈ CI and

dimB Γ(f, I) = 2.

Then for 0 < ν < 1, it holds

dimH Γ(D−νf, I) ≤ dimBΓ(D−νf, I) ≤ 2 − ν.

Theorem 3.17 means that the upper Box dimension of the Riemann–Liouville fractional
integral of two-dimensional continuous functions of certain positive order decreases at least
linearly corresponding to that of the original functions.

Cui [5] investigated fractal dimension of the Riemann–Liouville fractional integral of a two-
dimensional continuous function. She got the linear connection between the Box dimension
of this two-dimensional continuous function and the Box dimension of its Riemann–Liouville
fractional integral under certain condition.

3.6 Other Works

Verma had investigated the fractal dimension estimation of the bivariate Riemann–Liouville
fractional integral of certain bivariate continuous functions with bounded variation elementary
in [59]. Relevant researches were carried out in discrete spaces by Su in [52], especially in the
estimation of fractal dimension of discrete functions Riemann–Liouville fractional calculus in
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p-adic domain, and “fractal calculus” was constructed. In [3], Butera discussed the relationship
between a class of fractal curves and fractional calculus, and gave numerical results. Nigmatullin
believed in that the study of the accurate relationship between fractal and fractional integral
had become a “hot” point in the theoretical work of fractional calculus at present, and the
in-depth discussion of this problem was of great significance to reveal the solutions of fractional
calculus equations describing physical phenomena.

4 Works about the Weyl–Marchaud Fractional Derivative

Here we discuss the fractal dimension of the Weyl–Marchaud fractional derivative which is given
by Weyl and Marchaud [7] of certain continuous functions. More details about definition and
applications of the Weyl–Marchaud fractional derivative can be found in Ref. [47].

Zähle’s work on the calculation of the fractal dimension of the Weyl–Marchaud fractional
derivative of continuous functions such as the Weierstrass function may be the earliest discussion
[76]. He gave certain numerical computation about fractal dimension of the Weyl–Marchaud
fractional derivative of the Weierstrass and Weierstrass–Mandelbrot functions elementary in
1996. Yao first studied the Box dimension of the Weyl–Marchaud fractional derivative of the
Weierstrass function in 2008 [72]. In 2012, the relationship between the Box dimension of
certain self-affine functions such as the Besicovitch function and order of the Weyl–Marchaud
fractional derivative has been investigated by theoretical proof in [78]. The linear connection
between the fractal dimension of certain fractal functions and order of the Weyl–Marchaud
fractional derivative has been set up. As an example, we give the following theorem that there
is a linear relationship between the Box dimension of self-affine functions and order of the
Weyl–Marchaud fractional derivative.

Theorem 4.1 ([78]) Let M(x) be a self-affine function given as Example 11.4 in [6] with the
Box dimension s (1 < s < 2). If 0 < μ < 2 − s, it holds

dimB Γ(DμM, I) = dimB Γ(M, I) + μ = s+ μ.

Discussion about the fractal dimension estimation of the Weyl–Marchaud fractional deriva-
tive of special fractal functions, such as the Weierstrass-type function and the linear fractal
interpolation functions with real expression can be found in Refs. [72]. Other works about
fractal curves such as self-affine functions can be found in Refs. [36, 73].

Because the Weyl–Marchaud fractional derivative is global, it is more difficult to estimate
the fractal dimension of the corresponding functions derivative than the Riemann–Liouville
fractional calculus. But for certain Lipschitz continuous functions, we still have the following
conclusion that the corresponding fractal dimension increases linearly at most in accordance
with that of Problem two.

Theorem 4.2 ([25]) If a continuous function f(x) defined on R satisfies the Lipschitz condi-
tion, for 0 < μ < 1,

1 ≤ dimBΓ(Dμf, I) ≤ dimBΓ(Dμf, I) ≤ 1 + μ.

Conclusions of Theorem 4.2 mean the Weyl–Marchaud fractional derivative of a Lipschitz
continuous function exists and its fractal dimension increases at most linearly with order. Based
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on the discussion of Theorem 4.2, one can lead the following conclusion about the Hölder
continuous functions.

Theorem 4.3 ([27, 71]) Let a continuous function f(x) satisfy the Hölder condition of order
α on R. If 0 < μ < α,

dimBΓ(Dμf, I) ≤ 2 − α+ μ.

Theorem 4.3 shows that the fractal dimension of the Weyl–Marchaud fractional derivative
of continuous functions satisfying the Hölder condition increases at most linearly with order
too. So it is natural to ask whether the fractal dimension is no less than the corresponding
fractal dimension if continuous functions satisfy the count Hölder condition with the same
order. Thus, we give a remark about the fractal dimension estimation of the Weyl–Marchaud
fractional derivative of certain continuous functions as follows.

Remark 4.4 Let f(x) be a continuous function on R.
Problem one: If f(x) satisfies the Hölder and the count Hölder condition with the same order
α ∈ (0, 1), is the lower Box dimension of the Weyl–Marchaud fractional derivative of f(x) of
order μ ∈ (0, α) no less than 2−α+μ? (This means the Box dimension of the Weyl–Marchaud
fractional derivative of f(x) of order μ ∈ (0, α) is 2− α+ μ which means the fractal dimension
of the corresponding functions increases linearly about the order.)

Problem two: Is the lower Box dimension of the Weyl–Marchaud fractional derivative of f(x)
of order μ ∈ (0, 2 − s) no less than s+ μ?

5 Works about Other Fractional Calculus

In the last two sections, the relationship between order of the Riemann–Liouville fractional
calculus and the Weyl–Marchaud fractional derivative and the fractal dimension of continuous
functions has been discussed. Here we deal with the connection between other fractional calculus
and the fractal dimension of continuous functions elementary.

5.1 Works about the Weyl Fractional Integral

The Weyl fractional integral [47] is close to the Riemann–Liouville fractional integral. However,
because of the infinity of the integral limit, there is a big difficulty in describing the fractal
dimension of functions with Weyl fractional integral.

For the special fractal functions, such as the Weierstrass function and the Besicovitch func-
tion, people have seldom explored the fractal dimension variation law of their fractional calculus.
Similar argument with that of [72], one can lead the following conclusion elementary.

Theorem 5.1 Let f(x) be the Weierstrass function which is given as Example 2.1 and 0 <
ν < 1 − α. Thus

dimB Γ(W νf, I) = dimB Γ(f, I) − ν.

Fractal dimension of the Weyl fractional integral of the Besicovitch function and the linear
fractal interpolation functions can also be investigated similarly.

If a continuous function has bounded variation on a closed interval, we can establish the
following basic result.
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Theorem 5.2 If f(x) is continuous and of bounded variation on [0,+∞),

dimB Γ(W νf, I) = dimB Γ(f, I) = 1

for order ν ∈ (0, 1) and W νf(x) also is continuous and of bounded variation on [0,+∞).

Proof Since f(x) is continuous and of bounded variation on [0,+∞), by Theorem 6.6 of [80]
f(x) can be represented by difference of two monotone increasing and continuous functions
g1(x) and g2(x). That is,

f(x) = g1(x) − g2(x).

(1) If f(0) ≥ 0, we can choose g1(0) ≥ 0 and g2(0) = 0. Thus

G1(x) = W νg1(x) =
1

Γ(ν)

∫ ∞

x

(t− x)ν−1g1(t)dt, 0 < ν < 1.

We know G1(x) is still continuous when g1(x) is continuous.
Let 0 ≤ x1 < x2 ≤ 1 and 0 < ν < 1. It holds

G1(x2) −G1(x1) = W νg1(x2) −W νg1(x1)

=
1

Γ(ν)

∫ ∞

x2

(t− x2)ν−1g1(t)dt− 1
Γ(ν)

∫ ∞

x1

(t− x1)ν−1g1(t)dt

=
1

Γ(ν)

∫ ∞

x2

(t− x2)ν−1g1(t)dt

− 1
Γ(ν)

∫ ∞

x2

(t− x2)ν−1g1(t− x2 + x1)dt

=
1

Γ(ν)

∫ ∞

x2

(t− x2)ν−1[g1(t) − g1(t− x2 + x1)]dt

≥ 0.

Thus function G1(x) is still a monotone increasing and continuous function. If

G2(x) = W νg2(x) =
1

Γ(ν)

∫ ∞

x

(t− x)ν−1g2(t)dt, 0 < ν < 1,

G2(x) is also a monotone increasing and continuous function.
(2) If f(0) < 0, we can choose g1(0) = 0 and g2(0) > 0. Write f(x) as g1(x) − g2(x).

g1(x) and g2(x) both are monotone increasing and continuous functions. For 0 < ν < 1,
similarly argument with (1), we can get both W νg1(x) and W νg2(x) are monotone increasing
and continuous.

From Theorem 6.6 of [80] again, W νf(x) is still a continuous function with bounded varia-
tion. Thus conclusions of Theorem 5.2 hold. �

Theorem 5.2 shows that the Weyl fractional integral of any positive order of a continuous
function with bounded variation is still a continuous function with bounded variation which is
similar with results of the Riemann–Liouville fractional integral. More details can be found in
Ref. [37].

For the Hölder continuous functions, we can get the following conclusion.

Theorem 5.3 ([23]) Let a continuous function f(x) satisfy α-order Hölder condition on R.
If 0 < α, ν, α+ ν < 1, it holds

dimBΓ(Wνf, I) ≤ 2 − ν

1 − α
.
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Here we give another conclusion about fractal dimension estimation of the Weyl fractional
integral of certain continuous functions satisfying the Hölder condition as follows.

Theorem 5.4 Let f(x) be a continuous and nonnegative function on R. If f(x) satisfies
α-order Hölder condition on R, then it holds

dimBΓ(Wνf, I) ≤ 2 − α+ ν

1 + ν
, 0 < α, ν < 1.

Proof Let 0 < ν < 1 and 0 ≤ x < x+ h ≤ 1. For x < x0 < 1,

|Wνf(x+ h) −Wνf(x)| =
∣∣∣∣
∫ ∞

x+h

(t− x− h)ν−1f(t)dt−
∫ ∞

x

(t− x)ν−1f(t)dt
∣∣∣∣

=
∣∣∣∣
∫ ∞

x

(t− x)ν−1[f(t+ h) − f(t)]dt
∣∣∣∣

=
∣∣∣∣

(∫ x0

x

+
∫ ∞

x0

)
(t− x)ν−1[f(t+ h) − f(t)]dt

∣∣∣∣

≤ Chα(x0 − x)ν +
∣∣∣∣
∫ ∞

x0

(t− x)ν−1[f(t+ h) − f(t)]dt
∣∣∣∣.

Define

I2 :=
∣∣∣∣
∫ ∞

x0

(t− x)ν−1[f(t+ h) − f(t)]dt
∣∣∣∣

and it holds

I2 =
∣∣∣∣
∫ ∞

x0+h

(t− x− h)ν−1f(t)dt−
∫ ∞

x0

(t− x)ν−1f(t)dt
∣∣∣∣

≤
∣∣∣∣

(
1 − h

x0 − x

)ν−1 ∫ ∞

x0+h

(t− x)ν−1f(t)dt−
∫ ∞

x0

(t− x)ν−1f(t)dt
∣∣∣∣

≤
([

x0 − x

x0 − x− h

]1−ν

− 1
) ∫ ∞

x0

(t− x)ν−1f(t)dt+
∫ x0+h

x0

(t− x)ν−1f(t)dt

≤ C
h

x0 − x
+ C(t− x)ν

∣∣∣∣
x0+h

x0

≤ C
h

x0 − x
+ Ch(x0 − x)ν−1.

Let x0 = x+ h−l. We have

|Wνf(x+ h) −Wνf(x)| ≤ Chα(x0 − x)ν + I2

≤ Chα(x0 − x)ν + C
h

x0 − x
+ Ch(x0 − x)ν−1

≤ C(hα−lν + hl+1 + h1+l−lν).

Choose l = α−1
1+ν . Since 0 < α, ν < 1,

|Wνf(x+ h) −Wνf(x)| ≤ C(h
α+ν
1+ν + h

α+ν
1+ν + h

α+ν−αν
1+ν )

≤ C(2h
α+ν
1+ν + h

α+ν−αν
1+ν )

≤ C(2h
α+ν
1+ν + h

α+ν
1+ν )

≤ 3Ch
α+ν
1+ν
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≤ Ch
α+ν
1+ν .

By Corollary 11.2 (a) in [6],

dimBΓ(Wνf, I) ≤ 2 − α+ ν

1 + ν

which means conclusion of the present theorem holds. �
More details about fractal dimension estimation of the Weyl fractional integral of certain

positive order can be found in Ref. [57].

5.2 The Katugampola Fractional Calculus

In addition to the Riemann–Liouville fractional calculus, the Weyl–Marchaud fractional deriva-
tive and the Weyl fractional integral, there are many different kinds of fractional integrals and
fractional derivatives [55]. They are based on their own physical background or mathematical
meaning, have a certain range of use.

Katugampola [12] produced a fractional integral that generalizes both the Riemann–Liouville
and the Hadamard fractional integrals, but is a particular case of the modified Erdélyi–Kober
fractional integrals (see for example in [16]).

In [58], authors dealt with the Katugampola fractional integral of a continuous function of
bounded variation. They deduced that fractal dimension of the Katugampola fractional integral
of a continuous function of bounded variation is one. Definition of the Katugampola fractional
integral has been given as follows.

Definition 5.5 ([12, 13]) Let f(x) ∈ CI . The Katugampola fractional integral of f(x) is
defined as

ρ
0D

νf(x) =
(ρ+ 1)1−ν

Γ(ν)

∫ x

0

(xρ+1 − tρ+1)ν−1tρf(t)dt

where ν > 0 and ρ �= −1 are real numbers.

They also got at an upper bound for the upper Box dimension of the Katugampola fractional
derivative of a differentiable function. We write it as the following theorem.

Theorem 5.6 ([12]) Let f(x) ∈ BCI and ρ > −1, ν > 0. Then the Box dimension of the
Katugampola fractional integral of f(x) of positive order ν is still one on I. Furthermore,
ρ
0D

νf(x) is a continuous function with bounded variation on I.

Zhang made research on connection between order of the Katugampola fractional integral
and the Box dimension of the Weierstrass function in [79]. She got the corresponding relation-
ship as the following theorem.

Theorem 5.7 ([9]) Let W (x) be given as Example 2.1 and 0 < ν < 1 − α. Thus

dimB Γ(ρ
0D

νW, I) = dimB Γ(W, I) − ν

where ρ �= −1.

5.3 The Hadamard Fractional Integral

The Hadamard fractional integral differs from the other ones in the sense that the kernel of
the integral contains logarithmic function of arbitrary exponent. The background material of
the Hadamard fractional derivative and integral can be found in Refs. [9, 46]. Definition of the
Hadamard fractional integral has been given as follows.
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Definition 5.8 ([9, 46]) Let f(x) ∈ CI . Then the left Hadamard fractional integral Iνf(x)
and the right Hadamard fractional integral Ĩνf(x) are

Iνf(x) =
1

Γ(ν)

∫ x

0

(
ln
x

t

)ν−1 f(t)
t
dt

and

Ĩνf(x) =
1

Γ(ν)

∫ 1

x

(
ln
t

x

)ν−1
f(t)
t
dt.

Recently, people began to study the properties of the Hadamard fractional integral such as
Ref. [4]. Applications in differential equations can be found in [15].

Some linear relationship between order of the Hadamard fractional integral and fractal
dimension of the Weierstrass function has been proved in [68].

Theorem 5.9 ([68]) Let W (x) be given as Example 2.1 and 0 < ν < 1 − α. Thus

dimB Γ(IνW, I) = dimB Γ(W, I) − ν.

In [67], it had been proved that the Hadamard fractional integral of a continuous function
with bounded variation is still a continuous function with bounded variation. Furthermore,
fractal dimension of the Hadamard fractional integral of certain continuous functions with
unbounded variation had also been proved to be still with the Box dimension one.

Theorem 5.10 ([56]) If f(x) ∈ BCI , Iνf(x) ∈ BCI for any ν > 0.

Based on discussion of works about the Weyl fractional integral of certain continuous func-
tions, Tian had made research on the fractal dimension estimation of the Hadamard fractional
integral of certain continuous functions satisfying the Hölder condition and got several results
[56].

5.4 The Caputo Fractional Derivative

Another kind of fractional derivative with practical application background has been given as
follows.

Definition 5.11 ([44, 45]) Let f(x) ∈ CI and

Dνf(x) =
1

Γ(n− ν)

∫ x

0

f (n)(t)
(x− t)ν+1−n

dt, (n− 1) < ν < n

for a positive integer n and a real number ν. Dνf(x) given above is called as the Caputo
fractional derivative of f(x) of order ν.

6 Applications

In the last three sections, we mainly make research on the fractal dimension estimation of
fractional calculus of different kinds of continuous functions. Here we give a simple application
of fractional calculus in the study of fractional calculus equations, and explain the concrete
significance of this kind of work at one time [60]. Then we show a method to judge the
rationality of definition of fractional calculus.

6.1 Fractional Calculus Equations

By using the change law of fractal dimension of continuous functions fractional calculus, we can
discuss fractional calculus equations as follows elementary.
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Example 6.1 Let f(x) and g(x) be two continuous functions on I. Let 0 < μ < 1 and

dimB Γ(g, I) = s

while 1 < s < 2 and

Dμf(x) = g(x).

Here Dμf(x) means the Riemann–Liouville fractional derivative of f(x) of positive order μ. If
the Box dimension of f(x) exists on I, it must be

dimB Γ(f, I) ≤ s.

Furthermore, if g(x) satisfies the Hölder condition of order α and 0 < μ < α, by Theorem 3.10

s ≤ 2 − α+ μ.

The above example shows that the fractal dimension of continuous functions can be judged
by the conclusion that the fractal dimensions of both ends of fractional order integral and
differential equations are equal. Here, we give two examples to illustrate conclusions of the
present paper.

Example 6.2 Let f(x) be a Lipschitz continuous function and g(x) be a continuous function
on I. Let ν > 0 and D−νf(x) be the Riemann–Liouville fractional integral of f(x) of order ν
on I. If

D−νf(x) = g(x),

g(x) must be a differentiable function on I by Theorem 3.6.

Example 6.3 Let f(x) and g(x) be two continuous functions on I. Let ν > 0 and D−νf(x)
be the Riemann–Liouville fractional integral of f(x) of order ν on I. If

D−νf(x) = g(x)

and

dimB Γ(g, I) > 2 − ν,

the fractional integral equation given above has no solution.

Proof In fact, for any continuous function f(x) on I,

dimBΓ(D−νf, I) ≤ 2 − ν

by Theorem 3.17. From the fractional integral equation given above, we know

dimBΓ(D−νf, I) = dimBΓ(g, I).

But the upper Box dimension of the left side of the equation is no more than 2 − ν while the
upper Box dimension of the right side of the equation is strictly large than 2− ν. This leads to
contradictions. Therefore, the above fractional integral equation has no solution. �
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6.2 Judgment on the Rationality of Definitions of Fractional Calculus

We believe that the fractal dimension estimation of fractional calculus of continuous functions
in this paper of the above three sections is of great theoretical significance to discuss the
rationality of definition of fractional calculus. In fact, classical integral of a continuous function
seems smoother than the function itself, while classical derivative of a continuous function seems
coarser than the function itself when it exists. Therefore, the corresponding properties should
be maintained for fractional calculus. It just uses the fractal dimension to replace the general
smoothness.

In fact, people could find the discussion about the fractal dimension of the Riemann–
Liouville fractional integral and differential of certain fractal functions such as the Weierstrass
function, the Besicovitch function and so on in Refs. [24, 53, 74]. The results of computer
simulation and numerical verification have also been given. Under the action of the Riemann–
Liouville fractional integral, fractal dimension of these fractal functions decreases. Under the
action of the Riemann–Liouville fractional differential, fractal dimension of the obtained func-
tion increases. In a sense, it has the same mechanism as the classical calculus.

The above discussion also shows that definition of certain fractional calculus such as the
Riemann–Liouville fractional calculus is reasonable from this point of view by discussion of
Section 3. The rationality of other definitions of fractional calculus needs to be further verified
by a similar discussion process.

7 Conclusions

Exploring the relationship between fractional calculus and fractal geometry has become the
core content of fractional calculus theory. Many scholars have studied this issue from different
angles. For example, Nigmatullin made research on the accurate relationship between fractional
integral and fractals of the given symmetry in space and try to give the geometrical/physical
interpretation of this relationship [40, 41]. Butera showed a relationship between fractional
calculus and fractals, based on certain physical and geometrical considerations by the physical
origins of the power-laws [3]. We expect to establish the relationship between fractional calculus
and fractal functions from fractal dimension. On one hand, from the geometric point of view,
one can explore the internal relationship between them. On the other hand, it also provides a
certain basis for judging the rationality of definitions of fractional calculus.

It is of great theoretical significance to study the mechanism of fractional calculus on con-
tinuous functions, especially the variation of fractal dimension. As we all know, for the classical
calculus, the integral function is smoother than the original one, and the differential function is
more rough than the original function. Therefore, a similar relationship should be established
for fractional calculus. In other words, the fractal dimension of fractional integral function is
not increased compared with the original one, and fractal dimension of fractional differential
function is not reduced correspondingly. Especially for the special class of fractal functions
which meet certain conditions, the fractal dimension of their fractional calculus is linear com-
pared with that of the original functions which is the same as described in [54]. We think
that definition of fractional calculus, which satisfies this conclusion at least discussed above, is
reasonable.
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In the specific research process, we found an interesting result. That is to say, fractal
dimension of the Riemann–Liouville fractional integral of regular fractal functions decreases at
least linearly compared with the original functions. We think that for regular fractal functions,
fractal dimension of their Riemann–Liouville fractional integral should change linearly with the
corresponding one. This conclusion is consistent with what is described in Ref. [3] to certain
extent. In other words, it seems that fractional calculus can control or change the fractal
dimension of a fractal function according to certain rules from the geometric view.

The results of this paper have an important internal relationship with the description of
the essential characteristics of fractional calculus in Ref. [3], and can be used as an important
evidence of the physical interpretation and geometric significance of fractional calculus. We
think it could be helpful of establish the accurate relationship between fractional calculus and
fractals from geometric view. We also believe that the essence of geometric of power-laws is
revealed from the perspective of mathematical theory.
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Fractals, 29, 2150026 (2021)

[6] Falconer, K. J.: Fractal Geometry: Mathematical Foundations and Applications. John Wiley & Sons,

Chicheste, 1990

[7] Ferrari, F.: Weyl and Marchaud derivatives: A forgotten history. Mathematica, 6, 1–25 (2018)

[8] Fu, H., Wu, G. C., Yang, G.: Continuous-time random walk to a general fractional Fokker–Planck equation

on fractal media. Eur. Phys. J.-Spec. Top., 230, 3927–3933 (2021)

[9] Hadamard, J.: Essai sur l’étude des fonctions données par leur développement de Taylor. Journal de
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