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Abstract For bounded linear operators A, B, C and D on a Banach space X, we show that if BAC =

BDB and CDB = CAC then I − AC is generalized Drazin–Riesz invertible if and only if I − BD is

generalized Drazin–Riesz invertible, which gives a positive answer to Question 4.9 in Yan, Zeng and

Zhu [Complex Anal. Oper. Theory 14, Paper No. 12 (2020)]. In particular, we show that Jacobson’s

lemma holds for generalized Drazin–Riesz inverses.
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1 Introduction

Let L(X) denote the set of all bounded linear operators acting on an infinite-dimensional
complex Banach space X. For T ∈ L(X), we denote by σ(T ), ρ(T ), N (T ) and R(T ) the
spectrum, the resolvent set, the null space and the range of T , respectively. T ∈ L(X) is said
to be a Fredholm operator if dim N (T ) < ∞ and codimR(T ) < ∞. T is Riesz if T − λI is
Fredholm for every nonzero λ in C. Let M and N be two closed T -invariant subspaces of X.
If X = M ⊕ N , then we say that T is completely reduced by the pair (M, N) and we denote it
by (M, N) ∈ Red(T ).

For a subset Δ of C, we denote by acc Δ the accumulation points of Δ. We denote also by
D(λ, r) (resp., D(λ, r)) the open (resp., closed) disc centered at λ ∈ C and with radius r > 0.

Following Drazin [9], an operator T ∈ L(X) is said to be Drazin invertible if there exists an
S ∈ L(X) satisfying

TS = ST, STS = S and T − T 2S is nilpotent. (1.1)

If such S exists then it is unique and it is called the Drazin inverse of T . Notice that T is
Drazin invertible if and only if 0 is a pole of T .

A generalization of the Drazin inverse was given by Koliha [14]: T ∈ L(X) is said to be
generalized Drazin invertible if there exists an S ∈ L(X) satisfying

TS = ST, STS = S and T − T 2S is quasinilpotent. (1.2)

If such S exists then it is unique and it is called the generalized Drazin inverse of T . Recall
that T is generalized Drazin invertible if and only if 0 /∈ acc σ(T ).
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The (generalized) Drazin inverse has important applications in matrix theory and compu-
tations and fields such as linear systems theory, differential equations, Markov chains, and so
on, see [1, 3–5, 16] and the references therein.

Recently, Živkovic–Zlatanović and Cvetković [23] generalized the concept of generalized
Drazin invertible operators:

Definition 1.1 ([23]) An operator T ∈ L(X) is generalized Drazin–Riesz invertible if there
exists S ∈ L(X) satisfying

TS = ST, STS = S and T − T 2S is Riesz;

and such S is called a generalized Drazin–Riesz inverse of T .
The generalized Drazin–Riesz spectrum of T is defined by

σgDR(T ) = {λ ∈ C, T − λI is not generalized Drazin–Riesz invertible}.

T is generalized Drazin–Riesz invertible if and only if there exists (M, N) ∈ Red(T ) such
that TM = T |M is invertible and TN = T |N is Riesz [23]. Moreover, if we assume that
0 ∈ accσ(T ) then TN is Riesz with infinite spectrum. Hence σ(TN ) = {λn} ∪ {0} where λn

converges to zero. Since TM is invertible, there is some r > 0 such that D(0, r) ∩ σ(TM ) = ∅
and there is some positive integer n0 such that {λn}n≥n0 ⊂ D(0, r) ∩ σ(TN ) and {λn}n≥n0 are
non-zero Riesz points of T (see the proof of [23, Proposition 2.7]).

Given two operators A and B ∈ L(X), Jacobson’s lemma asserts that I − AB is invertible
if and only if I − BA is invertible, see for instance [2]. Independently, [6] and [7] extended
Jaconbson’s lemma to Drazin inverse by showing that I −AB is Drazin invertible if and only if
I − BA is Drazin invertible. Lam and Nielsen [15] gave an explicit expressions for the Drazin
inverses of I −AB and I −BA in terms of each other. In [22], the authors extended Jacobson’s
lemma to generalized Drazin inverse. [20] extended Jacobson’s lemma to AC and BA with the
assumption ABA = ACA. Under other conditions, [18] and [21] extended Jacobson’s lemma
to Drazin and generalized inverses for AC and BD.

Recently, Yan et al. [19] introduced conditions

BAC = BDB and CDB = CAC, (1.3)

and investigated Drazin (resp., generalized Drazin) inverses for operators I −AC and I −BD.
For generalized Drazin–Riesz inverse, the authors proved that AC is gneralized Drazin–Riesz
invertible if and only if BD is generalized Drazin–Riesz invertible. The following question was
raised in [19, Question 4.9]:

Question If BAC = BDB and CDB = CAC then I − AC is generalized Drazin–Riesz
invertible if and only if I − BD is generalized Drazin–Riesz invertible?

The aim of this paper is to answer this question. In Section 2, we present some preliminary
results that we need in the sequel. In particular, we investigate the generalized Drazin–Riesz
invertibility for upper triangular operator matrices. In Section 3, under conditions (1.3) we
show that I − AC is generalized Drazin–Riesz invertible if and only if I − BD is generalized
Drazin–Riesz invertible, and we also give expressions for generalized Drazin–Riesz inverse of
I−AC and I−BD. Therefore, we answer positively [19, Question 4.9]. Consequently, we show
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that Jacobson’s lemma holds for generalized Drazin–Riesz inverse, i.e., I − AB is generalized
Drazin–Riesz invertible if and only if I − BA is generalized Drazin–Riesz invertible.

2 Preliminary Results

Lemma 2.1 Let A ∈ L(X) and B ∈ L(X) be similar operators. Then A is generalized
Drazin–Riesz invertible if, and only if, B is generalized Drazin–Riesz invertible.

Proof Assume that B is generalized Drazin–Riesz invertible and let B1 be a generalized
Drazin–Riesz inverse, i.e.,

BB1 = B1B, B1BB1 = B1 and B − BB1B is a Riesz operator.

Since A is similar to B, there exists an invertible operator J ∈ L(X) such that A = JBJ−1.
Set A1 = JB1J

−1.
Then

A1A = JB1J
−1JBJ−1 = JB1BJ−1 = JBB1J

−1 = JBJ−1A1 = AA1.

Next
A1AA1 = JB1BB1J

−1 = JB1J
−1 = A1.

Hence

A′ = A(I − AA1) = JBJ−1(I − JBJ−1JB1J
−1) = JB(I − BB1)J−1 = JB′J−1.

Then A′, B′ are similar. Thus, A′ is a Riesz operator. Therefore A is generalized Drazin–Riesz
invertible with generalized Drazin–Riesz inverse A1. The converse goes similarly. �

Theorem 2.2 Let A ∈ L(X) be generalized Drazin–Riesz invertible operator with 0 ∈ acc σ(A)
and a generalized Drazin–Riesz inverse A1. Then there exists a nonzero λ small enough such
that the following holds:

(λI − A)−1 = (I − AA1)
∞∑

n=1

An−1λ−n − A1

∞∑

n=0

(A1)nλn.

Proof It is easy to see that A1 is Drazin invertible with Drazin inverse A2A1. Then according
to [23, Theorem 2.3] it follows that the expansion

∑∞
n=0(A1)nλn exists for every nonzero λ

small enough, since it represents the function λ 	→ (I − λA1)−1.

For PA = I − AA1, we have APA is a Riesz and then 0 ∈ acc ρ(APA). The expansion∑∞
n=1 An−1λ−n(I−AA1) exists for some nonzero λ small enough, since it represents the function

λ 	→ (λI − APA)−1. Thus, we obtain (λI − A)−1 exists for some 0 < |λ| < ε. Therefore,

(λI − A)
(

(I − AA1)
∞∑

n=1

An−1λ−n − A1

∞∑

n=0

(A1)nλn

)

= (I − AA1)
∞∑

n=1

An−1λ−n+1 −
∞∑

n=0

(A1)n+1λn+1

− (I − AA1)
∞∑

n=1

Anλ−n + AA1

∞∑

n=0

(A1)nλn

= (I − AA1)
( ∞∑

n=0

Anλ−n −
∞∑

n=1

Anλ−n

)
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+ AA1 +
∞∑

n=1

A(A1)n+1λn −
∞∑

n=1

(A1)nλn

= I.

This completes the proof. �
For A, B and C ∈ L(X), we consider the upper triangular operator matrix

MC =

⎡

⎣ A C

0 B

⎤

⎦ ∈ L(X ⊕ X).

Now, we present an additive result concerning some sufficient conditions for MC to be general-
ized Drazin–Riesz invertible for every C ∈ L(X).

Theorem 2.3 Let A ∈ L(X) and B ∈ L(X) be generalized Drazin–Riesz invertible operators
such that 0 ∈ accσ(A) ∩ accσ(B) and with generalized Drazin–Riesz inverses A1 and B1,
respectively. Then for every C ∈ L(X), MC is generalized Drazin–Riesz invertible and

M ′
C =

⎡

⎣ A1 S

0 B1

⎤

⎦

is a generalized Drazin–Riesz inverse of MC , where

S = (A1)2
( ∞∑

n=0

(A1)nCBn

)
(I − BB1) + (I − AA1)

( ∞∑

n=0

AnC(B1)n

)
(B1)2 − A1CB1.

Proof Assume that A and B are generalized Drazin–Riesz invertible operators, then by [23,
Proposition 2.7] there exist (μn)n and (νn)n sequences of nonzero Riesz points of A and B

respectively, both converging to zero. We can assume that (|μn|)n and (|νn|)n are decreasing
sequences. Then there exists r > 0 small enough such that |νn+1| < r < |νn| and |μm+1| <

r < |μm| for some positive integers n and m. Then for every λ ∈ C such that |λ| = r we have
A−λI and B −λI are invertible. [12, Lemma 1] implies that λI −MC is also invertible and so

(λ − MC)−1 =

⎡

⎣ (λ − A)−1 (λ − A)−1C(λ − B)−1

0 (λ − B)−1

⎤

⎦ .

By applying Theorem 2.2 and comparing the coefficients at λ0 = 1, we obtain the operator

M ′
C =

⎡

⎣ A1 S

0 B1

⎤

⎦

as a generalized Drazin–Riesz inverse of MC , where

S = (A1)2
( ∞∑

n=0

(A1)nCBn

)
(I − BB1) + (I − AA1)

( ∞∑

n=0

AnC(B1)n

)
(B1)2 − A1CB1.

Indeed,

Claim 1 MCM ′
C = M ′

CMC :
We have

MCM ′
C =

⎡

⎣ AA1 AS + CB1

0 BB1

⎤

⎦ and M ′
CMC =

⎡

⎣ A1A A1C + SB

0 B1B

⎤

⎦ .
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But

SB = (A1)2
( ∞∑

n=0

(A1)nCBn

)
(I − BB1)B + (I − AA1)

( ∞∑

n=0

AnC(B1)n

)
(B1)2B − A1CB1B

=
( ∞∑

n=0

(A1)n+1CBn

)
(I − BB1) + (I − AA1)

( ∞∑

n=0

AnC(B1)n+1

)
− A1C.

Then

SB + A1C =
( ∞∑

n=0

(A1)n+1CBn

)
(I − BB1) + (I − AA1)

( ∞∑

n=0

AnC(B1)n+1

)
.

Also

AS = A(A1)2
( ∞∑

n=0

(A1)nCBn

)
(I − BB1) + A(I − AA1)

( ∞∑

n=0

AnC(B1)n

)
(B1)2 − A1CB1B

=
( ∞∑

n=0

(A1)n+1CBn

)
(I − BB1) + (I − AA1)

( ∞∑

n=0

AnC(B1)n+1

)
− CB1,

which implies

AS + CB1 =
( ∞∑

n=0

(A1)n+1CBn

)
(I − BB1) + (I − AA1)

( ∞∑

n=0

AnC(B1)n+1

)
.

Thus
MCM ′

C = M ′
CMC .

Claim 2 M ′
CMCM ′

C = M ′
C :

We have

M ′
CMCM ′

C =

⎡

⎣ A1AA1 A1AS + (A1C + SB)B1

0 B1BB1

⎤

⎦ .

Since

AS + CB1 =
( ∞∑

n=0

(A1)n+1CBn

)
(I − BB1) + (I − AA1)

( ∞∑

n=0

AnC(B1)n+1

)
,

then

(AS + CB1)B1 = (I − AA1)
( ∞∑

n=0

AnC(B1)n+1

)
B1.

Hence

A1AS = (A1)2
( ∞∑

n=0

(A1)nCBn

)
(I − BB1) − A1CB1.

Consequently,
A1AS + (A1C + SB)B1 = S.

Therefore,
MCM ′

CMC = M ′
C .

Claim 3 M = MC − MCM ′
CMC is a Riesz operator:
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We have

M =

⎡

⎣ A′ R

0 B′

⎤

⎦ ,

where
R = C − AA1C − ASB − CB1B, A′ = A − AA1 and B′ = B − BB1B.

Since A′ and B′ are Riesz operators, we have A′ − λI and B′ − λI are Fredholm for every
λ ∈ C\{0}. Then according to [8, Proposition 3.1] it implies that M −λI is Fredholm for every
λ ∈ C \ {0}. Therefore, M is a Riesz operator.

Finally, MC is generalized Drazin–Riesz invertible and M ′
C is a generalized Drazin–Riesz

inverse of MC . �
It follows from Lemma 2.1 and Theorem 2.3 that the result is also valid for block 2×2 lower

triangular matrices.

Corollary 2.4 For A ∈ L(X) and B ∈ L(X) are generalized Drazin–Riesz invertible operators
such that 0 ∈ accσ(A) ∩ accσ(B) and with generalized Drazin–Riesz inverses A1 and B1,
respectively. Then

T =

⎡

⎣ B 0

C A

⎤

⎦

is generalized Drazin–Riesz invertible for every C ∈ L(X) and

T ′ =

⎡

⎣ B1 0

R A1

⎤

⎦

is a generalized Drazin–Riesz inverse of T , where

R = (A1)2
( ∞∑

n=0

(A1)nCBn

)
(I − BB1) + (I − AA1)

( ∞∑

n=0

AnC(B1)n

)
(B1)2 − A1CB1.

According to Theorem 2.3 we get the following result.

Theorem 2.5 Let A ∈ L(X) and B ∈ L(X). Then

σgDR(MC) ⊂ σgDR(A) ∪ σgDR(B), for every C ∈ L(X).

Proposition 2.6 If any two of operators A, B and MC are generalized Drazin invertible, then
so is the third.

Proof It is enough to show that A and MC are generalized Drazin–Riesz invertible then B is
generalized Drazin–Riesz invertible. When A and MC are generalized Drazin–Riesz invertible,
likewise in proof of Theorem 2.3 there exists λ such that A − λI and MC − λI are invertible.
It follows from [12] that B − λI are invertible. Hence

(λ − MC)−1 =

⎡

⎣ (λ − A)−1 (λ − A)−1C(λ − B)−1

0 (λ − B)−1

⎤

⎦ .

By applying Theorem 2.2 and comparing the coefficients at λ0 = 1, we obtain the operator

M ′
C =

⎡

⎣ A1 S

0 B1

⎤

⎦
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as a generalized Drazin–Riesz inverse of MC , where M ′
C and A1 are respectively generalized

Drazin–Riesz inverses of MC and A. It is easy to see that B1 is a generalized Drazin–Riesz
inverse of B, then B is generalized Drazin–Riesz invertible. �

Example 2.7 For S, C ∈ L(X), let MC be the operator matrix defined on X ⊕ X by

MC =

⎡

⎣ S∗ C

0 S

⎤

⎦ .

Then for every C ∈ L(X), I − MC is generalized Drazin–Riesz invertible provided that I − S

is generalized Drazin–Riesz invertible. By Theorem 2.5 we have

σgDR(MC) ⊂ σgDR(S).

Now if S is the backward shift operator on X = l2(N) and C = I − S∗S, then we have MC is
unitary. Hence σgDR(MC) ⊂ {λ ∈ C : |λ| = 1} while σgDR(S) = D(0, 1); which proves that
the inclusion in Theorem 2.5 maybe strict.

3 Extended Jacobson’s Lemma for Generalized Drazin–Riesz Inverse

We are now ready to answer Question 4.9 in [19] affirmatively.

Theorem 3.1 Let A, B, C and D ∈ L(X) satisfy BAC = BDB and CDB = CAC. Then
ΓAC = I−AC is generalized Drazin–Riesz invertible if, and only if, ΓBD = I−BD is generalized
Drazin–Riesz invertible.

Proof Assume that ΓBD is generalized Drazin–Riesz invertible with a generalized Drazin–
Riesz inverse Γ′

BD. Set Γπ
BD = I − ΓBDΓ′

BD. Since ΓBDΓπ
BD is a Riesz and commutes with

(I + BD), then according to Theorem 2.2 the expansion Γπ
BD

∑∞
k=0

(
I − (BD)2

)k
λ−k−1 exists

since it represents the function λ 	→ (λ − ΓBDΓπ
BD (I + BD))−1. Hence

Γπ
BD

∞∑

k=0

(
λI − (BD)2

)k
λ−k−1 = Γπ

BD

∞∑

k=0

k∑

j=0

Cj
k (λ − 1)j (

I − (BD)2
)k−j

λ−k−1.

Then the expansion Γπ
BD

∑∞
k=0

(
λI − (BD)2

)k
λ−k−1 exists. Let

Γ′
AC =

(
I − ACDΓπ

BD

∞∑

k=0

(λI − (BD)2)kλ−k−1B

)
(I + AC) + ACDΓ′

BDB.

It is easy to check that Γ′
AC commutes with ΓAC . Then

Γ′
ACΓAC = I − (AC)2 − ACDΓπ

BD

∞∑

k=0

(λI − (BD)2)kλ−k−1B(I + AC)ΓAC

+ ACDΓ′
BDBΓAC

= I − ACDB − ACDΓπ
BD

∞∑

k=0

(λI − (BD)2)kλ−k−1(I + BD)BΓAC

+ ACDΓ′
BDΓBDB

= I − ACDΓπ
BDB − ACDΓπ

BD

∞∑

k=0

(λI − (BD)2)kλ−k−1Γπ
BD(I − (BD)2)B
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= I − ACDΓπ
BDB − ACDΓπ

BD

∞∑

k=0

(λI − (BD)2)kλ−k−1Γπ
BDB

+ ACDΓπ
BD

∞∑

k=0

(λI − (BD)2)kλ−k−1Γπ
BD(BD)2B

= I − ACDΓπ
BD

∞∑

k=0

(λI − (BD)2)kλ−k−1B.

We have

ACDΓπ
BD

∞∑

k=0

(I − (BD)2)kλ−k−1BACDΓ′
BDB

= ACD

∞∑

k=0

(λI − (BD)2)kλ−k−1Γπ
BDBDBDΓ′

BDB

= ACD

∞∑

k=0

(λI − (BD)2)kλ−k−1Γπ
BDΓ′

BDBDBDB

= ACDΓπ
BDΓ′

BD

= 0.

And

ACDΓπ
BD

∞∑

k=0

(λI − (BD)2)kλ−k−1BACDΓπ
BD

∞∑

k=0

(λI − (BD)2)kλ−k−1B

= ACDΓπ
BD

∞∑

k=0

(λI − (BD)2)kλ−k−1BDBDΓπ
BD

∞∑

k=0

(λI − (BD)2)kλ−k−1B

= ACDΓπ
BD

∞∑

k=0

(λI − (BD)2)kλ−k−1B.

We get

Γ′
ACΓACΓ′

AC

= Γ′
AC − ACDΓπ

BD

∞∑

k=0

(λI − (BD)2)kλ−k−1BΓ′
AC

= Γ′
AC − ACDΓπ

BD

∞∑

k=0

(λI − (BD)2)kλ−k−1B(I + AC)

+ ACDΓπ
BD

∞∑

k=0

(λI − (BD)2)kλ−k−1BACDΓπ
BD

∞∑

k=0

(
λI − (BD)2

)k
λ−k−1B(I + AC)

− ACDΓπ
BD

∞∑

k=0

(λI − (BD)2)kλ−k−1BACDΓ′
BDB

= Γ′
AC .

Finally

ΓAC(I − Γ′
ACΓAC) = ΓACACDΓπ

BD

∞∑

k=0

(
I − (BD)2

)k
λ−k−1B
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= ACDΓBDΓπ
BD

∞∑

k=0

(
λI − (BD)2

)k
λ−k−1B.

We have

BACDΓBDΓπ
BD

∞∑

k=0

(
λI − (BD)2

)k
λ−k−1 = (BD)2ΓBDΓπ

BD

∞∑

k=0

(
λI − (BD)2

)k
λ−k−1

= ΓBDΓπ
BD.

Since ΓBDΓπ
BD is a Riesz operator, we have ΓAC(I − Γ′

ACΓAC) is a Riesz.
Therefore ΓAC is generalized Drazin–Riesz invertible. Similarly, we get the converse. �
The following result follows from Theorem 3.1 and [19, Theorem 3.9]

Theorem 3.2 Let A, B, C, D ∈ L(X) satisfy BAC = BDB and CDB = CAC. Then

σgDR(AC) = σgDR(BD).

Remark 3.3 If BAC = BDB and CDB = CAC, then we have BAnC = BDnB and
CDnB = CAnC. Note that I − AnC = (I − AC)n and I − BDn = (I − BD)n.

Dn =
n∑

k=1

⎛

⎝ n

k

⎞

⎠ (−1)kD(BD)k−1

and

An =
n∑

k=1

⎛

⎝ n

k

⎞

⎠ (−1)k(AC)k−1A.

Then (I − AC)n is generalized Drazin–Riesz invertible if and only if (I − BD)n is generalized
Drazin–Riesz invertible.

Example 3.4 For Banach spaces X and Y, let S1 ∈ L(Y ), S2, T1 ∈ L(Y, X) and T2 ∈ L(X, Y )
be arbitrary nonzero operators satisfying S1 = T2S2. We consider A, B, C ∈ L(X⊕Y ) as follows:

B =

⎡

⎣ 0 0

0 S1

⎤

⎦ , C =

⎡

⎣ 0 S2

0 0

⎤

⎦ and A = D =

⎡

⎣ I T1

T2 I

⎤

⎦ ,

respectively. Then we have BAC = BDB and CDB = CAC. Hence Corollary 2.5 implies that
the operator

λI − AC =

⎡

⎣ λI −S2

0 λI − S1

⎤

⎦

is generalized Drazin–Riesz invertible if, and only if,

λI − BD =

⎡

⎣ λI 0

−S1T2 λI − S1

⎤

⎦

is generalized Drazin–Riesz invertible. On the other hand, according to Theorem 2.3 and
Theorem 3.2, we have

σgDR(AC) = σgDR(BD) = σgDR(S1).
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On the other hand, we have

ACD =

⎡

⎣ S1 S2

T2S1 T2S2

⎤

⎦ and DBD =

⎡

⎣ T1S1T2 T1S1

T2S1T2 S1

⎤

⎦ .

Example 3.5 Let A, B, C and D be the operators defined on the separable Hilbert space
l2(N), respectively, by

A(x1, x2, x3, x4, . . .) = (0, x2, 0, x4, 0, x6, . . .),

B(x1, x2, x3, x4, . . .) = (0, x1, x2, x4, x5, . . .),

C(x1, x2, x3, x4, . . .) = (0, 0, x1, x4, x5, . . .),

D(x1, x2, x3, x4, . . .) = (x1, 0, x3, x4, 0, x6, . . .).

Then we have BAC = BDB and CDB = CAC, but DBA �= ACA. Hence applying Theorem
3.2 we have

σgDR(AC) = σgDR(BD).

Theorem 3.1 shows that Jabobson’s Lemma holds for generalized Drazin–Riesz inverses:

Corollary 3.6 Let A and B ∈ L(X). Then ΓAB = I − AB is generalized Drazin–Riesz
invertible if, and only if, ΓBA = I − BA is generalized Drazin–Riesz invertible.

Combining Corollary 3.6 and [13, Theorem 2.3] we get the following result. We point out
that in [13], the result was presented but without proof.

Corollary 3.7 Let A and B ∈ L(X). Then

σgDR(AB) = σgDR(BA).

Example 3.8 Let H be complex Hilbert space. Let T = U |T | be the polar decomposition of
T ∈ L(H) where |T | = (T ∗T )

1
2 . The Aluthge transform of T is given by T̃ = |T | 12 U |T | 12 . Let

A = U |T | 12 and B = |T | 12 . Then AB = T and BA = T̃ . Thus

σgDR(T ) = σgDR(T̃ ).

Corollary 3.9 Let A, B, C, D ∈ L(X) satisfy BAC = BDB and CDB = CAC. Then

σgDR((AC)n) = σgDR((BD)n) for all n ≥ 1.

Proof It is easy to see that (AC)n = (AC)n−1(DB) and (BD)n = B(AC)n−1D. Then for
each n ≥ 1, we have

σgDR((BD)n) = σgDR(B(AC)n−1D)

= σgDR((AC)n−1DB) (by Corollary 3.7)

= σgDR((AC)n).

Proposition 3.10 Let S, T, A, and B ∈ L(X). Then
(i) If ST is generalized Drazin–Riesz invertible and T is invertible, then S is also generalized

Drazin–Riesz invertible.
(ii) If A and B are invertible and T = ASB, then T is generalized Drazin–Riesz invertible

if and only if S is generalized Drazin–Riesz invertible.
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Proof (i) Since U = ST is generalized Drazin–Riesz invertible, there exists (M, N) ∈ Red(U)
such that U = UM ⊕ UN where UM is invertible and UN is a Riesz. Since

T−1(X) = X = M ⊕ N

then

S(X) = UT−1(X) = (U1 ⊕ U2)(M ⊕ N)

where U1 is invertible on M and U2 is a Riesz on N . Therefore S is generalized Drazin–Riesz
invertible.

(ii) Suppose that A and B are invertible, and T = ASB. If T is generalized Drazin–Riesz
invertible, it follows from i) that AS is generalized Drazin–Riesz invertible. By [13, Theorem
2.3], SA is also generalized Drazin–Riesz invertible. Since A is invertible, we have again by i)
S is generalized Drazin–Riesz invertible. The converse goes by the same way. �

Remark 3.11 In general, we observe that even though ST is generalized Drazin–Riesz in-
vertible and S is invertible, T may not be generalized Drazin–Riesz invertible. For example,
let R be not generalized Drazin–Riesz invertible on X. If S and T have the following operator
matrix forms

S =

⎡

⎣ I R

0 I

⎤

⎦ and T =

⎡

⎣ −R 0

I 0

⎤

⎦ ,

then

ST =

⎡

⎣ 0 0

I 0

⎤

⎦

is generalized Drazin–Riesz invertible and S is invertible. However, S−1(ST ) = T is not
generalized Drazin–Riesz invertible by virtue of Proposition 2.6.

Example 3.12 For Banach spaces X and Y, let S ∈ L(Y ) and T ∈ L(X, Y ) be arbitrary
nonzero operators. Let A and B ∈ L(X ⊕ Y ) be defined by

A =

⎡

⎣ S∗ 0

S I

⎤

⎦ and B =

⎡

⎣ I 0

T I

⎤

⎦ .

Then

AB =

⎡

⎣ S∗ 0

S + T S

⎤

⎦

is generalized Drazin–Riesz invertible if, and only if,

BA =

⎡

⎣ S∗ 0

TS∗ + S S

⎤

⎦

is generalized Drazin–Riesz invertible. According to Theorem 2.3 and Proposition 2.6, I − S is
generalized Drazin–Riesz invertible if and only if I −AB (resp., I −BA) is generalized Drazin–
Riesz invertible.
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Since B is invertible, then if λI − AB is generalized Drazin–Riesz invertible and using Propo-
sition 3.10 we get

λB−1 − A =

⎡

⎣ λI − S∗ 0

−λT − S (λ − 1)I

⎤

⎦

is generalized Drazin–Riesz invertible. Hence λI − S∗ is generalized Drazin–Riesz invertible.
Thus

σgDR(AB) = σgDR(BA) = σgDR(S).

4 Concluding Remarks

4.1 The Class Pk

For k ∈ N, let Pk be the set of bounded linear operators A and B ∈ L(X) satisfying equalities

AkBkAk = Ak+1 and BkAkBk = Bk+1.

In [10, 11], Jacobson’s Lemma was studied for various kind of inverses.

Lemma 4.1 Let (A, B) ∈ Pk, k ∈ N, and N and M be subsets in X such X = M ⊕N . Then
we have

(1) (M, N) ∈ Red(I − BkAk) if and only if (M, N) ∈ Red(I − A).
(2) (M, N) ∈ Red(I − AkBk) if and only if (M, N) ∈ Red(I − B).

Proof (1) Suppose that (M, N) ∈ Red(I−A). Then (M, N) ∈ Red(A). Let x ∈ N , then there
exists y ∈ N such that Ak+1x = y. Using the fact AkBkAk = Ak+1, we have AkBkAkx = y.
Since N is Ak-invariant, implies that N is (BkAk)-invariant. Therefore N is (I − BkAk)-
invariant. With the same argument we show that M is (I − BkAk)-invariant. Conversely,
suppose that (M, N) is (I − BkAk)-invariant. Then (M, N) ∈ Red(BkAk)2. Let z ∈ N ,
then there exists t ∈ N such that (BkAk)2z = t. Using the fact AkBkAk = Ak+1, we have
BkAk+1z = (BkAk)2z = t. Since (M, N) is (BkAk)-invariant, it implies that N is A-invariant.
Therefore (M, N) ∈ Red(I − A).

(2) is similar to (1). �

Theorem 4.2 Let (A, B) ∈ Pk, k ∈ N. Then the following statements are equivalent:
(i) I − B is generalized Drazin–Riesz invertible.
(ii) I − AkBk is generalized Drazin–Riesz invertible.
(iii) I − BkAk is generalized Drazin–Riesz invertible.
(vi) I − A is generalized Drazin–Riesz invertible.

In particular,
σgDR(A) = σgDR(AkBk) = σgDR(BkAk) = σgDR(B).

Proof (i) ⇔ (ii): Suppose that I −B is generalized Drazin–Riesz invertible, then there exists
(M, N) ∈ Red(I − B) such that I − B = (I − B)M ⊕ (I − B)N , (I − B)M is invertible and
(I − B)N is a Riesz. By [10, Theorem 2.10], (I − AkBk)M is invertible and (I − AkBk)N is a
Riesz. According to Lemma 4.1, I − AkBk = (I − AkBk)M ⊕ (I − AkBk)N . Hence I − AkBk

is generalized Drazin–Riesz invertible. By the same reasoning we get the converse.
(ii) ⇔ (iii): By Corollary 3.6.
(iii) ⇔ (vi): It is similar to (i) ⇔ (ii). �
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Example 4.3 Let A and B be the bounded operators defined on l2(N) by:

A (x1, x2, x3, x4, x5, . . .) = (0, x1, 0, 0, 0, x3, 0, 0, 0, x5, . . .) ,

B (x1, x2, x3, x4, x5, . . .) = (0, x1, 0, x3, 0, x5, . . .) .

It is easy to see B2 = A2 = BA = AB = 0. This implies that (A, B) ∈ Pk for all k ∈ N.

Applying Theorem 4.2 we have

σgDR(A) = σgDR(B).

4.2 A Second Proof of Jacobson’s Lemma

For A and B ∈ L(X), let us consider A, B ∈ L(X ⊕ X), defined by

A =

⎡

⎣ I A

B I

⎤

⎦ , B =

⎡

⎣ I B

A I

⎤

⎦ .

Then A and B are similar operators. Indeed, A = JBJ
−1, where the operators J and J−1 are

given by

J =

⎡

⎣ 0 I

I 0

⎤

⎦ = J
−1.

Let A1 and B1 ∈ L(X ⊕ X) be the operator matrices defined by

A1 =

⎡

⎣ I − AB 0

0 I

⎤

⎦ , B1 =

⎡

⎣ I − BA 0

0 I

⎤

⎦ .

Then the following equalities hold:

A =

⎡

⎣ I A

0 I

⎤

⎦ A1

⎡

⎣ I 0

B I

⎤

⎦ = UA1V,

B =

⎡

⎣ I B

0 I

⎤

⎦ B1

⎡

⎣ I 0

A I

⎤

⎦ = U1B1V1;

where the matrices U, U1, V and V1 have the inverses

U
−1 =

⎡

⎣ I −A

0 I

⎤

⎦ , U
−1
1 =

⎡

⎣ I −B

0 I

⎤

⎦ ,

V
−1 =

⎡

⎣ I 0

−B I

⎤

⎦ , V
−1
1 =

⎡

⎣ I 0

−A I

⎤

⎦ .

Now assume that ΓAB = I − AB is generalized Drazin–Riesz invertible with a generalized
Drazin–Riesz inverse Γ′

AB. It follows from Theorem 2.3 that

UA1 =

⎡

⎣ ΓAB A

0 I

⎤

⎦
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is generalized Drazin–Riesz invertible with an inverse

S =

⎡

⎣ Γ′
AB SΓAB

0 I

⎤

⎦ ,

where

SΓAB
= (I − Γ′

AB)
( ∞∑

n=0

Γn
AB

)
A.

Since A = UA1V, we have AV−1 is generalized Drazin–Riesz invertible. By Proposition 3.10
(i), it follows that A is generalized Drazin–Riesz invertible. Since we have A and B are similar,
then by Lemma 2.1, B is also generalized Drazin–Riesz invertible. Since B = U1B1V1 and U1

and V1 are invertible, it follows from Proposition 3.10 (ii), that B1 is generalized Drazin–Riesz
invertible. As a result, ΓBA = I − BA is generalized Drazin–Riesz invertible. By the same
argument as above we get the converse.

Now assume that Γ′
BA is a generalized Drazin–Riesz inverse of ΓBA. We will show that

Γ′
AB = I − A

( ∞∑

n=0

Γn
BA

)
(I − (Γ′

BA)2)B − A(Γ′
BA)2B

is a generalized Drazin–Riesz inverse of ΓAB.
Since

AV
−1 =

⎡

⎣ ΓAB A

0 I

⎤

⎦ and V
−1

A =

⎡

⎣ I A

0 ΓBA

⎤

⎦ ,

then using Cline’s formula [13, Theorem 2.2], we obtain a generalized Drazin–Riesz inverse of
AV−1 of the form

⎡

⎣ I − SΓBA
(I − Γ′

BA)B − A(Γ′
BA)2B SΓBA

(I − Γ′
BA) + A(Γ′

BA)2

B − BSΓBA
(I − Γ′

BA)B − (Γ′
BA)2B BSΓBA

(I − Γ′
BA)B − (Γ′

BA)2

⎤

⎦ ,

where

SΓBA
= A

( ∞∑

n=0

Γn
BA

)
(I − Γ′

BA).

Set

Γ′
AB = I − A

( ∞∑

n=0

Γn
BA

)
(I − (Γ′

BA)2)B − A(Γ′
BA)2B.

First

ΓABΓ′
AB = ΓAB − ΓABA

( ∞∑

n=0

Γn
BA

)
(I − (Γ′

BA)2)B − ΓABA(Γ′
BA)2B

= ΓAB − A

( ∞∑

n=1

Γn
BA

)
(I − (Γ′

BA)2)B − AΓ′
BAB,

and

Γ′
ABΓAB = ΓAB − A

( ∞∑

n=0

Γn
BA

)
(I − (Γ′

BA)2)BΓAB − A(Γ′
BA)2BΓAB
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= ΓAB − A

( ∞∑

n=1

Γn
BA

)
(I − (Γ′

BA)2)B − AΓ′
BAB.

Then
Γ′

ABΓAB = ΓABΓ′
AB.

Next

Γ′
ABΓAB = I − A

( ∞∑

n=0

Γn
BA

)
(I − ΓBAΓ′

BA)B.

Since

Γ′
AB

(
− A

( ∞∑

n=0

Γn
BA

)
(I − ΓBAΓ′

BA)B
)

= A

( ∞∑

n=0

Γn
BA

)
(I − ΓBAΓ′

BA)B

+ A

( ∞∑

n=0

Γn
BA

)
(I − ΓBAΓ′

BA)(I − ΓBAΓ′
BA)B

+ A(Γ′
BA)2(I − ΓBAΓ′

BA)B

= 0,

then
Γ′

ABΓABΓ′
AB = Γ′

AB.

Also

ΓABΓ′
ABΓAB = ΓAB − A

( ∞∑

n=0

Γn
BA

)
(I − ΓBAΓ′

BA)ΓBAB.

Since

BA

( ∞∑

n=0

Γn
BA

)
(I − ΓBAΓ′

BA)ΓBA = (I − ΓBAΓ′
BA)ΓBA

and (I − ΓBAΓ′
BA)ΓBA is a Riesz operator, we have by [2, Theorem 6]

A

( ∞∑

n=0

Γn
BA

)
(I − ΓBAΓ′

BA)ΓBAB

is a Riesz operator. Thus ΓABΓ′
ABΓAB − ΓAB is a Riesz operator.

Therefore

Γ′
AB = I − A

( ∞∑

n=0

Γn
BA

)
(I − (Γ′

BA)2)B − A(Γ′
BA)2B

is a generalized Drazin–Riesz inverse of ΓAB.
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