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Abstract In this paper, by establishing a Borel–Cantelli lemma for a capacity which is not necessar-

ily continuous, and a link between a sequence of independent random variables under the sub-linear

expectation and a sequence of independent random variables on R
∞ under a probability, we give the

sufficient and necessary conditions of the strong law of large numbers for independent and identically

distributed random variables under the sub-linear expectation, and the sufficient and necessary condi-

tions for the convergence of an infinite series of independent random variables, without the assumption

on the continuity of the capacities. A purely probabilistic proof of a weak law of large numbers is also

given.
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1 Introduction and Notations

Let {Xn; n ≥ 1} be a sequence of independent and identically distributed random variables
(i.i.d.) on a probability space (Ω,F , P). Denote Sn =

∑n
i=1 Xi. One of the most famous results

of probability theory is Kolmogorov [3]’s strong law of large numbers (see Theorem 3.2.2 of
Stout [7]), which states that

P

(

lim
n→∞

Sn

n
= b

)

= 1 (1.1)

if and only if
EP[|X1|] < ∞ and EP[X1] = b, (1.2)

where EP is the expectation with respect to the probability measure P. When the probabil-
ity measure P is uncertain, one may consider a family P of probability measures and define
Ê[X] = supP∈P EP [X]. Then Ê is no longer a linear expectation. It is sub-linear in sense
that Ê[aX + bY ] ≤ aÊ[X] + bÊ[Y ] if a, b ≥ 0. Peng [4, 5] introduced the concepts of indepen-
dence, identical distribution and G-normal random variables under the sub-linear expectation,
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and established the weak law of large numbers and central limit theorem for independent and
identically distributed random variables. Fang et al. [2] obtained the rate of convergence of the
weak law of large numbers and central limit theorem.

As for the strong law of large numbers, Chen [1] established a Kolmogorov type result. Let
{Xn; n ≥ 1} be a sequence of random variables in a sub-linear expectation space (Ω, H , Ê)
with a related upper capacity V̂. Chen [1] showed that, if {Xn; n ≥ 1} is a sequence of i.i.d.
random variables, the capacity V is continuous, and the following moment condition is satisfied

Ê[|X1|1+α] < ∞ for some α > 0, (1.3)

then

V̂

(

lim inf
n→∞

Sn

n
< −Ê[−X1] and lim sup

n→∞
Sn

n
> Ê[X1]

)

= 0 (1.4)

and

V̂

(

lim inf
n→∞

Sn

n
= −Ê[−X1]

)

= 1 and V̂

(

lim sup
n→∞

Sn

n
= Ê[X1]

)

= 1. (1.5)

By establishing the moment inequalities of the maximum partial sums, Zhang [9] weakened the
condition (1.3) to

C
V̂
(|X1|) :=

∫ ∞

0

V̂(|X1| > x)dx < ∞ (1.6)

and
Ê[(|X1| − c)+] → 0 as c → ∞. (1.7)

The conditions (1.6) and (1.7) are very close to Kolmogorov’s condition (1.2). Zhang [9] showed
that (1.6) is also a necessary condition. Nevertheless, whether (1.7) is necessary or not is
unknown. On the other hand, to make both the direct part and converse part of the Borel–
Cantelli lemma are valid for a capacity, it is usually needed to assume that the capacity is
continuous when the strong convergence is considered as in Chen [1] and Zhang [9] etc. However,
Zhang [12] showed that the assumption of the continuity of a capacity is very stringent. It is
showed that a sub-linear expectation with a continuous capacity is nearly linear.

The purpose of this paper is to obtain the sufficient and necessary conditions for the strong
law of large numbers of independent random variables under the sub-linear expectation without
the assumption of the continuity of the capacities. In particular it will be shown that, if
{Xn; n ≥ 1} is sequence of i.i.d. random variables in sub-linear expectation space (Ω, H , Ê)
with a regular sub-linear expectation Ê and a related upper capacity V̂ is countably sub-additive
(otherwise, V̂ can be replaced by a countably sub-additive extension), then

V̂
(

lim
n→∞

Sn

n
= b

)

= 1 and b is finite

if and only if
(1.6) holds and b = Ĕ[X1] = Ĕ [X1],

where V̂(A) = 1 − V̂(Ac), Ĕ[X] = limc→∞ Ê[(−c) ∨ X1 ∧ c] and Ĕ [X] = − limc→∞ Ê[(−c) ∨
(−X1) ∧ c]. As in the classical probability space, the almost sure convergence of a random
infinite series together with Kronecker’s lemma is a powerful tool for studying the strong law
of large numbers (see Pages 208–212 of Petrov [6]). The paper also gives the sufficient and
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necessary conditions for an infinite series of independent random variables under the sub-linear
expectation to be convergent.

Our main tools are a Borel–Cantelli lemma for a capacity which is not necessarily continuous,
and a comparison theorem for the random variables defined on the product space R

∞ which
gives a link between a sequence of independent random variables on R

∞ under the sub-linear
expectation and a sequence of independent random variables under a probability. By the
comparison theorem, a Kolmogorov’s maximal inequality is obtained and a weak law of large
numbers is given with a purely probabilistic proof.

To state the results, we shall first recall the framework of sub-linear expectation in this
section. We use the framework and notations of Peng [4, 5]. If one is familiar with these
notations, he or she can skip the following paragraphs. Let (Ω,F) be a given measurable space
and let H be a linear space of real functions defined on (Ω,F) such that if X1, . . . , Xn ∈ H

then ϕ(X1, . . . , Xn) ∈ H for each ϕ ∈ Cl,Lip(Rn), where Cl,Lip(Rn) denotes the linear space of
(local Lipschitz) functions ϕ satisfying

|ϕ(x) − ϕ(y)| ≤ C(1 + |x|m + |y|m)|x − y|, ∀x, y ∈ R
n,

for some C > 0, m ∈ N depending on ϕ.

We also denote Cb,Lip(Rn) the space of bounded Lipschitz functions.

Definition 1.1 A sub-linear expectation Ê on H is a function Ê : H → R satisfying the
following properties: for all X, Y ∈ H , we have

(a) Monotonicity: If X ≥ Y then Ê[X] ≥ Ê[Y ];
(b) Constant preserving: Ê[c] = c;
(c) Sub-additivity: Ê[X+Y ] ≤ Ê[X]+Ê[Y ] whenever Ê[X]+Ê[Y ] is not of the form +∞−∞

or −∞ + ∞;
(d) Positive homogeneity: Ê[λX] = λÊ[X], λ > 0.

Here R = [−∞,∞]. The triple (Ω, H , Ê) is called a sub-linear expectation space. Given a
sub-linear expectation Ê, let us denote the conjugate expectation Êof Ê by

Ê [X] := −Ê[−X], ∀X ∈ H .

By Theorem 1.2.1 of Peng [5], there exists a family of finite additive linear expectations
Eθ : H → R indexed by θ ∈ Θ, such that

Ê[X] = max
θ∈Θ

Eθ[X] for X ∈ H with Ê[X] being finite. (1.8)

Moreover, for each X ∈ H , there exists θX ∈ Θ such that Ê[X] = EθX
[X] if Ê[X] is finite.

Definition 1.2 (Peng [4, 5]) (i) (Identical distribution) Let X1 and X2 be two n-dimensional
random vectors, respectively, defined in sub-linear expectation spaces (Ω1, H1, Ê1) and (Ω2, H2,

Ê2). They are called identically distributed, denoted by X1
d= X2 if

Ê1[ϕ(X1)] = Ê2[ϕ(X2)], ∀ϕ ∈ Cb,Lip(Rn).

A sequence {Xn; n ≥ 1} of random variables is said to be identically distributed if Xi
d= X1 for

each i ≥ 1.
(ii) (Independence) In a sub-linear expectation space (Ω, H , Ê), a random vector Y =

(Y1, . . . , Yn), Yi ∈ H is said to be independent to another random vector X = (X1, . . . , Xm),
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Xi ∈ H under Ê if for each test function ϕ ∈ Cl,Lip(Rm × R
n) we have Ê[ϕ(X, Y )] =

Ê[Ê[ϕ(x, Y )]|x=X ], whenever ϕ(x) := Ê[|ϕ(x, Y )|] < ∞ for all x and Ê[|ϕ(X)|] < ∞.
A sequence of random variables {Xn; n ≥ 1} is said to be independent, if Xi+1 is independent

to (X1, . . . , Xi) for each i ≥ 1.

Next, we consider the capacities corresponding to the sub-linear expectations. Let G ⊂ F .
A function V : G → [0, 1] is called a capacity if

V (∅) = 0, V (Ω) = 1 and V (A) ≤ V (B), ∀A ⊂ B, A, B ∈ G.

It is called to be sub-additive if V (A ∪ B) ≤ V (A) + V (B) for all A, B ∈ G with A ∪ B ∈ G.
Let (Ω, H , Ê) be a sub-linear expectation space. We denote (V̂, V̂) to be a pair of capacities

by

V̂(A) := inf{Ê[ξ] : IA ≤ ξ, ξ ∈ H }, V̂(A) = 1 − V̂(Ac), ∀A ∈ F , (1.9)

where Ac is the complement set of A. Then V̂ is a sub-additive capacity with the property that

Ê[f ] ≤ V̂(A) ≤ Ê[g] if 0 ≤ f ≤ IA ≤ g, f, g ∈ H and A ∈ F . (1.10)

We call V̂ and V̂ the upper and the lower capacity, respectively.
Also, we define the Choquet integrals/expecations (C

V̂
, CV̂) by

CV [X] =
∫ ∞

0

V (X ≥ t)dt +
∫ 0

−∞
[V (X ≥ t) − 1]dt

with V being replaced by V̂ and V̂ respectively. If V on the sub-linear expectation space
(Ω, H , Ê) and Ṽ on the sub-linear expectation space (Ω̃, H̃ , Ẽ) are two capacities having the
property (1.10), then for any random variables X ∈ H and X̃ ∈ H̃ with X

d= X̃, we have

V(X ≥ x + ε) ≤ Ṽ(X̃ ≥ x) ≤ V(X ≥ x − ε) for all ε > 0 and x. (1.11)

In fact, let f ∈ Cb,Lip(R) such that I{y ≥ x + ε} ≤ f(y) ≤ I{y ≥ x}. Then

V(X ≥ x + ε) ≤ Ê[f(X)] = Ẽ[f(X̃)] ≤ Ṽ(X ≥ x),

and similar Ṽ(X̃ ≥ x + ε) ≤ V(X ≥ x). From (1.11), it follows that V(X ≥ x) = Ṽ(X̃ ≥ x) if x

is a continuous point of both functions V(X ≥ y) and Ṽ(X̃ ≥ y). Since, a monotone function
has at most countable number of discontinuous points. So

V(X ≥ x) = Ṽ(X̃ ≥ x) for all but except countable many x,

and then

CV(X) = C
Ṽ
(X̃). (1.12)

Because a capacity V̂ may be not countably sub-additive so that the Borel–Cantelli lemma
is not valid, we consider its countably sub-additive extension V̂

∗ which defined by

V̂
∗(A) = inf

{ ∞∑

n=1

V̂(An) : A ⊂
∞⋃

n=1

An

}

, V̂∗(A) = 1 − V̂
∗(Ac), A ∈ F . (1.13)

As shown in Zhang [9], V̂
∗ is countably sub-additive, and V̂

∗(A) ≤ V̂(A). Furthermore, V̂ (resp.
V̂

∗) is the largest sub-additive (resp. countably sub-additive) set function in sense that if V is
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also a sub-additive (resp. countably sub-additive) set function satisfying V (A) ≤ Ê[g] whenever
IA ≤ g ∈ H , then V (A) ≤ V(A) (resp. V (A) ≤ V̂

∗(A)).
Besides V̂

∗, another countably sub-additive capacity generated by Ê can be defined as
follows:

C
∗(A) = inf

{

lim
n→∞ Ê

[ n∑

i=1

gi

]

: IA ≤
∞∑

n=1

gn, 0 ≤ gn ∈ H

}

, A ∈ F . (1.14)

Then C
∗ ≤ V̂

∗. It can be shown that the out capacity c′ defined in Example 6.5.1 of Peng [5]
coincides with C

∗ if H is chosen as the family of (bounded) continuous functions on a metric
space Ω.

For real numbers x and y, denote x∨ y = max(x, y), x∧ y = min(x, y), x+ = max(0, x) and
x− = max(0,−x). For a random variable X, because XI{|X| ≤ c} may be not in H , we will
truncate it in the form (−c)∨X ∧ c denoted by X(c), and define Ĕ[X] = limc→∞ Ê[X(c)] if the
limit exists, and Ĕ [X] = −Ĕ[−X].

Proposition 1.3 Consider a subspace of H as

H1 = {X ∈ H : lim
c,d→∞

Ê[(|X| ∧ d − c)+] = 0}. (1.15)

Then for any X ∈ H1, Ĕ[X] is well defined, and (Ω, H1, Ĕ) is a sub-linear expectation space.

Proof For any X ∈ H1 and 0 < c1, c2 ≤ d we have

Ê[|(−c1) ∨ X ∧ c2 − X(d)|] ≤ Ê[(|X| ∧ d − (c1 ∧ c2))+].

Hence
|Ê[X(c)] − Ê[X(d)]| → 0 as c, d → ∞,

which implies that Ĕ[X] = limc→∞ Ê[X(c)] exists and is finite. Furthermore,

lim
c1,c2→∞ Ê[|(−c1) ∨ X ∧ c2] = Ĕ[X]. (1.16)

Notice (λX)(c) = λX(c/λ) for λ > 0. It is obvious that Ĕ[λX] = λĔ[X] for λ > 0. Finally, for
any X, Y ∈ H1 and c > 0, we have X + Y ∈ H1 and

(X + Y )(c) ≤ (−c/2) ∨ X ∧ (3c/2) + (−c/2) ∨ Y ∧ (3c/2).

By (1.16), Ĕ[X + Y ] ≤ Ĕ[X] + Ĕ[Y ]. The monotonicity and constant preserving for Ĕ are
obvious. The proof is completed. �

Let
E = {E : H1 → R is a finite additive linear expectation with E ≤ Ĕ}. (1.17)

By Theorem 1.2.1 of Peng [5],

Ĕ[X] = max
E∈E

E[X] for X ∈ H1, (1.18)

and moreover, for each X ∈ H1, there exists E ∈ E such that Ĕ[X] = E[X]. For the vector
X = (X1, . . . , Xd), we denote Ĕ[X] = (Ĕ[X1], . . . , Ĕ[Xd]), Ê[X] = (Ê[X1], . . . , Ê[Xd]) and
E[X] = (E[X1], . . . , E[Xd]) for E ∈ E .

Finally, a random variable X is called tight (under a capacity V satisfying (1.10)) if V(|X| ≥
c) → 0 as c → ∞. It is obvious that if Ê[|X|] < ∞, or Ĕ[|X|] < ∞ or CV(|X|) < ∞, then X is
tight.
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2 Basic Tools

In this section, we give some results which are basic tools for establishing the law of large
numbers as well as other limit theorems. The first one gives a link between the capacity and a
probability measure.

Proposition 2.1 Let (Ω, H , Ê) be a sub-linear expectation space with a capacity V satisfying
(1.10), and {Xn; n ≥ 1} be a sequence of random variables in (Ω, H , Ê). We can find a new
sub-linear space (Ω̃, H̃ , Ẽ) defined on a metric space Ω̃ = R

∞, with a sequence {X̃n; n ≥ 1}
of random variables and a set function Ṽ : F̃ → [0, 1] on it satisfying the following properties,
where F̃ = σ(H̃ ).

(a) (X1, X2, . . . , Xn) d= (X̃1, X̃2, . . . , X̃n), n = 1, 2, . . ., i.e.,

Ẽ[ϕ(X̃1, . . . , X̃n)] = Ê[ϕ(X1, . . . , Xn)], ϕ ∈ Cl,Lip(Rn), n ≥ 1,

whenever the sub-linear expectation in the right hand is finite. In particular, if {Xn;≥ 1} are
independent under Ê, then {X̃n; n ≥ 1} are independent under Ẽ.

(b) Define
Ṽ (A) = Ṽ

P̃(A) = sup
P∈P̃

P (A), A ∈ F̃ ,

where P̃ is the family of all probability measures P on (Ω̃, F̃) with the property

P [ϕ] ≤ Ẽ[ϕ] for bounded ϕ ∈ H̃ ,

and Ṽ ≡ 0 if P̃ is empty. Then Ṽ : F̃ → [0, 1] is a countably sub-additive and nondecreasing
function, and Ṽ ≤ C̃

∗ ≤ Ṽ
∗ ≤ Ṽ, where Ṽ, Ṽ

∗ and C̃
∗ are defined on (Ω̃, H̃ , Ẽ) in the same

way as V̂, V̂
∗ and C

∗ on (Ω, H , Ê), respectively.
Here and in the sequel, for a probability measure P and a measurable function X, P [X] is

defined to be the expectation
∫

XdP .
(c) If each Xn is tight, then P̃ is a weakly compact family of probability measures on the

metric space Ω̃,
Ẽ[ϕ] = sup

P∈P̃

P [ϕ] for bounded ϕ ∈ H̃ , (2.1)

and Ṽ is a countably sub-additive capacity with the property (1.10), i.e.,

Ẽ[f ] ≤ Ṽ (A) ≤ Ẽ[g] if 0 ≤ f ≤ IA ≤ g, f, g ∈ H̃ and A ∈ F̃ . (2.2)

(d) If {Xn;≥ 1} are independent under Ê and each Xn is tight, then for any sequence of
vectors {ξk = (Xnk−1+1, . . . , Xnk

); k ≥ 1} and a sequence {Ek; k ≥ 1} of finite additive linear
expectations on Hb = {f ∈ H ; f is bounded} with Ek ≤ Ê, where 1 = n0 < n1 < n2 < . . .,
there exists a probability measure Q on Ω̃ such that {ξ̃k = (X̃nk−1+1, . . . , X̃nk

); k ≥ 1} is a
sequence of independent random vectors under Q,

Q[ϕ(ξ̃k)] = Ek[ϕ(ξk)] for all ϕ ∈ Cb,Lip(Rnk−nk−1), (2.3)

Q[ϕ(X̃1, . . . , X̃n)] ≤ Ê[ϕ(X1, . . . , Xd)] for all ϕ ∈ Cb,Lip(Rn) (2.4)

and

ṽ((X̃1, X̃2, . . .) ∈ B) ≤ Q((X̃1, X̃2, . . .) ∈ B) ≤ Ṽ ((X̃1, X̃2, . . .) ∈ B) (2.5)
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for all B ∈ B(R∞),

where ṽ(A) = 1 − Ṽ (Ac).

Remark 2.2 When X1, X2, . . . are bounded random variables, then (2.3) and (2.4) hold for all
ϕ ∈ Cl,Lip. When X1, X2, . . . are multi-dimensional random vectors, Proposition 2.1 remains
true.

Proof A special case of this lemma can be found in the proofs in Zhang [12]. We summarize
the results and the proof here for the convenience of reading and the completeness of this paper.
We use the key idea in Lemma 1.3.5 of Peng [5] to construct the new sub-linear expectation in
the real space. Let Ω̃ = R

∞, F̃ = B(R∞) and

H̃ = {ϕ(x1, . . . , xn) : ϕ ∈ Cl,Lip(Rn), n ≥ 1, for x = (x1, x2, . . .) ∈ Ω̃}.
Define

Ẽ[ϕ] = Ê[ϕ(X1, . . . , Xn)], ϕ ∈ Cl,Lip(Rn).

Then Ẽ is a sub-linear expectation on (Ω̃, H̃ ). Define the random variable X̃i by X̃i(ω̃) = xi

for ω̃ = (x1, x2, . . .) ∈ Ω̃. Then

Ẽ[ϕ(X̃1, . . . , X̃n)] = Ẽ[ϕ] = Ê[ϕ(X1, . . . , Xn)], ϕ ∈ Cl,Lip(Rn).

It follows that (X̃1, . . . , X̃n) d= (X1, . . . , Xn) for n = 1, 2 . . .. (a) is proved, and (b) is obvious.
For (c), suppose that each Xn is tight. For the new sub-linear expectation, we also have

the expression (1.8):

Ẽ[X̃] = max
θ̃∈Θ̃

Eθ̃[X̃] for X̃ ∈ H̃ with Ẽ[X̃] being finite,

for a family of finite additive linear expectations Eθ̃ : H̃ → R indexed by θ̃ ∈ Θ̃. Furthermore,
for each X̃ ∈ H̃ , there exists θ̃X̃ ∈ Θ̃ such that Ẽ[X̃] = Eθ̃X̃

[X̃] if Ẽ[X̃] is finite. For each Eθ̃,
consider the finite additive linear expectation Eθ̃ on Cb,Lip(Rp). For any sequence Cb,Lip(Rp) �
ϕn ↘ 0, we have sup|x|≤c |ϕn(x)| → 0, and so

Eθ̃[ϕn] ≤ Ê[ϕn(X1, . . . , Xp)] ≤ sup
|x|≤c

|ϕn(x)| +
p∑

j=1

‖ϕ1‖V(|Xj | > c) → 0

as n → ∞ and then c → ∞, by the tightness of Xj , where ‖ϕ‖ = supx |ϕ(x)|. Then, as shown
in Lemma 1.3.5 of Peng [5], by Daniell–Stone’s theorem, there exists a family of probability
measures Pθ̃,p on (Rp, B(Rp)) such that

Eθ̃[ϕ] = Pθ̃,p[ϕ] =
∫

ϕ(x1, . . . , xp)Pθ̃,p(dx1, . . . , dxp), ϕ ∈ Cb,Lip(Rp).

It is obvious that {Pθ̃,p; p ≥ 1} is a Kolmogorov’s consistency system. By Kolmogorov’s exis-
tence theorem, there is a unique probability measure Pθ̃ on (R∞, B(R∞)) such that Pθ̃|B(Rp) =
Pθ̃,p. Hence

Pθ̃[ϕ] = Eθ̃[ϕ] ≤ Ẽ[ϕ], ϕ ∈ Cb,Lip(Rp).

Recall that P̃ is the family of all probability measures P on (R∞, B(R∞)) with the property

P [ϕ] ≤ Ẽ[ϕ], for bounded ϕ ∈ H̃ .
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Then for any bounded ϕ ∈ H̃ ,

Ẽ[ϕ] = sup
θ̃∈Θ̃

Eθ̃[ϕ] = sup
θ̃∈Θ̃

Pθ̃[ϕ] ≤ sup
P∈P̃

P [ϕ] ≤ Ẽ[ϕ].

It follows that (2.1) holds and for each bounded ϕ ∈ H̃ there exists a P ∈ P̃ such that
P [ϕ] = Ẽ[ϕ].

Suppose 0 ≤ f ≤ IA ≤ g, f(x) = f(x1, . . . , xp), g(x) = g(x1, . . . , xp) ∈ H̃ and A ∈ F̃ .
Then

P [f ] ≤ P (A) ≤ P [g ∧ 1].

By (2.1) and taking the supremum over P ∈ P̃, it follows that

Ê[f(X1, . . . , Xp)] = Ẽ[f ] ≤ Ṽ (A) ≤ Ẽ[g ∧ 1] ≤ Ẽ[g] = Ê[g(X1, . . . , Xp)].

(2.2) is proved. At last, we show that P̃ is weakly compact. For any ε > 0, by the tightness
of Xi, there exists a constant Ci such that V(|Xi| ≥ Ci) < ε/2i. Then Ṽ (x : |xi| ≥ 2Ci) ≤
V(|Xi| ≥ Ci) < ε/2i by (1.11). Let K =

⊗∞
i=1[−2Ci, 2Ci]. Then K is a compact subset in the

space R
∞ with a metric defined by d(x, y) =

∑∞
i=1(|xi − yi| ∧ 1)/2i. Notice

Ṽ (x �∈ K) ≤
∞∑

i=1

Ṽ (x : |xi| ≥ 2Ci) ≤
∞∑

i=1

ε/2i < ε.

It follows that P̃ is tight and so is relatively weakly compact. Assume P̃ � Pn =⇒ P . It is
obvious that

P [f ] = lim
n→∞ Pn[f ] ≤ Ê[f ] for bounded f ∈ H̃ .

Hence P ∈ P̃. It follows that P̃ is closed and so is weakly compact. (c) is proved.
Now, we show (d). Consider the linear operator Ẽk on Cb,Lip(Rnk−nk−1) defined by

Ẽk[ϕ] = Ek[ϕ(ξk)], ϕ ∈ Cb,Lip(Rnk−nk−1).

Then
Ẽk[ϕ] ≤ Ê[ϕ(ξk)], ϕ ∈ Cb,Lip(Rnk−nk−1).

If Cl,Lip(Rnk−nk−1) � ϕn ↘ 0, then sup|x|≤c |ϕn(x)| → 0 and

Ẽk[ϕn] ≤ Ê[ϕn(ξk)] ≤ sup
|x|≤c

|ϕn(x)| + ‖ϕ1‖V(|ξk| > c) → 0

as n → ∞ and then c → ∞, where ‖ϕ‖ = supx |ϕ(x)|. By Daniell–Stone’s theorem again, there
exists a probability measure Qk on R

nk−nk−1 such that

Qk[ϕ] = Ẽk[ϕ] ≤ Ê[ϕ(ξk)], ∀ϕ ∈ Cb,Lip(Rnk−nk−1).

Now, we introduce a product probability measure on R
∞ defined by

Q = Q1|Rn1 × Q2|Rn2−n1 × · · · .

Then, under the probability measure Q, for any Ai ∈ B(Rni−ni−1), i = 1, . . . , d, d ≥ 1,

Q({x; z1 ∈ A1, . . . , zd ∈ Ad}) = Q1(A1) · · ·Qd(Ad) = Q({x; z1 ∈ A1}) · · ·Q({x; zd ∈ Ad}),
where zi = (xni−1+1, . . . , xni

). That is

Q(ξ̃1 ∈ A1, . . . , ξ̃d ∈ Ad) = Q(ξ̃1 ∈ A1) · · ·Q(ξ̃d ∈ Ad).
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So, ξ̃1, ξ̃2, . . . is a sequence of independent random variables under Q. Furthermore,

Q[ϕ(ξ̃k)] = Qk[ϕ] = Ẽk[ϕ] = Ek[ϕ(ξk)] ≤ Ê[ϕ(ξk)], ∀ϕ ∈ Cb,Lip(Rnk−nk−1). (2.6)

(2.3) is proved.
Notice that for every ϕ(z1, . . . , zd) ∈ Cb,Lip(Rnd), where zi = (xni−1+1, . . . , xni

),

Q[ϕ(z1, . . . , zd−1, ξ̃d)] = Qd[ϕ(z1, . . . , zd−1, ·)] ≤ Ê[ϕ(z1, . . . , zd−1, ξd)]

by (2.6). Write the functions of (z1, . . . , zd−1) in the left hand and right hand by ϕ1(z1, . . . , zd−1)
and ϕ2(z1, . . . , zd−1), respectively. Notice that ξ̃1, . . . , ξ̃d are independent under both Q and
Ẽ, and ξ1, . . . , ξd are independent under Ê. We have that

Q[ϕ(z1, . . . , zd−2, ξ̃d−1, ξ̃d)] = Q[ϕ1(z1, . . . , zd−2, ξ̃d−1)]

≤ Q[ϕ2(z1, . . . , zd−2, ξ̃d−1)] ≤ Ê[ϕ2(z1, . . . , zd−2, ξd−1)]

= Ê[ϕ(z1, . . . , zd−2, ξd−1, ξd)] = Ẽ[ϕ(z1, . . . , zd−2, ξ̃d−1, ξ̃d)],

by (2.6) again. By induction, we conclude that

Q[ϕ(ξ̃1, . . . , ξ̃d)] ≤ Ẽ[ϕ(ξ̃1, . . . , ξ̃d)], for all ϕ ∈ Cb,Lip(Rnd), d ≥ 1.

Now, for each ϕ ∈ Cb,Lip(Rn), ϕ ◦ πnd→n is also a function in Cb,Lip(Rnd) when n ≤ nd, where
πnd→n : R

nd → R
n is the projection map. It follows that

Q[ϕ] = Q[ϕ(X̃1, . . . , X̃n)] = Q[ϕ ◦ πnd→n(ξ̃1, . . . , ξ̃d)]

≤ Ẽ[ϕ ◦ πnd→n(ξ̃1, . . . , ξ̃d)] = Ẽ[ϕ(X̃1, . . . , X̃n)]

= Ê[ϕ(X1, . . . , Xn)] = Ẽ[ϕ].

That is, Q[ϕ] ≤ Ẽ[ϕ] for all bounded ϕ ∈ H̃ . Hence, Q ∈ P̃ and (2.4) holds. So, for each
B ∈ B(R∞),

Q((X̃1, X̃2, . . .) ∈ B) = Q(B) ≤ Ṽ (B) = Ṽ ((X̃1, X̃2, . . .) ∈ B),

by the definition of Ṽ . The right hand of (2.5) is proved. The left hand is obvious by noting
Q(B) = 1 − Q(Bc) and ṽ(B) = 1 − Ṽ (Bc). The proof is completed. �

The next lemma is the Borel–Cantelli lemma for a countably sub-additive capacity.

Lemma 2.3 Let V be a countably sub-additive capacity and
∑∞

n=1 V (An) < ∞. Then

V (An i.o.) = 0, where {An i.o.} =
∞⋂

n=1

∞⋃

i=n

Ai.

Proof Easy and omitted. �
The following lemma is the converse part of Borel–Cantelli lemma under Ṽ

∗ or Ṽ .

Lemma 2.4 Let {Xn; n ≥ 1} be a sequence of independent random variables in the sub-
linear expectation space (Ω, H , Ê) for which each Xn is tight, {X̃n; n ≥ 1} be its copy on
(Ω̃, H̃ , Ẽ) as defined in Proposition 2.1. Suppose ξk = (Xnk−1+1, . . . , Xnk

), 1 = n0 < n1 < . . .,
fk,j ∈ Cl,Lip(Rnk−nk−1) and

∑∞
k=1 V(fk,j(ξk) ≥ 1 + εk,j) = ∞, j = 1, 2, . . ., where εk,j > 0,

k, j = 1, 2, . . .. Then on the space (Ω̃, H̃ , Ẽ),

Ṽ(A) = Ṽ
∗(A) = Ṽ (A) = 1, A =

∞⋂

j=1

{fk,j(ξ̃k) ≥ 1 i.o.},
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where ξ̃k = (X̃nk−1+1, . . . , X̃nk
).

Proof Let gk,j ∈ Cb,Lip(R) such that I{x ≥ 1} ≥ gk,j(x) ≥ I{x ≥ 1 + εk,j}. Then
∞∑

k=1

Ê[gk,j(fk,j(ξk))] = ∞, j = 1, 2, . . . .

By the expression (1.8), for each pair of k and j there exists θk,j ∈ Θ such that

Eθk,j
[gk,j(fk,j(ξk))] = Ê[gk,j(fk,j(ξk))].

Define the linear operator Ek by

Ek =
∞∑

j=1

2−jEθk,j
.

Then Ek ≤ Ê. By Proportion 2.1 (d), there exists a probability measure Q on Ω̃ such that
{ξk; k ≥ 1} is a sequence of independent random variables under Q, and (2.3)–(2.5) hold. By
(2.3),

∞∑

k=1

Q(fk,j(ξ̃k) ≥ 1) ≥
∞∑

k=1

Q[gk,j(fk,j(ξ̃k))] =
∞∑

k=1

Ek[gk,j(fk,j(ξk))]

≥ 1
2j

∞∑

k=1

Eθk,j
[gk,j(fk,j(ξk))] =

1
2j

∞∑

k=1

Ê[gk,j(fk,j(ξk))] = ∞.

So, by the Borel–Cantelli lemma for a probability measure,

Q(fk,j(ξk) ≥ 1 i.o.) = 1.

It follows that

Q

( ∞⋂

j=1

{fk,j(ξ̃k) ≥ 1 i.o.}
)

= 1.

By (2.5), it follows that

Ṽ(A) ≥ Ṽ
∗(A) ≥ Ṽ (A) = 1.

The proof is now completed. �
The next lemma tells us that the converse part of the Borel–Cantelli lemma remains valid

in the original sub-linear expectation space (Ω, H , Ê) under certain conditions.

Lemma 2.5 Let (Ω, H , Ê) be a sub-linear expectation space with a capacity V having the
property (1.10), and v(A) = 1−V (Ac). Suppose that one of the following conditions is satisfied.

(a) The sub-linear expectation Ê satisfies

Ê[X] = max
P∈P

P [X], X ∈ Hb,

where Hb = {f ∈ H ; f is bounded}, P is a countable-dimensionally weakly compact family
of probability measures on (Ω, σ(H )) in sense that, for any Y1, Y2, . . . ∈ Hb and any sequence
{Pn} ⊂ P there is a subsequence {nk} and a probability measure P ∈ P for which

lim
k→∞

Pnk
[ϕ(Y1, . . . , Yd)] = P [ϕ(Y1, . . . , Yd)], ϕ ∈ Cb,Lip(Rd), d ≥ 1. (2.7)
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(b) Ê on Hb is regular in sense that Ê[Xn] ↓ 0 for any elements Hb � Xn ↓ 0. Let P be
the family of all probability measures on (Ω, σ(H )) for which

P [f ] ≤ Ê[f ], f ∈ Hb.

(c) Ω is a complete separable metric space, each element X(ω) in H is a continuous function
on Ω. The capacity V with the property (1.10) is tight in sense that, for any ε > 0 there is a
compact set K ⊂ Ω such that V (Kc) < ε. Let P be defined as in (b).

(d) Ω is a complete separable metric space, each element X(ω) in H is a continuous function
on Ω. The sub-linear expectation Ê is defined by

Ê[X] = max
P∈P

P [X],

where P is a weakly compact family of probability measures on (Ω, B(Ω)).
Denote V

P(A) = maxP∈P P (A), A ∈ σ(H ). Let {Xn; n ≥ 1} be a sequence of independent
random variables in (Ω, H , Ê).

(i) If
∑∞

n=1 v(Xn < 1) < ∞, then for V = V
P , C

∗, V̂
∗ or V̂,

V

( ∞⋃

m=1

∞⋂

i=m

{Xi ≥ 1}
)

= 1, i.e., V(Xi < 1 i.o.) = 0. (2.8)

(ii) If
∑∞

n=1 V (Xn ≥ 1) = ∞, then for V = V
P , C

∗, V̂
∗ or V̂,

V(Xn ≥ 1 i.o.) = 1. (2.9)

More generally, suppose that {Xn; n ≥ 1} is a sequence of independent random vectors in
(Ω, H , Ê), where Xn is dn-dimensional, fn,j ∈ Cl,lip(Rdn) and

∑∞
n=1 V (fn,j(Xn) ≥ 1) = ∞,

j = 1, 2, . . ., then for V = V
P , C

∗, V̂
∗ or V̂,

V

( ∞⋂

j=1

{fn,j(Xn) ≥ 1 i.o.}
)

= 1. (2.10)

(iii) Suppose that {Xn; n ≥ 1} is a sequence of independent random vectors in (Ω, H , Ê),
where Xn is dn-dimensional. If Fn is a dn-dimensional closed set with

∑∞
n=1 v(Xn �∈ Fn) < ∞,

then for V = V
P , C

∗, V̂
∗ or V̂,

V(Xn �∈ Fn i.o.) = 0;

If Fn,js are dn-dimensional closed sets with
∑∞

n=1 V (Xn ∈ Fn,j) = ∞, j = 1, 2, . . ., then for
V = V

P , C
∗, V̂

∗ or V̂,

V

( ∞⋂

j=1

{Xn ∈ Fn,j i.o.}
)

= 1.

Proof (i) and (ii) are special cases of (iii). But, to prove the general case (iii), we need to
show the two special cases first. Without loss of generality, we can assume 0 ≤ Xn ≤ 2, for
otherwise, we can replace it by 0∨Xn∧2. Write X = (X1, X2, . . .). Suppose that (a) is satisfied.
Consider the family P on σ(X). Notice |Xn| ≤ 2, n = 1, 2, . . ., and the set K =

⊗∞
i=1[−2, 2] is

a compact set on R
∞. So, PX−1 =: {P : P (A) = P (X ∈ A), A ∈ B(R∞), P ∈ P} is a tight

and so a relatively weakly compact family of probability measures on the metric space R
∞.
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Next, we show that PX−1 is closed. Suppose that PnX−1 ∈ PX−1 is weakly convergent
sequence. Then there exists a probability Q on R

∞ such that Pn =⇒ Q, i.e.,

Q[f ] = lim
n→∞ Pn[f(X)], f ∈ Cb(R∞). (2.11)

It is needed to show that there exists a probability measure P ∈ P satisfying Q(A) = P (X ∈ A)
for A ∈ B(R∞). By the conditions assumed, for the sequence {Pn} there exists a subsequence
{nk} and a probability measure P ∈ P such that (2.7) holds. Hence

Q[f ] = P [f(X1, . . . , Xd)], ∀f ∈ Cb,Lip(Rd), d ≥ 1.

So, Q({x : (x1, . . . , xd) ∈ A}) = P ((X1, . . . , Xd) ∈ A) for all A ∈ B(Rd), which implies
Q(A) = P (X ∈ A) for all A ∈ B(R∞). We conclude that PX−1 is closed and so weakly
compact. Denote Ṽ (A) = V

P(X ∈ A). By Lemma 6.1.12 of Peng [5], for any sequence of
closed sets Fn ↓ F , we have Ṽ (Fn) ↓ Ṽ (F ).

Now, we consider (i). By the independence, we have for any δi > 0, and V = V
P , C

∗, V̂
∗

or V̂,

V

( n⋂

i=m

{Xi ≥ 1 − δi}
)

≥
n∏

i=m

V (Xi ≥ 1).

In fact, we can choose a Lipschitz function fi such that I{x ≥ 1 − δi} ≥ fi(x) ≥ I{x ≥ 1}.
Then

V

( n⋂

i=m

{Xi ≥ 1 − δi}
)

≥ Ê

[ n∏

i=m

fi(Xi)
]

=
n∏

i=m

Ê[fi(Xi)] ≥
n∏

i=m

V (Xi ≥ 1).

Let εi = v(Xi < 1) and choose δi = 1/l. Then

V
P

( n⋂

i=m

{Xi ≥ 1 − 1/l}
)

≥
∞∏

i=m

V (Xi ≥ 1) =
∞∏

i=m

(1 − εi).

Notice that {x :
⋂n

i=m{xi ≥ 1 − δi}} is a closed set of x on R
∞. It follows that

V
P

( n⋂

i=m

{Xi ≥ 1 − 1/l}
)

↘l V
P

( n⋂

i=m

{Xi ≥ 1}
)

↘n V
P

( ∞⋂

i=m

{Xi ≥ 1}
)

.

It follows that

V
P

( ∞⋂

i=m

{Xi ≥ 1}
)

≥
∞∏

i=m

V (Xi ≥ 1) =
∞∏

i=m

(1 − εi) → 1, m → ∞

due the fact that
∑∞

i=1 εi < ∞. Hence (2.8) is proved.
Consider (ii). Write εi = V (Xi ≥ 1). Now, for V = 1 − V

P , 1 − C
∗, 1 − V̂

∗ or 1 − V̂, we
have

V
( n⋂

i=m

{Xi < 1 − 1/l}
)

≤ Ê
[ n∏

i=m

(1 − fi(Xi))
]

=
n∏

i=m

Ê [1 − fi(Xi)] ≤
n∏

i=m

v(Xi < 1).

That is

V

( n⋃

i=m

{Xi ≥ 1 − 1/l}
)

≥ 1 −
n∏

i=m

(1 − V (Xi ≥ 1)) ≥ 1 − exp
{

−
n∑

i=m

εi

}

.
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Notice that
⋃n

i=m{xi ≥ 1 − 1/l} is a closed set of x. It follows that

V
P

( n⋃

i=m

{Xi ≥ 1 − 1/l}
)

↘ V
P

( n⋃

i=m

{Xi ≥ 1}
)

as l → ∞.

Hence for each m,

V
P

( n⋃

i=m

{Xi ≥ 1}
)

≥ 1 − exp
{

−
n∑

i=m

εi

}

→ 1 as n → ∞, (2.12)

due to the fact that
∑∞

i=1 εi = ∞. Let δk = 2−k. We can choose a sequence nk ↗ ∞ such that

V
P

(

max
nk+1≤i≤nk+1

Xi ≥ 1
)

= V
P

( nk+1⋃

i=nk+1

{Xi ≥ 1}
)

≥ 1 − δk.

Let Zk = maxnk+1≤i≤nk+1 Xi. Then {Zk; k ≥ 1} are independent under Ê. By (i),

V
P

( ∞⋃

l=1

∞⋂

k=l

{Zk ≥ 1}
)

= 1.

Notice
⋃∞

l=1

⋂∞
k=l{Zk ≥ 1} ⊂ {Xn ≥ 1 i.o.}. (2.9) holds.

Now, we consider the general case. Without loss of generality, assume 0 ≤ fn,j(Xn) ≤ 2.
Similar to (2.12), for each m and j we have

V
P

( n⋃

i=m

{fi,j(Xi) ≥ 1}
)

≥ 1 − exp
{

−
n∑

i=m

V (fi,j(Xi) ≥ 1)
}

→ 1, n → ∞.

Let δk = 2−k. We choose the sequence 1 = n0,0 < n1,1 < n2,1 < n2,2 < · · · < nk,1 < · · · <

nk,k < nk+1,1 < · · · such that

V
P

( nk,j⋃

i=nk,j−1+1

{fi,j(Xi) ≥ 1}
)

≥ 1 − δk+j , j ≤ k, k ≥ 1,

where nk,0 = nk−1,k−1. Let Zk,j = maxnk,j−1+1≤i≤nk,j
fi,j(Xi). Then the random variables

Z1,1, Z2,1, Z2,2, . . . , Zk,1, . . . , Zk,k, Zk+1,1, . . . are independent under Ê with

VP(Zk,j < 1) < δk+j .

Notice
∑∞

k=1

∑k
j=1 δk+j < ∞. By (i), we have

V
P

( ∞⋃

l=1

∞⋂

k=l

k⋂

j=1

{Zk,j ≥ 1}
)

= 1.

On the event
⋃∞

l=1

⋂∞
k=l

⋂k
j=1{Zk,j ≥ 1}, there exists an l0 such that Zk,j ≥ 1 for all k ≥ l0 and

1 ≤ j ≤ k. For each fixed j, when k ≥ j ∨ l0 we have Zk,j ≥ 1, and hence {fn,j(Xn) ≥ 1 i.o}
occurs. It follows that

∞⋃

l=1

∞⋂

k=l

k⋂

j=1

{Zk,j ≥ 1} ⊂
∞⋂

j=1

{fn,j(Xn) ≥ 1 i.o}.

(2.10) holds.
(iii) Denote d(x, F ) = inf{‖y − x‖ : y ∈ F}. Then d(x, F ) is a Lipschitz function of x. If

Fn,j is a closed set, then

Xn ∈ Fn,j ⇐⇒ d(Xn, Fn,j) = 0 ⇐⇒ fn,j(Xn) := 1 − 1 ∧ d(Xn, Fn,j) ≥ 1.
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The results follow from (i) and (ii) immediately.
When the condition (b) is satisfied, it is sufficient to show that the family P satisfies the

assumption in (a). Notice the expression (1.8). Consider the linear expectation Eθ on Hb. If
Hb � fn ↓ 0, then 0 ≤ Eθ[fn] ≤ Ê[fn] → 0. Hence, similar to Lemma 1.3.5 and Lemma 6.2.2 of
Peng [5], by Daniell–Stone’s theorem, there is a unique probability Pθ on σ(Hb) = σ(H ) such
that

Pθ[f ] = Eθ[f ] ≤ Ê[f ], f ∈ Hb.

Hence

Ê[f ] = sup
θ∈Θ

Eθ[f ] = sup
θ∈Θ

Pθ[f ], f ∈ Hb.

Recall that P is the family of all probability measures P on σ(H ) which satisfies P [f ] ≤ Ê[f ]
for all f ∈ Hb. We have

Ê[f ] = sup
θ∈Θ

Pθ[f ] ≤ sup
P∈P

P [f ] ≤ Ê[f ], f ∈ Hb.

Suppose Y1, Y2, . . . ∈ Hb with |Yi| ≤ Ci. Write Y = (Y1, Y2, . . .) and K =
⊗∞

i=1[−Ci, Ci]. Then
P (Y ∈ Kc) = 0 and K is a compact set on the space R

∞. It follows that PY −1 is tight and
so is relatively weakly compact family of probability measures on the metric space R

∞. Hence,
for any sequence {Pn} ⊂ P, there exists a subsequence nk ↗ ∞ such that

E[f(Y )] = lim
k→∞

Pnk
[f(Y )], f ∈ Cb(R∞)

is well-defined. It is obvious that E is a linear expectation on {ϕ(Y ) : ϕ ∈ Cb(R∞)}. Consider
E on L = {ϕ(Y1, . . . , Yd) : ϕ ∈ Cb,Lip(Rd), d ≥ 1}. It is obvious that

E[ϕ(Y1, . . . , Yd)] = lim
k→∞

Pnk
[ϕ(Y1, . . . , Yd)] ≤ Ê[ϕ(Y1, . . . , Yd)], ϕ ∈ Cb,Lip(Rd).

So, by the Hahn–Banach theorem, there exists a finite additive linear expectation Ee defined
on H such that, Ee = E on L and, Ee ≤ Ê on H . For Ee, by the regularity, as shown before
there is probability measure P e on σ(H ) such that P e[f ] = Ee[f ] for all f ∈ Hb ⊃ L . Hence
P e ∈ P and

lim
k→∞

Pnk
[ϕ(Y1, . . . , Yd)] = E[ϕ(Y1, . . . , Yd)] = P e[ϕ(Y1, . . . , Yd)], ϕ ∈ Cb,Lip(Rd), d ≥ 1.

It follows that P satisfies the assumption in (a).
For (c), it can be shown that Ê is regular on Hb and so the condition (b) is satisfied. In

fact, suppose that Hb � fn ↓ 0, fn ≤ M , and K is a compact set. Then

δn =: sup
ω∈K

fn(ω) ↓ 0 and 0 ≤ Ê[fn] ≤ δn + MV (Kc).

Ê[fn] ↓ 0 follows from the tightness of V . Finally, (d) is a special case of (a). The proof is
completed. �

Remark 2.6 The condition (d) is popular in the study of sub-linear expectations, c.f. Peng
[5]. The condition (a) is an analogue of (d). Since the weak compactness can be only defined for
probability measures on a metric space, we assume the condition (a) in the general measurable
space.
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Actually, the condition (a) implies that Ê is regular on Hb. For showing this fact, suppose
Hb � Yn ↘ 0. For each n, there exists Pn ∈ P such that Ê[Yn] ≥ Pn[Yn] ≥ Ê[Yn] − 1/n2. For
the sequence {Pn} and Y1, Y2, . . ., by the condition assumed, there exist a subsequence {Pnk

}
and a probability measure P ∈ P such that (2.7) holds. It follows that

0 ≤ lim sup
k→∞

Pnk
[Ynk

] ≤ lim
k→∞

Pnk
[Ym] = P [Ym], ∀m ≥ 1.

Notice P [Ym] ↘ 0 as m → ∞ by the continuity of P . Hence, limk→∞ Ê[Ynk
] = limk→∞ Pnk

[Ynk
]

= 0, which implies Ê[Yn] → 0 by the monotonicity of Ê[Yn].
Though the conditions (a) and (b) are equivalent, the families P may be different. The

capacities C
∗, V̂

∗ and V̂ do not depend on the choice of P, but V
P does.

The rest three lemmas give the estimators of the tail capacities of maximum partial sums of
independent random variables. Lemma 2.7 below is a kind of Kolmogorov’s maximal inequality
under V̂.

Lemma 2.7 Let {Zn,k; k = 1, . . . , kn} be an array of independent random vectors taking
values in R

d such that Ê[|Zn,k|2] < ∞, k = 1, . . . , kn, here | · | is the Euclidean norm. Then for
any μn,k ∈ M̃[Zn,k] =: {E[Zn,k] : E ∈ E } where E is defined as (1.17), k = 1, . . . , kn,

V̂
(

max
m≤kn

∣
∣
∣
∣

m∑

k=1

(Zn,k − μn,k)
∣
∣
∣
∣ ≥ x

)

≤ 2x−2
kn∑

k=1

(Ê[|Zn,k|2] − |μn,k|2), ∀x > 0.

Proof For each k there exists Ek ∈ E such that μn,k = Ek[Zn,k]. Ek is a finite additive
linear expectation on Hb = {f ∈ H ; f is bounded} with E ≤ Ĕ = Ê. Notice that each
Zn,k is tight by the fact Ê[|Zn,k|2] < ∞. By Proposition 2.1, {Zn,k; k = 1, . . . , kn} has a
copy {Z̃n,k; k = 1, . . . , kn} on a new sub-linear expectation space (Ω̃, H̃ , Ẽ) with a probability
measure Q on Ω̃ such that {Z̃n,1, . . . , Z̃n,kn

} are independent random vectors under Q,

Q[ϕ(Z̃n,k)] = Ek[ϕ(Zn,k)] for all ϕ ∈ Cb,Lip(Rd), (2.13)

Q[ϕ(Z̃n,1, . . . , Z̃n,kn
)] ≤ Ê[ϕ(Zn,1, . . . , Zn,kn

)] for all ϕ ∈ Cb,Lip(Rd×kn) (2.14)

and
ṽ(B) ≤ Q(B) ≤ Ṽ (B) for all B ∈ σ(Z̃n,1, . . . , Z̃n,kn

). (2.15)

Notice Ek|Zn,k,i − (−c)∨Zn,k,i ∧ c| ≤ Ê[(|Zn,k,i|− c)+] → 0 as c → ∞ by Ê[|Zn,k|2] < ∞. Then

Q[Z̃n,k,i] = lim
c→∞Q[(−c) ∨ Z̃n,k,i ∧ c] = lim

c→∞ Ek[(−c) ∨ Zn,k,i ∧ c] = Ek[Zn,k,i] = μn,k,i

by (2.13), and

Q[|Z̃n,k|2] = lim
c→∞ Q[|Z̃n,k|2 ∧ c] ≤ lim

c→∞ Ê[|Zn,k|2 ∧ c] ≤ Ê[|Zn,k|2].

by (2.14). Let Y = maxm≤kn
|∑m

k=1(Z̃n,k − μn,k)|. By (2.15) and the Kolmogorov inequality
for independent random variables in a probability space, we have

Ṽ(Y ≥ x) ≤ ṽ(Y ≥ x) ≤ Q(Y ≥ x) ≤ 2x−2
kn∑

k=1

Q[|Z̃n,k − Q[Z̃n,k]|2]

= 2x−2
kn∑

k=1

(Q[|Z̃n,k|2] − |Q[Z̃n,k]|2) ≤ 2x−2
kn∑

k=1

(Ê[|Zn,k|2] − |μn,k|2).
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By (1.11) and noting maxm≤kn
|∑m

k=1(Z̃n,k −μn,k)| d= maxm≤kn
|∑m

k=1(Zn,k −μn,k)|, we have

V̂
(

max
m≤kn

∣
∣
∣
∣

m∑

k=1

(Zn,k − μn,k)
∣
∣
∣
∣ ≥ x

)

≤ Ṽ(Y ≥ y) ≤ 2y−2
kn∑

k=1

(Ê[|Zn,k|2] − |μn,k|2), 0 < y < x.

The proof is completed. �
The following lemma is on the exponential inequality under V̂ whose proof is similar to that

of Theorem 4.5 of Zhang [11].

Lemma 2.8 Let {Zn,k; k = 1, . . . , kn} be an array of independent random variables under Ê

such that Ê[Zn,k] ≤ 0 and Ê[Z2
n,k] < ∞, k = 1, . . . , kn. Then for all x, y > 0

V̂

(

max
m≤kn

m∑

k=1

Zn,k ≥ x

)

≤ V̂

(

max
k≤kn

Zn,k ≥ y

)

+ exp
{

x

y
− x

y

(
B2

n

xy
+ 1

)

ln
(

1 +
xy

B2
n

)}

, (2.16)

where B2
n =

∑kn

k=1 Ê[Z2
n,k]. In particular, by letting y = x, we have Kolmogorov’s maximal

inequality under V̂ as follows:

V̂

(

max
m≤kn

m∑

k=1

Zn,k ≥ x

)

≤ (e + 1)
B2

n

x2
, ∀x > 0. (2.17)

The last lemma on the Lévy maximal inequality is Lemma 2.1 of Zhang [10].

Lemma 2.9 Let X1, . . . , Xn be independent random variables in a sub-linear expectation space
(Ω, H , Ê), Sk =

∑k
i=1 Xi, and 0 < α < 1 be a real number. If there exist real constants βn,k

such that
V̂(|Sk − Sn| ≥ βn,k + ε) ≤ α, for all ε > 0 and k = 1, . . . , n,

then

(1 − α)V̂
(
max
k≤n

(|Sk| − βn,k) > x + ε
) ≤ V̂(|Sn| > x), for all x > 0, ε > 0. (2.18)

3 The Law of Large Numbers

Our first theorem gives the sufficient and necessary conditions for the strong law of large
numbers. Let {Xn; n ≥ 1} be a sequence of i.i.d. random variables in a sub-linear expectation
space (Ω, H , Ê). Denote Sn =

∑n
i=1 Xi.

Theorem 3.1 (a) If
C

V̂
(|X1|) < ∞, (3.1)

then

V̂
∗
(

lim inf
n→∞

Sn

n
< Ĕ [X1] or lim sup

n→∞
Sn

n
> Ĕ[X1]

)

= 0. (3.2)

Furthermore, if the space (Ω, H , Ê) satisfies one of the conditions (a)–(d) in Lemma 2.5, then
for V = V

P , C
∗ or V̂

∗,

V

(

lim inf
n→∞

Sn

n
= Ĕ [X1] and lim sup

n→∞
Sn

n
= Ĕ[X1]

)

= 1, (3.3)
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V

(

C

{
Sn

n

}

= [Ĕ [X1], Ĕ[X1]]
)

= 1, (3.4)

where C{xn} denotes the cluster set of a sequence of {xn} in R.
(b) Suppose that the space (Ω, H , Ê) satisfies one of the conditions (a)–(d) in Lemma 2.5.

If for V = V
P , C

∗ or V̂
∗,

V

(

lim sup
n→∞

|Sn|
n

= ∞
)

< 1, (3.5)

then (3.1) holds.

Remark 3.2 Theorem 3.1 tells us that the sufficient and necessary condition for the strong
law of large numbers is (3.1). Under (3.1), Ĕ[X1] and Ĕ [X1] are well-defined and finite. In
Zhang [9], (3.2) is proved under (3.1) and an extra condition that Ê[(|X1|−c)+] → 0 as c → ∞.
Under this extra condition, we have Ê[X1] = Ĕ[X1] and Ê [X1] = Ĕ [X1]. For establishing (3.3)
and (3.4) and (b), the continuity of V̂

∗ is also assumed in Zhang [9].

The following corollary gives an analogues of (1.1).

Corollary 3.3 Suppose that the space (Ω, H , Ê) satisfies one of the conditions (a)–(d) in
Lemma 2.5.

(a) If (3.1) is satisfied, then for V = V
P , C

∗ or V̂
∗,

V

(

lim
n→∞

Sn

n
= b

)

=

⎧
⎨

⎩

1, when b ∈ [Ĕ [X1], Ĕ[X1]],

0, when b �∈ [Ĕ [X1], Ĕ[X1]].
(3.6)

(b) For V = V
P , C

∗ or V̂
∗, there exists a finite random variable b(ω) such that

V
(

lim
n→∞

Sn

n
= b

)

= 1 (3.7)

if and only if (3.1), Ĕ [X1] = Ĕ[X1] and V(b = Ĕ[X1]) = 1.

The following theorem and corollary are Marcinkiewicz’s type laws of large numbers which
gives the rate of convergence of Kolmogorov’s type law of large numbers.

Theorem 3.4 Let 1 ≤ p < 2. If
C

V̂
(|X1|p) < ∞, (3.8)

then

V̂
∗
(

lim inf
n→∞

Sn − nĔ [X1]
n1/p

< 0 or lim sup
n→∞

Sn − nĔ[X1]
n1/p

> 0
)

= 0. (3.9)

Furthermore, if the space (Ω, H , Ê) satisfies one of the conditions (a)–(d) in Lemma 2.5, then
for V = V

P , C
∗ or V̂

∗,

V

(

lim inf
n→∞

Sn − nĔ [X1]
n1/p

= 0 and lim sup
n→∞

Sn − nĔ[X1]
n1/p

= 0
)

= 1. (3.10)

Corollary 3.5 Suppose that the space (Ω, H , Ê) satisfies one of the conditions (a)–(d) in
Lemma 2.5.

(a) If (3.8) is satisfied, then for V = V
P , C

∗ or V̂
∗,

V

(

lim
n→∞

Sn − nb

n1/p
= 0

)

=

⎧
⎨

⎩

1, when b ∈ [Ĕ [X1], Ĕ[X1]],

0, when b �∈ [Ĕ [X1], Ĕ[X1]].
(3.11)
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(b) For V = V
P , C

∗ or V̂
∗, there exist finite random variables b(ω) and c(ω) such that

V
(

lim
n→∞

Sn − nb

n1/p
= c

)

= 1 (3.12)

if and only if C
V̂
(|X1|p) < ∞, Ĕ [X1] = Ĕ[X1] and

V(b + c = Ĕ[X1]) = 1, when p = 1,

V(b = Ĕ[X1], c = 0) = 1, when 1 < p < 2.
(3.13)

Remark 3.6 When the space (Ω, H , Ê) does not satisfy the conditions (a)–(d) in Lemma 2.5.
We may consider the copy {X̃n; n ≥ 1}. The sub-linear expectation space (Ω̃, H̃ , Ẽ) satisfies
the condition (d) in Lemma 2.5 when each Xn is tight, by Proposition 2.1, and so, Theorems
3.1 and 3.4 and Corollary 3.3 and 3.5 remain true for {X̃n; n ≥ 1}.

Terán [8] gave an example as follows which shows that (3.3) and (3.4) do not hold.

Example 3.7 Set Ω = {0, 1, 2, . . .}, take H to be the set of all bounded (necessarily Borel
measurable) functions on Ω, and define Ê[X] = supω∈Ω X(ω) for all X ∈ H . Let Xn be the
nth bit in the binary representation of ω. Terán [8] showed that {Xn; n ≥ 1} is a sequence
of independent and identically distributed random variables under Ê with Xn(ω) ∈ {0, 1},
Ê [X1] = 0, Ê[X1] = 1 and

Sn

n
→ Ê [X1] for all ω ∈ Ω.

By noting that Xn is bounded, Ĕ [X] = Ê [X1] and Ê[X1] = Ĕ[X1]. For this sub-linear expec-
tation space, V̂(A) = V̂

∗(A) = C
∗(A) = Ê[IA] = supω∈Ω IA(ω) = 1 if A is not empty and 0

otherwise. Hence, (3.3) and (3.4) do not hold.

In the above example, if let δω0 to the unit mass at ω0, i.e., δω0(A) = IA(ω0), and denote
P = {δω0 ; ω0 ∈ Ω}, then Ê[X] = supP∈P P [X]. However, the sub-linear expectation space
does not satisfy the conditions in Lemma 2.5. In fact, Yn(ω) = ω∧n

n is a bounded sequence in
H with 1 ≥ Yn(ω) ↘ 0, but Ê[Yn] = supω∈Ω Yn(ω) = 1 �→ 0. So, Ê is not regular on Hb. As
we have shown that, each of the conditions (a)–(d) in Lemma 2.5 implies the regularity of Ê.
Hence, Terán’s example shows that the conditions in Lemma 2.5 can not be removed. Whether
they can be weakened or not is an open problem.

Zhang [10] studied the convergence of the infinite series
∑∞

n=1 Xn of a sequence of inde-
pendent random variables. But, when the strong convergence is considered, the capacity V̂ is
assumed to be continuous. The next theorem gives the equivalence among various kinds of the
convergence of the infinite series

∑∞
n=1 Xn without the assumption on the continuity of the

capacities.

Theorem 3.8 Let {Xn; n ≥ 1} be a sequence of independent random variables in a sub-linear
expectation space (Ω, H , Ê) with a capacity satisfying (1.10), and {X̃n; n ≥ 1} be its copy on
(Ω̃, H̃ , Ẽ) as defined in Proposition 2.1. Denote Sn =

∑n
i=1 Xi, S̃n =

∑n
i=1 X̃i. Assume that

each Xn is tight. Consider the following statements:
(i) There exists an F-measurable finite random variables S such that Sn → S a.s. V̂

∗, i.e.,

V̂
∗({ω : lim

n→∞Sn(ω) �= S(ω)}) = 0; (3.14)
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(ii) There exists a F-measurable finite random variables S such that Sn → S in V̂
∗, i.e.,

V̂
∗(|Sn − S| ≥ ε) → 0 as n → ∞ for all ε > 0; (3.15)

(i′) For the copy {X̃n; n ≥ 1}, there exists a σ(H̃ )-measurable finite random variables S̃

such that S̃n → S̃ a.s. Ṽ
∗, i.e.,

Ṽ
∗({ω : lim

n→∞ S̃n(ω) �= S̃(ω)
})

= 0; (3.16)

(ii′) For the copy {X̃n; n ≥ 1}, there exists a σ(H̃ )-measurable finite random variables S̃

such that S̃n → S̃ in Ṽ
∗, i.e.,

Ṽ
∗(|S̃n − S̃| ≥ ε) → 0 as n → ∞ for all ε > 0; (3.17)

(iii) {Sn} is a Cauchy sequence under V̂, i.e.,

V̂(|Sn − Sm| ≥ ε) → 0 as n, m → ∞ for all ε > 0; (3.18)

(iv) For some (equivalently, for any) c > 0,
(S1)

∑∞
n=1 V̂(|Xn| > c) < ∞,

(S2)
∑∞

n=1 Ê[X(c)
n ] and

∑∞
n=1 Ê[−X

(c)
n ] are both convergent,

(S3)
∑∞

n=1 Ê[(X(c)
n − Ê[X(c)

n ])2] < ∞ or/and
∑∞

n=1 Ê[(X(c)
n + Ê[−X

(c)
n ])2] < ∞.

(v) Sn converges in distribution, that is, there is a sub-linear space (Ω̄, H̄ , Ē) and a random
variable S̄ on it such that S̄ is tight under Ē, i.e., V̄(|S̄| > x) → 0 as x → ∞, and

Ê[φ(Sn)] → Ē[φ(S̄)], φ ∈ Cb,Lip(R). (3.19)

Then (i′), (ii′), (iii)–(v) are equivalent and each of them implies (i) and (ii). Furthermore,
suppose that the space (Ω, H , Ê) satisfies one of the conditions (a)–(d) in Lemma 2.5. Then
(i′), (ii′), (i)–(v) are equivalent.

Remark 3.9 In the theorem, V̂ can be replaced by any a capacity V with the property
(1.10) by (1.11), Ṽ

∗ can be replaced C̃
∗ or Ṽ , V̂

∗ can be replaced by C
∗, and, when one of the

conditions (a)–(d) in Lemma 2.5 is satisfied, V̂
∗ can be replaced by V

P .

Remark 3.10 Terán [8]’s example also tells us that (i) may not imply (ii)–(v) and (i′)–(ii′)
when the conditions in Lemma 2.5 are not satisfied. In fact, let Ω, H , Ê and Xns are defined
as in Example 3. Then (see Terán [8])

∞∑

n=1

2n−1Xn(ω) = ω, for all ω ∈ Ω.

If let X̄n = 2n−1Xn, S̄n =
∑n

i=1 X̄i, then

V
({

ω : lim
n→∞ S̄n(ω) �= ω

})
= 0.

Hence, (i) holds with S(ω) = ω. But Ê[X̄(c)
n ] = 2n−1 ∧ c. So, (S2) of (iv) does not hold. Then

(iii)–(v) and (i′) and (ii′) do not hold by the equivalency. Furthermore, at this case, (ii) implies
(iii), since

V(|S̄n − S̄m| ≥ ε) = V̂
∗(|S̄n − S̄m| ≥ ε) ≤ V̂

∗(|S̄n − S| ≥ ε/2) + V̂
∗(|S̄m − S| ≥ ε/2) → 0.

Hence, none of (ii)–(v) and (i′)–(ii′) holds.
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At last, we give an analogues of Theorem 3.1 for random vectors. Now, let {Xn; n ≥ 1} be
a sequence of i.i.d. random vectors in a sub-linear expectation space (Ω, H , Ê) who take values

in a Euclidean space R
d with norm |x| =

√∑d
i=1 x2

i , and Xi
d= X. Suppose

lim
c,d→∞

Ê[(|X| ∧ d − c)+] = 0. (3.20)

Then by Proposition 1.3, for any p ∈ R
d, Ĕ[〈p, X〉] is well-defined and finite, and

g(p) =: Ĕ[〈p, X〉], p ∈ R
d

is a sub-linear function defined on R
d. The assumption (3.20) is implied by a strong one as

C
V̂
(|X|) < ∞ (3.21)

or limc→∞ Ê[(|X|− c)+] = 0. Furthermore, if limc→∞ Ê[(|X|− c)+] = 0, then g(p) = Ê[〈p, X〉].
For the sub-linear function g(p), by Theorem 1.2.1 of Peng [5], there exists a (unique) bounded,
convex and closed subset M such that (see Peng ([5, Page 32])

g(p) = Ĕ[〈p, X〉] = sup
x∈M

〈p, x〉, p ∈ R
d.

We denote this set M by MX or M[X]. If X is a one-dimensional random variables, then
M[X] = [Ê [X], Ê[X]]. For the multi-dimension case, recall Ĕ[X] = (Ĕ[X1], . . . , Ĕ[Xd]) and
E[X] = (E[X1], . . . , E[Xd]) for X = (X1, . . . , Xd).

Lemma 3.11 Under the condition (3.20) we have

MX = M̃X =: {E[X] : E ∈ E }, where E is defined as (1.17). (3.22)

Proof It is obvious that

sup
x∈M̃X

〈p, x〉 = sup
E∈E

E[〈p, X〉] = Ĕ[〈p, X〉] = sup
x∈MX

〈p, x〉 for all p ∈ R
d.

For (3.22), it is sufficient to show that M̃X is also a bounded, convex and closed subset of R
d.

The boundedness and convexity are obvious. Next, we show that it is closed. Suppose Ei ∈ E ,
Ei[X] → b. We want to show that b ∈ M̃X . For each Ei, define Ẽi by Ẽi[ϕ(x)] = Ei[ϕ(X)],
ϕ ∈ Cl,Lip(Rd). It is easily checked that, if Cb,Lip(Rd) � ϕn ↘ 0, then

0 ≤Ẽi[ϕn(x)] = Ei[ϕn(X)] ≤ Ĕ[ϕn(X)]

≤ sup
|x|≤c

|ϕn(x)| + ‖ϕ1‖c−1
Ĕ[|X|] → 0,

as n → ∞ and then c → ∞. By Daniell–Stone’s theorem, there exists a probability measure Pi

on R
d such that

Ei[ϕ(X)] = Ẽi[ϕ(x)] = Pi[ϕ(x)], ∀ϕ ∈ Cb,Lip(Rd).

Notice that supi Pi(|x| ≥ c) ≤ c−1 supi Pi[|x|] ≤ c−1
Ĕ[|X|] → 0 as c → ∞. So, on R

d, the
sequence {Pi} is tight and so is relatively weakly compact. Then, there exist a subsequence ij

and a probability P on R
d such that

Eij
[ϕ(X)] = Pij

[ϕ(x)] → P [ϕ(x)] ∀ϕ ∈ Cb,Lip(Rd). (3.23)

On the space L = {Y = ϕ(X) : ϕ ∈ Cl,Lip(Rd), Y ∈ H1} we define an operator E by

E[Y ] = lim
j→∞

Eij
[Y ], Y ∈ L .
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First, by (3.23), E is well defined for bounded Y ∈ L . Notice

|Eij
[Y ] − Eij

[(−c) ∨ Y ∧ c]| = |Eij
[Y − (−c) ∨ Y ∧ c]| ≤ Ĕ[(|Y | − c)+] → 0 as c → ∞

for Y ∈ L . E[Y ] is well defined on L and E[Y ] = limc→∞ E[(−c) ∨ Y ∧ c]. It follows that

b = lim
j→∞

Eij
[X] = E[X].

Since each Eij
∈ E is a finite additive linear expectation with Eij

≤ Ĕ, its limit E is also a finite
additive linear expectation on L with E ≤ Ĕ. By the Hahn–Banach theorem, there exists a
finite additive linear expectation Ee defined on H1 such that, Ee = E on L and, Ee ≤ Ĕ on
H1. So Ee ∈ E . Hence, b = E[X] = Ee[X] ∈ M̃X . It follows that M̃X is a closed set. (3.22)
is proved. �

The following is the strong law of large numbers for i.i.d. random vectors. Let {Xn; n ≥ 1}
be a sequence of i.i.d. random variables in a sub-linear expectation space (Ω, H , Ê), Xi

d= X.
Denote Sn =

∑n
i=1 Xi.

Theorem 3.12 If (3.21) is satisfied, then

V̂∗
(

C

{
Sn

n

}

⊂ MX

)

= 1. (3.24)

Furthermore, suppose that the space (Ω, H , Ê) satisfies one of the conditions (a)–(d) in Lemma 2.5.
Then for V = V

P , C
∗ or V̂

∗,

V

(

C

{
Sn

n

}

= MX

)

= 1 (3.25)

and

V

(

lim
n→∞

Sn

n
= b

)

=

⎧
⎨

⎩

1, when b ∈ MX ,

0, when b �∈ MX .
(3.26)

(3.25) tells us that, under the upper capacity, the limits of Sn

n fills the set MX . The following
corollary tells that, under lower capacity, the limit of Sn

n can only be a point.

Corollary 3.13 Suppose that the space (Ω, H , Ê) satisfies one of the conditions (a)–(d) in
Lemma 2.5. Assume that (3.21) is satisfied. If for V = V

P , C
∗ or V̂

∗, there exists a subset O

of R
d such that

V
(

C

{
Sn

n

}

= O

)

> 0, (3.27)

then

Ĕ[−X] = −Ĕ[X] and O = {Ĕ[X]}. (3.28)

This is a direct corollary of Theorem 3.12. In fact, combining (3.26) and (3.27) yields

V

(

lim
n→∞

Sn

n
= b and C

{
Sn

n

}

= O

)

> 0 for all b ∈ MX .

It follows that O = {b} for all b ∈ MX . Hence MX has only one point and then (3.28) holds.
To prove Theorem 3.12, we need a weak law of large number which is of independent interest.
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Proposition 3.14 Let {Xn; n ≥ 1} be a sequence of i.i.d. random variables in a sub-linear
expectation space (Ω, H , Ê), Sn =

∑n
i=1 Xi. If limc,d→∞ Ê[(|X1| ∧ d − c)+] = 0, then

V̂

(
Sn

n
�∈ M

ε
X

)

= V̂(dist(Sn/n, MX) ≥ ε) → 0 for all ε > 0 (3.29)

and

V̂

(∣
∣
∣
∣
Sn

n
− b

∣
∣
∣
∣ < ε

)

→ 1 for all b ∈ MX and ε > 0, (3.30)

where dist(y, MX) = inf{|y − x| : x ∈ MX}, M
ε
X = {y : |y − x| < ε for some x ∈ MX} is the

ε-neighborhood of MX . In particular,

lim
n→∞ Ê

[

ϕ

(
Sn

n

)]

= sup
x∈MX

ϕ(x), for all ϕ ∈ Cb,Lip(Rd). (3.31)

The weak law of large numbers (3.31) is proved by Peng [5] under the condition that
Ê[(|X1| − c)+] → 0 as c → ∞, by considering the solutions of the following parabolic PDEs
defined on [0,∞) × R

d,
∂tu − g(Du) = 0, u|t=0 = ϕ.

For the completeness of this paper, we will give a purely probabilistic proof in which only the
probability inequalities are used.

4 Proofs of the Law of Large Numbers

Before the proofs, we need one more lemma.

Lemma 4.1 Suppose X ∈ H , 1 ≤ p < 2, C
V̂
(|X|p) < ∞. Then

∞∑

i=1

V̂(|X| ≥ Mi1/p) < ∞, ∀M > 0, (4.1)

∞∑

i=1

Ê[X2 ∧ (Mi2/p)]
i2/p

< ∞, ∀M > 0 (4.2)

and
Ĕ[(|X| − c)+] = o(c1−p) and Ê[X2 ∧ c2] = o(c2−p) as c → ∞. (4.3)

Furthermore,

C
V̂
(|X|p) = ∞ ⇐⇒

∞∑

i=1

V̂(|X| ≥ Mi1/p) = ∞, ∀M > 0. (4.4)

Proof (4.1) and (4.4) are obvious by noting C
V̂
(|X|p) =

∫ ∞
0

V̂(|X| > x1/p)dx. (4.2) is similar
to Lemma 3.9 (a) of Zhang [9] and is proved in Zhang and Lin [13]. For (4.3), we have

Ĕ[(|X| − c)+] ≤ C
V̂
((|X| − c)+) =

∫ ∞

c

V̂(|X| > x)dx

=
1
p

∫ ∞

cp

y1/p−1
V̂(|X|p > y)dy ≤ 1

p
c1−p

∫ ∞

cp

V̂(|X|p > y)dy = o(c1−p)

and

Ĕ[X2 ∧ c2] ≤ C
V̂
(X2 ∧ c2) =

∫ c2

0

V̂(X2 > x)dx
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=
2
p

∫ cp

0

y2/p−1
V̂(|X|p > y)dy = o(c2−p).

The proof is completed. �

4.1 One-dimensional Case

Now we turn to the proofs of the main results. We first consider the LLN for one-dimensional
random variables.
Proof of Theorems 3.1 and 3.4 When (3.1) is satisfied, each Xn is tight. Obviously, (3.4) is
implied by (3.3) by noting V̂∗(Sn

n − Sn−1
n−1 → 0) = 1 and the fact that C({xn}) = [a, b] whenever

lim supn→∞ xn = b, lim infn→∞ xn = a and xn − xn−1 → 0. (3.2) and (3.3) are special cases of
(3.9) and (3.10), respectively. For (3.9), we let Zk,i = (−2k/p) ∨ Xi ∧ 2k/p, i = 1, . . . , 2k. Then

|Ê[Zk,i] − Ĕ[Xi]| ≤ Ĕ[(|X1| − 2k/p)+] = o(2k(1/p−1))

by Lemma 4.1. For any ε > 0, by Lemma 2.8 and (1.11) we have for k large enough,

V̂

(

max
2k−1≤n≤2k

Sn − nĔ[X1]
n1/p

≥ ε

)

≤ V̂

(

max
2k−1≤n≤2k

n∑

i=1

(Xi − Ĕ[Xi]) ≥ ε2(k−1)/p

)

≤ V̂

(

max
n≤2k

n∑

i=1

(Zk,i − Ĕ[Zk,i]) ≥ ε2k/p/4
)

+ V̂

(

max
i≤2k

|Xi| > 2k/p

)

≤ C2−2k/p
2k
∑

i=1

Ê[Z2
k,i] +

2k
∑

i=1

V̂(|Xi| > 2k/p)

≤ C2−2k/p2k
Ê[X2

1 ∧ 22k/p] + 2k
V̂(|X1| > 2k/p/2)

≤ 4C
2k+1
∑

i=2k+1

Ê[X2
1 ∧ i2/p]
i2/p

+ 2
2k
∑

i=2k−1+1

V̂(|X1| > i1/p/2).

It follows that
∞∑

k=1

V̂
∗
(

max
2k−1≤n≤2k

Sn − nĔ[X1]
n1/p

≥ ε

)

≤
∞∑

k=1

V̂

(

max
2k−1≤n≤2k

Sn − nĔ[X1]
n1/p

≥ ε

)

≤ 4C

∞∑

i=1

Ê[X2
1 ∧ i2/p]
i2/p

+ 2
∞∑

i=1

V̂(|X1| > i1/p/2) < ∞,

by Lemma 4.1. By noting that V̂
∗ is a countably sub-additive capacity and the Borel–Cantelli

(Lemma 2.3), we have

V̂
∗
(

lim sup
n→∞

Sn − nĔ[X1]
n1/p

≥ ε

)

≤ V̂
∗
(

max
2k−1≤n≤2k

Sn − nĔ[X1]
n1/p

≥ ε i.o.

)

= 0.

By the countable sub-additivity of V̂
∗ again,

V̂
∗
(

lim sup
n→∞

Sn − nĔ[X1]
n1/p

> 0
)

= V̂
∗
( ∞⋃

l=1

{

lim sup
n→∞

Sn − nĔ[X1]
n1/p

≥ 1
l

})

= 0.
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For −Xis, we have a similar result. (3.9) is proved.
For (3.10), it is sufficient to show that

V
P

(

lim inf
n→∞

S̃n − nĔ [X1]
n1/p

≤ 0 and lim sup
n→∞

S̃n − nĔ[X1]
n1/p

≥ 0
)

= 1. (4.5)

Let Yni = (−n1/p) ∨ Xi ∧ n1/p, i = 1, . . . , n. Then M̃[Yni] = [Ê [Yni], Ê[Yni]]. By Lemmas 2.7
and 4.1,

V̂
( n∑

i=1

(−Yni + Ê[Yni]) ≥ εn1/p

)

= V̂
( n∑

i=1

(−Yni − Ê [−Yni]) ≥ εn1/p

)

≤ 2
nÊ[X2

1 ∧ n2/p]
ε2n2/p

→ 0.

On the other hand, n|Ê[Yni] − Ĕ[X1]| ≤ nĔ[(|X1| − n1/p)+] = o(n1/p) and

V̂(Yni �= Xi, ∃i = 1, . . . , n) ≤ nV̂(|X1| > n1/p) → 0,

by Lemma 4.1. It follows that

V̂
( n∑

i=1

(−Xi + Ê[X1]) ≥ 2εn1/p

)

→ 0.

That is

V̂

(
Sn − nĔ[X1]

n1/p
≥ −ε

)

→ 1 for all ε > 0.

By considering −Xis, similarly we have

V̂

(−Sn + nĔ [X1]
n1/p

≥ −ε

)

→ 1 for all ε > 0.

For εk = 1/2k, k = 1, 2, . . ., we can choose nk successively such that nk ↗ ∞, nk−1/n
1/p
k → 0,

and

V̂

(
Snk

− Snk−1 − (nk − nk−1)Ĕ[X1]
(nk − nk−1)1/p

≥ −εk

)

≥ 1 − εk,

V̂

(

− Snk
− Snk−1 − (nk − nk−1)Ĕ [X1]

(nk − nk−1)1/p
≥ −εk

)

≥ 1 − εk.

It follows that
∞∑

k=1

V̂

(
Snk

− Snk−1 − (nk − nk−1)Ĕ[X1]
(nk − nk−1)1/p

≥ −εk

)

= ∞,

∞∑

k=1

V̂

(

− Snk
− Snk−1 − (nk − nk−1)Ĕ [X1]

(nk − nk−1)1/p
≥ −εk

)

= ∞.

Let

A =
{

Snk
− Snk−1 − (nk − nk−1)Ĕ[X1]

(nk − nk−1)1/p
≥ −εk i.o.

}

,

B =
{

− Snk
− Snk−1 − (nk − nk−1)Ĕ [X1]

(nk − nk−1)1/p
≥ −εk i.o.

}

.
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By the Borel–Cantelli lemma (Lemma 2.5), V
P(AB) = 1. On AB and C = {lim supn→∞

|Sn|
n <

∞},

lim sup
n→∞

Sn − nĔ[X1]
n1/p

≥ lim sup
k→∞

Snk
− Snk−1 − (nk − nk−1)Ĕ[X1]

n
1/p
k

≥ lim sup
k→∞

Snk
− Snk−1 − (nk − nk−1)Ĕ[X1]

(nk − nk−1)1/p
≥ 0,

lim sup
n→∞

−Sn + nĔ [X1]
n1/p

≥ lim sup
k→∞

(

− Snk
− Snk−1 − (nk − nk−1)Ĕ [X1]

(nk − nk−1)1/p

)

≥ 0.

Notice V
P(ABC) ≥ V

P(AB)−V
P(Cc) = 1−0 = 1 by (3.2). The proof of (4.5) is completed.

For Theorem 3.1 (b), suppose C
V̂
(|X1|) = ∞. Then

∞∑

n=1

V̂(|Xn| ≥ Mn) ≥
∞∑

n=1

V̂(|X1| ≥ 2Mn) = ∞, for all M > 0,

by (1.11) and Lemma 4.1. So, there exists a sequence 1 < Mn ↗ ∞ such that
∞∑

n=1

V̂(|Xn| ≥ Mnn) = ∞.

By the Borel–Cantelli Lemma (Lemma 2.5),

V
P(|Xn| ≥ Mnn i.o.) = 1.

On the event {|Xn| ≥ Mnn i.o.}, we have

∞ = lim sup
n→∞

|Xn|
n

≤ 2 lim sup
n→∞

|Sn|
n

.

It follows that

V
P

(

lim sup
n→∞

|Sn|
n

= ∞
)

= 1, (4.6)

which contradicts with (3.5). The proof is now completed. �
Proof of Corollaries 3.3 and 3.5 It is sufficient to show Corollary 3.5.

(a) When b �∈ [Ĕ [X1], Ĕ[X1]], the conclusion (3.11) is obvious by (3.9). If b ∈ [Ĕ [X1], Ĕ[X1]],
then there exists an α ∈ [0, 1] such that b = αĔ[X1]+ (1−α)Ĕ [X1]. Let Yi = (−i1/p)∨Xi ∧ i1/p

and μα,i = αÊ[Yi] + (1−α)Ê [Yi]. Then
∑n

i=1 |μα,i − b| ≤ ∑n
i=1 Ĕ[(|X1| − i1/p)+] = o(n1/p) and

V̂
∗(Xi �= Yi i.o.) = 0. So, it is sufficient to show that for each α ∈ [0, 1],

V
P

(

lim
n→∞

∑n
i=1(Yi − μα,i)

n1/p
= 0

)

= 1. (4.7)

For each i, by the expression (1.8), there exist θi,1, θi,2 ∈ Θ such that

Eθi,1 [Yi] = Ê[Yi] and Eθi,2 [Yi] = Ê [Yi].

Define the linear operator Ei = αEθi,1 + (1 − α)Eθi,2 . Then

Ei[Yi] = μα,i and Ei ≤ Ê.

Notice that each Yn is tight. By Proposition 2.1, there exist a copy {Ỹn; n ≥ 1} on (Ω̃, H̃ , Ẽ)
of {Yn; n ≥ 1} and a probability measure Q on Ω̃ such that such that {Ỹn; n ≥ 1} is a sequence
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of independent random variables under Q,

Q[ϕ(Ỹi)] = Ei[ϕ(Yi)] for all ϕ ∈ Cb,Lip(R),

Q[ϕ(Ỹ1, . . . , Ỹd)] ≤ Ê[ϕ(Y1, . . . , Yd)] for all ϕ ∈ Cb,Lip(Rd)

and
ṽ(B) ≤ Q(B) ≤ Ṽ (B) for all B ∈ σ(Ỹ1, Ỹ2, . . .). (4.8)

Notice |Ei[Y
(c)
i ] − Ei[Yi]| ≤ Ê[(|Yi| − c)+] → 0 as c → ∞. We have

Q[Ỹi] = lim
c→∞Q[Ỹ (c)

i ] = lim
c→∞ Ei[Y

(c)
i ] = Ei[Yi] = μα,i, (4.9)

Q[Ỹ 2
i ] = lim

c→∞Q[Ỹ 2
i ∧ c] = lim

c→∞ Ei[Y 2
i ∧ c] ≤ Ê[Y 2

i ]. (4.10)

Then ∞∑

i=1

Q[Ỹ 2
i ]

i2/p
≤

∞∑

i=1

Ê[Y 2
i ]

i2/p
=

∞∑

i=1

Ê[X2
1 ∧ i2/p]
i2/p

< ∞,

by Lemma 4.1. Denote Tn =
∑n

i=1(Yi − μα,i) and T̃n =
∑n

i=1(Ỹi − μα,i), nk = 2k. Then

Q

(
maxnk+1≤n≤nk+1 |T̃n − T̃nk

|
n

1/p
k

> ε

)

≤ 2ε−2n
−2/p
k

nk+1∑

i=nk+1

Q[Ỹ 2
i ] ≤ 2ε−222/p

nk+1∑

i=nk+1

Q[Ỹ 2
i ]

i2/p
.

It follows that
∞∑

k=1

Q

(
maxnk+1≤n≤nk+1 |T̃n − T̃nk

|
n

1/p
k

> ε

)

< ∞, for all ε > 0.

Then there exists a sequence εk ↘ 0 such that
∞∑

k=1

Q

(
maxnk+1≤n≤nk+1 |T̃n − T̃nk

|
n

1/p
k

> εk

)

< ∞.

By (4.8) and (1.11),
∞∑

k=1

VP

(
maxnk+1≤n≤nk+1 |Tn − Tnk

|
n

1/p
k

> 2εk

)

≤
∞∑

k=1

ṽ

(
maxnk+1≤n≤nk+1 |T̃n − T̃nk

|
n

1/p
k

> εk

)

< ∞. (4.11)

Notice the independence. By Lemma 2.5,

VP(Ak i.o.) = 0 with Ak =
{

maxnk+1≤n≤nk+1 |Tn − Tnk
|

n
1/p
k

> 2εk

}

.

Notice that on the event (Ak i.o.)c,

lim
k→∞

maxnk+1≤n≤nk+1 |Tn − Tnk
|

n
1/p
k

= 0,

which implies limn→∞ Tn

n1/p = 0. (4.7) is proved.
(b) First, notice the facts that V(AB) = 1 whenever V(A) = V(B) = 1, V(AB) = 1

whenever V(A) = V(B) = 1. If (3.8) and (3.13) hold, and Ĕ [X1] = Ĕ[X1], then (3.12) is
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obvious by (3.9). Conversely, suppose that (3.12) holds. Let A = {lim infn→∞
Sn−nĔ[X1]

n1/p = 0},
B = {lim supn→∞

Sn−nĔ[X1]
n1/p = 0} and C = {limn→∞ Sn−nb

n1/p = c}.
We first consider the case p = 1. If C

V̂
(|X1|) = ∞, then (4.6) holds, which contradicts with

(3.12). So, C
V̂
(|X1|) < ∞. By (3.12)) and (3.10) with p = 1, V(ABC) = 1. While, on ABC,

Ĕ [X1] = lim inf
n→∞

Sn

n
= c + b,

Ĕ[X1] = lim sup
n→∞

Sn

n
= c + b.

It follows that Ĕ[X1] = Ĕ [X1]. Then, by the direct part,

V
(

lim
n→∞

Sn

n
= Ĕ[X1]

)

= 1,

which, together with (3.12), implies V(b + c = Ĕ[X1]) = 1.
Now, suppose 1 < p < 2. Then

V
(

lim
n→∞

Sn

n
= b

)

= 1

by (3.12). By the conclusion for the case p = 1, we must have Ĕ[X1] = Ĕ [X1] and V(b =
Ĕ [X1]) = 1. Suppose C

V̂
(|X1|p) = ∞. Then C

V̂
(|X1 − Ĕ[X1]|p) = ∞. Similar to (4.6), we have

V

(

lim sup
n→∞

|Sn − nĔ[X1]|
n1/p

= ∞
)

≥ V
P

(

lim sup
n→∞

|Sn − nĔ[X1]|
n1/p

= ∞
)

≥ V
P

(

lim sup
n→∞

|Xn − Ĕ[X1]|
n1/p

= ∞
)

= 1,

which contradicts with (3.12) by noting V(b = Ĕ[X1]) = 1. So, (3.8) holds. By the direct part,
(3.11) holds. Then

V
(

lim
n→∞

Sn − nb

n1/p
= 0

)

= V
(

lim
n→∞

Sn − nĔ[X1]
n1/p

= 0
)

= 1,

which, together with (3.12), implies V(c = 0) = 1. The proof is now completed. �
Next, we consider the convergence of infinite series.

Proof of Theorem 3.8 (iii)⇔(iv) and (v)⇒(iii) are proved by Zhang [10] (see Theorem 3.2,
Theorem 3.3 there).

First, we show that (iii)⇒(v). Let Ω̄ = R, H̄ = Cb,Lip(R). Define Ē by

Ē[ϕ] = lim sup
n→∞

Ê[ϕ(Sn)], ϕ ∈ H̄ ,

and define the random variable S̄ by S̄(x) = x. Since each Xi is tight, each Sn is tight.
By (3.18), we have limc→∞ maxn V̂(|Sn| > c) = 0. Then by choosing a function ϕ ∈ Cb,Lip(R)
with I{|x| ≥ c} ≤ ϕ(x) ≤ I{|x| ≥ c/2} we have

V̄(|S̄| ≥ c) ≤ Ē[ϕ(S̄)] = lim sup
n→∞

Ê[ϕ(Sn)] ≤ lim sup
n→∞

V̂(|Sn| ≥ c/2) → 0 as c → ∞.

It follows that S̄ is tight. For ϕ ∈ H̄ , let ϕc(x) = ϕ((−c) ∨ x ∧ c). Then ϕc is a uniformly
continuous function. For any ε > 0, there is a δ > 0 such that |ϕc(x) − ϕc(y)| < ε when
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|x − y| < δ. Hence

|Ê[ϕc(Sn)] − Ê[ϕc(Sm)]| < ε + ‖ϕ|V̂(|Sn − Sm| > δ) → ε

as n, m → ∞. Hence Ê[ϕc(Sn)] converges. It follows that

Ē[ϕc(S̄)] = lim
n→∞ Ê[ϕc(Sn)].

On the other hand,

max
n

|Ê[ϕc(Sn)] − Ê[ϕ(Sn)]| ≤ ‖ϕ‖max
n

V̂(|Sn| > c) → 0

and
|Ē[ϕc(S̄)] − Ē[ϕ(S̄)]| ≤ ‖ϕ‖V̄(|S̄| > c) → 0,

as c → ∞. It follows that

Ē[ϕ(S̄)] = lim
n→∞ Ê[ϕ(Sn)], ∀ϕ ∈ Cb,Lip(R).

(v) holds.
Next, we show (iii)⇒(i) and (ii). By the Lévy inequality (2.18), it follows from (3.18) that

V̂
(

max
m≤i≤n

|Si − Sm| ≥ ε
) → 0 as n, m → ∞ for all ε > 0. (4.12)

Let εk = 1/2k. There exists a sequence nk ↗ ∞ such that

V̂
∗( max

nk≤i≤nk+1
|Si − Snk

| ≥ εk

) ≤ V̂
(

max
nk≤i≤nk+1

|Si − Snk
| ≥ εk

)
< εk.

It follows that ∞∑

k=1

V̂
∗( max

nk≤i≤nk+1
|Si − Snk

| ≥ εk

)
<

∞∑

k=1

εk < ∞.

Notice the countable sub-additivity of V̂
∗. By the Borel–Cantelli lemma (Lemma 2.3),

V̂
∗(A) = 0 where A =

{
max

nk≤i≤nk+1
|Si − Snk

| ≥ εk i.o.
}
.

on Ac, S = Sn0 +
∑∞

k=1(Snk
− Snk−1) is finite. Let S(ω) = 0 when ω ∈ A. On Ac, Snk

→ S

and maxnk≤i≤nk+1 |Si − Snk
| → 0 as k → ∞, and so Si → S as i → ∞. Then (i) is proved.

Also, on the event
⋂∞

m=k

{
maxnm≤i≤nm+1 |Si − Snm

| ≤ εm

}
,

|S − Snk
| ≤

∞∑

m=k

|Snm+1 − Snm
| ≤

∞∑

m=k

2−m = 2−k+1.

It follows that

V̂
∗(|Snk

− S| > 2−k+1) ≤
∞∑

m=k

V̂(|Snm+1 − Snm
| > εm) ≤

∞∑

m=k

εm < 2−k+1.

On the other hand, for any ε > 0, when k is large enough such that 2−k+1 < ε/2,

V̂
∗(|Sn − S| > ε/2) ≤ V̂

∗(|Snk
− S| > 2−k+1) + V̂

∗(|Snk
− Sn| > ε/2) → 0,

as n, k → ∞. Then (ii) is proved.
Notice (1.11) and (X1, . . . , Xn) d= (X̃1, . . . , X̃n), n ≥ 1. (iii) is equivalent to that it holds

for S̃n. So, it implies (i′) and (ii′).
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Notice that the copy space (Ω̃, H̃ , Ẽ) satisfies the condition (d) in Lemma 2.5. At last, it
is sufficient to show (i)⇒(iii), and (ii)⇒(iii), when one of the conditions (a)–(b) in Lemma 2.5
is satisfied.

Suppose that (iii) does not hold. Then there exist constants ε0 > 0, δ0 > 0 and sequence
{mk} and {nk} with mk < nk ≤ mk+1 such that

V̂(|Snk
− Smk

| ≥ ε0) ≥ δ0.

Notice the independence of {Snk
− Smk

; k ≥ 1} and
∞∑

k=1

V̂(|Snk
− Smk

| ≥ ε0) = ∞.

By the Borel–Cantelli lemma (Lemma 2.5),

V
P

(
lim sup

k→∞
|Snk

− Smk
| ≥ ε0/2

)
= 1.

However, on the event {limn→∞ Sn = S} we have lim supk→∞ |Snk
− Smk

| = 0. Thus,

V
P

({
ω : lim

n→∞ Sn(ω) �= S(ω)
})

= 1,

which contradicts with (3.16). So, (i)⇒(iii) is proved.
Now, suppose V

P(|Sn − S| > ε) → 0 for all ε > 0. Then

V
P(|Sn − Sm| > ε) → 0 as n, m → ∞, ∀ε > 0,

which is equivalent to (3.18) by (1.11), since both V
P and V̂ have the property (1.10) and

Sn − Sm ∈ H . The proof is completed. �

4.2 Multi-dimensional Case

Now, we consider the LLN for random vectors.

Proof of Proposition 3.14 Recall X(c) = (X(c)
1 , . . . , X

(c)
d ) and X

(c)
i = (−c) ∨ Xi ∧ c for

X = (X1, . . . , Xd). Notice

V̂

(∣
∣
∣
∣
Sn

n
−

∑n
i=1 X

(c)
i

n

∣
∣
∣
∣ ≥ ε

)

≤ ε−1
Ĕ[|X1 − X

(c)
1 |] → 0 as c → ∞

and

sup
E∈E

∣
∣
∣
∣E[X] − E[X(c)]

∣
∣
∣
∣ ≤ Ĕ[|X1 − X

(c)
1 |] → 0 as c → ∞.

Hence, without loss of generality we can assume |Xi| ≤ c and |X| ≤ c. Let δ = ε2/(4c), and
Nδ = {p1, . . . , pK} ⊂ {p : |p| ≤ 2c} be a δ-net of {p : |p| ≤ 2c}. We have the following fact,

y �∈ M
ε
X and |y| ≤ c =⇒ 〈pi, y〉 ≥ Ĕ[〈pi, X〉] + ε2/2 for some pi ∈ Nδ. (4.13)

In fact, for y �∈ M
ε
X , there exists o = E[X] ∈ MX such that τ =: infx∈MX

|y−x| = |y−o| ≥ ε.
Let p = y − o. Then |p| ≤ 2c and 〈p, y〉 = 〈p, o〉 + τ2. For any x ∈ MX and 0 ≤ α ≤ 1,
z = αx + (1 − α)o ∈ MX . Then

|y − o|2 ≤ |y − z|2 = |y − o|2 + α2|x − o|2 + 2α〈x − o, o − y〉 for all α ∈ [0, 1].

It follows that
〈p, o〉 − 〈p, x〉 = 〈x − o, o − y〉 ≥ 0.
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So 〈p, o〉 ≥ 〈p, x〉. It follows that 〈p, o〉 ≥ supx∈MX
〈p, x〉 = Ĕ[〈p, X〉]. It follows that 〈p, y〉 ≥

Ĕ[〈p, X〉] + ε2. Furthermore, for the p, there exists a pi ∈ Nδ such that |p − pi| < δ. Then

〈pi, y〉 − Ĕ[〈pi, X〉] ≥ 〈p, y〉 − Ĕ[〈p, X〉] − |pi − p||y| − |pi − p|Ĕ[|X|] ≥ ε2/2.

Hence (4.13) follows. Now, it follows from the inequality (2.17) that

V̂

(
Sn

n
�∈ M

ε
X

)

≤
∑

i∈Nδ

V̂

(

〈pi, Sn/n〉 ≥ Ĕ[〈pi, X〉] + ε2/2
)

=
∑

i∈Nδ

V̂

( n∑

k=1

(〈pi, Xk〉 − Ê[〈pi, Xk〉]) ≥ nε2/2
)

≤2(e + 1)
∑

i∈Nδ

nÊ[〈pi, X〉2]
ε4n2/4

→ 0.

The proof of (3.29) is completed.
For (3.30), we suppose b ∈ MX = M̃X = {E[X] : E ∈ E }. Notice Ĕ[〈p, X〉] = Ĕ[〈p, Xi〉] =

g(p) for all p and i. It follows that

b ∈ MX = MXi
= M̃Xi

= {E[Xi] : E ∈ E }, i = 1, 2, . . .

Hence, by Lemma 2.7,

V̂
(∣

∣
∣
∣
Sn

n
− b

∣
∣
∣
∣ ≥ ε

)

≤ 2ε−2n−2nÊ[|X|2] ≤ 2c2ε−2n−1 → 0.

The proof of (3.30) is completed.
Finally, we show that (3.31) is a corollary of (3.29) and (3.30). Without loss of generality,

we assume ϕ(x) ≥ 0, for otherwise we can replace it by ϕ + ‖ϕ‖, where ‖ϕ‖ = supx |ϕ(x)|. It
follows from (3.29) that

lim sup
n→∞

Ê

[

ϕ

(
Sn

n

)]

≤ sup
x∈Mε

X

ϕ(x) + ‖ϕ‖ lim sup
n→∞

V̂

(
Sn

n
�∈ M

ε
X

)

= sup
x∈Mε

X

ϕ(x) → sup
x∈MX

ϕ(x) as ε → 0.

Now suppose b ∈ MX . By (3.30),

lim inf
n→∞ Ê

[

ϕ

(
Sn

n

)]

≥ lim inf
n→∞ Ê

[

ϕ

(
Sn

n

)

I

{∣
∣
∣
∣
Sn

n
− b

∣
∣
∣
∣ < ε

}]

≥ inf
x:|x−b|<ε

ϕ(x) lim inf
n→∞ V̂

(∣
∣
∣
∣
Sn

n
− b

∣
∣
∣
∣ < ε

)

= inf
x:|x−b|<ε

ϕ(x) → ϕ(b)

as ε → 0. By the arbitrariness of b ∈ MX ,

lim inf
n→∞ Ê

[

ϕ

(
Sn

n

)]

≥ sup
b∈MX

ϕ(b).

The proof of (3.31) is completed. �
Proof of Theorem 3.12 Let Q be a countable subset of R

d which is dense in R
d. Then

V̂
∗
(

C

{
Sn

n

}

�⊂ MX

)

= V̂
∗
( ⋃

p∈Rd

{

lim sup
n→∞

〈p, Sn〉
n

> Ĕ[〈p, X1〉]
})



LLN under Sub-linear Expectations 2313

= V̂
∗
( ⋃

p∈Q

{

lim sup
n→∞

〈p, Sn〉
n

> Ĕ[〈p, X1〉]
})

≤
∑

p∈Q

V̂
∗
(

lim sup
n→∞

〈p, Sn〉
n

> Ĕ[〈p, X1〉]
)

= 0

by (3.2). And so, (3.24) is proved.
For (3.25), is is sufficient to show that

V
P

(

C

{
Sn

n

}

⊃ MX

)

= 1. (4.14)

For any b ∈ MX and ε > 0, by Proposition 3.14, we have

lim
n→∞ V̂

(∣
∣
∣
∣
Sn

n
− b

∣
∣
∣
∣ ≤ ε

)

= 1. (4.15)

Let Θ = {b1, b2, . . .} be a countable subset of MX which is dense in MX . Let εk = 1/2k. By
(4.15), there exists a sequence {nk} with nk ↗ ∞, nk−1/n

1/p
k → 0 such that

V̂

(∣
∣
∣
∣
Snk

− Snk−1

nk
− bj

∣
∣
∣
∣ ≤ εk

)

≥ 1/2, j = 1, . . . k.

Denote

Ak,j =

⎧
⎪⎨

⎪⎩

{∣
∣
∣
∣
Snk

−Snk−1
nk

− bj

∣
∣
∣
∣ ≤ εk

}

, j = 1, 2, . . . , k

∅, j > k.

Then ∞∑

k=1

V̂(Ak,j) =
∞∑

k=j+1

V̂(Ak,j) = ∞, j = 1, 2, . . . .

Notice that Ak,js are closed sets of X = (X1, X2 . . .). By the Borel–Cantelli Lemma (Lemma 2.5
(iii)),

V
P

( ∞⋂

j=1

{Ak,j i.o.}
)

= 1.

Notice that, on the event A =
⋂∞

j=1{Ak,j i.o.} and B = {C{Sn

n } ⊂ MX}, we have

lim inf
n

∣
∣
∣
∣
Sn

n
− bj

∣
∣
∣
∣ ≤ lim inf

k

∣
∣
∣
∣
Snk

nk
− bj

∣
∣
∣
∣

= lim inf
k

∣
∣
∣
∣
Snk

− Snk−1

nk
− bj

∣
∣
∣
∣

= 0, for all bj ∈ Θ.

Notice that Θ is dense in MX . It follows that on A and B,

lim inf
n

∣
∣
∣
∣
Sn

n
− b

∣
∣
∣
∣ = 0, for all b ∈ MX .

On the other hand, V
P(Bc) = 0 by (3.24). So, V

P(AB) ≥ V
P(A) − V

P(Bc) = 1. It follows
that

V
P

(

lim inf
n

∣
∣
∣
∣
Sn

n
− b

∣
∣
∣
∣ = 0 for all b ∈ MX

)

= 1.
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Hence, (4.14) is proved.
Finally, we consider (3.26). Let Yi = X

(i)
i , Tn =

∑n
i=1 Yi, where X(c) = (X(c)

1 , . . . , X
(c)
d )

for X = (X1, . . . , Xd). Then
∞∑

n=1

V̂(|Xn| > n) ≤
∞∑

n=1

V̂(|X| > n/2) < ∞, (4.16)

∑n
i=1 Ĕ[|Xi − Yi|]

n
≤

∑n
i=1

∑d
j=1 Ĕ[(|Xi,j | − i)+]

n
→ 0 (4.17)

and ∞∑

i=1

Ê[|Yi|2]
i2

≤
∞∑

i=1

Ê[|X1|2 ∧ (di)2]
i2

< ∞, (4.18)

by Lemma 4.1.
When b �∈ MX , (3.26) is obvious by (3.24). Suppose

b ∈ MX = M̃Xi
= {E[Xi] : E ∈ E }, i = 1, 2, . . .

There exists Ei ∈ E such that b = Ei[Xi]. Notice that each Yn is tight. For linear operators Ei

and the sequence {Yn; n ≥ 1}, by Proposition 2.1 there exist a copy {Ỹn; n ≥ 1} on (Ω̃, H̃ , Ẽ)
and a probability measure Q on Ω̃ such that {Ỹn; n ≥ 1} is a sequence of independent random
variables under Q,

Q[ϕ(Ỹi)] = Ei[ϕ(Yi)] for all ϕ ∈ Cb,Lip(Rd), (4.19)

Q[ϕ(Ỹ1, . . . , Ỹp)] ≤ Ê[ϕ(Y1, . . . , Yp)] for all ϕ ∈ Cb,Lip(Rd×p) (4.20)

and
ṽ(B) ≤ Q(B) ≤ Ṽ (B) for all B ∈ B(Ỹ1, Ỹ2, . . .). (4.21)

Similar to (4.9) and (4.10), we have Q[Ỹi] = Ei[Yi] and Q[|Ỹi|2] ≤ Ê[|Yi|2] . Then

1
n

n∑

i=1

|Q[Ỹi] − b| =
1
n

n∑

i=1

|Ei[Yi] − Ei[Xi]| ≤ 1
n

n∑

i=1

Ĕ[|Yi − Xi|] → 0 (4.22)

by (4.20) and (4.17), and
∞∑

i=1

Q[|Ỹi|2]
i2

≤
∞∑

i=1

Ê[|Yi|2]
i2

< ∞,

by (4.18) and (4.20). With the same arguments as showing (4.11) we have
∞∑

k=1

VP

(
maxnk+1≤n≤nk+1 |

∑n
i=nk+1(Yi − Q[Ỹi])|

nk
> 2εk

)

< ∞,

where nk = 2k, εk ↘ 0, which, similarly to (4.7), implies

V
P

(

lim
n→∞

∑n
i=1(Yi − Q[Ỹi])

n
= 0

)

= 1.

On the other hand, by (4.16) and the Borel–Cantelli lemma, we have V̂
∗(Xn �= Yn i.o.) = 0.

It follows that

V
P

(

lim
n→∞

Sn

n
= b

)

= 1.

(3.26) is proved. �
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