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Abstract In this paper, by establishing a Borel-Cantelli lemma for a capacity which is not necessar-
ily continuous, and a link between a sequence of independent random variables under the sub-linear
expectation and a sequence of independent random variables on R* under a probability, we give the
sufficient and necessary conditions of the strong law of large numbers for independent and identically
distributed random variables under the sub-linear expectation, and the sufficient and necessary condi-
tions for the convergence of an infinite series of independent random variables, without the assumption
on the continuity of the capacities. A purely probabilistic proof of a weak law of large numbers is also
given.
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1 Introduction and Notations

Let {X,;n > 1} be a sequence of independent and identically distributed random variables
(ii.d.) on a probability space (€2, F,P). Denote S,, = >, X;. One of the most famous results
of probability theory is Kolmogorov [3]’s strong law of large numbers (see Theorem 3.2.2 of
Stout [7]), which states that

P( lim " :b> =1 (1.1)

n—oo N

if and only if
EP[|X1|] < oo and Ep[Xl} =, (1.2)

where Fp is the expectation with respect to the probability measure P. When the probabil-
ity measure P is uncertain, one may consider a family &2 of probability measures and define
IE[X] = suppcp Ep[X]. Then E is no longer a linear expectation. It is sub-linear in sense
that E[aX +bY] < aIAE[X] + bIAE[Y] if a,b > 0. Peng [4, 5] introduced the concepts of indepen-

dence, identical distribution and G-normal random variables under the sub-linear expectation,
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and established the weak law of large numbers and central limit theorem for independent and
identically distributed random variables. Fang et al. [2] obtained the rate of convergence of the
weak law of large numbers and central limit theorem.

As for the strong law of large numbers, Chen [1] established a Kolmogorov type result. Let
{X,;n > 1} be a sequence of random variables in a sub-linear expectation space (2,.72, ]E)
with a related upper capacity V. Chen [1] showed that, if {X,;n > 1} is a sequence of i.i.d.

random variables, the capacity V is continuous, and the following moment condition is satisfied

E[|X1|'*] < o0 for some o > 0, (1.3)
then

7 I Sn o . Sn o

V( liminf ~" < —E[-X;] and limsup "~ > E[X3] ) =0 (1.4)
n—oo N n—ooo N

and s s
@<1iminf "= —E[—X1}> =1 and K?<hmsup "= E[Xﬂ) =1. (1.5)

n—oo n n—oo n

By establishing the moment inequalities of the maximum partial sums, Zhang [9] weakened the
condition (1.3) to

Co(| X)) = /OOO V(1 X1| > z)dz < o0 (1.6)

and
E[(|X1| — )] =0 asc— oo. (1.7)

The conditions (1.6) and (1.7) are very close to Kolmogorov’s condition (1.2). Zhang [9] showed
that (1.6) is also a necessary condition. Nevertheless, whether (1.7) is necessary or not is
unknown. On the other hand, to make both the direct part and converse part of the Borel-
Cantelli lemma are valid for a capacity, it is usually needed to assume that the capacity is
continuous when the strong convergence is considered as in Chen [1] and Zhang [9] etc. However,
Zhang [12] showed that the assumption of the continuity of a capacity is very stringent. It is
showed that a sub-linear expectation with a continuous capacity is nearly linear.

The purpose of this paper is to obtain the sufficient and necessary conditions for the strong
law of large numbers of independent random variables under the sub-linear expectation without
the assumption of the continuity of the capacities. In particular it will be shown that, if
{X,;n > 1} is sequence of i.i.d. random variables in sub-linear expectation space (£,.72, ]E)
with a regular sub-linear expectation E and a related upper capacity Vis countably sub-additive
(otherwise, V can be replaced by a countably sub-additive extension), then

17( lim " — b) —1 and b is finite

n—oo N

if and only if
(1.6) holds and b = E[X;] = £[X],

~

where V(A) = 1 — V(A9), B[X] = lime—oo E[(—=¢) V X1 A ] and E[X] = —lim,_.. E[(—¢) V
(=X1) A c]. As in the classical probability space, the almost sure convergence of a random
infinite series together with Kronecker’s lemma is a powerful tool for studying the strong law
of large numbers (see Pages 208-212 of Petrov [6]). The paper also gives the sufficient and
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necessary conditions for an infinite series of independent random variables under the sub-linear
expectation to be convergent.

Our main tools are a Borel-Cantelli lemma for a capacity which is not necessarily continuous,
and a comparison theorem for the random variables defined on the product space R>* which
gives a link between a sequence of independent random variables on R* under the sub-linear
expectation and a sequence of independent random variables under a probability. By the
comparison theorem, a Kolmogorov’s maximal inequality is obtained and a weak law of large
numbers is given with a purely probabilistic proof.

To state the results, we shall first recall the framework of sub-linear expectation in this
section. We use the framework and notations of Peng [4, 5]. If one is familiar with these
notations, he or she can skip the following paragraphs. Let (2, F) be a given measurable space
and let & be a linear space of real functions defined on (2, F) such that if X;,..., X, €
then p(Xq,...,X,,) € S for each ¢ € C; 1;,(R™), where Cj 1,;,(R™) denotes the linear space of
(local Lipschitz) functions ¢ satisfying

(@) —p(y)| < C(A + |2|™ + |y[™)|lz —y|, Ve,y eR",
for some C' > 0, m € N depending on ¢.

We also denote Ch, 1,ip (R™) the space of bounded Lipschitz functions.

Definition 1.1 A sub-linear expectation E on 4 is a function E: # - R satisfying the
following properties: for all X,Y € €, we have

(a) Monotonicity: If X >Y then E[X] > E[Y];

(b) Constant preserving: E[c] =g

(¢) Sub-additivity: B[ X +Y] < E[X]+E[Y] whenever E[X]+E[Y] is not of the form 400 —o0
or —0o0 + 00;

(d) Positive homogeneity: E]AX] = AE[X], A > 0.
Here R = [—o00,00]. The triple (2, 5, IAE) is called a sub-linear expectation space. Given a

sub-linear expectation E, let us denote the conjugate expectation gofl@ by
E[X]:= -E[-X], VX €.
By Theorem 1.2.1 of Peng [5], there exists a family of finite additive linear expectations

Ey : 7 — R indexed by 6 € O, such that

IE[X] = max Ep[X] for X € 2 with IE[X] being finite. (1.8)
€

Moreover, for each X € #, there exists fx € O such that E[X] = Ey, [X] if E[X] is finite.
Definition 1.2 (Peng [4, 5]) (i) (Identical distribution) Let X1 and X5 be two n-dimensional

random vectors, respectively, defined in sub-linear expectation spaces (1, 74, IAEl) and (s, H5,
IEQ). They are called identically distributed, denoted by X, 4 Xs if

Ei[p(X1)] = E2[p(X2)], Vg € Chrip(R).

A sequence {Xp;n > 1} of random variables is said to be identically distributed if X; 4 Xq for
each i > 1.

(ii) (Independence) In a sub-linear expectation space (2,5, IE), a random vector Y =
Y1,...,Y,), Y, € S is said to be independent to another random vector X = (X1,...,Xm),
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X; € A under B if for each test function ¢ € CiLip(R™ x R™) we have IE[QD(X,Y)] =
E[E[p(x,Y)]|aex], whenever o(x) := E[|p(x,Y)|] < oo for all & and E[|o(X)|] < oc.

A sequence of random variables { Xp;n > 1} is said to be independent, if X;41 is independent
o (X1,...,X;) for each i > 1.

Next, we consider the capacities corresponding to the sub-linear expectations. Let G C F.
A function V : G — [0, 1] is called a capacity if
V)=0,V(Q)=1 and V(A) <V(B), VACB, A Beg.

It is called to be sub-additive if V(AU B) < V(A)+ V(B) for all A, B € G with AUB € G.
Let (22, 52, IAE) be a sub-linear expectation space. We denote (i\’, 9) to be a pair of capacities
by
V(A) = inf{E[¢] : 4 < &, 6 € #Y, V(A) =1-V(AY), VAeF, (1.9)

where A€ is the complement set of A. Then V is a sub-additive capacity with the property that
E[f) <V(A)<Elg] if0<f<Ii<g fge andAeF. (1.10)

We call V and V the upper and the lower capacity, respectively.
Also, we define the Choquet integrals/expecations (Cg, Cp) by

cvpc]:/ooo V(th)dt+/0 V(X > ) — 1]dt

— 00

with V being replaced by V and V respectively. If V on the sub-linear expectation space
(Q, 2, E) and V on the sub-linear expectation space (€, H E) are two capamtles having the
property (1.10), then for any random variables X € J# and X € # with X £ X we have

VX>z+6)<V(X>z)<V(X>z—¢) foralle>0andz. (1.11)
In fact, let f € Cprip(R) such that I{y >z + €} < f(y) < I{y > z}. Then
V(X >z +e) <E[f(X)] =E[f(X)] < V(X >2),

and similar V(X > 2+ ¢) < V(X > ). From (1.11), it follows that V(X > z) = V(X > z) if z
is a continuous point of both functions V(X > y) and V(X > y). Since, a monotone function

has at most countable number of discontinuous points. So
V(X >2)=V(X >x) for all but except countable many z,

and then
Cv(X) = Cy(X). (1.12)

Because a capacity \ may be not countably sub-additive so that the Borel-Cantelli lemma

is not valid, we consider its countably sub-additive extension V* which defined by
oo
_inf{ZKV(A CAC UA } (A)=1-V*(49), AecF. (1.13)
n=1

As shown in Zhang [9], V* is countably sub-additive, and V* (A) < V(A). Furthermore, v (resp.
WA/*) is the largest sub-additive (resp. countably sub-additive) set function in sense that if V' is
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also a sub-additive (resp. countably sub-additive) set function satisfying V' (A) < E[g] whenever
Iy < g€, then V(A) < V(A) (resp. V(A) < V*(A)).
Besides \7*, another countably sub-additive capacity generated by E can be defined as
follows: . -
C*(A) = inf{ lim ]E{Zgl} tTA <) g0 0<gn € %ﬂ} AeF. (1.14)
i=1
Then C* < V*. It can be shown that the out capacity ¢’ defined in Example 6.5.1 of Peng [5]

coincides with C* if J# is chosen as the family of (bounded) continuous functions on a metric

n=1

space ).

For real numbers  and y, denote z Vy = max(z,y), Ay = min(z,y), 2+ = max(0, z) and
2~ = max(0, —x). For a random variable X, because XI{|X| < ¢} may be not in ., we will
truncate it in the form (—c) V X A ¢ denoted by X(©), and define E[X] = lim,_,o E[X(9)] if the
limit exists, and g[X] = —IF:[—X].

Proposition 1.3 Consider a subspace of F as

A ={X e lim E[(|X|Ad—c)T]=0}. (1.15)

c,d—0o0
Then for any X € 4, K[X] is well defined, and (0, 74, ) is a sub-linear expectation space.
Proof For any X € s and 0 < ¢1,co < d we have
El|(—c1) VX Aca — XD <E[(|X| Ad— (c1 Aca))T].

Hence
E[X©] —E[XD])| -0 ascd— oo,

which implies that IFE[X | = lime— o0 IAE[X (C)] exists and is finite. Furthermore,
lim  E[|(—c1) V X A o] = B[X]. (1.16)

C1,C2—00

Notice (AX)(©) = AX (/Y for A > 0. It is obvious that E[AX] = AE[X] for A\ > 0. Finally, for
any X,Y € A and ¢ > 0, we have X +Y € 5 and

(X + V) < (=¢/2) VX A (3¢/2) + (—¢/2) VY A (3¢/2).
By (1.16), E[X + Y] < E[X] + E[Y]. The monotonicity and constant preserving for £ are

obvious. The proof is completed. O
Let
& ={E : # — R is a finite additive linear expectation with £ < E}. (1.17)
By Theorem 1.2.1 of Peng [5],
E[X] = max E[X] for X € J4, (1.18)
Eec&

and moreover, for each X € 4, there exists E € & such that E[X] = E[X]. For the vector
X = (X1,...,Xq), we denote E[X] = (E[X4],...,E[X4]), E[X] = (E[X4],...,E[X4]) and
E[X]=(E[X1],...,E[Xy]) for E € &.

Finally, a random variable X is called tight (under a capacity V satisfying (1.10)) if V(| X| >
¢) — 0 as ¢ — oo. It is obvious that if E[|X|] < oo, or E[|X|] < oo or Cy(|X]) < oo, then X is
tight.



2288 Zhang L. X.

2 Basic Tools

In this section, we give some results which are basic tools for establishing the law of large
numbers as well as other limit theorems. The first one gives a link between the capacity and a

probability measure.

Proposition 2.1 Let (Q, 52, IAE) be a sub-linear expectation space with a capacity V satisfying
(1.10), and {X,;n > 1} be a sequence of random variables in ((L%”,]E). We can find a new
sub-linear space (ﬁ %]E) defined on a metric space Q = R, with a sequence {f(n,n > 1}
of random variables and a set function V:F— [0,1] on it satisfying the following properties,
where F = U(%)

(a) (X1,Xo,...,Xn) 2 (X1, Xo,....Xn), n=1,2,..., i,

E[@(Xla s aX’n)] = I/E[QO(XM s 7Xn)]7 (S Cl,Lip(Rn)7n Z 1a

whenever the sub-linear expectation in the right hand is finite. In particular, if {X,;> 1} are
independent under E then {Xn, n > 1} are independent under E.
(b) Define B
V(A)=V7(A4) = sup P(A), A€ F,
pPe»

where P is the family of all probability measures P on ((NZ,]-:) with the property
P[] < E[g] for bounded ¢ € H

and V =0 if P is empty Then V : F — [0, 1] 5 a countably sub-additive and nondecreasing
functzon and V < C* < V* <V, where V, V* and C* are defined on (Q %” IE) in the same
way as V, V* and C* on (Q, .7, IE), respectivelsy.

Here and in the sequel, for a probability measure P and a measurable function X, P[X] is
defined to be the expectation [ XdP.

(c) If each X,, is tight, then Zisa weakly compact family of probability measures on the
meltric space ﬁ,

E[¢] = sup Plp] for bounded ¢ € 2 (2.1)
PeP

and V is a countably sub-additive capacity with the property (1.10), i.e
E[f] <V(A) <Elg) #0<f<Is<g, fgc# and AcF. (22)
(d) If {X,;> 1} are independent under E and each X, is tight, then for any sequence of
vectors {&k = (Xnj_ 41y, Xn,,); k > 1} and a sequence {Ey; k > 1} of finite additive linear
expectations on G, = {f € H; [ is bounded} with Ey, < ]/E\, where 1 =ng < ny <ng < ...

there exists a probability measure @ on Q such that {ék = (X’nkflﬂ,...,)znk);k > 1} is a
sequence of independent random vectors under @,

Qle(&r)] = Exle(&r)]  for all ¢ € Cprip(R™* 1), (2.3)
Qlo(Xy,..., X)) <E[p(X1,...,Xq)] for all ¢ € Cprip(R") (2.4)

and

(X1, Xs,...) € B) < Q((X1,X,...) € B) < V((X1,Xs,...) € B) (2.5)
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for all B € B(R>),

where T(A) =1 — V(A°).
Remark 2.2 When X1, X5, ... are bounded random variables, then (2.3) and (2.4) hold for all
¢ € Cprip. When X, Xo,... are multi-dimensional random vectors, Proposition 2.1 remains

true.

Proof A special case of this lemma can be found in the proofs in Zhang [12]. We summarize
the results and the proof here for the convenience of reading and the completeness of this paper.
We use the key idea in Lemma 1.3.5 of Peng [5] to construct the new sub-linear expectation in
the real space. Let Q = R®, F = Z(R>) and

H={p(x1,...,2n) : p € CrLip(R"),n > 1,for & = (21, 22,...) € ﬁ}

Define

Elp] = E[p(X1,.... X0)l, @ € Ciup(R").
Then E is a sub-linear expectation on (€2, %fZ) Define the random variable X; by X;(@) = z;
for & = (z1,22,...) € Q. Then

Elp(X1, ..., X0)] = Elp] = Elp(X1,..., Xo)l, ¢ € Cruip(R™).

It follows that (X1,...,X,) 4 (X1,...,Xp) forn=1,2.... (a) is proved, and (b) is obvious.
For (c), suppose that each X, is tight. For the new sub-linear expectation, we also have

the expression (1.8):

E[X] = max Fz[X]  for X € # with E[X] being finite,
€O
for a family of finite additive linear expectations Fj : A — R indexed by 6eo. Furthermore,
for each X € ., there exists 55( € O such that E[X] = E(;)_( [X] if E[X] is finite. For each Ej,
consider the finite additive linear expectation Ej on Ch,Lip(RP). For any sequence Cp 1ip(RP) 3

¢n "\, 0, we have sup ;<. [pn(z)| — 0, and so

p
Eglen] < Elpn(Xa,.., X)) < sup [on(@)| + D e [V(X;] > e) = 0

le|<c j=1

as n — oo and then ¢ — oo, by the tightness of X, where ||¢|| = sup, |¢(x)|. Then, as shown
in Lemma 1.3.5 of Peng [5], by Daniell-Stone’s theorem, there exists a family of probability
measures Fj; on (R?, #(RF)) such that

E@[@] = P@;;[@] = /@(1'1, R 7xP)P§)p(d‘Tlv R de), pE Cb,Lip(]Rp)'

It is obvious that {P(;’p; p > 1} is a Kolmogorov’s consistency system. By Kolmogorov’s exis-
tence theorem, there is a unique probability measure Py on (R*°, Z(R>°)) such that Pj|z®r) =
Pg)p. Hence

Pyle] = Ejle] <Elg], ¢ € Chrip(RP).

Recall that 2 is the family of all probability measures P on (R, Z(R>)) with the property

Plg] <E[g], for bounded ¢ € H .
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Then for any bounded ¢ € L%A”/,

E[] = sup Ejlie] = sup Pyie] < sup P[] < E[g].
o ico Pe

It follows that (2.1) holds and for each bounded ¢ € J there exists a P € 2 such that
Ply] = Ely]. . B
Suppose 0 < f < Iy < g, f(x) = f(z1,...,2p), 9(x) = g(z1,...,2p) € I and A € F.
Then
P[f] < P(A) < Plg A 1].

By (2.1) and taking the supremum over P € 2, it follows that
Blf (X1, X)) = E[f] < V(4) < E[g A 1] < Elg] = Elg(X3,.., X))

(2.2) is proved. At last, we show that P is weakly compact. For any € > 0, by the tightness
of X;, there exists a constant C; such that V(|X;| > C;) < €/2'. Then V(z : |a;| > 2C;) <
V(| X;| > C;) < €/2" by (1.11). Let K = @;2,[—2C;,2C;]. Then K is a compact subset in the
space R> with a metric defined by d(z,y) = > i, (|z; — y;| A 1)/2%. Notice

Viz ¢ K) §Z :|:vi|22C’i)§Ze/2i<e.
i=1 i=1
It follows that & is tight and so is relatively weakly compact. Assume P> P, = P. Itis

obvious that
P[f] = lim P,[f] <E[f] for bounded f € 7.

n— oo

Hence P € 2. Tt follows that 2 is closed and so is weakly compact. (c¢) is proved.
Now, we show (d). Consider the linear operator Ej, on Cp,Lip(R™ ™ 1) defined by

Eile] = Erlp(&r)], ¢ € Cprip(R™ 1),
Then

Eple] <E[p(&r)], @ € Copip(R™ 1),
If Cy Lip(R™ = ™=1) 3 o, \ 0, then SUP || <c lon ()| — 0 and

Exfion] < Elpn(€)] < sup |pn(@)] + o1 |[V(|&x] > ¢) = 0

z|<c

as n — oo and then ¢ — oo, where ||| = sup,, |¢(z)|. By Daniell-Stone’s theorem again, there

exists a probability measure @ on R™ ~™k-1 such that

Qulel = Exlp) <Elp(&r)], Vo € Chuip(R™ ™).
Now, we introduce a product probability measure on R> defined by
Q = Q1lrm X Qalgna—n1 X -
Then, under the probability measure Q, for any A; € Z(R™"i-1) i=1,...,d,d > 1,
QUz;z1 € Ay, ..o za € Aa}) = Q1(A1) -+ Qu(Aa) = Q{1 21 € A1}) - Q({w; 20 € Ad}),
where z; = (Tn,_,+1,-.-,%n,). That is

Q1€ Ar,... €€ Ag) = Q& € A1)~ Q(€a € Ag).
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So, él, 52, ... is a sequence of independent random variables under ). Furthermore,
Qlp(€r)] = Qule] = Exlp] = Brlo(ér)] < E[p(&r)), Voo € Chip(R™ 1), (2.6)
(2.3) is proved.
Notice that for every ¢(z1,...,24) € Cprip(R™), where z; = (Tn, ,+1,-- -, Tn; )

Qlo(z1, ..., 2za-1,€a)] = Qalp(21, ..., za-1,)] < Elp(z1, ..., 241, €4)]

by (2.6). Write the functions of (z1, ..., z4—1) in the left hand and right hand by ¢1(21,...,24-1)
and ¢2(21,...,24-1), respectively. Notice that £~1, . ,éd are independent under both @ and
E, and &1,...,&, are independent under E. We have that

Qle(21, ..., za-2,€a-1,€a)] = Qlp1(21, -, Za—2,€a-1)]
< Qlpa(z1,. ., 242, €4-1)] < Elpa(21, .., 2a-2,€a-1)]
= E[@(Zl, ceey Bd—2; £d—1a éd)] = E[@(Zl, ceey Bd—2, éd—lv éd)]a

by (2.6) again. By induction, we conclude that
Qe &) <Elp(y,....&0)],  forall p € Cyrip(R™), d > 1.

Now, for each ¢ € Cp 1ip(R"), ¢ 0 Ty, is also a function in Cp 1ip (R™) when n < ng4, where

Tpy—n ¢ R — R™ is the projection map. It follows that

Qly]l = Q[‘P(Xh e 75(”)] =Qlpo ﬂ—’ﬂd*’n(él7 e fd)}
<Elp o Taymn(&r- - €0)] = Efp(X1,..., X))
= Elp(X1,..., Xn)] = Elg].
That is, Q[¢] < E[g] for all bounded ¢ € . Hence, Q € & and (2.4) holds. So, for each
B € #(R*>),
Q((X1,Xa,...) € B) = Q(B) < V(B) = V((X1,Xa,...) € B),
by the definition of V. The right hajld of (2.5) is proved. The left hand is obvious by noting
Q(B)=1-Q(B° and v(B) =1 — V(B¢). The proof is completed. O
The next lemma is the Borel-Cantelli lemma for a countably sub-additive capacity.

Lemma 2.3 Let V be a countably sub-additive capacity and >, V(A,) < co. Then

oo (oo}
V(A i.0.) =0, where {A,i0.} = ﬂ U A;.
n=1i=n
Proof Easy and omitted. O
The following lemma is the converse part of Borel-Cantelli lemma under V* or V.

Lemma 2.4 Let {X,;n > 1} be a sequence of independent random variables in the sub-
linear expectation space (Q,%,E) for which each X, is tight, {X,;n > 1} be its copy on
(Q, %Z,E) as defined in Proposition 2.1. Suppose & = (Xn,_ 41,y Xn,), L=ng <ny < ...,
T € CruipR™™=1) and > 72 V(fr (&) > 1+ €;) = 00, j = 1,2,..., where e ; > 0,
k,j=1,2,.... Then on the space (ﬁ,%ﬁ),

VA =V (@) =VA) =1 A=[{fi;(&) 21 io},

Jj=1
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where € = (X, 141, +> Xn,)-
Proof Let gi j € CpLip(R) such that I{x > 1} > gi j(z) > I{x > 1+ € ;}. Then

o0

Z 9.3 (frj (€))] =00, j=1,2,....

By the expression (1.8), for each pair of k and j there exists 6 ; € © such that

Eo, 19k, (fr.i(&r))] = Elgr.; (fr.;(€x))]-

Define the linear operator Fj by
Ey=>» 277E, .
j=1

Then FE; < E. By Proportion 2.1 (d), there exists a probability measure @ on Q such that
{&k; k > 1} is a sequence of independent random variables under @, and (2.3)—(2.5) hold. By
(2.3),

o0 oo

> QUfei(€) = 1) =Y Qlgw,(fr.i(€r))] ZEk 915 (fri (€))]
= ZEek, (95,5 (fr,5 (k) Z (95,5 (fr,5(&x))] = o0.
k=1

So, by the Borel-Cantelli lemma for a probability measure,

Q(frj(&r) =1 i0) =1.
It follows that
Q( (M {frs6r) = 1 i.o.}) _
j=1

By (2.5), it follows that

The proof is now completed. O

The next lemma tells us that the converse part of the Borel-Cantelli lemma remains valid

in the original sub-linear expectation space (0, 57, IAE) under certain conditions.

Lemma 2.5 Let (Q, 52, IE) be a sub-linear expectation space with a capacity V having the

property (1.10), and v(A) = 1 -V (A€). Suppose that one of the following conditions is satisfied.
(a) The sub-linear expectation E satisfies

E[X] = max PIX], X € 74,
SE

where 74, = {f € ;[ is bounded}, & is a countable-dimensionally weakly compact family
of probability measures on (Q, 0(H)) in sense that, for any Y1,Ys,... € A4 and any sequence
{P,} C & there is a subsequence {ny} and a probability measure P € & for which

lim P, [o(Y1,...,Yy)] = Ple(Y1,...,Ya)], ¢ € Cyprip(RY),d > 1. (2.7)

k—oo
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(b) E on 4 is reqular in sense that I@[Xn] 1 0 for any elements 54 > X,, | 0. Let & be
the family of all probability measures on (Q,o(H)) for which

Plf] <E[f], fe€ .

(c) Q is a complete separable metric space, each element X (w) in J is a continuous function
on Q. The capacity V' with the property (1.10) is tight in sense that, for any e > 0 there is a
compact set K C  such that V(K€) < e. Let & be defined as in (b).

(d) Q is a complete separable metric space, each element X (w) in H is a continuous function
on 2. The sub-linear expectation E is defined by

Eﬂ=ggﬂﬂ,
€

where & is a weakly compact family of probability measures on (Q, ().
Denote V¥ (A) = maxpep P(A), A € o(). Let {X,;n > 1} be a sequence of independent
random variables in (0, 7, E).

(1) If Y00 v(X,, < 1) < oo, then for V=V C*, V* or V,

V( G ﬁ (X, > 1}) =1, ie, V(X;<1lio)=0. (2.8)

m=11i=m
(i) If Y200, V(X,, > 1) = 0o, then for V=VZ, C*, V* or V,
V(X, >1 i0)=1. (2.9)

More generally, suppose that {X,;n > 1} is a sequence of independent random vectors in
(Q,%,E), where X, is dy,-dimensional, f, ; € Ciip(R¥) and 307 | V(fnj(Xn) > 1) = o0,
j=1,2,..., then for V=V7, C*, v+ orWA’,

V( fj{fn’j(xn) >1 i.o.}) =1. (2.10)

(iii) Suppose that {X,:n > 1} is a sequence of independent random vectors in (0, 7, E),
where X, is dy,-dimensional. If F,, is a d,,-dimensional closed set with Y .~ v(X, € F,,) < oo,
then for V=V, C*, V* or i\’,

V(X, & F,io0.)=0;

If F,, js are d,-dimensional closed sets with Y~ V(X,, € F, ;) = o0, j = 1,2,..., then for
V=VZ, C* V*orV,
V( ({Xn € Fu; i.o.}) =1.
j=1

Proof (i) and (ii) are special cases of (iii). But, to prove the general case (iii), we need to
show the two special cases first. Without loss of generality, we can assume 0 < X,, < 2, for
otherwise, we can replace it by 0V X,, A2. Write X = (X7, X5,...). Suppose that (a) is satisfied.
Consider the family & on o(X). Notice | X,| <2,n=1,2,..., and the set K = Q;o,[—2,2] is
a compact set on R®. So, ZX ! = {P: P(A) = P(X € A),A € B(R>®),P € #} is a tight

and so a relatively weakly compact family of probability measures on the metric space R>.
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Next, we show that ZX ! is closed. Suppose that P, X! € #X ! is weakly convergent
sequence. Then there exists a probability @ on R* such that P, — @, i.e.,

QI = lim P,[f(X)], [ e Cp(R™). (2.11)

It is needed to show that there exists a probability measure P € & satisfying Q(A) = P(X € A)
for A € Z(R*>°). By the conditions assumed, for the sequence {P,} there exists a subsequence
{nr} and a probability measure P € & such that (2.7) holds. Hence

Q[f] = P[f(Xl,« .. 7Xd)]; Vf e vaLip(Rd),d > 1.

So, QU{z : (w1,...,74) € A}) = P((X1,...,Xy) € A) for all A € B(R?), which implies
Q(A) = P(X € A) for all A € B(R>®). We conclude that 22X ! is closed and so weakly
compact. Denote V(A) = VZ(X € A). By Lemma 6.1.12 of Peng [5], for any sequence of
closed sets F,, | F, we have V(F,) | V(F).

Now, we consider (i). By the independence, we have for any §; > 0, and V = VZ, C*, v
or V,

V( X 21—6i}) > [[vxi=.
i=m i=m

In fact, we can choose a Lipschitz function f; such that I{z > 1 - §;} > fi(x) > I{z > 1}.
Then

V(Q (Xiz1-4})2 ﬁ[l_jm x| = T Ecx) = T vex =)

Let ¢, = v(X; < 1) and choose §; = 1/1. Then

oo

W’( ﬁ{Xizl—l/l}) > ﬁV<Xizl>= [T -e).

i=m i=m i=m

Notice that {z : ;_, {z; > 1—§;}} is a closed set of  on R*. It follows that

n n oo

Vg’( ﬂ{Xi>1—1/l}) \ZW’< ﬂ{Xl->1}) \nvy’< ﬂ{Xl—>1}>.

It follows that

o

v@(ﬂ{xizl})zﬁV(Xiznzﬁ(l—ei)—&, m — oo

due the fact that > > ¢ < co. Hence (2.8) is proved.
Consider (ii). Write ¢; = V(X; > 1). Now, for V=1-VZ 1-C*, 1-V*or 1 -V, we
have

n

v( N ex<1-un) <& Ta- s = [ - rexl < [T o<

=m

That is

V(O{Xi21—1/l}> >1— ﬁ(l—V(Xi21))21—exp{—zn:e,»}.

i=m i=m i=m
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Notice that (J;—, {z; > 1 —1/1} is a closed set of . It follows that

Vg’(O{Xizl—l/l}) \V”(O{Xizl}) as | — oo.

i=m i=m

Hence for each m,

n

V@(O{Xizl})21—exp{—zei}—>1 as n — oo, (2.12)

=m i=m
due to the fact that Ef; €; = 00. Let 6, = 27%. We can choose a sequence nj ' oo such that

Nk41
W‘( max Xi21)=v9”< U {Xi21})21—5k.

ne+1<i<ngy P
=nk

Let Zp = maxy, +1<i<n,,, Xi- Then {Zy;k > 1} are independent under E. By (i),

V‘@(U R = 1}) =1.
=1 k=1
Notice ;2 ; Neei{Zr > 1} € {X,, > 14.0.}. (2.9) holds.
Now, we consider the general case. Without loss of generality, assume 0 < f,, ;(X,,) < 2.

Similar to (2.12), for each m and j we have

Let 6, = 27%. We choose the sequence 1 = ngg < ni1 < ngp < Ngg < -+ < Mg < -+- <
Nk < Ngt1,1 < --- such that

Nik,j
W( U {fi,j<X1—>>1})>1—5kﬂ, J<hE>1,

i=ng j-1+1
where ngo = ng—1k-1. Let Zx; = max,, ;_,r1<i<n, f”(Xl) Then the random variables
210,221,222, Zk1y- s Ziks Lk+1,1, - - - are independent under E with
P
1% (Zk,j < 1) < 5k+j~

Notice >"p2, 25:1 Ok+j < 00. By (i), we have

V‘@(D ﬁ rk]{zk,j > 1}) =1.

1=1k=lj=1

On the event J;2, Nre; m§:1{Zk7j > 1}, there exists an Iy such that Zy ; > 1 for all k > Iy and
1 < j < k. For each fixed j, when k > j V Iy we have Zj ; > 1, and hence {f, ;(X,) > 1 i.0}

occurs. It follows that

k %)
({Zk; =1} € ({fni(Xn) > 1 io}.

Jj=1 Jj=1

(@
DL

N
Il
-
b
1l
~

(2.10) holds.
(iii) Denote d(x, F) = inf{|ly — «|| : y € F}. Then d(z, F') is a Lipschitz function of x. If

F, ; is a closed set, then

X, € ij < d(Xn,anj) =0« fn,J(Xn) =1—-1A d(Xn,Fnﬁj) > 1.
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The results follow from (i) and (ii) immediately.

When the condition (b) is satisfied, it is sufficient to show that the family &7 satisfies the
assumption in (a). Notice the expression (1.8). Consider the linear expectation Ey on 4. If
A, 3 fr 10, then 0 < Ey[f,] < IE[fn] — 0. Hence, similar to Lemma 1.3.5 and Lemma 6.2.2 of
Peng [5], by Daniell-Stone’s theorem, there is a unique probability Py on o(54) = o(5) such
that

Pylf] = Eolf] <Elf], fe€ .

Hence

E[f] = sup Ey|f] = sup P[f], f € .
0cO 0cO

Recall that & is the family of all probability measures P on o(2#) which satisfies P[f] < IE[ 1]
for all f € J%,. We have

E[f] = sup Py[f] < sup P[f] <E[f], fe .
0co pPe>

Suppose Y7, Ys, ... € 74 with |Y;| < C;. Write Y = (Y1, Ys,...) and K = Q;2,[—C;, C;]. Then
P(Y € K¢) =0 and K is a compact set on the space R>. It follows that £Y ~! is tight and
so is relatively weakly compact family of probability measures on the metric space R>. Hence,

for any sequence {P,,} C &, there exists a subsequence n; " oo such that

is well-defined. It is obvious that E is a linear expectation on {¢(Y) : ¢ € Cp,(R*)}. Consider
Eon Z={p(M1,...,Yq) 1 p € C’b)Lip(Rd),d > 1}. Tt is obvious that

Ele(V,....Ya)l = lim P eV, Ya)l < Elp(M,.... Ya)l, ¢ € Chrip(RY).
So, by the Hahn—Banach theorem, there exists a finite additive linear expectation E°¢ defined
on s such that, E¢ = F on .Z and, E¢ < E on 5. For E€, by the regularity, as shown before
there is probability measure P¢ on o(5¢) such that P¢[f] = E°¢[f] for all f € 5% D Z. Hence
P¢ e & and

lim P [p(Vi,. o Ya)l = Elo(YVi, Ya)l = PYle(Vi, . Ya)l, 9 € Craip(RY),d > 1.

It follows that &2 satisfies the assumption in (a).
For (c), it can be shown that E is regular on %, and so the condition (b) is satisfied. In
fact, suppose that 74 > f, 1 0, f, < M, and K is a compact set. Then
Op =: sup fp(w) | 0and 0 < ]E[fn} <0+ MV (K°).
weK
IE[ fn] 1 0 follows from the tightness of V. Finally, (d) is a special case of (a). The proof is
completed. O

Remark 2.6 The condition (d) is popular in the study of sub-linear expectations, c.f. Peng
[5]. The condition (a) is an analogue of (d). Since the weak compactness can be only defined for
probability measures on a metric space, we assume the condition (a) in the general measurable

space.
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Actually, the condition (a) implies that E is regular on J7;,. For showing this fact, suppose
A, 3 Y, \, 0. For each n, there exists P, € & such that E[Y,,] > P,[Y,] > E[Y,,] — 1/n%. For
the sequence {P,} and Y7,Y5,..., by the condition assumed, there exist a subsequence {P,, }
and a probability measure P € &2 such that (2.7) holds. It follows that

0 <limsup B, [Yn

k—o0

| < lim Py, [Yi] = PV, Ym > 1.

k

Notice P[Y,,] \, 0 as m — oo by the continuity of P. Hence, limy_, IAE[Yn
= 0, which implies E[Y,,] — 0 by the monotonicity of E[Y,,].

Though the conditions (a) and (b) are equivalent, the families & may be different. The
capacities C*, V* and V do not depend on the choice of 2, but V¥ does.

| = Ty, oo Py [V,

k

The rest three lemmas give the estimators of the tail capacities of maximum partial sums of
independent random variables. Lemma 2.7 below is a kind of Kolmogorov’s maximal inequality

under ﬁ

Lemma 2.7 Let {Z,1;k = 1,...,k,} be an array of independent random vectors taking
values in R? such that IEHZHJCF] < oo, k=1,...,ky, here|-| is the Euclidean norm. Then for
any pnx € M[Z, 1] =: {E[Znx] : E € &} where & is defined as (1.17), k=1,..., ky,

]A}( max Z(Zn & — Hnk)

m<k
=" =1

Proof For each k there exists Ey € & such that p, = Ex[Z,k]. Ei is a finite additive
linear expectation on 24 = {f € J;f is bounded} with B < E = E. Notice that each
Z, ) is tight by the fact E[|an| ] < oco. By Proposition 2.1, {an,k: =1,...,k,} has a
copy {Zn k;k=1,...,k,} on a new sub-linear expectation space (Q %” ]E) with a probablhty

kn,
>x)<2x QZ 1Z0 k] = |0 kl®), Vo >0.
k=1

measure () on Q) such that {Zn Tyenns nkn} are independent random vectors under @,
Qle(Znr)] = Exle(Zy )] for all ¢ € Cpip(RY), (2.13)
Qle(Znas- s Zni ) <E[@(Znis. ., Zng,)] forall o € Cypip(RPFn) (2.14)
and
3(B)<Q(B)<V(B) forall B€ o(Zn,..., Znk,) (2.15)

Notice Eg|Zn ki~ (—€)V ZngiNel <E[(|Znril —c)T] = 0 as ¢ — oo by E[|Z,4]*] < 0. Then
QZnri) = Clggo Ql(=¢)V Zy i Nec| = Clggo Ey[(=¢)V Zn ki N = Ex[Zn k] = pn ki
by (2.13), and
QUZu i) = lim QlIZnxl* Ad] < lim E[|Zkf* Ac] < B[ Zn il

by (2.14). Let Y = maxm<i, | Spe1(Znk — ptnk)|- By (2.15) and the Kolmogorov inequality
for independent random variables in a probability space, we have

b
V(Y >2) <Y >2) QY > 1) <2072 Q| Zns — QZn i
k=1
o o

= 237_2 Z(Q[‘kaﬁ] - |Q[Z < 21‘_2 Z |Zn k|

k=1

2).
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By (1.11) and noting max,,<k, | Y pe i (Znk — Bnk)| = maxpm<k, | >ope1(Znke — Bnk)|, we have
17< max x)

m<kn,
<VY >y) < 2y_22 [1Z...
k=1

m

Z(Zn,k - ljfn,k) >

k=1

=

] |ll’n,k|2)7 O0<y<ua.

The proof is completed. O

The following lemma is on the exponential inequality under V whose proof is similar to that
of Theorem 4.5 of Zhang [11].

Lemma 2.8 Let {Z, ;;k=1,...,k,} be an array of independent random variables under E
such that E[Z, k<0 and K| nk] <oo, k=1,...,k,. Then for all z,y >0
R m
V(glgalii Z Ik 2 ac)
k=1
N x B2 Y
< > — .
V(ﬁé}ékail)—i-exp{y y(wy+1>ln(1+32>} (2.16)

where B2 = ZZL ]E[sz] In particular, by letting y = x, we have Kolmogorov’s maximal
inequality under V as follows:
32
(maxZan>x><(e+1)x2, Vo > 0. (2.17)

m<k

The last lemma on the Lévy maximal inequality is Lemma 2.1 of Zhang [10].

Lemma 2.9 Let Xq,..., X, be independent random variables in a sub-linear expectation space
(Q,%,E), Sy = Zle Xi, and 0 < oo < 1 be a real number. If there exist real constants By i
such that

WA7(|S;€—S’H|Zﬁn’k—i—e)ga7 foralle >0 and k=1,...,n,

then
(1- oz)WA](maXﬂSk\ Bri) >z +¢€) < V(|Sn| > ), for allz > 0,¢> 0. (2.18)

3 The Law of Large Numbers

Our first theorem gives the sufficient and necessary conditions for the strong law of large
numbers. Let {X,,;n > 1} be a sequence of i.i.d. random variables in a sub-linear expectation
space (Q2,.%,E). Denote S, = Y7, X;.

Theorem 3.1 (a) If

Cy(|X1]) < o0, (3.1)
then
L . Sn 5 . Sn 9
V*( liminf " < £[X;] or limsup =~ >E[X;]) =0. (3.2)
n—oo  n n—oo T

Furthermore, if the space (Q, 5, ]/E\) satisfies one of the conditions (a)—(d) in Lemma 2.5, then
forV=VZ C* or %7*,

v 9]

V(hminf Sn =&[X1) and limsup " = E[Xl]) =1, (3.3)

n—oo n n—oo n
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V(C{ i"} = [é[xl],fa[xl]]) =1, (3.4)

where C{x,} denotes the cluster set of a sequence of {x,} in R.
(b) Suppose that the space (2, H, IE) satisfies one of the conditions (a)—(d) in Lemma 2.5.
If for V=VZ, C* or WA/*,

V(limsup |5;:| = oo) <1, (3.5)

n—oo
then (3.1) holds.

Remark 3.2 Theorem 3.1 tells us that the sufficient and necessary condition for the strong
law of large numbers is (3.1). Under (3.1), E[X;] and £[X,] are well-defined and finite. In
Zhang [9], (3.2) is proved under (3.1) and an extra condition that IE[(\X1| —c¢)t] = 0asc— oo.
Under this extra condition, we have IE[Xl] = E[X;] and £[X;] = £][X,]. For establishing (3.3)
and (3.4) and (b), the continuity of V* is also assumed in Zhang [9)].

The following corollary gives an analogues of (1.1).
Corollary 3.3 Suppose that the space (Q,%,E) satisfies one of the conditions (a)—(d) in

Lemma 2.5.
(a) If (3.1) is satisfied, then for V.=VZ C* or V*,
1, when b € [E[X,],E[X4]],

V("h_{go n o b) B 0, whenb¢ [E[Xﬂ,]i[Xl”. (36)

(b) For V=VZ, C* or V*, there exists a finite random variable b(w) such that
Sn
V( lim ~" = b) =1 (3.7)
n—oo N,

if and only if (3.1), E[X1] = E[X1] and V(b= E[X,]) = 1.
The following theorem and corollary are Marcinkiewicz’s type laws of large numbers which

gives the rate of convergence of Kolmogorov’s type law of large numbers.

Theorem 3.4 Let1 <p<2. If

C(IXP?) < oo, (33)

then . .
V*( lim inf Sn = nEX] <0 or limsup Sn = nELX)] >0)=0. (3.9)

n—oo nl/P n—00 nl/P

Furthermore, if the space (0, 7, K) satisfies one of the conditions (a)—(d) in Lemma 2.5, then
forV=V?, C* 07’\7*,

v V)

. S =nE[Xy] . Sp—nE[X ] 1\
V(hnnigf 1/ =0 and hznjolip 1/ =0)] =1 (3.10)
Corollary 3.5 Suppose that the space (Q,%,E) satisfies one of the conditions (a)—(d) in

Lemma 2.5.
(a) If (3.8) is satisfied, then for V.=V C* or v,

V( lim S"_”b_o> -

n— oo nl/P

1, when b e [E[X4], E[X1]],

S (3.11)
0, when b ¢ [E[X1],E[X1]]
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(b) For V=VZ, 6 C* or V*, there exist finite random variables b(w) and c(w) such that

. S,—nb
V<n1520 ol = c> =1 (3.12)
if and only if Cg(]X1|P) < oo, E[X1] = B[Xy] and

V(b+c=E[X =1, whenp=1,

( : [X4]) p (3.13)

V(b=E[X1],c=0)=1, when1<p<2.
Remark 3.6 When the space (Q,.7, E) does not satisfy the conditions (a)-(d) in Lemma 2.5.
We may consider the copy {X,;n > 1}. The sub-linear expectation space (ﬁ,ff , IE) satisfies
the condition (d) in Lemma 2.5 when each X, is tight, by Proposition 2.1, and so, Theorems
3.1 and 3.4 and Corollary 3.3 and 3.5 remain true for {X,;n > 1}.

Teran [8] gave an example as follows which shows that (3.3) and (3.4) do not hold.

Example 3.7 Set Q = {0,1,2,...}, take 5 to be the set of all bounded (necessarily Borel
measurable) functions on €2, and define E[X] = sup,cq X (w) for all X € 7. Let X,, be the
nth bit in the binary representation of w. Terdn [8] showed that {X,;n > 1} is a sequence
of independent and identically distributed random variables under E with X, (w) € {0,1},
E[X1] =0, E[X;] =1 and

S, A

— E[X;] forallw e Q.
n

9

By noting that X,, is bounded, £[X] = £[X;] and E[Xl] = [E[X;]. For this sub-linear expec-
tation space, V(4) = V*(A) = C*(A) = E[I4] = sup,cqo la(w) = 1 if A is not empty and 0
otherwise. Hence, (3.3) and (3.4) do not hold.

In the above example, if let d,, to the unit mass at wy, i.e., d,,(A) = I4(wo), and denote
P = {8uy;wo € O}, then E[X] = suppe» P[X]. However, the sub-linear expectation space
does not satisfy the conditions in Lemma 2.5. In fact, Y, (w) = “™ is a bounded sequence in
A with 1 > Y, (w) \, 0, but E[Y,] = SUP,eq Yn(w) =1 4 0. So, E is not regular on 4. As
we have shown that, each of the conditions (a)-(d) in Lemma 2.5 implies the regularity of E.
Hence, Teran’s example shows that the conditions in Lemma 2.5 can not be removed. Whether
they can be weakened or not is an open problem.

Zhang [10] studied the convergence of the infinite series Y - | X,, of a sequence of inde-

pendent random variables. But, when the strong convergence is considered, the capacity V is
assumed to be continuous. The next theorem gives the equivalence among various kinds of the
convergence of the infinite series > ° | X,, without the assumption on the continuity of the
capacities.
Theorem 3.8 Let {X,,;n > 1} be a sequence of independent random variables in a sub-linear
expectation space (Q,%,E) with a capacity satisfying (1.10), and {X,;n > 1} be its copy on
(Q,.#,E) as defined in Proposition 2.1. Denote S, = Y7 X;, 8, = S0, X;. Assume that
each X, is tight. Consider the following statements:

(i) There exists an F-measurable finite random variables S such that S, — S a.s. WA/*, i.e.,

V*({w lim S,(w) # S)}) = 0; (3.14)
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(ii) There exists a F-measurable finite random variables S such that S, — S in WA/*, i.e.,
@*(|Sn—5|26)—>0 asn — oo for all e > 0; (3.15)

(i") For the copy {X,;n > 1}, there exists a a(j?/)—measumble finite random variables S
such that S, — S a.s. WNI*, i.e

@*({w : lim S, (w) # S’(w)}) = 0; (3.16)

n—oo

(ii') For the copy {Xn;n > 1}, there exists a 0(%-measumble finite random variables S
such that S,, — S in §7*, i.e

V*(1S, =S| >€) =0 asn— oo for all e > 0; (3.17)
(iii) {S,} is a Cauchy sequence under V, i.e.,
V(|Sp — S| > €) =0 as n,m — oo for all ¢ > 0; (3.18)

(iv) For some (equwalently, for any) ¢ >0,
(S1) >0 V(1 X,| > ¢) < o0,
(S2) >0 [X(C)] and Y0 | E E[— X,(f)] are both convergent,
(83) S E[(X}f’ ~E[X\7))?] < 00 or/and 300 E[(X) + E[-X7))?) < oc.
(v) Sy, converges in distribution, that is, there is a sub-lznear space (Q, 7, E) and a random
variable S on it such that S is tight under E, i.e., V(|S| > z) — 0 as z — oo, and

El¢(Sn)] = E[6(S)], ¢ € CyLip(R). (3.19)

Then ('), (it’), (iii)—(v) are equivalent and each of them implies (i) and (ii). Furthermore,
suppose that the space (2, H, ]E) satisfies one of the conditions (a)—(d) in Lemma 2.5. Then
(i), (it"), (1)—(v) are equivalent.

Remark 3.9 In the theorem, V can be replaced by any a capacity V with the property
(1.10) by (1.11), V* can be replaced C* or Vv, V* can be replaced by C*, and, when one of the
conditions (a)—(d) in Lemma 2.5 is satisfied, V* can be replaced by V2.

Remark 3.10 Terdn [8]’s example also tells us that (i) may not imply (ii)—(v) and (i')—(ii")
when the conditions in Lemma 2.5 are not satisfied. In fact, let Q, 52, E and X,,s are defined
as in Example 3. Then (see Teran [8])

o
Z 2" 11X, (w) =w, forallwe Q.

n=1

Iflet X, =2""'X,, S, = Py X;, then
V{w: lim S,(w) #w}) =

Hence, (i) holds with S(w) = w. But B[X{?] = 2"=1 Ac. So, (S2) of (iv) does not hold. Then
(iii)—(v) and (i’) and (ii’) do not hold by the equivalency. Furthermore, at this case, (ii) implies
(iii), since

V(|80 = S| =€) = V*(|S — Spn| =€) < V*(|S, — S| > €/2) + V*(|S, — S| > €/2) — 0.
Hence, none of (ii)—(v) and (I')—(ii’) holds.
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At last, we give an analogues of Theorem 3.1 for random vectors. Now, let {X,,;n > 1} be

a sequence of i.i.d. random vectors in a sub-linear expectation space (€2, 52, IE) who take values

in a Euclidean space R? with norm |z| = \/E?:l z?, and X Lx. Suppose

lim E[(|X|Ad—-c)t]=0. (3.20)

c,d

Then by Proposition 1.3, for any p € R%, E[(p, X)] is well-defined and finite, and
g9(p) = E[(p, X)], peR’
is a sub-linear function defined on R?. The assumption (3.20) is implied by a strong one as
Cy(1X]) < o0 (3.21)

or lime_ oo E[(| X| = ¢)*] = 0. Furthermore, if lim,_.o, E[(|X|—c)*] = 0, then g(p) = E[(p, X)].
For the sub-linear function g(p), by Theorem 1.2.1 of Peng [5], there exists a (unique) bounded,
convex and closed subset M such that (see Peng (][5, Page 32])

g(p) = E[(p, X)] = sup (p. @), p € R,

We denote this set M by Mix or M[X]. If X is a one-dimensional random variables, then
M[X] = [E[X],E[X]]. For the multi-dimension case, recall E[X] = (E[X1],...,E[X,]) and
EX] = (E[Xi],...,E[X4]) for X = (X1,...,Xa).
Lemma 3.11 Under the condition (3.20) we have

Mx =Mx =: {E[X]: E € &}, where & is defined as (1.17). (3.22)
Proof Tt is obvious that

sup (p,x) = sup E[(p, X)] = ]E[(p,X)] = sup (p,xz) forallpe RY.
xEM x Ecé& xEMx

For (3.22), it is sufficient to show that M x is also a bounded, convex and closed subset of R?.
The boundedness and convexity are obvious. Next, we show that it is closed. Suppose F; € &,
E;[X] — b. We want to show that b € Mx. For each E;, define E; by E;[p(z)] = E;[p(X)],
¢ € Crrip(RY). Tt is easily checked that, if Cy 1ip(RY) 3 ¢, \, 0, then

0 <Eilpu(@)] = Bilipn(X)] < Elpn(X)]

< sup len(@)] + Il e E[ X]] — 0,

as n — oo and then ¢ — oo. By Daniell-Stone’s theorem, there exists a probability measure P;
on R? such that

Ei[p(X)] = Eilp(®)] = Pp(@)], Ve € Cprip(R?).
Notice that sup; P(j| > ¢) < ¢ Lsup; Pf|z|] < ¢ 'E[X]|] — 0as ¢ — oo. So, on RY, the
sequence {P;} is tight and so is relatively weakly compact. Then, there exist a subsequence i,
and a probability P on R? such that

By [o(X)] = Py, [p(®)] — Plo(z)] Vo € CyLip(RY). (3.23)
On the space .Z = {Y = p(X) : p € CLip(R?),Y € JA4} we define an operator E by
EY] = lim E,[Y], Y€
j*)m
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First, by (3.23), E is well defined for bounded Y € .#. Notice

|Ei, [Y] = Ei,[(—c) VY Ad]| = |Ey[Y — (—¢) VY A (]| < E[(Y|-¢)t] =0 asc— o0

J

for Y € Z. E[Y] is well defined on .Z and E[Y] = lim.—,o E[(—c) VY A ¢]. Tt follows that

b= lim E;[X] = E[X].

J—0

Since each E;; € & is a finite additive linear expectation with E;; < ]E, its limit F is also a finite
additive linear expectation on . with F < E. By the Hahn-Banach theorem, there exists a
finite additive linear expectation E° defined on J# such that, £¢ = F on £ and, E° < E on
. So E° € &. Hence, b= E[X] = E¢[X] € Mx. It follows that Mix is a closed set. (3.22)
is proved. O

The following is the strong law of large numbers for i.i.d. random vectors. Let {X,;n > 1}
be a sequence of i.i.d. random variables in a sub-linear expectation space (2, 77, IE)7 X 4 x.
Denote S, = >, X;.

Theorem 3.12 If (3.21) is satisfied, then

V* (C{ i"} c I\\/JIX> =1. (3.24)

Furthermore, suppose that the space (2, 7€, IE) satisfies one of the conditions (a)—(d) in Lemma 2.5.

Then for V=V, K C* or @*,
V(C{S"} _ MX> 1 (3.25)
n

1, when b€ Mx,
V( lim S”:b>: when x
0, whenbd& Mx.

and

(3.26)

n—oo n

(3.25) tells us that, under the upper capacity, the limits of ST: fills the set M x. The following

corollary tells that, under lower capacity, the limit of Sn" can only be a point.

Corollary 3.13 Suppose that the space (2, H, IE) satisfies one of the conditions (a)—(d) in
Lemma 2.5. Assume that (3.21) is satisfied. If for V=VZ K C* or i\’*, there exists a subset O

of R? such that
v<c{ ‘i”} = @) > 0, (3.27)

E[-X] = -E[X] and O ={E[X]}. (3.28)

then

This is a direct corollary of Theorem 3.12. In fact, combining (3.26) and (3.27) yields
n—oo n n

V( lim Sn :bandC{Sn}:(O)) >0 forall be Mx.

It follows that O = {b} for all b € Mx. Hence M x has only one point and then (3.28) holds.

To prove Theorem 3.12, we need a weak law of large number which is of independent interest.
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Proposition 3.14 Let {X,;n > 1} be a sequence of i.i.d. random variables in a sub-linear
expectation space (9, #,E), S, = Yo X If lime g—oo E[(|X1|Ad—c)t] =0, then

i\’<in & M%) = V(dist(S,/n,Mx) > €) =0 for all e > 0 (3.29)

and s
@< ”—b‘<e>—>1 for allb € Mx and € > 0, (3.30)

n

where dist(y,Mx) = inf{ly —x| : ® e Mx}, Mg ={y : |y — x| < ¢ for some x € Mx} is the
e-neighborhood of Mx. In particular,

nl;gl@l@[@(in)} = Selllv%) o(x), for all ¢ € Cyrip(RY). (3.31)
@eMx

The weak law of large numbers (3.31) is proved by Peng [5] under the condition that
E[(|X1| — ¢)*] — 0 as ¢ — oo, by considering the solutions of the following parabolic PDEs
defined on [0, 00) x R%,

Ou—g(Du) =0, uli=o = ¢

For the completeness of this paper, we will give a purely probabilistic proof in which only the

probability inequalities are used.

4 Proofs of the Law of Large Numbers
Before the proofs, we need one more lemma.

Lemma 4.1 Suppose X € 2, 1 <p <2, Cy(]X|?) < oo. Then

V(IX| > Mi'/?) < 00, VM >0, (4.1)

M8

i=1
= E[X2 A (MP/P
3 | Az(/ P e M >0 (4.2)
i=1 e
and
E[(|X] = ¢)T] = o(c'™?) and E[X% A ?] = o(c* P)  as ¢ — oo. (4.3)
Furthermore,
Co(IXIP) = 00 == Y V(| X| > Mi'/?) = 00, VM >0. (4.4)
i=1

Proof (4.1) and (4.4) are obvious by noting Cq(|X|?) = [;° V(| X| > 2'/P)dx. (4.2) is similar
to Lemma 3.9 (a) of Zhang [9] and is proved in Zhang and Lin [13]. For (4.3), we have

B(X] - %] < Co((1X] - %) = [ V(X] > a)da

1 [ ~ 1 .
:p/'ww*WMV>m@§p&ﬂ/ V(X? > y)dy = o(c*7)

D

and
2

E[X2Ac?) < Co(X2AEP) = /0 V(X? > 2)d
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2 [ 2/p—1§ P 2—p
= y PV (X > y)dy = o).
PJo
The proof is completed. O

4.1 One-dimensional Case

Now we turn to the proofs of the main results. We first consider the LLN for one-dimensional

random variables.

Proof of Theorems 3.1 and 3.4 When (3.1) is satisfied, each X, is tight. Obviously, (3.4) is

implied by (3.3) by noting 17*(37;‘ - ‘Z":ll — 0) = 1 and the fact that C({x,}) = [a, b] whenever

limsup,, ,o, n = b, liminf,, - z, = a and @, — z,—1 — 0. (3.2) and (3.3) are special cases of

(3.9) and (3.10), respectively. For (3.9), we let Z;; = (=2"/P) v X; A2F/P i =1,...,2F. Then
[E(Z11] — BIX]| < E[(1X:] - 2/7)7] = o(2"C/771)

by Lemma 4.1. For any € > 0, by Lemma 2.8 and (1.11) we have for k large enough,

WA’ max Sn = nE[Xl] > €

2k—1<n<2k nl/P

<V X; — E[X,]) > 2= D)/p
< <mx§_j< X)) 2

n
< 7 g (2 - B2) 2 27/a) + 7 max ] > 277
i<2

n<2t i
2k 2k
<C2HPNTE[Z2 ]+ V(X > 2)
i=1 =1
< 272K/ [X?E A 22K/P) 4 2V (|1 X4 | > 28/P/2)
okt+l A . ok
E[X? A i2/7] S 1y
<4c y o T2 > V(x| >ilr)2).
=2k 41 i=2k—141

It follows that

Sl —nE[X
ZV* max Sn —nE[X)] > €
2k—1<p<2k nl/P

k=1
PN Sy, — nE[X
< ZV( max ? 4] 26)
P 2k—1<n<2k n /p
= IE[X%/\IQ/Z)] s 4/
<4Cy 2/ +2) V(1Xy] > /7 /2) < oo,

i=1 =1

)

*

by Lemma 4.1. By noting that is a countably sub-additive capacity and the Borel-Cantelli

(Lemma 2.3), we have

N S, — nE[X N S, —nE[X ,
v* <limsup ?11 [X1] > e) < V*( max nELX] >e€ z.o.) =0.
N 00 nl/p 2k—1<p <ok nl/p
By the countable sub-additivity of v again,
o S,, — nE[X] ol S Sp—nE[X;] _ 1\
\% (hm sup nl/p >0) =V U lim sup n1/p > } =

n—00 =1 n—00
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For —X;s, we have a similar result. (3.9) is proved.
For (3.10), it is sufficient to show that

v

&4 <lim inf Sn —nEX] <0 and limsup Sn —nE[X,] > 0> =1. (4.5)

n—oo nl/p n—00 nl/P

Let Y,; = (—n'/?) vV X; An'/? i =1,...,n. Then M[Y,;] = [é\[Ym],E[YmH By Lemmas 2.7
and 4.1,

v < z”:(_ym +E[V,) > ml/p)

=1

~

(< 2 nE[X? A n?/P]
= V(Z(_Ynz - 5[_Ynz]) > enl/p) <2 621,”/2/;17 —0
i=1

On the other hand, n|E[Y,;] — E[X1]| < nE[(|X1| — n'/?)*] = o(n'/P) and
V(Y # X5, Ji=1,...,n) < nV(|X1| > n'/?) = 0,
by Lemma 4.1. It follows that

9(271:(—)(1- +E[X4]) > 26n1/p) — 0.

i=1
That is

n /P

2—6>—>1 for all € > 0.

By considering —X;s, similarly we have

W-sn + n&[X1]

1/p —e) — 1 for all e > 0.
n

For ¢, = 1/2% k =1,2,..., we can choose n;, successively such that nj /" oo, nk,l/ni/p — 0,

and

<)

> —€r | > 1 — e,
(ng —ng—1)'/P B k) B :

Snk - S’”«k—l - (nk - nkfl)g[Xl]

- Z—fk)Zl—Ek-

(Snk - Snk—l - (nk - nk—l)E[Xl]
( (ng —ng—1)1/P

It follows that

i@ Sy = Sny_y — (= 1) E[X1]
(ng — ng—1)/P

(

i@( _ S = Sy = (e = mi-)ERX] —Ek) = oo.
{
{

> —Gk) = o0,

(N — ng—1)'/P

Let
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By the Borel-Cantelli lemma (Lemma 2.5), V¥ (AB) = 1. On AB and C = {limsup,, ISa1 <

n
0o},

9]

—nE[X P — e DEIX
lim sup Sn 717’ [X1] > limsup "™ k-1 (1nk ng—1)E[X1]
n— 00 n /p k—00 nk/p
ng Sn 1 - — E X
> limsup © L 17"% 1)E[X)] >0,
k—o0 (ng —ng—1) /p
—-Sn E[X S, — S, . — e DX
lim sup —|—1n [X4] > limsup<— K R (O 17% )E[ 1]) > 0.
n—oo n /p k—oo (nk — nk*l) /p

Notice V¥ (ABC) > V¥ (AB) —VZ(C¢) = 1—0 = 1 by (3.2). The proof of (4.5) is completed.
For Theorem 3.1 (b), suppose Cg(|X1]) = co. Then

V(X > Mn) > > V(1 Xy| > 2Mn) = 0o, for all M > 0,

n=1 n=1

by (1.11) and Lemma 4.1. So, there exists a sequence 1 < M,, /' oo such that

> V(1 Xn| > Myn) = co.

n=1

By the Borel-Cantelli Lemma (Lemma 2.5),
V(| X, > Muni.o.) =1,

On the event {|X,,| > M,,n i.0.}, we have

Xn Sn
mzlimsup‘ | §2limsup| |
n—o00 n n—o00
It follows that g
vZ (limsup [5n] = oo> =1, (4.6)
n—o0 n
which contradicts with (3.5). The proof is now completed. O

Proof of Corollaries 3.3 and 3.5 1t is sufficient to show Corollary 3.5.

9 v 9

(a) When b & [£[X1], E[X1]], the conclusion (3.11) is obvious by (3.9). If b € [£[X1], E[X1]],
then there exists an o € [0, 1] such that b = o[X;] + (1 —a)&[X4]. Let V; = (—i'/?) v X; Ail/P
and o s = 0BIYi] + (1 — )E[¥i]. Then S, e — b < X0, E[(1X1] — 7)) = o(n/?) and
v (X; #Y;i.0.) =0. So, it is sufficient to show that for each a € [0, 1],

v@( fim 2imt (i~ Hei) _ 0) =1 (4.7)

n—oo nl/p
For each i, by the expression (1.8), there exist 6; 1,6, 2 € © such that
Ep, ,[Yi] =E[Y] and By, [Y}] = E[Yi].
Define the linear operator E; = aFy, , + (1 — a)Ep, ,. Then
E;lY;] = po,i and E; < E.

Notice that each Y, is tight. By Proposition 2.1, there exist a copy {Y,;n > 1} on (573’@:]@)
of {Y,,;n > 1} and a probability measure @) on Q such that such that {}7”, n > 1} is a sequence
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of independent random variables under @,

Qlp(Y:)] = Eilp(Y;)] for all ¢ € CpLip(R),
Q[go(}}l, . ,}7(1)] < E[p(Y1,...,Yy)] forall p e beLip(Rd)

and
9(B) < Q(B) < V(B) forall Beo(Yy,Ys,...). (4.8)
Notice |E;[Y,“] — E;[Y}]] < E[(|Y;] — ¢)*] — 0 as ¢ — co. We have
QI = lim QIV\) = lim E,[Y] = Bi[Yi] = tas (4.9)
QY7 = lim QY2 Ad = lim E;[Y? Ad <E[Y2). (4.10)
e e

Then
e i QI _ i E[Y?] _ i E[X7 A i2/7)

i2/p 12/p < 0,

by Lemma 4.1. Denote T, = E?:l(yz‘ — fa,i) and T), = Zn:1(f/i — Havi)s Mk = 2%. Then
Q(maXnk+1<n<nk+1 (To =Tl 6)

nllc/p
Nk41 Nk+1 2
- ~ Y.
< 26_2nk 2/p Z QYA < 2¢292/p Z Q,[z/; ]
i=ng+1 imnpdl

It follows that

- N -

max 1<n< T, — T,

ZQ mit1nsnn [Tn = To| >e| <oo, foralle>0.
1/p ’

k=1 ny

Then there exists a sequence € \, 0 such that

N . -
Z Q MaXy, +1<n<ngiq | Tn = Tyl > € | < o0

nl/p 4§ '
k=1 k

By (4.8) and (1.11),

oo
V? (maxnk:+1<n<nk+1 |Tn - Tnk| > 2€k>
k=1

nllc/p
> ~f MaXp, +1<n<njpi1 |Tn - Tn‘
gzv< e s e ) < oo (4.11)
k=1 Ny

Notice the independence. By Lemma 2.5,

1/p

maXp, +1<n<n Tn - Tn
rt1sn< k+1| k|>25k )
ny,

VZ(Ay i.0) =0 with Ay = {

Notice that on the event (A i.0.)¢,

MaXn,+1<n<npi1 |Tﬂ - Tnk| .

klinéo nllc/p 0,
which implies lim,, an]’p = 0. (4.7) is proved.
(b) First, notice the facts that V(AB) = 1 whenever V(A) = V(B) = 1, V(AB) =1

whenever V(4) = V(B) = 1. If (3.8) and (3.13) hold, and £[X;] = E[X,], then (3.12) is
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obvious by (3.9). Conversely, suppose that (3.12) holds. Let A = {liminf,,_, Sn—nflXa] _ 0},

nl/P
B = {limsup,,_,, S":ﬁi[xl] =0} and C = {lim,, Sgl’/:}b = c}.
We first consider the case p = 1. If C (| X1|) = oo, then (4.6) holds, which contradicts with
(3.12). So, Cg(|X1]) < oo. By (3.12)) and (3.10) with p =1, V(ABC) = 1. While, on ABC,
y S,
E[X1] =liminf ~" =c+b,

n—oo N

y S,
E[X;] =limsup =~ =c+0b.

n—oo N
It follows that E[X;] = £[X;]. Then, by the direct part,

v( lim " :E[Xl]) =1,
n—oo N

which, together with (3.12), implies V(b + ¢ = E[X;]) = 1.
Now, suppose 1 < p < 2. Then

V( lim Sn :b) =1

n—oo N

by (3.12). By the conclusion for the case p = 1, we must have E[X;] = £[X;] and V(b =
£[X1]) = 1. Suppose C5(|X1|P) = oo. Then Cg(| X1 — E[X1]|P) = co. Similar to (4.6), we have

V(limsup [Sn = nE[X]] = oo) >V (hmsup [ — nE[X4] = oo)

n—oo nl/p n—oo nl/p

X — BIX)| _ <)

2 (1
>V <hmsup /P

n—oo

:]_,

9

which contradicts with (3.12) by noting V(b = E[X;]) = 1. So, (3.8) holds. By the direct part,
(3.11) holds. Then
—~ —nE[X
v( lim " "bzo) :v( i O~ MERG] :o) -1,

n— o0 nl/p n— o0 nl/P

which, together with (3.12), implies V(¢ = 0) = 1. The proof is now completed. O

Next, we consider the convergence of infinite series.
Proof of Theorem 3.8 (iii)<(iv) and (v)=-(iii) are proved by Zhang [10] (see Theorem 3.2,
Theorem 3.3 there).

First, we show that (iii)=(v). Let Q@ = R, 5 = Cj ;p(R). Define E by

Elp] = limsup E[p(S,)]. @ € A,
and define the random variable S by S(x) = x. Since each X; is tight, each S, is tight.
By (3.18), we have lim,_,o max, V(|S,| > ¢) = 0. Then by choosing a function ¢ € Ch,Lip(R)
with I{|z| > ¢} < p(z) < I{|z| > ¢/2} we have
V(I8] > ¢) < E[p(5)] = limsup E[¢(Sy)] < limsup V(|S,| > ¢/2) =0 as ¢ — oo.

It follows that S is tight. For ¢ € 2, let p.(z) = p((—c) V 2 Ac). Then ¢, is a uniformly
continuous function. For any ¢ > 0, there is a § > 0 such that |¢.(2) — ¢.(y)| < € when
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|z —y| < 6. Hence
[Blee(Sn)] = Blpe(Sm)ll < €+ |£[V(Sn — S| > 8) — ¢
as n,m — oo. Hence E[p.(S,)] converges. It follows that
Elpe(S)] = lim Elpc(Sn)].
On the other hand,
max |E[pc(Sn)] — Elp(Sn)]l < ool max V(S| > ¢) — 0

and

IE[c(S)] — E[p(S)]] < llel[V(IS| > ¢) — 0,
as ¢ — 00. It follows that

E[p(S)] = lim E[p(Sn)], V¢ € Corip(R).

n—oo

(v) holds.

Zhang L. X.

Next, we show (iii)=-(i) and (ii). By the Lévy inequality (2.18), it follows from (3.18) that

WA/( max |S; — Sp| >€) =0 asn,m— oo foralle>0.
m<i<n

Let €, = 1/2%. There exists a sequence ny ' 0o such that

@*( max |Si—Snk|Zek)§§’( max \Si—Snk|26k)<ek.

nkgignk_H nE i<y

It follows that

oo

Z@*( max |Si_Snk|26k)<Zek<Oo-
k=1

Nk <i<Nng41 o1

(4.12)

Notice the countable sub-additivity of V. By the Borel-Cantelli lemma (Lemma 2.3),

V*(A) =0 where A={ max |[S;— S, |>ei0.}.

nE<i<ngy1

on A%, S = Sy + > re1(Sn, — Sn,_,) is finite. Let S(w) = 0 when w € A. On A¢, S,, — S

and maxy, <i<n,,, [Si = Sn,| — 0 as k — oo, and so S; — S as i — oo. Then (i) is proved.

Also, on the event (_, { maxy,, <i<n,.iy [Si = S| < €m ),
o0 o0
|S = S, | < Z [Snmsr = Snnl < Z 27 =27k,
m=k m=k

It follows that

oo
V(|Sn, = 8 > 275 < 3" V(ISn,.p0 — S
m=k

On the other hand, for any € > 0, when k is large enough such that 27%*! < ¢/2,

o0
> €n) < Z €m < 27FFL
m=k

V(1S — S| > €/2) < V*(|S, — S| > 2751 + V*(|S,, — Su| > €/2) — 0,

as n, k — oo. Then (ii) is proved.

Notice (1.11) and (Xy,...,X,) 4 (X1,...,Xn), n > 1. (iii) is equivalent to that it holds

for S,,. So, it implies (') and (ii').
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Notice that the copy space ((NZ, %Z,E) satisfies the condition (d) in Lemma 2.5. At last, it
is sufficient to show (i)=-(iii), and (ii)=-(iii), when one of the conditions (a)—(b) in Lemma 2.5
is satisfied.

Suppose that (iii) does not hold. Then there exist constants ¢y > 0, dp > 0 and sequence
{my} and {ng} with my < ng < myg41 such that

V(ISui = S| = €0) = bo.
Notice the independence of {S,, — Sp,; k> 1} and

> " V(ISn, = Syl = €0) = 0.
k=1

By the Borel-Cantelli lemma (Lemma 2.5),

Vg’(limsup\Snk — S| > €0/2) = 1.
k—o0

However, on the event {lim,,_,o, Sp, = S} we have limsup;,_, . |Sn, — Sm,| = 0. Thus,
Z R E —
V ({w: nlLH;O Sp(w) # S(w)}) =1,
which contradicts with (3.16). So, (i)=-(iii) is proved.
Now, suppose VZ(|S,, — S| > ¢) — 0 for all € > 0. Then
V(S — S| > €) =0 as n,m — oo,Ve >0,

which is equivalent to (3.18) by (1.11), since both V¥ and V have the property (1.10) and
Sy — Sy € . The proof is completed. O
4.2 Multi-dimensional Case

Now, we consider the LLN for random vectors.

Proof of Proposition 3.14  Recall X(©) = (Xfc), e ,X((ic)) and Xi(c) = (—¢) V X; A c for
X =(Xy,...,X4). Notice

i} Sy B Z?:l Xi(C)
n n

> e> < eRB)X, - XI(C)H —0 asc— o0
and

sup |[E[X] - E[X9]| <E[|X; - X! >0 asc— .

Eecé&

Hence, without loss of generality we can assume |X;| < c and |X| < ¢. Let § = €2/(4c), and
Ns ={p1,...,px} C{p:|p| < 2c} be a d-net of {p: |p| < 2¢c}. We have the following fact,

y & My and |y| < ¢ = (ps,y) > E[(pi, X)] + €2/2 for some p; € N. (4.13)

In fact, for y ¢ M, there exists 0 = E[X]| € Mx such that 7 =: inf ey |y —x| = |y — 0] > €.
Let p = y — 0. Then |p| < 2c and (p,y) = (p,0) + 72. For any © € Mx and 0 < a < 1,
z=oax+ (1 —a)o € Mx. Then
ly—o> <|y—z|? =y — o> +a?|lx — o]* + 2a(x — 0,0 —y) for all a € [0,1].
It follows that
<p,0>—<p,m>: <$—0,0—y> > 0.
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So (p,0) > (p,x). It follows that (p,0) > sup, ey, (P, x) = E[(p, X)]. It follows that (p,y) >
E[(p, X)] + €. Furthermore, for the p, there exists a p; € N5 such that |p — p;| < 8. Then

(pi,y) — El(pi, X)) = (p,y) — El(p, X)] - |pi — plly| — |ps — PIE[X]] > €2/2.

Hence (4.13) follows. Now, it follows from the inequality (2.17) that

(% gn) < 3 7(n /o) 2 Bl 0]+ 2)2)

€N

= ¥ (X X0 - Bl X)) 2 0?2

1€ENs k=1
nE[(pi, X)?]
<2e+1) > iy 0
ieNs

The proof of (3.29) is completed.
For (3.30), we suppose b € Mx = Mx = {E[X] : E € &}. Notice E[(p, X)] = E[(p, X;)] =
g(p) for all p and 4. It follows that
beMx =My, =Mx, ={E[X;]: E€ &}, i=12,...

Hence, by Lemma 2.7,

g
The proof of (3.30) is completed.
Finally, we show that (3.31) is a corollary of (3.29) and (3.30). Without loss of generality,

we assume @(x) > 0, for otherwise we can replace it by ¢ + [|¢||, where ||| = sup,, |¢(x)|. Tt
follows from (3.29) that

limsupﬁ{go(sn>} < sup p(x)+ |<p|limsup§7(sn ngX)
n

n— o0 n TeEMS n—00

Sh
n

— b’ > e) <22 K[| X ] < 2% 207t — 0.

= sup ¢(x) — sup o(x) ase— 0.
TeMS reMx
Now suppose b € Mix. By (3.30),
= Sn = Sn S’rL
limianE{go( )] >liminfE{<p< )I{ —b’<e}]
n—oo n n—00 n n

> inf  p(x) liminf@( o

T xi|lz—bl<e n— 00

= inf () — ¢(b)

x:|z—b|<e
as € — 0. By the arbitrariness of b € M x,
[ /S,
liminfE[<p< )} > sup ¢(b).
n—00 n beMx

The proof of (3.31) is completed. O
Proof of Theorem 3.12  Let Q be a countable subset of R? which is dense in R?. Then

e} o) (1 {00

pERd n—00
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by (3.2). And so, (3.24) is proved.
For (3.25), is is sufficient to show that

v <C{ S”} .| Mx) =1. (4.14)
n
For any b € Mx and € > 0, by Proposition 3.14, we have
lim @( S _ b‘ < e) =1 (4.15)
n—oo n

Let © = {by,bs,...} be a countable subset of Mx which is dense in Mx. Let ¢, = 1/2. By
(4.15), there exists a sequence {ny} with n; / oo, nk,l/nllc/p — 0 such that

V(‘ o “—bj‘sﬂc)zl/z, j=1. k.

k
Denote
S"ki‘g"k—l .
—b; Sek}, i=12...,k
Ayj = { " ’
0, j>k.
Then .
ZVA’C:J Z V(Arj) =00, j=1,2,....
=j+

Notice that Ay, ;s are closed sets of X = (X17 Xs...). By the Borel-Cantelli Lemma (Lemma 2.5

(iii)),

oo

v”/*’( ({4 i.o.}> =

j=1
Notice that, on the event A = (;Z,{A,; i.0.} and B = {C{ S+} C Mx}, we have

S, S,
lim inf —b;| < liminf " —b;
n n k Nk
Shn. — Sni_,
=liminf| " S ¥
k ng

=0, forallb;cO.

Notice that © is dense in M x. It follows that on A and B,

lim inf

n—b‘zO, for all b € Mx.

On the other hand, V¥ (B¢) = 0 by (3.24). So, VZ(AB) > V¥ (A) — VZ(B¢) = 1. Tt follows
that

n n

v <lim inf Sn

—b‘—OforallbeMx>—
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Hence, (4.14) is proved.
Finally, we consider (3.26). Let Y; = Xl-(l), T, =>1".,Y;, where X(© = (X§C), . ,XCSC))
for X = (X1,...,X4). Then

[e'e) N o0
S V(X > ) Z (1X|>n/2) < (4.16)
n=1 n=1
noENx vy oS R(1X ] — i)t
S EIX - Yl X X BlXasl =91 (4.17)
n n
and ~
= EY; ~ E[|X1]? A (di)?
Z <y E[ ‘12 I ¢ . (4.18)
=1 i=1
by Lemma 4.1.

When b ¢ Mx, (3.26) is obvious by (3.24). Suppose
bGMx—Mx—{E[ ] Eeg} 1=1,2,...

There exists E; € & such that b = E;[X;]. Notice that each Y, is tight. For linear operators E;
and the sequence {Y,;n > 1}, by Proposition 2.1 there exist a copy {¥,;n > 1} on (Q,.,E)
and a probability measure @) on Q such that {f’n; n > 1} is a sequence of independent random

variables under @,

Qlp(Y:)] = Eilp(Y)] for all ¢ € Cprip(RY), (4.19)
Qle(Yi,..., V)] <E[p(Yi,...,Y,)] for all ¢ € Cppip(RP) (4.20)

and
?(B) <Q(B) <V(B) forall Be A(Y;,Ys,...). (4.21)

Similar to (4.9) and (4.10), we have Q[Y;] = E;[Y;] and Q[|Y;|?] < E[|Y;|?] . Then

1 n N 1 n 1 n .
S el -bl= > |EY] - E(Xi) < Y E[Yi - X[ -0 (4.22)
=1 =1 =1
by (4.20) and (4.17), and

= 7 i=1
by (4.18) and (4.20). With the same arguments as showing (4.11) we have

ivk@ <ma’xnk+1<n<nk+l |Z?=nk+1(Y; - Q[YH” > 2€k> < 0,
ng
k=1

where ny, = 2%, ¢, \, 0, which, similarly to (4.7), implies

v, T Q) _ ) -1

n— o0 n

On the other hand, by (4.16) and the Borel-Cantelli lemma, we have v (X, #Y, i.0.)=0.

It follows that s
W’( lim " = b> =
n—oo M

(3.26) is proved. O
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