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Abstract In this work, we give some criteria of the weakly compact sets and a representation theorem

of Riesz’s type in Musielak sequence spaces using the ideas and techniques of sequence spaces and

Musielak function. Finally, as an immediate consequence of the criteria considered in this paper, the

criteria of the weakly compact sets of Orlicz sequence spaces are deduced.
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1 Introduction

Since the inception of the study of Banach space, one of the main topics has been compactness.
A set A in a topological spaceX is said to be compact if any open cover ofA has a finite subcover.
A is said to be sequentially compact if any sequence of A has a convergent subsequence. A is
said to be countably compact if any countable subset of A has a cluster point in A [18]. The
three types of compactness coincide if the topology is metrizable.

These types of compactness play indispensable roles not only in theory study but also in
practical applications. In the 1880s, Arzela–Ascoli’s criterion was given for a compact set in
continuous function space [3]. Kolmogorov’s criterion and Riesz’s criterion of the compactness
rose in Riesz function spaces and Orlicz function spaces, respectively [1, 20]. In 1912, Brouwer
gave a fixed point theorem in compact settings [5], which led to impressive developments [7,
8]. From then on, the Brouwer theorem has been one powerful tool of research in numerous
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theoretical and applied branches [9, 14, 19, 21]. It is a mark contribution made by Eberlein
and Smulian that they proved that the three types of weak compactness coincide over a normed
space [11, 26]. James gave one marvelous criterion of a weakly compact set in Banach spaces
related with attainable functional and reflexivity [17].

Orlicz spaces are the extensions of Riesz spaces and have been adopted broadly in re-
cent years, especially in nonlinear problems [22]. In 1962, Ando gave the criteria of weakly
σ(LM , LN )-compact sets in Orlicz function spaces [2]. In 1982, Wu studied the compactness
of normed topology and weak topology in Orlicz function spaces for general sense [29]. In
1997, Zhang gave one criterion of normed compact sets in Orlicz sequence spaces [30]. In 2009,
Fabian investigated the weak compactness in L1 [12]. For an outline about the development
and applications, we refer the reader for a survey to ([4, 10, 22? , 23]). The paper adds to the
literature on the criterion for the weak compactness of Musielak sequence spaces. Anisotropy
is a general phenomenon of appearance in the real world. Musielak spaces broader than Orlicz
spaces are perfect settings for anisotropic nonlinear problems in particular [15].

2 Preliminaries

Let R be the set of all real numbers. Let X be a real Banach space and let B(X), S(X) and X∗

be the closed unit ball, the unit sphere, and the dual of X, respectively. A map Φ : R → [0,∞],
where ∞ value may be possible, is called an Orlicz function if Φ is vanishing and continuous
at zero, convex, even, left continuous on (0,∞) and not identically equal to zero on (−∞,∞).
φ−(u) and φ(u) denote the left-hand derivative and right-hand derivative of Φ(u) respectively.
For an Orlicz function Φ we define the complementary function Ψ : R → [0,∞] in the Young’s
sense by the formula

Ψ(v) = sup{u|v| − Φ(u) : u ≥ 0}.

The complementary function Ψ is also an Orlicz function. We define a subdifferential ∂Φ(u) of
Φ(u) at u ≥ 0 as follows:

∂Φ(u) = {v ≥ 0 : Φ(u) + Ψ(v) = uv}.

Set αΦ = sup{u ≥ 0 : Φ(u) = 0} and βΦ = inf{u ≥ 0 : Φ(u) = ∞}. Then we get
(1) if u ∈ [0, βΦ), then ∂Φ(u) = [φ−(u), φ(u)],
(2) if u = βΦ and βΦ <∞, then ∂Φ(βΦ) = [φ−(βΦ),∞),
(3) if either (u = βΦ and βΦ = ∞) or u > βΦ, then ∂Φ(u) = ∅.

Analogous situation we get for v and Φ(∂Φ(v)).
A sequence Orlicz function Φ = {Φi}∞i=1 is called a Musielak function if Φi is an Orlicz

function for each i. For a given Musielak function Φ and a scalar sequence u = (u(1), u(2), . . . )
we define a convex function, called a module of u, by the formula

ρΦ(u) = ρΦ(|u|) =
∞∑

i=1

Φi(|u(i)|)

where |u| = (|u(1)|, |u(2)|, . . . , |u(n)|, . . .). Let

lΦ = {u : ∃ λ > 0, s.t. ρΦ(λu) <∞},
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this family is linear and is usually equipped with one of the two following equivalent norms:
the Luxemburg norm defined by:

‖u‖(Φ) = inf
{
λ > 0 : ρΦ

(
u

λ

)
≤ 1

}

or the Orlicz norm defined that equals the Amemiya norm by:

‖u‖Φ = sup
ρΨ (v)≤1

∞∑

i=1

u(i)v(i) = inf
k>0

1
k

(1 + ρΦ(ku)),

it forms a Banach space which is called a Musielak sequence space, denoted by

l(Φ) = (lΦ, ‖ · ‖(Φ)), lΦ = (lΦ, ‖ · ‖Φ).

Let h0(X) = {u = (u(1), . . . , u(i), 0, . . . ) : i = 1, 2, . . . }, the closure of h0 in l(Φ) or lΦ is
denoted by h(Φ) or hΦ, respectively. If for all i, Φi(u) = M(u), an Orlicz function with its
complementary N(v), we call it an Orlicz sequence space denoted by l(M) or lM . For details,
please see [13, 25].

Below we recall the basic facts of the space that will be used for the present paper. The
proof can be referred to as [25].

Lemma 2.1 ([25]) For u ∈ lΦ, ‖u‖Φ ≤ 1 or ‖u‖(Φ) ≤ 1, we have ρΦ(u) ≤ ‖u‖(Φ) ≤ ‖u‖Φ.

Lemma 2.2 ([25]) In a Musielak sequence space, there hold ‖u‖(Φ) ≤ ‖u‖Φ ≤ 2‖u‖(Φ) for all
u ∈ lΦ,, that says, l(Φ) is isomorphic to lΦ.

Lemma 2.3 ([25]) Hölder’s inequality. In Musielak sequence spaces, there hold
∞∑

i=1

|u(i)v(i)| ≤ ‖u‖(Φ)‖v‖Ψ (u ∈ l(Φ), v ∈ lΨ).

∞∑

i=1

|u(i)v(i)| ≤ ‖u‖Φ‖v‖(Ψ) (u ∈ lΦ, v ∈ l(Ψ)).

Lemma 2.4 ([20, 25]) For v ∈ lψ, there hold

‖v‖ψ = sup
ρΦ (u)≤1

∞∑

i=1

|u(i)||v(i)| = inf
k>0

1
k

(1 + ρΨ(ku)).

For the convenience of the readers, we give the following lemmas with slight proofs.

Lemma 2.5 For any sequence v = (v(1), v(2), . . . ), denote ‖v‖ = sup{∑∞
i=1 u(i)v(i) : ∀ u ∈

l(Φ) with ρΦ(u) ≤ 1}. If ‖v‖ ≤ 1, then ρΨ(v) ≤ ‖v‖.
Proof If ρΦ(ψ(v)) =

∑∞
i=1 Φi(ψi(‖v(i)‖)) ≤ 1, we have

ρΨ(v) =
∞∑

i=1

Ψi(|v(i)|)

≤
∞∑

i=1

Φi(ψi(|v(i)|)) +
∞∑

i=1

Ψi(|v(i)|)

=
∞∑

i=1

ψi(|v(i)|)|v(i)|
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≤ ‖v‖.
Hence, it is enough to show that if ‖v‖ ≤ 1,

∑∞
i=1 Φi(ψi(‖v(i)‖)) ≤ 1. If, suppose

∞∑

i=1

Φi(ψi(|v(i)|)) > 1.

Take a natural number n and a positive number D such that

1 <
n∑

i=1

Φi(ψi(|v(i)|)) < D <∞.

By the convexity of an Orlicz function, it follows that
n∑

i=1

Φi

(
ψi(|v(i)|)∑n

i=1 Φi(ψi(|v(i)|))
)

≤
n∑

i=1

1∑n
i=1 Φi(ψi(|v(i)|))Φi(ψi(|v(i)|))

=
1∑n

i=1 Φi(ψi(|v(i)|))
n∑

i=1

Φi(ψi(|v(i)|))

= 1.

thus

‖v‖ ≥
n∑

i=1

ψi(|v(i)|)∑n
i=1 Φi(ψi(|v(i)|)) |v(i)|

=
1∑n

i=1 Φi(ψi(|v(i)|))
n∑

i=1

ψi(|v(i)|)|v(i)|

=
1∑n

i=1 Φi(ψi(|v(i)|))
n∑

i=1

(Φi(ψi(|v(i)|)) + Ψi(|v(i)|))

=
1∑n

i=1 Φi(ψi(|v(i)|))
n∑

i=1

Φi(ψi(|v(i)|)) +
1∑n

i=1 Φi(ψi(|v(i)|))
n∑

i=1

Ψi(|v(i)|)

= 1 +
1∑n

i=1 Φi(ψi(|v(i)|))
n∑

i=1

Ψi(|v(i)|)

> 1.

This is contrary to the fact that ‖v‖ ≤ 1. It ends the proof. �

Lemma 2.6 For any real sequence v = (v(1), v(2), . . . ), if for any u ∈ l(Φ),〈u, v〉 =∑∞
i=1 u(i)v(i) is convergent, then ‖v‖ <∞.

Proof If, suppose ‖v‖ = ∞. For each natural number n, by the definition of ‖v‖, we have
un ∈ l(Φ) such that ρΦ(un) ≤ 1,

∑∞
i=1 un(i)v(i) converges and

∑∞
i=1 un(i)v(i) > 2n, and more,

un(i)v(i) ≥ 0 for all natural numbers i, due to the symmetry of l(Φ). Let ũn =
∑n
k=1

uk

2k . We
deduce

ρΦ(ũn) =
∞∑

i=1

Φi(|ũn(i)|)
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≤
∞∑

i=1

Φi

( n∑

k=1

∣∣∣∣
uk(i)
2k

∣∣∣∣

)

=
n∑

k=1

∞∑

i=1

Φi(|uk(i)|)
2k

=
n∑

k=1

1
2k

∞∑

i=1

Φi(|uk(i)|)

≤
n∑

k=1

1
2k

≤ 1,

so ũn ∈ l(Φ). By the definition of Luxemburg norm, ‖ũn‖(Φ) ≤ 1. Set ũ =
∑∞
k=1

uk

2k . From
∑∞
k=1

‖uk‖(Φ)

2k ≤ ∑∞
k=1

1
2k = 1, thanks to l(Φ) is a Banach space, we get ũ(i) ∈ l(Φ). Hence, by

the given condition,
∞∑

i=1

ũ(i)v(i) <∞.

On the other hand, compute
∞∑

i=1

ũn(i)v(i) =
∞∑

i=1

( n∑

k=1

uk(i)
2k

)
v(i〉

=
∞∑

i=1

n∑

k=1

1
2k
uk(i)v(i)

=
n∑

k=1

1
2k

∞∑

i=1

uk(i)v(i)

>
n∑

k=1

1
2k

2k

= n,

so by Levi’s lemma, it leads to a contradiction:

∞ >
∞∑

i=1

ũ(i)v(i)

=
∞∑

i=1

∞∑

k=1

uk(i)
2k

v(i)

=
∞∑

k=1

∞∑

i=1

uk(i)
2k

v(i)

= lim
n→∞

n∑

k=1

∞∑

i=1

uk(i)
2k

v(i)

= lim
n→∞

∞∑

i=1

n∑

k=1

uk(i)
2k

v(i)

= lim
n→∞

∞∑

i=1

ũn(i)v(i)
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≥ lim
n→∞n = ∞.

It shows ‖v‖ <∞. It ends the proof. �
From Lemma 2.6, we have

Proposition 2.7 For any real sequence v = (v(1), v(2), . . . , ), if for all u ∈ l(Φ), 〈u, v〉 =∑∞
i=1 u(i)v(i) is convergent, then v ∈ lΨ.

Proof From Lemma 2.5, ρΨ( v
‖v‖ ) ≤ 1, we see v ∈ lΨ by the definition. �

3 Riesz Expression of Dual Space

Using ideas and techniques of anisotropy and atom, we give a direct proof for the representation
theorem of Riesz’s type that applies from isotropic cases to anisotropic ones (please confer
[16, 27]).

Theorem 3.1 Representation of Riesz’s Type. In Musielak sequence space, there hold

h∗(Φ)
∼= lΨ, h∗Φ ∼= l(Ψ)

where 〈u, v〉 =
∑∞
i=1 u(i)v(i) for all u ∈ h(Φ), v ∈ lΨ/u ∈ hΦ, v ∈ l(Ψ).

Proof h∗(Φ)
∼= lΨ. We set a mapping T : lΨ → h∗(Φ), where Tv = f for each v ∈ lΨ, de-

fined by f(u) = 〈u, v〉 =
∑∞
i=1 u(i)v(i) for all u ∈ h(Φ). By Hölder’s inequality, it follows∑∞

i=1 |u(i)v(i)| ≤ ‖u‖(Φ)‖v‖Ψ. Obviously, f is linear and ‖f‖ ≤ ‖v‖Ψ, that says, Tv =
f ∈ h∗(Φ). Now, T is well defined. For each f ∈ h∗(Φ), let v = (f(e1), f(e2), . . . ) where
ei = (0, . . . , 0, 1, 0, . . . ). We claim v ∈ lΨ. In fact, for each u ∈ l(Φ), we take ũ as that
ũ(i) = |u(i)|signf(ei). Clearly, |ũ(i)| = |u(i)|, so ũ ∈ lΦ. Hence

∞∑

i=1

|u(i)v(i)| = lim
n→∞

n∑

i=1

|u(i)v(i)|

= lim
n→∞

n∑

i=1

|u(i)|f(i)signf(ei)

≤ lim
n→∞

〈 n∑

i=1

ũ(i), f
〉

≤ lim
n→∞

∥∥∥∥
n∑

i=1

ũ(i)
∥∥∥∥

(Φ)

‖f‖

≤ ‖ũ‖(Φ)‖f‖
= ‖u‖(Φ)‖f‖
<∞.

By Proposition 2.7, v ∈ lΨ. Also from this inequality, we see ‖v‖Ψ ≤ ‖f‖. Combining ‖f‖ ≤
‖v‖Ψ, we get ‖f‖ = ‖v‖Ψ. That says, T is an isometric isomorphism where Tv = f defined by
f(u) = 〈u, v〉 =

∑∞
i=1 u(i)v(i) for all u ∈ h(Φ), v ∈ lΨ.

h∗Φ ∼= l(Ψ). Replacing that ‖u‖(Φ) and ‖v‖Ψ by ‖u‖Φ and ‖v‖(Ψ) respectively, we get the
conclusion by repeating the above arguments. It ends the proof. �
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4 Weak Compactness of Musielak Sequence Spaces

4.1 A Criterion of Weak Compactness

We say that a set A is relatively (sequentially, countably) compact in a topological space if the
closure of A is (sequentially, countably) compact. Indeed, we may assume A �= {θ} avoiding
the trivial case of a singleton set.

Theorem 4.1 Given a set A in a Musielak sequence space l(Φ), A admits the relatively se-
quentially weak σ(l(Φ), lΨ)-compactness if, and only if there hold

(1) A is normed bounded;
(2) for each v ∈ lΨ, limI→∞ supu∈A

∑∞
i=I |u(i)||v(i)| = 0.

Proof Sufficiency. By Theorem 3.1, l(Ψ) is the dual space of hΦ, we have that a normed
bounded A is w∗ compact thanks to Banach–Alaoglu Theorem, so A is relatively weakly
σ(l(Φ), hΨ)-compact. Since hΨ is normed separable [20, 25], the w∗ topology, i.e., σ(l(Φ), hΨ),
on A can be metrizable, then A is relatively sequentially weakly σ(l(Φ), hΨ)-compact. Thus for
any sequence un ∈ A there exist u ∈ l(Φ) and subsequence unk

, still written as un, such that
un → u σ(l(Φ), hΨ)-weakly, in particular, un(i) → u(i) for all natural numbers i.

For any v ∈ lΨ and any positive number ε, from the given condition, we get a natural
number I0 such that

sup
u∈A

∞∑

i=I0

|u(i)v(i)| < ε

4
.

By Hölder’s inequality,
∑
i≥I1 |u(i)v(i)| ≤ ‖u‖(Φ)‖v‖Ψ < ∞, there exists a natural number

I1 ≥ I0 such that
∞∑

i=I1

|u(i)v(i)| < ε

4
.

From un(i) → u(i) for all natural numbers i, we get a natural number n0 such that for all
n ≥ n0

I1∑

i=1

|(un − u)(i)||v(i)| < ε

4
.

Therefore, for all n ≥ n0

|〈v, un − u〉| =
∣∣∣∣

∞∑

i=1

(un(i) − u(i))v(i)
∣∣∣∣

=
∣∣∣∣
I1∑

i=1

(un − u)(i)v(i) +
∞∑

i=I1+1

(un − u)(i)v(i)
∣∣∣∣

≤
∣∣∣∣
I1∑

i=1

(un − u)(i)v(i)
∣∣∣∣ +

∣∣∣∣
∞∑

i=I1+1

(un − u)(i)v(i)
∣∣∣∣

≤
I1∑

i=1

|(un − u)(i)||v(i)| +
∞∑

i=I1+1

|(un − u)(i)||v(i)|

≤
I1∑

i=1

|(un − u)(i)||v(i)| +
∞∑

i=I1+1

|un(i)||v(i)| +
∞∑

i=I1+1

|u(i)||v(i)|
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≤
I1∑

i=1

|(un − u)(i)||v(i)| + sup
u∈A

∑

i≥I0
|u(i)v(i)| +

∞∑

i=I1+1

|u(i)||v(i)|

≤ ε

4
+
ε

4
+
ε

4
< ε.

This shows that for all v ∈ lΨ, 〈v, un − u〉 → 0. Hence A is relatively sequentially weakly
σ(l(Φ), lΨ)-compact.

Necessity. Since A is relatively sequentially weakly σ(l(Φ), lΨ)-compact A is σ(l(Φ), lΨ)-
bounded. By the Banach uniformly bounded principle, we get (1) A is normed bounded.

Next, we will prove (2) for all v ∈ lΨ

lim
I→∞

sup
u∈A

∞∑

i=I

|u(i)||v(i)| = 0.

Otherwise, for some v ∈ lΨ and positive ε0 such that there exists a strictly increasing sequence
of natural number {In} satisfying

sup
u∈A

∞∑

i=In

|u(i)v(i)| > ε0.

We take un ∈ A such that
∞∑

i=In

|un(i)v(i)| > ε0.

Since A is relatively sequentially weakly σ(l(Φ), lΨ)-compact, we deduce that the sequence
{un} has a subsequence, still written as {un} for simplicity, and for some u ∈ l(Φ) such that
un → u σ(l(Φ), lΨ)-weakly. Subsequently, un → u σ(l(Φ), hΨ)-weakly. By Hölder’s inequality∑∞
i=1 |u(i)||v(i)| ≤ ‖u‖(Φ)‖v‖Ψ <∞, there exists a natural number I ′ such that

∞∑

i=I′
|u(i)||v(i)| ≤ ε0

2
.

Thus, for all In ≥ I ′,
∞∑

i=In

|(un(i) − u(i))v(i)| ≥
∞∑

i=In

|un(i)v(i)| − |u(i)v(i)|

=
∞∑

i=In

|un(i)v(i)| −
∞∑

i=In

|u(i)v(i)|

> ε0 − ε0
2

=
ε0
2
.

For simplicity, we still written un − u as un. Then for all natural number n,
∞∑

i=In

|un(i)v(i)| ≥ ε0
2
,

and un → θ σ(l(Φ), lΨ)-weakly, especially, un(i) → 0 for all natural numbers i.
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By Hölder’s inequality
∑∞
i=1 |u1(i)||v(i)| < ∞, we write I1 = 0, there exists a natural

number I ′1 > I1 such that
∑∞
i=I′1+1 |u1(i)||v(i)| < ε0

8 . We write un1 = u1, so we have

I′1∑

i=I1+1

|un1(i)||v(i)| =
∞∑

i=I1+1

|u1(i)||v(i)| −
∞∑

i=I′1+1

|u1(i)||v(i)| ≥ ε0
2

− ε0
8

=
3ε0
8
.

Since un(i) → 0 for all natural numbers i, there exists a natural number n2 such that In2 > I ′1,∑I′1
i=1 |un2(i)||v(i)| < ε0

8 .
By Hölder’s inequality

∑∞
i=1 |un2(i)||v(i)| < ∞, we take a natural number I ′n2

> In2 such
that

∑∞
i=I′n2

+1 |un2(i)||v(i)| < ε0
8 . Then we have

I′n2∑

i=I′n1
+1

|un2(i)v(i)| =
In2∑

i=I′n1
+1

|un2(i)v(i)| +
I′n2∑

i=In2+1

|un2(i)v(i)|

≥
I′n2∑

i=In2+1

|un2(i)v(i)|

=
∞∑

i=In2+1

|un2(i)v(i)| −
∞∑

i=I′n2
+1

|un2(i)v(i)|

≥ ε0
2

− ε0
8

=
3ε0
8
.

In induction procedure, for each nature number k, by un(i) → 0 for all natural numbers i, there
exists a natural number nk such that Ink

> I ′nk−1
,

In′
k−1∑

i=1

|unk
(i)||v(i)| < ε0

8
.

By Hölder’s inequality
∑∞
i=1 |unk

(i)||v(i)| <∞, we take a natural number I ′nk
> Ink

such that
∑

i>I′nk

|unk
(i)||v(i)| < ε0

8
.

Thus, we have
I′nk∑

i=I′nk−1
+1

|unk
(i)v(i)| =

Ink∑

i=I′nk−1
+1

|unk
(i)v(i)| +

I′nk∑

i=Ink
+1

|unk
(i)v(i)|

≥
I′nk∑

i=Ink
+1

|unk
(i)v(i)|

=
∞∑

i=Ink
+1

|unk
(i)v(i)| −

∑

i>I′nk

|unk
(i)v(i)|

≥ ε0
2

− ε0
8

=
3ε0
8
.
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We set ṽ(i) = |v(i)|sign unk
(i) as I ′nk−1

< i ≤ I ′nk
where I ′n0

= 0. Obviously, |ṽ(i)| = |v(i)| for
all i. Since lΨ is symmetry, we get ṽ ∈ lΨ. But for all k

〈ṽ, unk
〉 =

∞∑

i=1

unk
(i)ṽ(i)

=

I′nk−1∑

i=1

unk
(i)ṽ(i) +

I′nk∑

i=I′nk−1
+1

unk
(i)ṽ(i) +

∞∑

i=I′nk
+1

unk
(i)ṽ(i)

=

I′nk−1∑

i=1

unk
(i)ṽ(i) +

I′nk∑

i=I′nk−1
+1

|unk
(i)||v(i)| +

∞∑

i=I′nk
+1

unk
(i)ṽ(i)

≥ −
I′nk−1∑

i=1

|unk
(i)ṽ(i)| +

I′nk∑

i=I′nk−1
+1

|unk
(i)||v(i)| −

∞∑

i=I′nk
+1

|unk
(i)ṽ(i)|

=

I′nk∑

i=I′nk−1
+1

|unk
(i)||v(i)| −

I′nk−1∑

i=1

|unk
(i)ṽ(i)| −

∞∑

i=I′nk
+1

|unk
(i)v(i)|

≥ 3ε0
8

− ε0
8

− ε0
8

=
ε0
8
.

This is a contradiction with that 〈ṽ, unk
〉 → 0, as a result of un → θ σ(lΦ, lΨ)-weakly. It ends

the proof. �
A set A is sequentially weakly σ(l(Φ), lΨ)-compact ensures that A is σ(l(Φ), lΨ)-closed. We

immediately have

Corollary 4.2 Given a set A in a Musielak sequence space l(Φ), A admits the sequentially
weak σ(l(Φ), lΨ)-compactness if, and only if there hold

(1) A is σ(l(Φ), lΨ)-closed,
(2) A is normed bounded,
(3) for each v ∈ lΨ

lim
I→∞

sup
u∈A

∞∑

i=I

|u(i)||v(i)| = 0.

4.2 A Modular Criterion of Compactness with Limitation Expression

We give a modular criterion which is gotten rid of elements of lΨ of Theorem 4.1.

Theorem 4.3 Given limu→0
Φi(u)
u = 0 for all i, a set A in a Musielak sequence space l(Φ)

admits the relatively sequentially weak σ(l(Φ), lΨ)-compactness if, and only if there holds

lim
ξ→0

sup
u∈A

ρΦ(ξu)
ξ

= 0.

Proof Sufficiency. From Theorem 4.1, it is enough to show that Condition (1) and (2) of
Theorem 4.1 hold. By limξ→0 supu∈A

ρΦ (ξu)

ξ = 0, there exist ξ1, 0 < ξ1 ≤ 1 such that

supu∈A
ρΦ (ξ1u)

ξ1
≤ 1. Thus supu∈A ρΦ(ξ1u) ≤ ξ1 ≤ 1, by Lemma 2.1, we have supu∈A ‖ξ1u‖(Φ) ≤

1, i.e., supu∈A ‖u‖(Φ) ≤ 1
ξ1

. That is, (1) A is normed bounded.
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Next, for each v ∈ lΨ, by the definition, there exists a positive number λ with ρΨ(λv) <∞.
For any ε > 0, by the given condition, there exists a positive number ξ such that

sup
u∈A

ρΦ(ξu)
ξ

<
λε

2
.

We take a natural number I0 such that
∑

i>I0
Ψi(λv(i)) < λξε

2 . Then for all u ∈ A and for all
natural numbers I > I0

∞∑

i=I

|u(i)v(i)| ≤
∞∑

i=I0

|u(i)v(i)|

=
1
ξλ

∞∑

i=I0

ξ|u(i)|λ|v(i)|

≤ 1
ξλ

∞∑

i=I0

[Φi(ξ|u(i)|) + Ψi(λ|v(i)|)]

=
1
ξλ

∞∑

i=I0

Φi(ξu(i)) +
1
ξλ

∞∑

i=I0

Ψi(λv(i))

≤ 1
ξλ

∞∑

i=1

Φi(ξu(i)) +
1
ξλ

∞∑

i=I0

Ψi(λv(i))

=
1
ξλ
ρΦ(ξu(i)) +

1
ξλ

∞∑

i=I0

Ψi(λv(i))

<
1
λ

λε

2
+

1
ξλ

ξλε

2

=
ε

2
+
ε

2
= ε,

that says

lim
I→∞

sup
u∈A

∞∑

i=I

|u(i)v(i)| = 0.

i.e., (2) of Theorem 4.1 holds. Combining (1) and (2), by Theorem 4.1, we get that A is
relatively sequentially weakly σ(l(Φ), lΨ)-compact.

Necessity. Since A is relatively sequentially weakly σ(l(Φ), lΨ)-compact, A is σ(l(Φ), lΨ)-
bounded. So A is normed bounded thanks to Banach uniformly bounded principle. Moreover,
A is relatively sequentially weakly σ(l(Φ), lΨ)-compact if, and only if λA is for each λ > 0. Then,
without loss of generality, assume supu∈A ‖u‖(Φ) ≤ 1, we will show

lim
ξ→0

sup
u∈A

ρΦ(ξu)
ξ

= 0.

Otherwise, for some positive ε0

inf
ξ>0

sup
u∈A

ρΦ(ξu)
ξ

= lim
ξ→0

sup
u∈A

ρΦ(ξu)
ξ

> ε0,

where the identity holds because Φ(u)
u is nondecreasing. For each natural number n, we take
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un ∈ lΦ such that
ρΦ( 1

2n+1un)
1

2n+1

> ε0.

From Young’s inequality [20], we see that for each i

Ψi

(
φi

(
1

2n+1
un(t)

))
≤ Ψi

(
φi

(
1

2n+1
un(t)

))
+ Φi

(
1

2n+1
un(t)

)
≤ Φi

(
2

1
2n+1

un(t)
)
.

By Lemma 2.1, we get that for each n

ρΨ

(
φ

(
1

2n+1
un

))
:=

∞∑

i=1

Ψi

(
φi

(
1

2n+1
un(i)

))

≤
∞∑

i=1

Φi

(
2

1
2n+1

un(i)
)

= ρΦ

(
2

1
2n+1

un

)

≤ 2
1

2n+1
ρΦ(un)

≤ 2
1

2n+1

=
1
2n
.

We set v(i) = supn φi(
1

2n+1un(i)) i = 1, 2, . . . . From the left continuity of an Orlicz function,
we have

ρΨ(v) =
∞∑

i=1

Ψi(v(i))

=
∞∑

i=1

Ψi

(
sup
n
φi

(
1

2n+1
un(i)

))

=
∞∑

i=1

sup
n

Ψi

(
φi

(
1

2n+1
un(i)

))

≤
∞∑

i=1

∞∑

n=1

Ψi

(
φi

(
1

2n+1
un(i)

))

=
∞∑

n=1

∞∑

i=1

Ψi

(
2

2n+1
un(i)

)

≤
∞∑

n=1

2
2n+1

ρΨ(un)

≤
∞∑

n=1

1
2n

= 1.

Now, v is well defined and v ∈ lΨ. Again since A is relatively sequentially weakly σ(l(Φ), lΨ)-
compact, by Theorem 4.1, there exists a natural number I such that

sup
u∈A

∞∑

i=I

|u(i)v(i)| ≤ ε0
4
.
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Note, for all i |u(i)| ≤ ci where ci = inf{t > 0 : Φi(t) > 1} < ∞ for all u ∈ A, from
limu→0

Φi(u)
u = 0, we obtain that for n large enough

I∑

i=1

Φi( 1
2n+1 un(i))

1
2n+1

≤
I∑

i=1

Φi( 1
2n+1 ci)
1

2n+1

≤ ε0
4
.

It leads a contradiction:

ε0 >
ρΦ( 1

2n+1 un)
1

2n+1

=
I∑

i=1

Φi

(
1

2n+1
un(i)

)
1
1

2n+1

+
∞∑

i=I+1

Φi

(
1

2n+1
un(i)

)
1
1

2n+1

≤
I∑

i=1

Φi

(
1

2n+1
un(i)

)
1
1

2n+1

+
∞∑

i=I+1

Φi

(
1

2n+1
un(i)

)
1
1

2n+1

+
∞∑

i=I+1

Ψi

(
φi

(
1

2n+1
u(i)

))
1
1

2n+1

≤
I∑

i=1

Φi

(
1

2n+1
ci

)
1
1

2n+1

+
∞∑

i=I+1

Φi

(
1

2n+1
un(i)

)
1
1

2n+1

+
∞∑

i=I+1

Ψi

(
φi

(
1

2n+1
u(i)

))
1
1

2n+1

=
I∑

i=1

Φi

(
1

2n+1
ci

)
1
1

2n+1

+
∞∑

i=I+1

1
2n+1

|un(i)|φi
(

1
2n+1

un(i)
)

1
1

2n+1

≤
I∑

i=1

Φi

(
1

2n+1
ci

)
1
1

2n+1

+
∞∑

i=I+1

|un(i)|φi
(

1
2n+1

un(i)
)

≤
I∑

i=1

Φi

(
1

2n+1
ci

)
1
1

2n+1

+
∞∑

i=I+1

|un(i)| sup
n
φi

(
1

2n+1
un(i)

)

=
I∑

i=1

Φi

(
1

2n+1
ci

)
1
1

2n+1

+
∞∑

i=I+1

|un(i)||v(t)|

≤ ε0
4

+
ε0
4

=
ε0
2
.

It ends the proof. �
Due to the same reason mentioned before Corollary 4.2, we have

Corollary 4.4 Given limu→0
Φi(u)
u = 0 for all i, a set A in a Musielak sequence space l(Φ)

admits the sequentially weak σ(l(Φ), lΨ)-compactness if, and only if there hold
(1) A is σ(l(Φ), lΨ)-closed,

(2) limξ→0 supu∈A
ρΦ (ξu)

ξ = 0.

4.3 A Modular Criterion of Compactness without Limitation Expression

We give one criterion of a modular type which is gotten rid of the computation of limitation.

Definition 4.5 (cf. [2]) For Musielak functions Φ̃ and Φ over real field R we say Φ̃ more
rapid than Φ (write Φ̃ � Φ) provided that for any positive number κ, there is positive number
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D such that for all 0 < u, Φ̃i(Du) ≥ DκΦi(u) i = 1, 2, . . ..

Theorem 4.6 Given limu→0
Φi(u)
u = 0 for all i, a set A in a Musielak sequence space l(Φ)

admits the relatively sequentially weak σ(l(Φ), lΨ)-compactness if, and only if there exists a
Musielak function Φ̃ more rapid than Φ (write Φ̃ � Φ) such that

sup
u∈A

ρ
Φ̃
(u) ≤ 1.

Proof Due to the reason mentioned in Theorem 4.3, we assume supu∈A ‖u‖(Φ) ≤ 1 without
loss of generality.

Sufficiency. By Φ̃ � Φ, that says, for any positive number ε < 1, let κ = 2
ε in the condition

of Φ̃ � Φ, we have a positive number D such that for all 0 < u, Φ̃i(Du) ≥ D 2
εΦi(u), i = 1, 2, . . ..

For each u ∈ A, we take a positive number ξ ≤ 1 such that 1
ξ ≥ D. Then we have

ρΦ(ξu)
ξ

=
1
ξ

∞∑

i=1

Φi(ξu(i))

=
∞∑

i=1

Φi(ξu(i))
ξ

≤
∞∑

i=1

1
ξ
Φ̃i(Dξu(i))

ε

2D

=
∞∑

i=1

Φ̃i(Dξu(i))
ε

2Dξ

≤
∞∑

i=1

Φ̃i(u(i))
ε

2

≤ ε

2

∞∑

i=1

Φ̃i(u(i))

≤ ε

2
ρΦ̃(u)

≤ ε

2
< ε

where the fifth inequality holds because the function f(u) = Φ(u)
u is nondecreasing. That is,

limξ→0 supu∈A
ρΦ (ξu)

ξ = 0. By Theorem 4.3, it follows that A is relatively sequentially weakly
σ(l(Φ), lΨ)-compact.

Necessity. By Theorem 4.3, A is relatively sequentially weakly σ(l(Φ), lΨ)-compact ensures

that limξ→0 supu∈A
ρΦ (ξu)

ξ = 0. We take 1 > ξ1 > · · · > ξk → 0 such that

sup
u∈A

ρΦ(ξku)
ξk

<
1

22k
.

Analogously to that of [2], for each i and any u ∈ �, we set an Orlicz function as follows:

Φ̃i(u) =
∞∑

k=1

2k
Φi(ξku)
ξk

.
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Then Φ̃i � Φi. Indeed, for any positive κ we take a natural number k′ such that 22k′ ≥ κ and
denote D = 1

ξk′ . Therefor, for all u ∈ R

Φ̃i(Dv)v=ξk′u = Φ̃i

(
ξk′u

ξk′

)

= Φ̃i(u)

=
∞∑

k=1

22kΦi(ξku)
ξk

≥ 22k′ Φi(ξk′u)
ξk′

= 22k′ Φi(v)
ξk′

≥ κDΦi(v)

it holds for all v > 0 due to the arbitrariness of u. By the arbitrariness of i, it follows that
Φ̃ � Φ. Moreover, we have that for all u ∈ A,

ρ
Φ̃
(u) =

∞∑

i=1

Φ̃i(u(i))

=
∞∑

i=1

∞∑

k=1

2k
Φi(ξku(i))

ξk

=
∞∑

k=1

∞∑

i=1

2k
Φi(ξku(i))

ξk

=
∞∑

k=1

2k
∞∑

i=1

Φi(ξku(i))
ξk

≤
∞∑

k=1

2k
1

22k

=
∞∑

k=1

1
2k

= 1.

It ends the proof. �
Analogously to the above, we have

Corollary 4.7 Given limu→0
Φi(u)
u = 0 for all i, a set A in a Musielak sequence space l(Φ)

admits the sequentially weakly σ(l(Φ), lΨ)-compactness if, and only if there hold
(1) A is σ(l(Φ), lΨ)-closed,
(2) there exists a Musielak function Φ̃ more rapid than Φ (write Φ̃ � Φ) such that

sup
u∈A

ρ
Φ̃
(u) ≤ 1.

From Theorem 4.1, 4.3, and 4.6, we see

Remark 4.8 In l(Φ), a set A is relatively sequentially weakly σ(l(Φ), lΨ)-compact if, and only
if |A| is, where |A| = {|u| : u ∈ A}.
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By Lemma 2.2, l(Φ) is isomorphic to lΦ, we have

Remark 4.9 All results obtained in the main results hold in a Musielak sequence space lΦ
with Orlicz norm since the sequentially weak compactness is invariant under an isomorphism.

5 Applications to Orlicz Sequence Spaces

Let us notice that in the case of Φi = M , i = 1, 2, . . . , Musielak sequences spaces become the
well-known Orlicz sequence spaces. Based on the results obtained in the previous parts of this
paper we easily get respective criteria for Orlicz sequence spaces l(M).

Corollary 5.1 Given a set A in an Orlicz sequence space l(M), A admits relatively sequentially
weakly σ(l(M), lN )-compact if, and only if there hold

(1) A is normed bounded,
(2) for each v ∈ lN

lim
I→∞

sup
u∈A

∞∑

i=I

|u(i)||v(i)| = 0.

Corollary 5.2 Given a set A in an Orlicz sequence space l(M), A admits sequentially weakly
σ(l(M), lN )-compact if, and only if there hold

(1) A is σ(l(M), lN )-closed,
(2) A is normed bounded,
(3) for each v ∈ lN

lim
I→∞

sup
u∈A

∞∑

i=I

|u(i)||v(i)| = 0.

Corollary 5.3 Given limu→0
M(u)
u = 0, a set A in an Orlicz sequence space l(M) admits

relatively sequentially weak σ(l(M), lN )-compact if, and only if limξ→0 supu∈A
ρΦ (ξu)

ξ = 0.

Corollary 5.4 Given limu→0
M(u)
u = 0, a set A in an Orlicz sequence space l(M) admits

sequentially weak σ(l(M), lN )-compact if, and only if there hold
(1) A is σ(l(M), lN )-closed,

(2) limξ→0 supu∈A
ρΦ (ξu)

ξ = 0.

Definition 5.5 (cf. [2]) For Orlicz functions M̃ and M over real field R we say M̃ more rapid
than M for small u (write M̃ �M) provided that for any positive number κ, there are positive
numbers D and d such that for 0 < u with M(u) ≤ d, M̃(Du) ≥ DκM(u).

Corollary 5.6 Given limu→0
M(u)
u = 0, a set A in an Orlicz sequence space l(M) admits

relatively sequentially weakly σ(l(M), lN )-compact if, and only if there exists an Orlicz function
M̃ more rapid than M (write M̃ �M) such that

sup
u∈A

ρ
M̃

(u) ≤ 1.

Corollary 5.7 Given limu→0
M(u)
u = 0, a set A in an Orlicz sequence space l(M) admits

sequentially weakly σ(l(M), lN )-compact if, and only if
(1) A is σ(l(M), lN )-closed,
(2) there exists an Orlicz function M̃ more rapid than M (write M̃ �M) such that

sup
u∈A

ρ
M̃

(u) ≤ 1.
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Remark 5.8 All results obtained in the main results hold in an Orlicz sequence space lM
with Orlicz norm since the sequentially weak compactness is invariant under an isomorphism.
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