
Acta Mathematica Sinica, English Series

Jul., 2023, Vol. 39, No. 7, pp. 1289–1304

Published online: May 10, 2023

https://doi.org/10.1007/s10114-023-1020-6

http://www.ActaMath.com

Acta Mathematica Sinica, 
English Series
© Springer-Verlag GmbH Germany & 
      The Editorial Office of  AMS  2023

Maximizing the Minimum and Maximum Forcing Numbers of Perfect

Matchings of Graphs

Qian Qian LIU He Ping ZHANG1)

School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, P. R. China

E-mail : liuqq2016@lzu.edu.cn zhanghp@lzu.edu.cn

Abstract Let G be a simple graph with 2n vertices and a perfect matching. The forcing number

f(G, M) of a perfect matching M of G is the smallest cardinality of a subset of M that is contained

in no other perfect matching of G. Among all perfect matchings M of G, the minimum and maximum

values of f(G, M) are called the minimum and maximum forcing numbers of G, denoted by f(G) and

F (G), respectively. Then f(G) ≤ F (G) ≤ n − 1. Che and Chen (2011) proposed an open problem:

how to characterize the graphs G with f(G) = n − 1. Later they showed that for a bipartite graph G,

f(G) = n − 1 if and only if G is complete bipartite graph Kn,n. In this paper, we completely solve

the problem of Che and Chen, and show that f(G) = n − 1 if and only if G is a complete multipartite

graph or a graph obtained from complete bipartite graph Kn,n by adding arbitrary edges in one partite

set. For all graphs G with F (G) = n − 1, we prove that the forcing spectrum of each such graph G

forms an integer interval by matching 2-switches and the minimum forcing numbers of all such graphs

G form an integer interval from �n
2
� to n − 1.

Keywords Perfect matching, minimum forcing number, maximum forcing number, forcing spectrum,

complete multipartite graph
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1 Introduction

We only consider finite and simple graphs. Let G be a graph with vertex set V (G) and edge set
E(G). The order of G is the number of vertices in G. A graph is trivial if it contains only one
vertex. Otherwise, it is non-trivial. The degree of vertex v in G, written dG(v), is the number
of edges incident to v. An isolated vertex is a vertex of degree 0. The maximum degree and
the minimum degree of G are denoted by Δ(G) and δ(G), respectively. If all vertices of G have
degree k, then G is k-regular. A complete graph of order n is denoted by Kn. Let Pn be a path
with n vertices and Pn be the complement of Pn.

For an edge subset F of G, we write G− F for the subgraph of G obtained by deleting the
edges in F . If F = {e}, we simply write G − e instead of G − {e}. For a vertex subset T of G,
we write G − T for the subgraph of G obtained by deleting all vertices in T and their incident
edges. If T = {v} is a singleton, we write G − v rather than G − {v}. For a vertex subset T of
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G, we write G[T ] for the subgraph G − (V (G) \ T ), induced by T . For a graph H, G is H-free
if it contains no H as an induced subgraph.

A perfect matching of a graph G is a set of disjoint edges covering all vertices of G. A
graph G is factor-critical if G−u has a perfect matching for every vertex u of G. A graph G is
bicritical if G contains an edge and G − u − v has a perfect matching for every pair of distinct
vertices u and v in G. A 3-connected bicritical graph is called a brick. For a nonnegative integer
l, a connected graph G with at least 2l + 2 vertices is l-extendable if G has a perfect matching
and every matching of size l is contained in a perfect matching of G.

A perfect matching coincides with a Kekulé structure in organic chemistry or a dimer
covering in statistic physics. Klein and Randić [13] proposed the “innate degree of freedom”
of a Kekulé structure, i.e., the least number of double bonds can determine this entire Kekulé
structure, which plays an important role in resonant theory. Afterwards, it was called the
forcing number by Harary et al. [10]. A forcing set for a perfect matching M of G is a subset
of M that is contained in no other perfect matching of G. The smallest cardinality of a forcing
set of M is called the forcing number of M , denoted by f(G, M).

Let G be a graph with a perfect matching M . A cycle of G is M-alternating if its edges
appear alternately in M and E(G)\M . If C is an M -alternating cycle of G, then the symmetric
difference M ⊕ E(C) := (M \ E(C)) ∪ (E(C) \ M) is another perfect matching of G. We use
V (S) to denote the set of all end vertices in an edge subset S of E(G). An equivalent condition
for a forcing set of a perfect matching was mentioned by Pachter and Kim as follows.

Lemma 1.1 ([18]) Let G be a graph with a perfect matching M . Then a subset S ⊆ M is a
forcing set of M if and only if G − V (S) contains no M -alternating cycles.

Let c(M) denote the maximum number of disjoint M -alternating cycles in G. Then
f(G, M) ≥ c(M) by Lemma 1.1. For plane bipartite graphs, Pachter and Kim obtained the
following minimax theorem.

Theorem 1.2 ([18]) Let G be a plane bipartite graph. Then f(G, M) = c(M) for any perfect
matching M of G.

The minimum (resp. maximum) forcing number of G is the minimum (resp. maximum)
value of f(G, M) over all perfect matchings M of G, denoted by f(G) (resp. F (G)). Adams
et al. [2] showed that determining a smallest forcing set of a perfect matching is NP-complete
for bipartite graphs with the maximum degree 3. Using this result, Afshani et al. [3] proved
that determining the minimum forcing number is NP-complete for bipartite graphs with the
maximum degree 4. However, the computational complexity of the maximum forcing number
of a graph is still an open problem [3].

Xu et al. [29] showed that the maximum forcing number of a hexagonal system is equal to
its resonant number. The same result also holds for a polyomino graph [16, 39] and for a BN-
fullerene graph [22]. In general, for 2-connected plane bipartite graphs, the resonant number
can be computed in polynomial time (see Ref. [1] due to Abeledo and Atkinson). Hence, the
maximum forcing numbers of such three classes of graphs can be computed in polynomial time.

Moreover, some minimax results have been obtained [38, 39]: for each perfect matching
M of a hexagonal system G with f(G, M) = F (G), there exist F (G) disjoint M -alternating
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hexagons in G; for every perfect matching M of polyomino graphs G with f(G, M) = F (G) or
F (G) − 1, f(G, M) is equal to the maximum number of disjoint M -alternating squares in G.

Zhang and Li [32], and Hansen and Zheng [9] independently determined the hexagonal
systems G with f(G) = 1, and Zhang and Zhang [35] gave a generalization to plane bipartite
graphs G with f(G) = 1. For 3-connected cubic graphs G with f(G) = 1, Wu et al. [28]
showed that it can be generated from K4 via Y → Δ-operation. For a convex hexagonal system
H(a1, a2, a3) with a perfect matching, recently Zhang and Zhang [36] proved that its minimum
forcing number is equal to min{a1, a2, a3} by monotone path systems.

For n-dimensional hypercube Qn, Pachter and Kim [18] conjectured that f(Qn) = 2n−2

for integer n ≥ 2. Later Riddle [21] confirmed it for even n by the trailing vertex method.
Recently, Diwan [8] proved that the conjecture holds by linear algebra. Using well-known Van
der Waerden theorem, Alon showed that F (Qn) > c2n−1 for any constant 0 < c < 1 and
sufficient large n (see [21]). There are also some researches about the minimum or maximum
forcing numbers of other graphs, such as grids [3, 12, 14, 15, 18], fullerene graphs [11, 22, 23, 34],
toroidal polyhexes [26], toroidal and Klein bottle lattices [12, 14, 21], etc.

We denote by G2n the set of all graphs of order 2n and with a perfect matching. Let G ∈ G2n.
Then each perfect matching of G has n edges and any n− 1 edges among it form a forcing set.
So we have that f(G) ≤ F (G) ≤ n − 1. Che and Chen [6] proposed how to characterize the
graphs G with f(G) = n − 1. Afterwards, they [5] solved the problem for bipartite graphs and
obtained the following result.

Theorem 1.3 ([5]) Let G be a bipartite graph with 2n vertices. Then f(G) = n − 1 if and
only if G is complete bipartite graph Kn,n.

In this paper, we solve the problem of Che and Chen. Let K+
n,n be a family of graphs

obtained by adding arbitrary additional edges in one partite set to complete bipartite graph
Kn,n. In Section 2, we discuss some basic properties for graphs G ∈ G2n with F (G) = n − 1,
and obtain that G is n-connected, 1-extendable except for graphs in K+

n,n. In particular, we
give a characterization for a perfect matching M of G with f(G, M) = n − 1. In Section 3, we
answer the problem proposed by Che and Chen, and obtain that f(G) = n − 1 if and only if
G is either a complete multipartite graph with each partite set having size no more than n or
a graph in K+

n,n. In Section 4, for all 1-extendable graphs G with F (G) = n − 1, we determine
which of them are not 2-extendable. Finally in Section 5 we show that f(G) ≥ 	n

2 
 for any
graph G ∈ G2n with F (G) = n − 1, and the minimum forcing numbers of all such graphs form
an integer interval [	n

2 
, n−1]. Also we prove that the forcing spectrum (set of forcing numbers
of all perfect matchings) of each such graph G forms an integer interval.

2 Some Basic Properties of Graphs G ∈ G2n with F (G) = n − 1

Let G ∈ G2n with F (G) = n − 1. In this section, we will obtain some basic properties of graph
G. By definition of forcing numbers, we obtain the following observation.

Observation 2.1 Let G ∈ G2n. Then
(i) F (G) = n − 1 if and only if f(G, M) = n − 1 for some perfect matching M of G, and
(ii) f(G) = n − 1 if and only if f(G, M) = n − 1 for every perfect matching M of G.

We call a graph G ∈ G2n with F (G) = n − 1 minimal if F (G − e) ≤ n − 2 for each edge e
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of G. Next we give a characterization for a perfect matching M of G with f(G, M) = n − 1.

Lemma 2.2 Let G ∈ G2n for n ≥ 2. Then G has a perfect matching M such that f(G, M) =
n−1 if and only if G[V ({ei, ej})] contains an M -alternating cycle for any two distinct edges ei

and ej of M . Moreover, G is minimal if and only if G[V ({ei, ej})] is exactly an M -alternating
4-cycle for any two distinct edges ei and ej of M .

Proof (1) Suppose that f(G, M) = n− 1. Then M \ {ei, ej} is not a forcing set of M for any
two distinct edges ei and ej of M . By Lemma 1.1, G[V ({ei, ej})] contains an M -alternating
cycle. Conversely, for any subset S of M with size less than n− 1, there are two distinct edges
in M \ S. By the assumption, G− V (S) contains an M -alternating cycle. By Lemma 1.1, S is
not a forcing set of M , that is, f(G, M) ≥ n − 1.

(2) Suppose that G is minimal. Since f(G, M) = n − 1, G[V ({ei, ej})] contains an M -
alternating 4-cycle for any two distinct edges ei and ej of M . Moreover, G[V ({ei, ej})] is exactly
an M -alternating 4-cycle. If not, then G[V ({ei, ej})] is isomorphic to K4 or a graph obtained
from K4 by deleting an edge, say uiuj , where el = ulvl for l = i, j. Then G[V ({ei, ej})] − vivj

contains an M -alternating cycle. So F (G − vivj) = f(G − vivj , M) = n − 1, which contradicts
the minimality of G.

Conversely, by the assumption, we have f(G, M) = n − 1 where M = {el = ulvl | l =
1, 2, . . . , n} is a perfect matching of G. By Observation 2.1, F (G) = n − 1. Next we are to
prove that G is minimal. Let G′ = G− e where e is an arbitrary edge of G. We can show that
G′ has a perfect matching. If e /∈ M , then M is a perfect matching of G′. If e = ei ∈ M for
some 1 ≤ i ≤ n, then G[{ui, vi, uj , vj}] is exactly an M -alternating 4-cycle C for any j �= i and
1 ≤ j ≤ n. Then M ⊕ E(C) is a perfect matching of G′. For any perfect matching M ′ of G′,
we will show that f(G′, M ′) ≤ n − 2, and so G is minimal.

Without loss of generality, any edge e of G can be represented as either uivi or uivj where
j �= i because any edge ujvj can be written as vjuj by switching two end vertices. Let w ∈ {u, v}.
Case 1 e = uivi.

Then {uiwj , viwk} ⊆ M ′ for some integers j, k different from i. It follows that viwj /∈
E(G′) ⊂ E(G) since G[{ui, vi, uj , vj}] is a 4-cycle by the assumption. Then G[{ui, wj , vi, wk}]
does not contain a 4-cycle of G′ since vi cannot be adjacent to either ui or wj in G′. By
Lemma 1.1, M ′ \ {uiwj , viwk} is a forcing set of M ′. So, f(G′, M ′) ≤ n − 2.

Case 2 e = uivj where j �= i.

Subcase 2.1: Both uivi and ujvj are contained in M ′. By the assumption, G[{ui, vi, uj , vj}]
is an M -alternating 4-cycle of G where {uivi, ujvj} ⊆ M . So G′[{ui, vi, uj , vj}] is just a path
of length three since G′ = G − e = G − uivj . By Lemma 1.1, M ′ \ {uivi, ujvj} is a forcing set
of M ′. So, f(G′, M ′) ≤ n − 2.

Subcase 2.2: At least one of uivi and ujvj is not contained in M ′. Without loss of gener-
ality, assume that ujvj /∈ M ′. Since e = uivj is not an edge of G′, there exists a vertex wl �= ui

such that vjwl ∈ M ′. Note that vivj cannot be an edge of G′ ⊂ G since G[{ui, vi, uj , vj}] is
an M -alternating 4-cycle of G. Then wl �= vi. If viwl /∈ E(G′), then vi is adjacent to neither
wl nor vj in G′. So G′[{vi, wt, wl, vj}] contains no M ′-alternating cycles where viwt ∈ M ′. By
Lemma 1.1, M ′ \ {viwt, vjwl} is a forcing set of M ′. Thus, f(G′, M ′) ≤ n− 2. If viwl ∈ E(G′),
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then uiwl /∈ E(G′) ⊂ E(G) since G[{vi, ui, ul, vl}] is exactly an M -alternating 4-cycle by the
assumption. Since G′ = G−e, we have e = uivj /∈ E(G′). So ui is adjacent to neither wl nor vj

in G′, and G′[{ui, wk, wl, vj}] contains no M ′-alternating cycles where uiwk ∈ M ′. By Lemma
1.1, M ′ \ {uiwk, vjwl} is a forcing set of M ′. So, f(G′, M ′) ≤ n − 2. �

By Lemma 2.2, adding some extra edges to a minimal graph G maintains the same maximum
forcing number as G. Clearly, Kn,n is minimal for n ≥ 1 by Lemma 2.2. For n ≥ 3, we have
other such minimal graphs shown in Figure 1.
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Figure 1 Some examples of minimal graphs with n = 3 and 4

Let G be a graph with a perfect matching. An edge e of G is called a fixed double bond if
e is contained in all perfect matchings of G. The connectivity and edge connectivity of G are
denoted by κ(G) and λ(G), respectively.

Lemma 2.3 Assume that G ∈ G2n has F (G) = n − 1 > 0. Then
(i) G has no fixed double bond, that is, G − e has a perfect matching for each edge e of G.
(ii) κ(G) ≥ n. Moreover, if G is minimal, then G is n-regular, and κ(G) = λ(G) = n.

Proof (i) It has been implied in the sufficiency part of (2) in the proof of Lemma 2.2.
(ii) Since F (G) = n− 1, there exists a perfect matching M of G such that f(G, M) = n− 1

where M = {uivi | i = 1, 2, . . . , n}. For any X ⊆ V (G) with |X| < n, there is at least one pair
of vertices ui and vi not in X for some 1 ≤ i ≤ n. Then for the other vertices not in X, say uj

(resp. vj), either uiuj or viuj (resp. uivj or vivj) is contained in E(G) by Lemma 2.2. Hence
G − X is connected and so G is n-connected. Therefore, κ(G) ≥ n.

If G is minimal, then for any 1 ≤ i ≤ n, ui (resp. vi) is adjacent to exactly one of uj and
vj for any 1 ≤ j ≤ n and j �= i by Lemma 2.2. Combining that uivi is an edge, we obtain that
ui and vi are of degree n. So G is n-regular. Combining that n ≤ κ(G) ≤ λ(G) ≤ δ(G) = n,
we obtain that κ(G) = λ(G) = n. �

The number of odd components of G is denoted by o(G). The following result gives an
equivalent condition for a bicritical graph.

Lemma 2.4 ([17]) A graph G is bicritical if and only if for any X ⊆ V (G) and |X| ≥ 2,
o(G − X) ≤ |X| − 2.

Next we will show that K+
n,n is a subclass of graphs G ∈ G2n with F (G) = n − 1 such that

G contains an independent set of size n.

Lemma 2.5 Assume that G ∈ G2n has F (G) = n− 1. Then G is a graph in K+
n,n if and only

if G contains an independent set of size n. Otherwise, G is a brick, and thus 1-extendable.

Proof (1) The necessity is obvious. We prove sufficiency next. Since F (G) = n−1, there exists
a perfect matching M of G such that f(G, M) = n− 1. Let {u1, u2, . . . , un} be an independent
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set of size n in G and let M = {uivi | i = 1, 2, . . . , n}. Then uiuj /∈ E(G) for any 1 ≤ i < j ≤ n.
By Lemma 2.2, {uivj , viuj} is contained in E(G). Hence, G is some graph in K+

n,n, for there
may be some other edges with both end vertices in {v1, v2, . . . , vn}.

(2) If G is not a graph in K+
n,n, then we will prove that G is a brick. For n ≥ 3, G is

3-connected by Lemma 2.3. For n ≤ 2, exactly one graph K4 that is not in K+
n,n is 3-connected.

Next we prove that G is bicritical. Suppose that X ⊆ V (G) with |X| ≥ 2. If |X| ≤ n− 1, then
G−X is connected by Lemma 2.3. Hence o(G−X) ≤ 1 ≤ |X|−1. Otherwise, we have |X| ≥ n.
Then o(G−X) ≤ |V (G−X)| ≤ n. Since G is not a graph in K+

n,n, G contains no independent
set of size n. Hence o(G − X) ≤ n − 1 ≤ |X| − 1. Since G is of even order, o(G − X) and |X|
are of the same parity. So o(G − X) ≤ |X| − 2. By Lemma 2.4, G is bicritical. �

3 Graphs G ∈ G2n with the Minimum Forcing Number n − 1

In this section, we will determine all graphs G ∈ G2n with f(G) = n− 1 to completely solve the
problem proposed by Che and Chen [6].

Tutte’s theorem states that G has a perfect matching if and only if o(G − S) ≤ |S| for any
S ⊆ V (G). By Tutte’s theorem, Yu [30] obtained an equivalent condition for a connected graph
with a perfect matching that is not l-extendable. Recently, for an (l − 1)-extendable graph G

with l ≥ 1, Alajbegović et al. [4] obtained that G is not l-extendable if and only if there exists
a subset S ⊆ V (G) such that G[S] contains l independent edges and o(G − S) = |S| − 2l + 2.
In fact, S can be chosen so that each component of G − S is factor-critical (see Theorem 2.2.3
in [7]). Combining these, we obtain the following result.

Lemma 3.1 Let l ≥ 1 be an integer and G be an (l−1)-extendable graph of order at least 2l+2.
Then G is not l-extendable if and only if there exists a subset S ⊆ V (G) such that G[S] contains
l independent edges, all components of G − S are factor-critical, and o(G − S) = |S| − 2l + 2.

A complete multipartite graph is a graph whose vertices can be partitioned into sets so that
u and v are adjacent if and only if u and v belong to different sets of the partition. We write
Kn1,n2,...,nk

for the complete k-partite graph with partite sets of sizes n1, n2, . . . , nk. In fact, a
complete multipartite graph is a P3-free graph (see Exercise 5.2.2 in [27]).

Lemma 3.2 ([27]) A graph is P3-free if and only if it is a complete multipartite graph.

Theorem 3.3 Let G ∈ G2n. Then f(G) = n − 1 if and only if G is a complete multipartite
graph with each partite set having size no more than n or G is some graph in K+

n,n.

Proof Sufficiency. Suppose that G is some graph in K+
n,n. Then any perfect matching M of

G is also a perfect matching of Kn,n. By Lemma 2.2, f(G, M) = n− 1. By the arbitrariness of
M , f(G) = n − 1.

Suppose that G = Kn1,n2,...,nk
is a complete multipartite graph where 1 ≤ ni ≤ n for

1 ≤ i ≤ k and k ≥ 2. First we will show that G has a perfect matching. For any nonempty
subset S of V (G), if G − S has at least two vertices from different partite sets of G, then
G − S is connected and o(G − S) ≤ 1 ≤ |S|. Otherwise, all vertices of G − S belong to one
partite set of G. Then |V (G − S)| ≤ n and |S| ≥ n. Hence o(G − S) ≤ n ≤ |S|. For S = ∅,
o(G − S) = o(G) = |S|. By Tutte’s theorem, G has a perfect matching.

Clearly, the result holds for n = 1. Next let n ≥ 2. Suppose to the contrary that f(G) ≤
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n−2. Then there exists a perfect matching M of G and a minimum forcing set S of M such that
|S| = f(G, M) = f(G). By Lemma 1.1, G − V (S) contains no M -alternating cycles. So there
are two distinct edges {uivi, ujvj} ⊆ M \ S and G[{ui, vi, uj , vj}] contains no M -alternating
cycles. That is to say, neither {uiuj , vivj} nor {uivj , viuj} is contained in E(G). Without loss
of generality, we assume that none of uiuj and uivj belong to E(G). Then G[{ui, uj , vj}] is
isomorphic to P3, which contradicts Lemma 3.2.

Necessity. Suppose that f(G) = n − 1. If G is a complete multipartite graph, then each
partite set of G has size no more than n for G has a perfect matching. If G is not a complete
multipartite graph, then by Lemma 3.2, G contains an induced subgraph H isomorphic to
P3. Note that the edge e of H is not in any perfect matching of G. Otherwise, there is a
perfect matching M of G containing e. By Observation 2.1, f(G, M) = n − 1. Let v be
the vertex of H except for both end vertices of e, and e′ be the edge of M incident with v.
Then G[V ({e, e′})] contains no M -alternating cycles for v is not incident with any end vertices
of e, which contradicts Lemma 2.2. So G is not 1-extendable. By Lemma 3.1, there exists
S ⊆ V (G) such that G[S] contains an edge, all components of G − S are factor-critical, and
o(G − S) = |S| ≥ 2.

We claim that all components of G − S are singletons. Otherwise, assume that C1 is a
non-trivial component of G − S. Let M be a perfect matching of G. By Observation 2.1,
f(G, M) = n−1. Since o(G−S) = |S|, M matches S to distinct components of G−S. Assume
that e1 is an edge in M ∩ E(C1) and e2 is an edge of M which connects a vertex of S and
a vertex of another component C2 of G − S. Then G[V ({e1, e2})] contains no M -alternating
cycles, which contradicts Lemma 2.2. Therefore, each component of G − S is a singleton and
so |S|+ o(G− S) = 2n. It follows that o(G− S) = n since we have shown that o(G− S) = |S|.
So G contains an independent set of size n. By Lemma 2.5, G is a graph in K+

n,n. �

Taking n = 3 for example, K3,3, K3,2,1, K3,1,1,1, K2,2,2, K2,2,1,1, K2,1,1,1,1, K6 are all complete
multipartite graphs with each partite set having size no more than 3 and K3,3 + e is the unique
graph in K+

3,3 except for above complete multipartite graphs, where e is an edge connecting any
two nonadjacent vertices of K3,3.

4 Extendability of Graphs G ∈ G2n with F (G) = n − 1

Let G be a graph in G2n with F (G) = n−1 and be different from graphs in K+
n,n. By Lemma 2.5,

G is 1-extendable. However, it is not necessarily 2-extendable. We know that an l-extendable
graph is (l − 1)-extendable for an integer l ≥ 1, and 2-extendable graphs are either bricks or
braces (2-extendable bipartite graphs) [19]. In this section, we will determine which graphs in
Lemma 2.5 are 1-extendable but not 2-extendable.

Theorem 4.1 Let G ∈ G2n with F (G) = n − 1 where n ≥ 3. Then G is 1-extendable but
not 2-extendable if and only if G has a perfect matching M = {uivi | i = 1, 2, . . . , n} with
f(G, M) = n − 1 so that one of the following conditions holds.

(i) n ≥ 4, G[{v1, v2, . . . , vn}] consists of one triangle and n − 3 isolated vertices, and
G[{u1, u2, . . . , un}] has at least two independent edges (see an example in Figure 2 (a)).

(ii) {v1, v2, . . . , vn−1} is an independent set, G[{u1, u2, . . . , un, vn}] has at least two inde-
pendent edges, and {vivn, vjun} ⊆ E(G) for some i and j with 1 ≤ i, j ≤ n − 1 (see examples
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(b) and (c) in Figure 2).

1v 4v2v 3v 5v 6v 1v 2v

1u 2u 3u 4u 5u 6u 1u 2u

1v 2v

1u 2u3u 4u 5u

4v3v 5v 4v3v 5v

3u 4u 5u

( )a ( )b ( )c

Figure 2 Three examples for non-2-extendable graphs

Proof Sufficiency. Since f(G, M) = n − 1, by Lemma 2.5, G is 1-extendable or G contains
an independent set of size n. We claim that G contains no independent set of size n. If we
have done, then G is 1-extendable. Let S = {u1, u2, . . . , un} (resp. {u1, u2, . . . , un, vn}) be a
subset of V (G) corresponding to (i) (resp. (ii)). Then G[S] contains two independent edges,
all components of G − S are factor-critical, and o(G − S) = |S| − 2. By Lemma 3.1, G is not
2-extendable.

Now we prove the claim. Let I be any independent set of G. We will prove that |I| ≤ n−1.
We consider the graphs G satisfying (i). Let {v1, v2, . . . , vn−3} be the set of n − 3 isolated
vertices and G[{vn−2, vn−1, vn}] be the triangle of G[{v1, v2, . . . , vn}]. If I ⊆ {u1, u2, . . . , un},
then |I| ≤ n − 2 for G[{u1, u2, . . . , un}] has at least two independent edges. Otherwise, there
exists vi ∈ I for some 1 ≤ i ≤ n. For any 1 ≤ j ≤ n and j �= i, G[{ui, vi, uj , vj}] contains
an M -alternating 4-cycle by Lemma 2.2. So if vivj /∈ E(G) for some j then viuj ∈ E(G) and
uj /∈ I. Hence, if 1 ≤ i ≤ n − 3 then uj /∈ I for any 1 ≤ j ≤ n and j �= i since vivj /∈ E(G).
Hence I ⊆ {v1, v2, . . . , vn} and |I| ≤ n − 2. If n− 2 ≤ i ≤ n, then uj /∈ I for any 1 ≤ j ≤ n− 3
since vivj /∈ E(G). Hence I ⊆ {v1, v2, . . . , vn−3, vi} ∪ ({un−2, un−1, un} \ {ui}). If v1 ∈ I, then
{un−2, un−1, un} ∩ I = ∅ by Lemma 2.2, so |I| ≤ n − 2. Otherwise, v1 /∈ I. Then |I| ≤ n − 1.

We consider the graphs G satisfying (ii). If I ⊆ {u1, u2, . . . , un, vn}, then |I| ≤ n − 1 for
G[{u1, u2, . . . , un, vn}] has at least two independent edges. Otherwise, there exists vk ∈ I for
some 1 ≤ k ≤ n − 1. Since vkvl /∈ E(G) for any 1 ≤ l ≤ n − 1 and l �= k, vkul ∈ E(G)
since G[{uk, vk, ul, vl}] contains an M -alternating 4-cycle by Lemma 2.2. So ul /∈ I and I ⊆
{v1, v2, . . . , vn, un}. By the assumption, {vjun, vivn} ⊆ E(G). If i �= j, then {vjun, vivn} are
two independent edges and |I| ≤ n− 1. Otherwise, G[{vi, vn, un}] is a triangle and |I| ≤ n− 1.

Necessity. By Lemma 3.1, there exists a subset S ⊆ V (G) such that G[S] contains two
independent edges, all components of G − S are factor-critical, and o(G − S) = |S| − 2. Hence
|S| ≥ 4. Let Ci (1 ≤ i ≤ |S| − 2) be all components of G − S. Since F (G) = n − 1, there
exists a perfect matching M of G so that f(G, M) = n − 1. We claim that G − S has at most
one component containing exactly three vertices, and the others are trivial. Otherwise, G − S

has one component, say C1, containing at least five vertices or G− S has two components, say
C1 and C2, containing exactly three vertices. Since G − S has exactly |S| − 2 factor-critical
components, in either case there is one edge e1 in M belonging to C1 or C2. Then none of end
vertices of e1 are adjacent to any vertex, say w, of another component. So G[V ({e1, e2})] cannot
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contain an M -alternating cycle, where e2 is the edge in M incident with w, which contradicting
Lemma 2.2.

If one component of G − S is a triangle and the other components are singletons, then
|S| = n ≥ 4. Let V (Ci) = {vi} for each 1 ≤ i ≤ n − 3, V (Cn−2) = {vn−2, vn−1, vn} and
uivi ∈ M for each 1 ≤ i ≤ n− 3. Since f(G, M) = n− 1, each edge of Cn−2 does not belong to
M by Lemma 2.2. So we denote the remaining three edges of M by un−2vn−2, un−1vn−1 and
unvn. Thus M = {uivi | i = 1, 2, . . . , n} and S = {u1, u2, . . . , un}. Hence (i) holds.

If all components of G − S are trivial, then |S| = n + 1 and o(G − S) = n − 1. Let
V (Ci) = {vi} and uivi ∈ M for each 1 ≤ i ≤ n − 1. Then the remaining edge of M is denoted
by unvn. So {v1, v2, . . . , vn−1} is an independent set of G and S = {u1, u2, . . . , un, vn} with
G[S] containing at least two independent edges. Since G is not a graph in K+

n,n, G contains no
independent set of size n by Lemma 2.5. Combining that {v1, v2, . . . , vn−1} is an independent
set of G, there exists i and j with 1 ≤ i, j ≤ n− 1 such that {unvj , vnvi} is contained in E(G).
So (ii) holds. �

Next we will determine all minimal non-2-extendable graphs in Theorem 4.1.

Corollary 4.2 Let graph G in Theorem 4.1 be minimal. Then G is not 2-extendable if and
only if (ii) in Theorem 4.1 holds where i �= j, {u1, u2, . . . , un−1} is an independent set and
G[{un, vn, ui, vi}] is just a 4-cycle for 1 ≤ i ≤ n − 1 (see an example in Figure 2 (c)).

Proof Sufficiency. It suffices to prove that G is minimal by Theorem 4.1. Since f(G, M) = n−
1, by Lemma 2.2, G[{ui, vi, uj , vj}] contains an M -alternating 4-cycle for any 1 ≤ i < j ≤ n−1.
By the assumption, {u1, u2, . . . , un−1} and {v1, v2, . . . , vn−1} are two independent sets. So
neither vivj nor uiuj is an edge of G. Hence G[{ui, vi, uj , vj}] is exactly a 4-cycle. Combining
that G[{un, vn, ui, vi}] is just a 4-cycle for 1 ≤ i ≤ n − 1, we obtain that G is minimal by
Lemma 2.2.

Necessity. By Theorem 4.1, G has a perfect matching M = {uivi | i = 1, 2, . . . , n} with
f(G, M) = n− 1 so that (i) or (ii) holds. First we show that each graph G satisfying (i) is not
minimal. Let {v1, v2, . . . , vn−3} be the set of n− 3 isolated vertices and G[{vn−2, vn−1, vn}] be
the triangle of G[{v1, v2, . . . , vn}]. Then there is at least one vertex, say ui for some 1 ≤ i ≤ n−3,
incident with one of the two independent edges of G[{u1, u2, . . . , un}]. Assume that uiuj is such
an edge for some 1 ≤ j ≤ n. By Lemma 2.2, G[{ui, vi, uj , vj}] contains an M -alternating 4-
cycle. Since vivj /∈ E(G), we have {uivj , viuj} ⊆ E(G). But uiuj ∈ E(G), G[{ui, vi, uj , vj}] is
not a 4-cycle. So G is not minimal by Lemma 2.2.

Next let G be a graph satisfying (ii). Since G is minimal, G[{uk, vk, ul, vl}] is just a 4-
cycle for 1 ≤ k < l ≤ n by Lemma 2.2. Since {vivn, vjun} ⊆ E(G) for some i and j with
1 ≤ i, j ≤ n − 1, we have i �= j. Since {v1, v2, . . . , vn−1} is an independent set, vkvl /∈ E(G) for
1 ≤ k < l ≤ n − 1. By Lemma 2.2, G[{uk, vk, ul, vl}] is a 4-cycle ukvlulvkuk and ukul /∈ E(G).
Hence {u1, u2, . . . , un−1} is an independent set. �

5 Minimum Forcing Numbers and Forcing Spectrum of Graphs G with F (G) =
n − 1

The forcing spectrum of a graph G is the set of forcing numbers of all perfect matchings of
graph G. If the forcing spectrum of G is an integer interval, then we say it is continuous (or



1298 Liu Q. Q. and Zhang H. P.

consecutive). Afshani et al. [3] showed that any finite subset of positive integers is the forcing
spectrum of some graph. Besides, they [3] obtained that the forcing spectra of column continu-
ous subgrids are continuous by matching 2-switches. Further, Zhang and Jiang [33] generalized
their result to any polyomino with perfect matchings by applying the Z-transformation graph.
Zhang and Deng [31] obtained that the forcing spectrum of any hexagonal system with a forcing
edge form either the integer interval from 1 to its Clar number or with only the gap 2. For
more researches on the forcing spectra of special graphs, see [2, 3, 11, 20, 24, 25, 37].

Let G ∈ G2n with F (G) = n − 1. In this section we will prove that f(G) ≥ 	n
2 
, and

find that all minimum forcing numbers of such graphs G form an integer interval [	n
2 
, n − 1].

Further, we will show that the forcing spectrum of each such graph G is continuous. Next we
give a lemma obtained by Che and Chen.

Lemma 5.1 ([5]) Let G be a k-connected graph with a perfect matching. Then f(G) ≥ 	k
2 
.

Combining Lemmas 2.3 and 5.1, we have the following result.

Corollary 5.2 Let G ∈ G2n with F (G) = n − 1. Then f(G) ≥ 	n
2 
.

For 0 ≤ k ≤ 	n−1
2 
, let Hk ∈ G2n be a minimal graph with f(Hk, M0) = n − 1, where

M0 = {uivi | i = 1, 2, . . . , n} is a perfect matching of Hk, so that Hk[{u1, u2, . . . , un}] con-
tains exactly k edges {u2i−1u2i | i = 1, 2, . . . , k}. Then Hk[{v1, v2, . . . , vn}] contains exactly k

edges {v2i−1v2i | i = 1, 2, . . . , k} and Hk[{u2k+1, v2k+1, . . . , un, vn}] is isomorphic to a complete
bipartite graph (see examples in Figure 3).

1
v

2
v

3
v

4
v

5
v

4
u

2
u 3

u
5

u
1

u

6
v

6
u

1
v

2
v

3
v

4
v

5
v

4
u

2
u 3

u
5

u
1

u

6
v

7
v

7
u

6
u

Figure 3 Hk with k = �n−1
2

� and n = 6 and 7

Remark 5.3 For 0 ≤ k ≤ 	n−1
2 
, f(Hk) ≤ n − k − 1. Especially, for k = 	n−1

2 
 we have
f(Hk) = 	n

2 
, i.e., the lower bound of Corollary 5.2 is sharp.

Let M = {u2i−1u2i, v2i−1v2i | i = 1, 2, . . . , k}∪{u2k+1v2k+1, u2k+2v2k+2, . . . , unvn} be a per-
fect matching of Hk. It follows that S = {v2i−1v2i | i = 1, 2, . . . , k}∪{u2k+2v2k+2, u2k+3v2k+3, . . . ,

unvn} is a forcing set of M by Lemma 1.1 (see examples in Figure 3, where bold lines form S).
So f(Hk) ≤ f(Hk, M) ≤ |S| = k + (n − 2k − 1) = n − k − 1.

Especially, for k = 	n−1
2 
 we have f(Hk) ≤ n − k − 1 = 	n

2 
. Combining Corollary 5.2, we
obtain that f(Hk) = 	n

2 
.
Next we will prove that f(Hk) = n − k − 1 for 0 ≤ k ≤ 	n−1

2 
. Here we give two simple
facts that can be obtained from Lemma 1.1.

Fact 5.4 If G′ is a spanning subgraph of G with f(G′, M) = |S| for some perfect matching
M of G′, then f(G, M) ≥ |S|.
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Fact 5.5 Let M be a perfect matching of G with M = M1 ∪ M2, and let Gi = G[V (Mi)] for
i = 1, 2. Then f(G, M) ≥ f(G1, M1) + f(G2, M2).

Lemma 5.6 For 0 ≤ k ≤ 	n−1
2 
, f(Hk) = n − k − 1.

Proof By Remark 5.3, it suffices to prove that f(Hk) ≥ n − k − 1. We proceed by induction
on n. It is trivial for n = 1. Since H0

∼= Kn,n, we have f(H0) = n − 1 by Theorem 1.3. By
Remark 5.3, for k = 	n−1

2 
 we have f(Hk) = 	n
2 
 = n − k − 1. So next we suppose n ≥ 2 and

1 ≤ k ≤ n−3
2 . Let M be any perfect matching of Hk. Then we have the following claims.

Claim 1 If uivi ∈ M for some 1 ≤ i ≤ 2k, then f(Hk, M) ≥ n − k − 1.
Let H2 = Hk−{ui, vi} and M2 = M \{uivi}. Then H2 is isomorphic to H ′

k′ with n′ = n−1
and k′ = k − 1. By the induction hypothesis,

f(H2, M2) = f(H ′
k′ , M2) ≥ f(H ′

k′) ≥ n′ − k′ − 1 = n − k − 1.

By Fact 5.5, f(Hk, M) ≥ f(H2, M2) ≥ n − k − 1.

Claim 2 If Hk has an M -alternating 4-cycle containing exactly two edges of {u2i−1u2i,

v2i−1v2i | i = 1, 2, . . . , k}, then f(Hk, M) ≥ n − k − 1.
If M ∩ {u2i−1u2i, v2i−1v2i | i = 1, 2, . . . , k} = ∅, then we assume that C is an M -alternating

4-cycle of Hk, and {u2i−1u2i, v2j−1v2j} is contained in C for some 1 ≤ i, j ≤ k. So C =
u2i−1v2j−1v2ju2iu2i−1 or u2i−1v2jv2j−1u2iu2i−1. Let H2 = Hk − V (C) and M2 = M ∩ E(H2),
M1 = M \ M2, H1 = Hk[V (M1)]. Then H1 contains C and f(H1, M1) ≥ 1 by Theorem 1.2.
On the other hand, H2 −{v2i−1v2i, u2j−1u2j} is isomorphic to H ′

k′ with n′ = n− 2, k′ ≤ k− 1,
and M2 is a perfect matching of H ′

k′ . By the induction hypothesis and Fact 5.4,

f(H2, M2) ≥ f(H ′
k′ , M2) ≥ f(H ′

k′) ≥ n′ − k′ − 1 ≥ n − k − 2.

By Fact 5.5, f(Hk, M) ≥ f(H1, M1) + f(H2, M2) ≥ 1 + (n − k − 2) = n − k − 1.

If M ∩ {u2i−1u2i, v2i−1v2i | i = 1, 2, . . . , k} �= ∅, then the intersection of the two sets is
denoted by M1. By the structure of Hk, all vertices of {u1, u2, . . . , un} \ V (M1) must match
into all vertices of {v1, v2, . . . , vn} \ V (M1). So we have

|M1 ∩ {u2j−1u2j | j = 1, 2, . . . , k}| = |M1 ∩ {v2j−1v2j | j = 1, 2, . . . , k}|.

Let M2 = M \M1 and Hi = Hk[V (Mi)] for i = 1, 2. For any pair of edges {u2i−1u2i, v2j−1v2j}
of M1 where 1 ≤ i, j ≤ k, Hk[{u2i−1, u2i, v2j−1, v2j}] is either a 4-cycle or K4 by the structure
of Hk. So Hk[{u2i−1, u2i, v2j−1, v2j}] contains an M1-alternating 4-cycle, and so H1 contains
|M1|

2 disjoint M1-alternating 4-cycles. By Lemma 1.1, f(H1, M1) ≥ |M1|
2 . On the other hand,

H2 − {u2j−1u2j | v2j−1v2j ∈ M1, j = 1, 2, . . . , k} ∪ {v2j−1v2j |u2j−1u2j ∈ M1, j = 1, 2, . . . , k}

is isomorphic to H ′
k′ with n′ = n − |M1|, k′ ≤ k − |M1|

2 . Since

k′ ≤ k − |M1|
2

≤ n − 3 − |M1|
2

<
n − 2 − |M1|

2
≤

⌊
n − 1 − |M1|

2

⌋
=

⌊
n′ − 1

2

⌋
,

by the induction hypothesis and Fact 5.4, we obtain that

f(H2, M2) ≥ f(H ′
k′ , M2) ≥ f(H ′

k′) ≥ n′ − k′ − 1 ≥ n − k − 1 − |M1|
2

.



1300 Liu Q. Q. and Zhang H. P.

By Fact 5.5, we obtain that

f(Hk, M) ≥ f(H1, M1) + f(H2, M2) ≥ |M1|
2

+
(

n − k − 1 − |M1|
2

)
= n − k − 1.

By Claims 1 and 2, from now on we suppose that M contains no uivi for any 1 ≤ i ≤ 2k

and any M -alternating 4-cycle of Hk contains at most one edge of {u2i−1u2i, v2i−1v2i | i =
1, 2, . . . , k}. Particularly, M contains no edges of {u2i−1u2i, v2i−1v2i | i = 1, 2, . . . , k}. So we
may assume {v1u3, v2u5} is contained in M . Next we are going to consider the edge of M

incident with v3, say v3ul. Then l has four possible values: l ≤ 2, l = 6, 7 ≤ l ≤ 2k and
l ≥ 2k + 1. Furthermore, if 7 ≤ l ≤ 2k, then we suppose l = 7 and continue to consider the
edge of M incident with v5. Until we obtain an edge vhul ∈ M so that one of the other three
cases (l ≤ h − 1, l = h + 3, l ≥ 2k + 1) holds (since Hk is finite, such edge exists).

1v 2v 3v 4v 5v

4u2u 3u 5u1u

6v 7v

7u6u 8u 10u9u 11u 13u12u

10v8v 11v 13v12v9v

1v 2v 3v 4v 5v

4u2u 3u 5u1u

6v 7v

7u6u 8u 10u9u 11u

10v8v 11v9v
( )a

( )b

13u12u

13v12v

Figure 4 Illustration for the proof of Lemma 5.6, where bold lines form M1

If l = h + 3, then let M1 = {v1u3, v2u5, . . . , vhuh+3} (see an example in Figure 4 (a) where
h = 5), M2 = M\M1, and Hi = Hk[V (Mi)] for i = 1, 2. Then H1 contains an M1-alternating 4-
cycle v1u5v2u3v1. By Theorem 1.2, f(H1, M1) ≥ 1. On the other hand, H2 −{u1u2, vh+2vh+3}
is isomorphic to H ′

k′ with n′ = n − |M1|. Since contribution of the edges v1u3, vhuh+3 to k′ is
−2, 0, and that of each other edges in M1 is −1, we have k′ = k − |M1|. Since

k′ = k − |M1| ≤ n − 3 − 2|M1|
2

<
n − 2 − |M1|

2
≤

⌊
n − 1 − |M1|

2

⌋
=

⌊
n′ − 1

2

⌋
,

by the induction hypothesis and Fact 5.4,

f(H2, M2) ≥ f(H ′
k′ , M2) ≥ f(H ′

k′) ≥ n′ − k′ − 1 = n − k − 1.

By Fact 5.5, f(Hk, M) ≥ f(H1, M1) + f(H2, M2) ≥ 1 + n − k − 1 = n − k.
If l ∈ [2k + 1, n] ∪ [1, h − 1] (see an example in Figure 4 (b) where h = 5, l = 2), then we

continue to consider the edge of M incident with vh+2, say vh+2ui. Then i has three possible
values: i ≤ h+1, h+4 ≤ i ≤ 2k and i ≥ 2k+1. Furthermore, if h+4 ≤ i ≤ 2k, then we suppose
i = h + 4 and continue to consider the edge of M incident with vh+4. Until we obtain an edge
of M , say vrut with t ∈ [2k + 1, n] ∪ [1, r − 1] (By the finiteness of Hk, such edge exists) (see
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an example in Figure 4 (b) where r = 9, t = 11). Let M1 = {v1u3, v2u5, . . . , vhul, . . . , vrut},
M2 = M \ M1, and Hi = Hk[V (Mi)] for i = 1, 2. Then H2 − u1u2 is isomorphic to H ′

k′ with
n′ = n − |M1|. Since contribution of the edges v1u3, vhul, vrut to k′ is −2, 0, 0 and that of
each other edges in M1 is −1, we have k′ = k − (|M1| − 1). Since

k′ = k − |M1| + 1 ≤ n − 1 − 2|M1|
2

≤ n − 2 − |M1|
2

≤
⌊

n − 1 − |M1|
2

⌋
=

⌊
n′ − 1

2

⌋
,

by the induction hypothesis and Fact 5.4,

f(H2, M2) ≥ f(H ′
k′ , M2) ≥ f(H ′

k′) ≥ n′ − k′ − 1 = n − k − 2.

By Fact 5.5, f(Hk, M) ≥ f(H1, M1) + f(H2, M2) ≥ 1 + (n − k − 2) = n − k − 1.
By the arbitrariness of M , we obtain that f(Hk) ≥ n − k − 1. �

Combining Lemma 5.6 and Corollary 5.2, we obtain the following result.

Theorem 5.7 All minimum forcing numbers of graphs G ∈ G2n with F (G) = n − 1 form an
integer interval [	n

2 
, n − 1].

Suppose that M is a perfect matching of G. If C is an M -alternating cycle of length 4, then
M ⊕ E(C) is a matching 2-switch on M . Afshani et al. [3] obtained that a matching 2-switch
on a perfect matching does not change the forcing number by more than 1.

Lemma 5.8 ([3]) If M is a perfect matching of G and C is an M -alternating cycle of length
4, then

|f(G, M ⊕ E(C)) − f(G, M)| ≤ 1.

By Lemma 5.8, if M1, M2, . . . , Ms is a sequence of perfect matchings such that Mi+1

is obtained from Mi by a matching 2-switch for 1 ≤ i ≤ s − 1, then the integer interval
[min{f(G, M1), f(G, Ms)}, max{f(G, M1), f(G, Ms)}] is contained in the forcing spectrum of
G.

Theorem 5.9 If G ∈ G2n with F (G) = n − 1, then its forcing spectrum is continuous.

Proof Let Ms = {uivi | i = 1, 2, . . . , n} be a perfect matching of G with f(G, Ms) = n − 1.
Then we will prove that Ms can be obtained from any perfect matching M of G by repeatedly
applying matching 2-switches. If we have done, then Ms can be obtained from a perfect
matching of G with the minimum forcing number by repeatedly applying matching 2-switches.
So the forcing spectrum of G is continuous by Lemma 5.8.

We proceed by induction on n. For n = 1, G ∼= K2 and the result is trivial. Next, for n ≥ 2,
f(G, Ms) = n − 1 > 0. Take any perfect matching M of G different from Ms. Then we have
the following claims.

Claim 1 If Ms ∩M �= ∅, then Ms can be obtained from M by repeatedly applying matching
2-switches.

Suppose Ms ∩ M contains an edge uivi for some 1 ≤ i ≤ n. Let G′ = G − {ui, vi} and
M ′ = M \{uivi}, M ′

s = Ms \{uivi}. Then G′ has 2(n−1) vertices, M ′ and M ′
s are two distinct

perfect matchings of G′. By Lemma 2.2, f(G′, M ′
s) = n − 2. By the induction hypothesis,

M ′
s can be obtained from M ′ by repeatedly applying matching 2-switches. Hence, Ms is also

obtained from M by the same series of matching 2-switches, and the claim holds.
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Claim 2 If Ms ⊕ M contains a cycle of length 4, then Ms can be obtained from M by
repeatedly applying matching 2-switches.

Assume that C is a cycle of length 4 contained in Ms ⊕M and V (C) = {ui, vi, uj , vj}. Let
M ′ = M ⊕ E(C). Then {uivi, ujvj} ⊆ Ms ∩ M ′. By Claim 1, Ms can be obtained from M ′

by repeatedly applying matching 2-switches. Hence Ms can be obtained from M by repeatedly
applying matching 2-switches, and the claim holds.

By Claims 1 and 2, from now on we suppose that Ms∩M = ∅ and Ms⊕M contains no cycles
of length 4. Then we may suppose that v1u2 ∈ M . So u1v2 /∈ M . Without loss of generality,
we assume that u1v3 ∈ M . If u2v3 is an edge of G, then C1 = u1v1u2v3u1 is an M -alternating
4-cycle. So M ′ = M ⊕ E(C1) is a perfect matching of G and Ms ∩ M ′ = {u1v1}. From Claim
1, we are done. Otherwise, u2v3 is not an edge of G. By Lemma 2.2, {u2u3, v2v3} ⊆ E(G) (see
Figure 5 (a)). Next we consider the following two cases according as whether v2u3 belongs to
M or not.

Case 1 v2u3 ∈ M . If v1u3 ∈ E(G), then C2 = v1u2v2u3v1 is an M -alternating 4-cycle. So
M ′ = M ⊕ E(C2) is a perfect matching of G and Ms ∩ M ′ = {u2v2}. From Claim 1, we are
done. Otherwise, v1u3 /∈ E(G). By Lemma 2.2, {u1u3, v1v3} ⊆ E(G) (see Figure 5 (b)). Then
C3 = u1u3v2v3u1 is an M -alternating 4-cycle and C4 = v2v3v1u2v2 is an M⊕E(C3)-alternating
4-cycle. So M ′ = M ⊕ E(C3) ⊕ E(C4) is a perfect matching of G that is obtained from M by
two matching 2-switches and Ms ∩ M ′ = {u2v2}. From Claim 1, we are done.

Case 2 v2u3 /∈ M . Without loss of generality, we can suppose that v2u4 ∈ M . If v1u4 is an
edge of G, then C5 = v1u2v2u4v1 is an M -alternating 4-cycle. So M ′ = M ⊕E(C5) is a perfect
matching of G and Ms ∩ M ′ = {u2v2}. From Claim 1, we are done. Otherwise, v1u4 is not
an edge of G. By Lemma 2.2, {u1u4, v1v4} ⊆ E(G) (see Figure 5(c)). Next we distinguish the
following two subcases according to u3v4 ∈ M or not.

4u1u 2u 3u

1v 2v 3v

1u 2u 3u

1v 2v 3v 4v

4u1u 2u 3u

1v 2v 3v 4v

5u

5v

sM

M

other edges of G

1u 2u 3u

1v 2v 3v

4u1u
2u 3u

1v 2v 3v 4v

( )c( )a ( )b

( )d ( )e

Figure 5 Illustration for the proof of Theorem 5.9

Subcase 2.1: u3v4 ∈ M (see Figure 5 (d)). Then C6 = u1v3v2u4u1 and C7 = v1v4u3u2v1 are
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two M -alternating 4-cycles. By two matching 2-switches we have that M ′ = M⊕E(C6)⊕E(C7)
is a perfect matching of G. Hence, M ′ = (M\{u1v3, v2u4, v1u2, u3v4})∪{v2v3, u1u4, u2u3, v1v4}.
So Ms ⊕ M ′ contains a 4-cycle u2u3v3v2u2. From Claim 2, Ms can be obtained from M ′ by
repeatedly applying matching 2-switches, so we are done.

Subcase 2.2: u3v4 /∈ M . Then we may suppose u3v5 ∈ M . If u1v5 is an edge of G, then
C8 = u1v5u3v3u1 is an M -alternating 4-cycle. So M ′ = M ⊕ E(C8) is a perfect matching of
G and Ms ∩ M ′ = {u3v3}. From Claim 1, we are done. So we may suppose u1v5 /∈ E(G). By
Lemma 2.2, {v1v5, u1u5} ⊆ E(G) (see Figure 5 (e)). Then C9 = u2u3v5v1u2 and C6 are two
M -alternating 4-cycles. By two matching 2-switches we have that M ′ = M ⊕E(C9)⊕E(C6) is
a perfect matching of G. Hence, M ′ = (M \ {u1v3, v2u4, v1u2, u3v5})∪{v2v3, u1u4, u2u3, v1v5}.
So Ms ⊕ M ′ contains a 4-cycle u2u3v3v2u2. From Claim 2, we are done. �
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