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Abstract Quantum uncertainty relations are mathematical inequalities that describe the lower bound

of products of standard deviations of observables (i.e., bounded or unbounded self-adjoint operators).

By revealing a connection between standard deviations of quantum observables and numerical radius

of operators, we establish a universal uncertainty relation for k observables, of which the formulation

depends on the even or odd quality of k. This universal uncertainty relation is tight at least for

the cases k = 2 and k = 3. For two observables, the uncertainty relation is a simpler reformulation of

Schrödinger’s uncertainty principle, which is also tighter than Heisenberg’s and Robertson’s uncertainty

relations.
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1 Introduction

In the mathematical framework of quantum mechanics, a quantum system can be simulated
in a complex Hilbert space H with the inner product 〈·|·〉 and a pure state is described by a
unit vector |x〉. Quantum observables for a state |x〉 are bounded or unbounded self-adjoint
operators on H with domain containing |x〉 (Ref. [25]). The mean value of observable A for
the pure state |x〉 is 〈A〉 = 〈x|A|x〉. The uncertainty principle, discovered first by Heisenberg
in 1927 (Ref. [10]), is often considered as one of the most important topics of quantum theory
(Ref. [11, 25]) and can be linked to quantum entanglement and other important topics (Ref.
[2, 20]). Heisenberg’s uncertainty principle says that

σqσp ≥ �

2
, (1.1)
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where σq and σp denote standard deviations of the position operator q̂ and momentum operator
p̂ respectively, � is the reduced Planck constant. In 1929, Robertson generalized Heisenberg’s
uncertainty principle, which says that, for observables A, B and pure state |x〉,

σAσB ≥ 1
2
|〈[A, B]〉|, (1.2)

where [A, B] = AB − BA is the Lie product of A and B,

σA =
√
〈A2〉 − 〈A〉2 and σB =

√
〈B2〉 − 〈B〉2

are the standard deviations of A and B, respectively [22]. Schrödinger gave a uncertainty
principle, which is sharper than Robertson’s and asserts that

σAσB ≥
√

1
4
|〈[A, B]〉|2 +

∣∣
∣
∣
1
2
〈{A, B}〉 − 〈A〉〈B〉

∣∣
∣
∣

2

, (1.3)

where {A, B} = AB + BA is the Jordan product of A and B [23]. Schrödinger’s uncertainty
principle holds for mixed state, too. Recall that a mixed state ρ is a positive operator on H

with trace 1. Then the mean value of observable A for the state ρ is 〈A〉 = Tr(Aρ) and the
standard deviation of A is σA =

√〈A2〉 − 〈A〉2 =
√

Tr(A2ρ) − Tr(Aρ)2. Here we assume that
both Tr(Aρ) and Tr(A2ρ) are finite. Furthermore, many other ways to formulate uncertainty
relations were put forward, such as in terms of entropies (Ref. [4, 26]) and even for the multi-
observable case (Ref. [12]), or based on other approaches, such as majorization and skew
information and so on (Ref. [5, 6] and their references). Furthermore, variance-based sum
uncertainty relations also be focused on (Ref. [3, 16, 18, 19]). Recently, some new technologies
of improving state-independent uncertainty relations based on joint numerical ranges were found
in [7, 24]. In the paper, we pay attention to refine the original uncertainty relations based on
product form of deviations of observables.

What happens for the multi-observable case?
There is a natural way to get uncertainty relation from the uncertainty principles in (1.2)

or (1.3). For example, let A, B, C be three observables, then by applying (1.2) one gets

σ2
Aσ2

Bσ2
C ≥ 1

8
|〈[A, B]〉〈[B, C]〉〈[A, C]〉|. (1.4)

But (1.4) is not sharp enough.
Let A = q̂, B = p̂ and C = r̂ = −p̂ − q̂; then [p, q] = [q, r] = [r, p] = �

i , and thus (1.4),
together with (1.1), gives

σ2
qσ2

pσ2
r ≥

(
�

2

)3

.

However, in [14], a tight uncertainty relation is given that

σ2
qσ2

pσ2
r ≥

(
τ

�

2

)3

(1.5)

with τ = 2√
3

> 1.
This also happens for Pauli matrices X, Y, Z. As [X, Y ] = 2iZ, one has 1

2 |〈[X, Y ]〉| = |〈Z〉|.
Similarly 1

2 |〈[X, Z]〉| = |〈Y 〉| and 1
2 |〈[Y, Z]〉| = |〈X〉|. Thus by (1.4)

σ2
Xσ2

Y σ2
Z ≥ |〈X〉〈Y 〉〈Z〉|.
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Also it was announced in [17] that

σ2
Xσ2

Y σ2
Z ≥ 8

3
√

3
|〈X〉〈Y 〉〈Z〉|. (1.6)

This inequality is also tight and achieves “=” at ρ = 1
2 (I + 1√

3
X + 1√

3
Y + 1√

3
Z).

Therefore, to obtain multi-observable uncertainty relations that are sharp enough, one needs
new approaches. Let A1, A2, . . . , Ak be any k observables of a quantum system. The purpose of
this paper is to establish a lower bound of σA1σA2 · · ·σAk

in terms of 〈AiAj〉, 〈Ai〉〈Aj〉 and 〈A2
j〉.

For the case when k = 2, the uncertainty relation is equivalent to Schrödinger’s uncertainty
principle that is tight and has a simpler representation. For the case when k = 3, we show that
the uncertainty relation is tight by taking Pauli matrices as observables.

2 Multi-observable Uncertainty Relations

Our main idea is based on the following observation, which establishes a formula to connect
the standard deviation of a quantum observable A of a state |x〉 to the norm as well as the
numerical radius of [A, |x〉〈x|], the Lie product of A and the rank one projection |x〉〈x| (or
written equivalently as x ⊗ x).

Let us recall some notions in mathematics. Let T be a bounded linear operator acting on
a complex Hilbert space H. The numerical range of T is the set W (T ) = {〈x|T |x〉 : |x〉 ∈
H, ‖|x〉‖ = 1}, and the numerical radius of T is w(T ) = sup{|λ| : λ ∈ W (T )}. The topic of
numerical range and numerical radius plays an important role in mathematics and is applied
into many areas (Ref. [8, 9, 13]). Denote by ‖T‖ the operator norm of T . In the following
lemma, we show a connection between the standard deviation and numerical radius.

Lemma 2.1 Let |x〉 be a pure state and A an observable for it. Then

σA = ‖[A, |x〉〈x|]‖ = w([A, |x〉〈x|]).
Proof Let H be the associated Hilbert space for the pure state |x〉 and the observable A. Write
A|x〉 in the form A|x〉 = α|x〉+ β|y〉, where normalized |y〉 is orthogonal to |x〉. Since A is self-
adjoint we have α = 〈x|A|x〉 ∈ R. Moreover, by self-adjointness of A, the Lie product of A and
the rank one projection |x〉〈x| is represented by the following matrix relative to decomposition
H = [x] ⊕ [y] ⊕ {x, y}⊥, here [x] = span{x}. Then

[A, |x〉〈x|] =

⎛

⎝0 −β̄

β 0

⎞

⎠ ⊕ 0.

Note that [A, |x〉〈x|] is a skew self-adjoint operator because

[A, |x〉〈x|]† = −[A, |x〉〈x|].
Thus its numerical range W ([A, |x〉〈x|]) = i[−|β|, |β|], and hence w([A, |x〉〈x|]) = ‖[A, x⊗x]‖ =
|β|. It follows that

w([A, |x〉〈x|])2 = ‖[A, |x〉〈x|]‖ = |β|2
= ‖A|x〉 − 〈x|A|x〉 |x〉‖2

= 〈x|(A − 〈x|A|x〉)2|x〉
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= 〈x|A2|x〉 − (〈x|A|x〉)2
= 〈A2〉 − 〈A〉2 = σ2

A.

Therefore, σA = w([A, |x〉〈x|]) = ‖[A, |x〉〈x|]‖. We complete the proof. �
Lemma 2.1 is helpful for exploring new quantum uncertainty relations. Indeed, by Lemma

2.1, for any observables A1, A2, . . . , Ak for a pure state |x〉, as the numerical radius is less than
or equal to the operator norm (see Ref. [9]), we have

k∏

j=1

σAj
=

k∏

j=1

‖[Aj , |x〉〈x|]‖ ≥
∥
∥
∥∥

k∏

j=1

[Aj , |x〉〈x|]
∥
∥
∥∥ ≥ w

( k∏

j=1

[Aj , |x〉〈x|]
)

. (2.1)

Note that, the value of
∏k

j=1 σAj
does not depend on the order arrange of observables but

w(
∏k

j=1[Aj , |x〉〈x|]) does. Therefore, the inequality (2.1) can be sharped to

k∏

j=1

σAj
≥ max

π
w

( k∏

j=1

[Aπ(j), |x〉〈x|]
)

, (2.2)

where the maximum is over all permutations π of (1, 2, . . . , k). Thus the question of establishing
an uncertainty relation for k observables is reduced to the question of calculating the numerical
radius of the operator

D
(π)
k =

k∏

j=1

[Aπ(j), |x〉〈x|], (2.3)

which is an operator of rank ≤ 2.
The exact value of w(D(π)

k ) is computable and we can establish a multi-observable uncer-
tainty relation by (2.2). For simplicity, and with no loss of generality, we state our results only
for π = id.

One may ask why not work on the stronger inequality

k∏

j=1

σAj
≥

∥
∥
∥∥

k∏

j=1

[Aj , |x〉〈x|]
∥
∥
∥∥.

In fact, we will show from Eq. (2.17) that, this inequality does not lead to a stronger uncertainty
relation. So the numerical radius is the better choice.

The following is our main result, here we agree on
∏

j∈Λ aj = 1 if Λ = ∅. It is surprising
that our uncertainty relation for any k observables has different formulation depending on the
even or odd quality of the integer k.

Theorem 2.2 Let A1, A2, . . . , Ak with k ≥ 2 be observables.
(1) If k = 2n, then

2n∏

j=1

σAj
≥ 1

2

( n−1∏

j=1

|〈A2jA2j+1〉 − 〈A2j〉〈A2j+1〉|
)

(|〈A1A2n〉 − 〈A1〉〈A2n〉| + σA1σA2n
). (2.4)

(2) If k = 2n + 1, then, identifying 2n + 2 with [(2n + 2) mod (2n + 1)] = 1,

2n+1∏

j=1

σAj
≥ 1

2

[
2

2n+1∏

j=1

|〈AjAj+1〉 − 〈Aj〉〈Aj+1〉|
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+ σ2
A1

n∏

j=1

|〈A2jA2j+1〉 − 〈A2j〉〈A2j+1〉|2

+ σ2
A2n+1

n∏

j=1

|〈A2j−1A2j〉 − 〈A2j−1〉〈A2j〉|2
] 1

2

. (2.5)

Next we show the proof of Theorem 2.2, which can be considered as the new proof of
Schrödinger’s uncertainty principle in [23]. Before start the proof of Theorem 2.2, we need a
lemma.

Lemma 2.3 Let

E1 =

⎛

⎜⎜
⎝

0 a b

c 0 0

0 0 0

⎞

⎟⎟
⎠ , E2 =

⎛

⎝ 0 a

c 0

⎞

⎠ .

Then
w(E1) =

1
2

√
|b|2 + (|a| + |c|)2

and
w(E2) =

1
2
(|a| + |c|).

Proof With ac = |ac|e2iθ, σ(E1) = {±√|ac|eiθ, 0}. It is easily checked that E1 satisfies the
conditions of Theorem 2.3 and 2.4 of Ref. [15], and hence the numerical range W (E1) of E1 is
an elliptic disc with foci {±√|ac|eiθ}. Thus the numerical radius w(E1) is the half length of
major axis of the ellipse.

Let F = e−iθE1. Then w(F ) = w(E1). As σ(F ) = {±√|ac|, 0}, we see that

w(F ) = ‖Re(F )‖.
Note that

σ(Re(F )) =
{

0,±1
2

√
|b|2 + |ae−iθ + c̄eiθ|2

}
.

A simple computation shows that

|ae−iθ + c̄eiθ|2 = (|a| + |c|)2.
Therefore, we have

w(E1) = w(F ) =
1
2

√
|b|2 + (|a| + |c|)2.

It is also easily checked that

w(E2) =
1
2
|ae−iθ + c̄eiθ| =

1
2
(|a| + |c|).

We complete the proof. �
Proof of Theorem 2.2 According to the assumption of Theorem 2.2, it is enough to prove the
theorem for the pure states.

For any given observables A1, A2, . . . , Ak with k ≥ 2, let

Dk =
k∏

j=1

[Aj , |x〉〈x|],
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which has the form

Dk = ak|x〉〈x| + bk|A1x〉〈x| + ck|x〉〈xAk| + dk|A1x〉〈xAk|.
A direct computation gives ⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

a2 = −〈A1A2〉,
b2 = 〈A2〉,
c2 = 〈A1〉,
d2 = −1.

(2.6)

For any k ≥ 3, since Dk = Dk−1[Ak, |x〉〈x|], one may take
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ak = ak−1〈Ak〉 + ck−1〈Ak−1Ak〉,
bk = bk−1〈Ak〉 + dk−1〈Ak−1Ak〉,
ck = −ak−1 − ck−1〈Ak−1〉,
dk = −bk−1 − dk−1〈Ak−1〉.

(2.7)

Take unitors vectors |y〉, |z〉 so that {|x〉, |y〉, |z〉} is orthogonal and
⎧
⎨

⎩
|A1x〉 = 〈A1〉|x〉 + σA1 |y〉,
|Akx〉 = 〈Ak〉|x〉 + β′|y〉 + γ′|z〉.

Then
β′ = σ−1

A1
(〈A1Ak〉 − 〈A1〉〈Ak〉), σAk

=
√
|β′|2 + |γ′|2. (2.8)

and

Dk = (ak + bk〈A1〉 + ck〈Ak〉 + dk〈A1〉〈Ak〉)|x〉〈x| + (ck + dk〈A1〉)β̄′|x〉〈y|
+ (ck + dk〈A1〉)γ̄′|x〉〈z| + (bk + dk〈Ak〉)σA1 |y〉〈x|
+ dkσA1 β̄

′|y〉〈y| + dkσA1 γ̄
′|y〉〈z|

= f
(k)
11 |x〉〈x| + f

(k)
12 |x〉〈y| + f

(k)
13 |x〉〈z|

+ f
(k)
21 |y〉〈x| + f

(k)
22 |y〉〈y| + f

(k)
23 |y〉〈z|.

Note that, by (2.7), we have

f
(k)
11 = ck−1(〈Ak−1Ak〉 − 〈Ak−1〉〈Ak〉) + dk−1(〈A1〉〈Ak−1Ak〉 − 〈A1〉〈Ak−1〉〈Ak〉)

= −f
(k−2)
11 (〈Ak−1Ak〉 − 〈Ak−1〉〈Ak〉)

as

ck + dk〈A1〉 = −ck−2(〈Ak−2Ak−1〉 − 〈Ak−2〉〈Ak−1〉)
− dk−2(〈A1〉〈Ak−2Ak−1〉 − 〈A1〉〈Ak−2〉〈Ak−1〉)

= −f
(k−1)
11 ,

dk = −bk−1 − dk−1〈Ak−1〉 = dk−2(〈Ak−2〉〈Ak−1〉 − 〈Ak−2Ak−1〉)
and

bk + dk〈Ak〉 = dk−1(〈Ak−1Ak〉 − 〈Ak−1〉〈Ak〉) = −dk+1,
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which reveal that

f
(k)
11 = −f

(k−2)
11 (〈Ak−1Ak〉 − 〈Ak−1〉〈Ak〉),

f
(k)
12 = −f

(k−1)
11 β̄′,

f
(k)
13 = −f

(k−1)
11 γ̄′,

f
(k)
21 = −dk+1σA1 = (〈Ak−1Ak〉 − 〈Ak−1〉〈Ak〉)f (k−2)

21 ,

f
(k)
22 = dkσA1 β̄

′ = (〈Ak−2Ak−1〉 − 〈Ak−2〉〈Ak−1〉)dk−2σA1 β̄
′,

f
(k)
23 = dkσA1 γ̄

′ = (〈Ak−2Ak−1〉 − 〈Ak−2〉〈Ak−1〉)dk−2σA1 γ̄
′.

(2.9)

It is easily checked that

D2 =

⎛

⎜
⎜
⎝

〈A1〉〈A2〉 − 〈A1A2〉 0 0

0 −σA1β
′ −σA1γ

′

0 0 0

⎞

⎟
⎟
⎠ ⊕ 0

and D3 = D′
3 ⊕ 0, where D′

3 is
⎛

⎜
⎜
⎝

0 (〈A1A2〉 − 〈A1〉〈A2〉)β′ (〈A1A2〉 − 〈A1〉〈A2〉)γ′

(〈A2〉〈A3〉 − 〈A2A3〉)σA1 0 0

0 0 0

⎞

⎟
⎟
⎠

if dim H ≥ 3;

D2 =

⎛

⎝ 〈A1〉〈A2〉 − 〈A1A2〉 0

0 −σA1σA2

⎞

⎠

and

D3 =

⎛

⎝ 0 (〈A1A2〉 − 〈A1〉〈A2〉)σA2

(〈A2〉〈A3〉 − 〈A2A3〉)σA1 0

⎞

⎠

if dim H = 2. Hence, by identify the case of dim H = 2 with the case γ′ = 0, we may agree
that D2 and D3 have respectively the block matrix

⎛

⎜
⎜
⎝

∗ 0 0

0 ∗ ∗
0 0 0

⎞

⎟
⎟
⎠ ⊕ 0 (2.10)

and ⎛

⎜
⎜
⎝

0 ∗ ∗
∗ 0 0

0 0 0

⎞

⎟
⎟
⎠ ⊕ 0. (2.11)

Then Eq. (2.9) implies that D2n has the matrix (2.10) if k = 2n is even and D2n+1 has the
matrix (2.11) if k = 2n + 1 is odd.

Let us first calculate w(D2). It is easily checked that

w(D2) = max
{
|〈A1A2〉 − 〈A1〉〈A2〉|, 1

2
|〈A1A2〉 − 〈A1〉〈A2〉| + σA1σA2

2

}
.
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Thus we have
σA1σA2 ≥ w(D2) ≥ |〈A1〉〈A2〉 − 〈A1A2〉| (2.12)

and
w(D2) =

1
2
(|〈A1A2〉 − 〈A1〉〈A2〉| + σA1σA2).

If k = 2n is even, then it follows from (2.9) that

|f (2n)
11 | = |(〈A1A2〉 − 〈A1〉〈A2〉) · · · (〈Ak−1Ak〉 − 〈Ak−1〉〈Ak〉)|. (2.13)

Since D2n has the form (2.10), by (2.9) and (2.12), we have

‖D2n‖ = max
{
|f (2n)

11 |,
√
|f (2n)

22 |2 + |f (2n)
23 |2

}
= |d2n|σA1σA2n

and

w(D2n) = max
{
|f (2n)

11 |, 1
2

(
|f (2n)

22 | +
√
|f (2n)

22 |2 + |f (2n)
23 |2

)}

=
1
2
|d2n|(|〈A1A2n〉 − 〈A1〉〈A2n〉| + σA1σA2n

).

It needs to check that the second “=” holds true in the calculation of w(D2n). To see this, by
the definition of dk−2, β′ and f

(2n)
11 ,

1
2
(|f (2n)

22 | +
√
|f (2n)

22 |2 + |f (2n)
23 |2)

= |(〈Ak−2Ak−1〉 − 〈Ak−2〉〈Ak−1〉)dk−2σA1 |
(

1
2
(|β′| +

√
|β′|2 + |γ′|2 )

)

≥ |(〈Ak−2Ak−1〉 − 〈Ak−2〉〈Ak−1〉)dk−2σA1 ||β′|
= |(〈Ak−2Ak−1〉 − 〈Ak−2〉〈Ak−1〉)dk−2σA1σA2 |
≥ |(〈A1A2〉 − 〈A1〉〈A2〉) · · · (〈Ak−1Ak〉 − 〈Ak−1〉〈Ak〉)| = |f (2n)

11 |.
So the maximal value of w(D2n) is obtained on the second item, and the equality holds true.

Now d2 = −1 and

|d2n| = |d2n−2| · |〈A2n−2A2n−1〉 − 〈A2n−2〉〈A2n−1〉|
entail that

w(D2n) =
1
2

( n−1∏

j=1

|〈A2jA2j+1〉 − 〈A2j〉〈A2j+1〉|
)

· (|〈A1A2n〉 − 〈A1〉〈A2n〉| + σA1σA2n
). (2.14)

As
∏2n

j=1 σAj
≥ w(D2n), this completes the proof of (2.4).

If k = 2n + 1 is odd, then D2n+1 has the patten (2.11). Applying Lemma 2.3 gives

w(D2n+1) =
1
2

√
(|f (2n+1)

12 | + |f (2n+1)
21 |)2 + |f (2n+1)

13 |2

=
1
2

√
(|f (2n)

11 β′| + |d(2n+2)|σA1)2 + |f (2n)
11 γ′|2

=
1
2

√
(2|f (2n)

11 d(2n+2)σA1β
′| + |d(2n+2)|2σ2

A1
+ |f (2n)

11 |2(|β′|2 + |γ′|2).
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Therefore,

w(D2n+1) =
1
2

√
2π1π2|〈A1A2n+1〉 − 〈A1〉〈A2n+1〉| + π2

2σ
2
A1

+ π2
1σ

2
A2n+1

, (2.15)

where

π1 =
n∏

j=1

|〈A2j−1A2j〉 − 〈A2j−1〉〈A2j〉|

and

π2 =
n∏

j=1

|〈A2jA2j+1〉 − 〈A2j〉〈A2j+1〉|.

As
∏2n+1

j=1 σAj
≥ w(D2n+1), we complete the proof of (2.5) by (2.15). �

Going through the proof of Theorem 2.2, it is straightforward to verify that “=” holds if
and only if

k∏

j=1

‖[Aj , |x〉〈x|]‖ =
∥∥
∥∥

k∏

j=1

[Aj , |x〉〈x|]
∥∥
∥∥ = w

( k∏

j=1

[Aj , |x〉〈x|]
)

. (2.16)

Thus the uncertainty relation is tight if Eq. (2.16) holds for some observerbles A1, A2, . . . , Ak

and some state. This is the case as will be illustrated in Section 4.
We remark that Theorem 2.2 holds for any state ρ with |Tr(Ajρ)| < ∞ and Tr(A2

jρ) < ∞,
j = 1, 2, . . . , k. To see this, denote by C2(H) be the Hilbert–Schmidt class in H, which is a
Hilbert space with inner product 〈T, S〉 = Tr(T †S). Then, a positive operator ρ is a state if
and only if

√
ρ is a unit vector in C2(H). For a self-adjoint operator A on H, define a linear

operator LA on C2(H) by LAT = AT if Tr(T †A2T ) < ∞. It is clear that LA is self-adjoint as
L†

A = LA† = LA. Note that

〈A〉 = Tr(Aρ) = 〈√ρ|LA|√ρ〉 = 〈LA〉
and thus

σA = σLA
, 〈LALB〉 = 〈LAB〉 = 〈AB〉.

Then, Theorem 2.2 is true by applying (2.1) to LA1 , LA2 , . . . , LAk
and the pure state |√ρ〉.

Finally we will explain why the sharper inequality

k∏

j=1

σAj
≥ ‖Dk‖ (2.17)

cannot achieve sharper uncertainty relations than the weaker inequality
∏k

j=1 σAj
≥ w(Dk)

can.
If k = 2n is even, then by (2.9) and (2.10) one has

‖D2n‖ = σA1σA2n

n−1∏

j=1

|〈A2jA2j+1〉 − 〈A2j〉〈A2j+1〉|.

This together with (2.17) gives

2n−1∏

j=2

σAj
≥

n−1∏

j=1

|〈A2jA2j+1〉 − 〈A2j〉〈A2j+1〉|,
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which is weaker than the inequality (2.4).
If k = 2n + 1 is odd, then by (2.9) and (2.11) one has

‖D2n+1‖ = max
{√

|f (2n+1)
12 |2 + |f (2n+1)

13 |2, |f (2n+1)
21 |Big}

= max{|f (2n)
11 |σA2n+1 , |d2n+2|σA1},

which gives
2n∏

j=1

σAj
≥

n∏

j=1

|〈A2j−1A2j〉 − 〈A2j−1〉〈A2j〉|

or
2n+1∏

j=2

σAj
≥

n∏

j=1

|〈A2jA2j+1〉 − 〈A2j〉〈A2j+1〉|,

again weaker than (2.4).

3 The Case of k = 2: A Reformulation of Schrödinger’s Principle

Before to see the uncertainty relations presented by Theorem 2.2 is sharper than those obtained
by Heisenberg’s uncertainty principle (1.2) and Schrödinger’s uncertainty principle (1.3), we
illustrate some application of Theorem 2.2 for the cases k = 2. Applying Theorem 2.2 (1) to
the case when k = 2, the following result is immediate.

Theorem 3.1 Let A and B be observables for a state. Then

σAσB ≥ |〈AB〉 − 〈A〉〈B〉|, (3.1)

which is equivalent to Schrödinger’s uncertainty principle.

The expression of inequality is quite simpler than that of Schrödinger’s uncertainty principle.
We show that (3.1) is in fact equivalent to Schrödinger’s uncertainty principle (1.3).

To check it, write 〈A〉〈B〉 = r and 〈AB〉 = s + it, where s, t, r ∈ R. Then 〈BA〉 = s − it. A
simple computation gives

|〈AB〉 − 〈A〉〈B〉| =
√

(s − r)2 + t2,
√

1
4
|〈[A, B]〉|2 +

∣
∣∣
∣
1
2
〈{A, B}〉 − 〈A〉〈B〉

∣
∣∣
∣

2

=
√

(s − r)2 + t2

and
1
2
|〈[A, B]〉| = |t|.

So, we get

σAσB ≥ |〈A〉〈B〉 − 〈AB〉|

=

√
1
4
|〈[A, B]〉|2 +

∣
∣
∣∣
1
2
〈{A, B}〉 − 〈A〉〈B〉

∣
∣
∣∣

2

≥ 1
2
|〈[A, B]〉|. (3.2)

Now we are at a position to show that Theorem 2.2 is sharper than the uncertainty relations
obtained by the approach mentioned in the introduction section.
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Let A1, A2, . . . , Ak be observables.
If k = 2n is even, by the inequality (3.2) one has

k∏

j=1

σAj
=

( n−1∏

j=1

(σA2j
σA2j+1)

)
(σA1σA2n

)

≥
( n−1∏

j=1

|〈A2jA2j+1〉 − 〈A2j〉〈A2j+1〉|
)
〈A1A2n〉 − 〈A1〉〈A2n〉|

≥ 1
2n

( n−1∏

j=1

|〈[A2j , A2j+1]〉|
)
|〈[A1, A2n]〉|, (3.3)

which is weaker than the inequality (2.4) since σA1σA2n
≥ |〈A1A2n〉 − 〈A1〉〈A2n〉|.

If k = 2n + 1 is odd, by (3.2) again we have

k∏

j=1

σ2
Aj

=
( n∏

j=1

(σA2j−1σA2j
)
)( n∏

j=1

(σA2jσA2j+1)
)

(σA1σA2n+1)

≥
( n∏

j=1

|(〈A2j−1A2j〉 − 〈A2j−1〉〈A2j〉)(〈A2jA2j+1〉 − 〈A2j〉〈A2j+1〉)|
)
·

· |〈A1A2n+1〉 − 〈A1〉〈A2n+1〉|

≥ 1
22(2n+1)

( n∏

j=1

(|〈[A2j−1, A2j ]〉〈[A2j , A2j+1]〉|)
)
|〈[A1, A2n+1]〉|, (3.4)

which is clearly weaker than the inequality (2.5) as a2+b2 ≥ 2ab and σA1σA2n+1 ≥ |〈A1A2n+1〉−
〈A1〉〈A2n+1〉|.

4 Uncertainty Relations for Three or Four Observables

By Theorem 2.2, one gets an uncertainty relation for any three observables like the following.

Theorem 4.1 Let A, B, C be three observables for a state ρ in a state space H, then

σ2
Aσ2

Bσ2
C ≥1

4
(σ2

C |〈AB〉 − 〈A〉〈B〉|2 + σ2
A|〈BC〉 − 〈B〉〈C〉|2)

+
1
2
|(〈AB〉 − 〈A〉〈B〉)(〈BC〉 − 〈B〉〈C〉)(〈AC〉 − 〈A〉〈C〉)|. (4.1)

Particularly, for the case when σAσC = |〈AC〉 − 〈A〉〈C〉| or 〈AB〉 = 〈A〉〈B〉 or dim H = 2,

σAσBσC ≥ 1
2
(σA|〈BC〉 − 〈B〉〈C〉| + σC |〈AB〉 − 〈A〉〈B〉|). (4.2)

It is mentioned that, indeed, when dimH = 2, the D3 in the proofs of Lemma 2.1 and
Theorem 2.2 is has the simple form. We have

σAσBσC ≥ w(D3) =w

⎛

⎝

⎛

⎝ 0 (〈AB〉 − 〈A〉〈B〉)σB

(〈B〉〈C〉 − 〈BC〉)σA 0

⎞

⎠

⎞

⎠

=
1
2
(σA|〈BC〉 − 〈B〉〈C〉| + σC |〈AB〉 − 〈A〉〈B〉|).

The inequalities (4.1) and (4.2) are tight as illustrated by applying to Pauli matrices.
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Example 4.2 Uncertainty relations for Pauli matrices.
Let X, Y, Z be Pauli matrices, that is,

X =

⎛

⎝0 1

1 0

⎞

⎠ , Y =

⎛

⎝0 −i

i 0

⎞

⎠ , Z =

⎛

⎝1 0

0 −1

⎞

⎠ .

Recall that, for any dense matrix ρ ∈ M2(C), ρ has a representation

ρ =
1
2
(I2 + r1X + r2Y + r3Z)

with Bloch vector (r1, r2, r3)t ∈ R
3 and r2

1+r2
2+r2

3 ≤ 1; and ρ is pure if and only if r2
1+r2

2+r2
3 = 1.

Recall also that XY = iZ, Y Z = iX and σ2
A = 1 − 〈A〉2 for A ∈ {X, Y, Z}, 〈X2〉 = 〈Y 2〉 =

〈Z2〉 = 1 and (〈X〉, 〈Y 〉, 〈Z〉) = (r1, r2, r3).
Applying the inequality (4.2) of Theorem 4.1 to X, Y, Z we get

σXσY σZ ≥ 1
2
(σX |i〈X〉 − 〈Y 〉〈Z〉| + σZ |i〈Z〉 − 〈X〉〈Y 〉|)

=
1
2
(
√

(1 − 〈X〉2)(〈X〉2 + 〈Y 〉2〈Z〉2) +
√

(1 − 〈Z〉2)(〈Z〉2 + 〈X〉2〈Y 〉2) ). (4.3)

The inequality (4.3) is tight and “=” holds if the Bloch vector satisfies |r1| = |r3| = 1√
2

and
r2 = 0.

This illustrates that Theorem 2.2 is tight for three observables. Since Schrödinger’s un-
certainty principle (1.3) is tight and our uncertainty relation is equivalent to Schrödinger’s
uncertainty principle by (3.2), Theorem 2.2 is also tight for two obserables.

Moreover, by Theorem 3.1,

(1 − 〈Z〉2)(1 − 〈X〉2) ≥ 〈Y 〉2 + 〈X〉2〈Z〉2,

hence we have

σ2
Xσ2

Y σ2
Z ≥ 1

4
[(1 − 〈X〉2)(〈X〉2 + 〈Y 〉2〈Z〉2) + (1 − 〈Z〉2)(〈Z〉2 + 〈X〉2〈Y 〉2)]

+
1
2

√
(1 − 〈Z〉2)(1 − 〈X〉2)(〈X〉2 + 〈Y 〉2〈Z〉2)(〈Z〉2 + 〈X〉2〈Y 〉2)

≥ 1
4
[(1 − 〈X〉2)(〈X〉2 + 〈Y 〉2〈Z〉2) + (1 − 〈Z〉2)(〈Z〉2 + 〈X〉2〈Y 〉2)]

+
1
2

√
(〈Y 〉2 + 〈X〉2〈Z〉2)(〈X〉2 + 〈Y 〉2〈Z〉2)(〈Z〉2 + 〈X〉2〈Y 〉2)

≥
√

(〈Y 〉2 + 〈X〉2〈Z〉2)(〈X〉2 + 〈Y 〉2〈Z〉2)(〈Z〉2 + 〈X〉2〈Y 〉2)
≥

√
(2〈Y 〉〈X〉〈Z〉)(2〈X〉〈Y 〉〈Z〉)(2〈Z〉〈X〉〈Y 〉)

= 2
√

2|〈X〉〈Y 〉〈Z〉| 32 . (4.4)

Particularly, one has

σ2
Xσ2

Y σ2
Z ≥ 2

√
2|〈X〉〈Y 〉〈Z〉| 32 . (4.5)

Observe that we always have

1 ≥ σ2
Xσ2

Y σ2
Z = (1 − r2

1)(1 − r2
2)(1 − r2

3) ≥
8
27
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since the function (1 − r2
1)(1 − r2

2)(1 − r2
3) has its minimum value 8

27 at |r1| = |r2| = |r3| = 1√
3

and the maximum value 1 at ρ = 1
2I2. Moreover, |r1r2r3| achieves simultaneously its maximum

value 1
3
√

3
at |r1| = |r2| = |r3| = 1√

3
. Thus the inequality (4.5) can be sharped to

σ2
Xσ2

Y σ2
Z ≥ 8 4

√
3

3
|〈X〉〈Y 〉〈Z〉|. (4.6)

Comparing (4.3) with (1.6), (4.6) and even Eq. (6) of [21], although these inequalities are
all tight, one of the remarkable advantage of (4.3) is that, even if some of 〈X〉, 〈Y 〉, 〈Z〉 are zero,
we still may get a positive lower bound of σXσY σZ . For instance, saying 〈Y 〉 = 0, we have

σXσY σZ ≥ 1
2
(
√

(1 − 〈X〉2)〈X〉2 +
√

(1 − 〈Z〉2)〈Z〉2);
saying 〈Y 〉 = 〈Z〉 = 0, we have

σXσY σZ ≥ 1
2

√
(1 − 〈X〉2)〈X〉2,

while we cannot get any information from (1.6) and (4.6).

Before conclusion we state the uncertainty relation from Theorem 2.2 for four observations,
which has a relatively simple expression.

Theorem 4.3 Let A1, A2, A3, A4 be observables. Then

σA1σA2σA3σA4 ≥ 1
2
|〈A2A3〉 − 〈A2〉〈A3〉|(|〈A1A4〉 − 〈A1〉〈A4〉| + σA1σA4). (4.7)

The inequality (4.7) is tight. For example, Consider bipartite continuous-variable system.
Let (A1, A4, A2, A3) = (q̂1, p̂1, q̂2, p̂2), where q̂i, p̂i are the position and momentum in the ith
mode satisfying the canonical commutation relation. As Heisenberg’s uncertainty principle (1.1)
is tight, we say that

σq1σp1σq2σp2 ≥ 1
2
|〈q̂2p̂2〉 − 〈q̂2〉〈p̂2〉|(|〈q̂1p̂1〉 − 〈q̂1〉〈p̂1〉| + σq1σp1). (4.8)

is tight, the “=” is attained at ρ = e, where e = e1 ⊗ e2, e1 and e2 are the states on which the
equalities of Heisenbergs uncertainty principles of {p̂1, q̂1} and {p̂2, q̂2} respectively.

Similarly, considering the positions and momentums (q̂1, p̂1, . . . , q̂n, p̂n) in an n-partite con-
tinuous variable system, one sees that the uncertainty relation (2.4) in Theorem 2.2 is tight.
However we do not know whether the uncertainty relation (2.5) is tight for odd k = 2n+1 ≥ 5.

5 Conclusion

Uncertainty relations discover lower bounds of the product of standard deviations of several
observables. Larger the lower bound is, more powerful the corresponding uncertainty relation
is. There are no known uncertainty relations that valid for arbitrary k observables. By finding
the equality of deviation and the norm of the Lie product of the observable and the pure state,
we reduce the question of establishing multi-observable uncertainty relation to the question
of computing the numerical radius of an operator of rank ≤ 2. This enables us establish a
universal uncertainty relation for any k observables, of which, the formulation depends on the
even or odd quality of k. For two observables, our uncertainty relation is exactly a simpler
reformulation of Schrödinger’s uncertainty principle. The uncertainty relation provided in this
paper is tight, at least for the cases of two and three observables, as illustrated by examples.
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