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Abstract For a monotone twist map, under certain non-degenerate condition, we showed the exis-
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1 Introduction

The study of area preserving maps is a classical topic in dynamical system and goes back at
least to the works of Poincaré and Birkhoff. These maps usually arise as Poincaré maps of
Hamiltonian systems with two degrees or one and half degrees of freedom. Among them a
special class called monotone twist maps has been studied intensively (see [12–16] and [5]).
Here we define a monotone twist map as an orientation preserving C1-diffeomorphism f :
S1 × [a, b] → S1 × [a, b] of an annulus, which preserves each end of the annulus and admits a
lift f̃ : R × [a, b] → R × [a, b]; f̃(x0, y0) = (x1, y1) with the following properties: (a) f̃ preserves
area; (b) twist condition: ∂x1

∂y0
> 0.

For a monotone twist map f as above with f̃(x0, y0) = (x1, y1), there is a C2 generating
function h : R

2 → R (up to a constant) given by

dh(x0, x1) = y1dx1 − y0dx0.

This is equivalent to
y0 = −∂1h(x0, x1); y1 = ∂2h(x0, x1).

Such an h is usually referred as the variational principle associated with f , as it allows us
study the dynamics of f using variational method and this is usually known as Aubry–Mather
theory. We give a brief introduction in the following, for details see [5, 16] or [17].

Definition 1.1 A continuous function h : R
2 → R will be called a variational principle if

it satisfies the following conditions:
• H1 : h(ξ + 1, ξ′ + 1) = h(ξ, ξ′) for all ξ, ξ′ ∈ R;
• H2 : lim|ζ|→+∞ h(ξ, ξ + ζ) = +∞, uniformly in ξ;
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• H3 : h(ξ, ζ ′) + h(ζ, ξ′) > h(ξ, ξ′) + h(ζ, ζ ′), if ξ < ζ and ξ′ < ζ ′;
• H4 : If (ξ, η, ζ) �= (ξ′, η, ζ ′) both are minimal, i.e., h(ξ, η) + h(η, ζ) ≤ h(ξ, η′) + h(η′, ζ)

and h(ξ′, η) + h(η, ζ ′) ≤ h(ξ′, η′) + h(η′, ζ ′) for any η′ ∈ R, then (ξ − ξ′)(ζ − ζ ′) < 0.
• H5 : There exists a positive continuous function ρ on R

2 such that

h(ξ, ζ ′) + h(ζ, ξ′) − h(ξ, ξ′) − h(ζ, ζ ′) >
∫ ζ

ξ

∫ ζ′

ξ′
ρ

if ξ < ζ and ξ′ < ζ ′;
• H6 : There is a θ > 0, such that ξ �→ θξ2/2 − h(ξ, ξ′) is convex, for any ξ′, and ξ′ �→

θξ′2/2 − h(ξ, ξ′) is convex, for any ξ.

Remark 1.2 Bangert [5] only required conditions H1 to H4. Conditions H5 and H6 were
added by Mather [14] and will be needed for our results. One should notice that H5 implies
H3, and H5 and H6 together imply H4, for details see [14].

Remark 1.3 Although for a monotone twist map, the associated variational principle is
usually C2. We assume weaker regularity condition in the above definition, so that our result
can be applied to finite composition of monotone twist maps as well. For these maps the
associated variational principle may not be C1 (for details see [14] or [16]).

For any {n0 < n1} ⊂ Z ∪ {±∞}, let
∏n1

i=n0
R be the configuration space with product

topology. We extend the domain of h to all finite configuration spaces
∏n1

i=n0
R, i.e., both n0

and n1 are finite, by setting

h(xn0 , . . . , xn1) =
n1−1∑
i=n0

h(xi, xi+1), ∀{xi}n1
i=n0

∈
n1∏

i=n0

R.

Definition 1.4 A finite configuration {xi}n1
i=n0

will be called minimal, if

h(xn0 , . . . , xn1) ≤ h(x∗n0
, . . . , x∗n1

),

for any {x∗i }n1
i=n0

∈ ∏n1
i=n0

R with x∗n0
= xn0 and x∗n1

= xn1 .
A configuration, finite or not, will be called minimal, if any of its finite sub-configuration

is minimal.
We say a configuration is locally minimal, if there is an open neighborhood of it in the

corresponding configuration space, such that the above are true.

Although we do not assume h is C1, when x = {xi}n1
i=n0

is a locally minimal configuration,
for any n0 < i < n1, both ∂2h(xi−1, xi) and ∂1h(xi, xi+1) exist and satisfy

∂2h(xi−1, xi) + ∂1h(xi, xi+1) = 0,

as showed by Mather [14].
Now if h is a variational principle of a monotone twist map or finite composition of monotone

twist maps f and x = {xi}n1
i=n0

is a locally minimal configuration, {(xi, yi)}n1−1
i=n0+1 with yi =

−∂1h(xi, xi+1) = ∂2h(xi−1, xi) is an orbit of f̃ . We will call locally minimal configurations
stationary configurations. Now we can transfer the study of a monotone twist map to the study
of stationary configurations of a variational principle.

Given any two infinite configurations x, y, we write x(±∞) = y, if limi→±∞ xi − yi = 0, or
x(±∞) = u, if y is a constant configuration with yi ≡ u ∈ R, ∀i ∈ Z.



Chaotic Dynamics of Monotone Twist Maps 181

If x ∈ ∏+∞
−∞ R satisfies x(−∞) = y1 and x(+∞) = y2, we say x is a heteroclinic configuration

(between y1 and y2), when y1 �= y2, or a homoclinic configuration (between y1 and y2), if
y1 = y2. Moreover if such an x is a stationary configuration, we will call it a heteroclinic
connection or homoclinic connection.

Definition 1.5 α ∈ R will be called the rotation number of x = {xi}i∈Z, if

lim
|i|→+∞

xi/i exists and equal to α.

Remark 1.6 In general it is possible the above sequence may have different limits as i goes
to positive or negative infinity. However in this paper we will only consider those x’s, such that
the limits are the same.

Given a variational principle h, every minimal configuration has a rotation number. For
any rotation number α ∈ R, there is a non-empty compact set Mα consisting of minimal
configurations with rotation number α.

For any (m,n) ∈ Z
2, define an operator T(m,n) on

∏+∞
−∞ R by setting

(T(m,n)x)i = xi+n −m, ∀i.
If T(m,n)x = x, we say x is (m,n)-periodic.

Given a rational number α ∈ Q, there is a unique pair (p, q) ∈ Z × Z
+ with p and q

relatively prime and α = p/q (when α = 0, we assume (p, q) = (0, 1)). From now on when we
say a rotation number α = p/q ∈ Q, (p, q) will always be such a unique pair of integers.

By the Aubry–Mather theory, if α = p/q ∈ Q and x ∈ Mα is (kp, kq)-periodic, for some
k ∈ Z

+, it must be (p, q)-periodic. We define

Mper
α := {x ∈ Mα : T(p,q)x = x} �= ∅.

This is an ordered set, i.e., if x �= y ∈ Mper
α , either x < y (xi < yi, ∀i ∈ Z) or x > y (xi > yi,

∀i ∈ Z).
Given a pair of (p, q)-periodic minimal configurations x0 �= x1. Without loss of generality

let’s assume x0 < x1, we say they are neighboring, if there is no other x ∈ Mper
α satisfying

x0 < x < x1, and we define

M+
α (x0, x1) := {x ∈ Mα : x(−∞) = x0 and x(+∞) = x1},

M−
α (x0, x1) := {x ∈ Mα : x(−∞) = x1 and x(+∞) = x0}.

Again by Aubry–Mather theory, both of the above sets are non-empty.
Let M+

α be the union of M+
α (x0, x1) over all pairs of neighboring configurations in Mper

α ,
and M−

α similarly. Then Mα is a disjoint union of Mper
α ,M+

α and M−
α . Both Mper

α ∪M+
α and

Mper
α ∪M−

α are ordered sets.
After the above review, we are now ready to state our main results.

Theorem 1.7 Given a rational number α ∈ Q and a pair of neighboring minimal configura-
tions x0 < x1 ∈ Mper

α . Let

I+
α (x0, x1) := {x0 : x = {xi}i∈Z ∈ M+

α (x0, x1)};
I−α (x0, x1) := {x0 : x = {xi}i∈Z ∈ M−

α (x0, x1)},
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and (x0
0, x

1
0) the open interval between x0

0 and x1
0. If

I+
α (x0, x1) �= (x0

0, x
1
0) and I−α (x0, x1) �= (x0

0, x
1
0), (gap)

then for every δ̂ > 0 small enough, there is an m = m(δ̂) ∈ N such that for every sequence of
integers q = {qi ∈ Z}+∞

i=−∞ with qi+1 − qi ≥ 4m and for every j, k ∈ Z with j < k, there is a
homoclinic or heteroclinic connection x satisfying

1. x0
i < xi < x1

i for all i ∈ Z;
2. |xqi−m − xi

qi−m| ≤ δ̂ and |xqi+m − xi+1
qi+m| ≤ δ̂ for all i = j, . . . , k;

3. x(−∞) = xj and x(+∞) = xk+1.
For any j ∈ Z, xj = x0, if j is even and xj = x1, if j is odd.

We will try to explain the meaning of the above theorem. Let f : S1× [a, b] → S1 × [a, b] be
the corresponding monotone twist map. Then Oi = {(π(xi

j), yj = ∂2h(xi
j−1, x

i
j))}j∈Z, i = 0, 1

are two periodic orbits of f , where π : R → S1. Theorem 1.7 shows the existence of infinitely
many multibump homoclinic and heteroclinic orbits between O0 and O1.

Under some classical conditions that Oi, i = 0, 1, are hyperbolic and the associated stable
and unstable manifolds intersect transversally, it is possible to get the above result using geo-
metric and perturbative approaches. Meanwhile in our result, these conditions are not required.
The existence of these multibump homoclinic and heterclinic orbits indicates chaotic dynamics
of these maps. More precisely when the (gap) condition holds, Theorem 1.7 implies the topo-
logical entropy of the map must be positive. To see this, consider the sequence {4im}∞i=−∞,
by choosing q = {qi}+∞

i=−∞ as different subsequences of the previous sequence, Theorem 1.7 can
give us different stationary configurations which satisfies arbitrary choices between the following
two conditions,

|x2m+4im − x0
2m+4im| ≤ δ̂, |x2m+4im − x1

2m+4im| ≤ δ̂

for any j < i < k.
Since xi, i = 0, 1, correspond to the two periodic orbits Oi, this means, for any j < k,

we can find an initial condition such that whether its f2m+4im’s (j < i < k) image is close to
O0 or O1 can be given arbitrarily. As a result, the number of orbit segments distinguishable
with arbitrary fine but finite precision grows exponentially, so the topological entropy of f is
positive.

Using this we recover a result first obtained in [2].

Corollary 1.8 Let α1 be the rotation number of f |S1×{a} and α2 the rotation number of
f |S1×{b}. If the topological entropy of f vanishes, f must have a (homotopically) non-trivial
invariant circle of rotation number α, for any α ∈ (α1, α2).

Proof For any α ∈ (α1, α2)∩Q, by the above explanation, the corresponding (gap) condition in
Theorem 1.7 can not hold, as otherwise the topological entropy is positive. Therefore Mα must
foliate the whole configuration space and the corresponding orbits of f form a (homotopically)
non-trivial invariant circle in the cylinder with rotation number α.

Because the set of non-trivial invariant circles is closed and so is the set of rotation numbers
for which such non-trivial invariant circles exist, see [2] and [11], for every irrational α ∈ (α1, α2),
f must have a non-trivial invariant circle as well. �
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Now we explain how to apply our results to the geodesics of smooth Riemannian metrics
on the two-dimension torus. The idea of this approach goes back to the work of Morse [18]
and Hedlund [10]. In [5] Bangert explained how the variational principle can be defined for
a smooth Riemannian metric on T

2 and the stationary configurations give rise to geodesics.
Although only conditions H1 to H4 are verified in [5], It was claimed by Mather in [14] that
such a variational principle also satisfies H5 and H6.

As a result we have the following result as in direct corollary of Theorem 1.7.

Corollary 1.9 If the topological entropy of a geodesic flow on T
2 vanishes, then for every

α ∈ Q, minimal geodesics with rotation number α is a foliation of T
2.

Related results about geodesic flows on T
2 with vanishing topological entropy can be found

in [8, 9].
Furthermore we would like to mention an interesting paper [7] by Bolotin and Rabinowitz,

where a similar variational method was applied directly to the geodesics on T
2 to show the exis-

tence of chaotic geodesics. [7, Theorem 2.3] says that under certain geometric condition, there
are infinitely many homoclinic and heteroclinic geodesics between two periodic neighboring
minimal geodesics.

Although the geometric condition posted in [7] is stronger than our (gap) condition, their
result is also stronger than ours. Namely by our result the geodesics have to spend large
enough time between every bump, while in [7] this is not necessary. There are other interesting
homoclinic and heteroclinic geodesics in their paper beyond the reach of our result.

Our proof uses a variational method similar to those used in [6] and [20], where existence
of multibump homoclinic and heteroclinic orbits of one-dimensional periodic forced pendulum
was proved in the same spirit.

The paper is organized as follows: in Section 2 we introduce a normalized function J , which
is the base of our variational method; in Section 3, we give an alternative proof of the existence
of minimal heteroclinic connections; in Section 4 the existence of infinitely many homoclinic
and heteroclinic connections between a pair of periodic neighboring minimal configurations with
rotation number 0 will be shown; in Section 5, we generalize the previous result to periodic
neighboring minimal configurations with any rational rotation number; in the Appendix, we
give the proofs of several technical lemmas.

2 Preliminary

In this section we define a normalized function J following [6] and [20]. It gives us a convenient
way to determine the asymptotic behaviors of the configurations.

Fix an arbitrary variational principle h : R
2 → R for the rest of the section. We define an

associated function h̄ : R → R as h̄(ξ) = h(ξ, ξ).
By Condition H1, there exists a finite number c = min{h̄(ξ) : ξ ∈ R}. If h̄(u) = c, we say

u a minimizer of h̄. When there is no confusion u will also be used to represent the constant
configuration x = {xi = u}i∈Z. The following result is well known and a proof can be found in
[5] or [17].

Proposition 2.1 If u ∈ R is a minimizer of h̄, then as a configuration u ∈ Mper
0 , i.e., it is

a minimal configuration.
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Assume u0 < u1 are two different minimizers of h̄ and h̄(u) > h̄(u0), ∀u ∈ (u0, u1). We call
u0 and u1 a pair of neighboring minimizers.

Definition 2.2 Set U := {u0, u1}. For any positive integer n, we define

X(n) := X(n;U) := {x = {xi}n
i=0 : xi ∈ [u0, u1]};

X̂(n) := X̂(n;U) := {x = {xi}n
i=0 : x ∈ X(n) and x0 = xn};

X := X(U) := {x = {xi}+∞
i=−∞ : xi ∈ [u0, u1]}.

Here [u0, u1] is the closed interval between u0 and u1.

Definition 2.3 We define a normalized function J on X by setting

J(x) =
+∞∑

i=−∞
ai(x), where ai(x) = h(xi, xi+1) − c, ∀i ∈ Z.

Remark 2.4 Although c is a minimizer of h̄, when ξ �= η, it is possible h(ξ, η) − c < 0. This
means J(x) may not have a lower bound. However we will prove there is a finite constant B
independent of n, such that

∑n
−n ai(x) ≥ B, ∀x ∈ X.

Moreover we will prove J is a well-defined function from X to R∪{+∞}, in the sense that,
for any x ∈ X, either the limit limn→+∞

∑n
i=−n ai(x) exists and converges to a finite number,

or diverges to infinity.

For simplicity, we define translation operators Tk : X → X by Tkx = T(0,k)x for any k ∈ Z.
It is easy to see J is invariant under Tk.

Lemma 2.5 For any n ∈ Z
+ and x ∈ X̂(n),

n−1∑
i=0

ai(x) = h(x0, . . . , xn) − nc ≥ 0,

the above inequality is an equality iff xi ≡ u0 or xi ≡ u1 for all 0 ≤ i ≤ n.

Proof For a proof, see [5, Theorem 3.3]. �
To refine the above result, we introduce the following definition.

Definition 2.6 For any x ∈ X(n), we set

d(x, U) := max
0≤i≤n

min
j∈{0,1}

|xi − uj |.

Lemma 2.7 For any δ > 0, let

φ(δ) := inf
n∈Z+

inf
{n−1∑

i=0

ai(x) : x ∈ X̂(n) and d(x, U) ≥ δ

}
. (2.1)

Then φ is a continuous function satisfying φ(δ) > 0, if δ > 0; φ(δ) = 0, if δ = 0. It increase
monotonically with respect to δ. Moreover, if x ∈ X̂(n) satisfies

min
j∈{0,1}

|xi − uj | ≥ δ, ∀i = 1, . . . , n− 1, (2.2)

then
∑n−1

i=0 ai(x) ≥ nφ(δ).

Proof First notice that φ(δ) = 0 if δ = 0. From now on we assume δ > 0.
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For a fixed n ∈ Z
+, by the compactness of {x ∈ X̂(n) : d(x, U) ≥ δ},

φ(δ, n) := min
{n−1∑

i=0

ai(x) : x ∈ X̂(n) with d(x, U) ≥ δ

}
> 0.

By induction on n, we will show φ(δ, n) ≥ φ(δ, 1), ∀n ∈ N, which then implies φ(δ) = φ(δ, 1) > 0.

Now let us assume φ(δ, k) ≥ φ(δ, 1), for all k = 1, . . . , n − 1. Given an arbitrary x ∈ X̂(n)
with d(x, U) ≥ δ, if there is a j ∈ {1, . . . , n− 1} satisfying xj = x0 = xn, then {xi}j

i=0 ∈ X̂(j)
and {xi}n

i=j ∈ X̂(n−j). Moreover at least one of d({xi}j
i=0, U) ≥ δ and d({xi}n

i=j , U) ≥ δ must
be true. Therefore

n−1∑
i=0

ai(x) ≥ min{φ(δ, j), φ(δ, n− j)} ≥ φ(δ, 1).

On the other hand, if xj �= x0, ∀j = 1, . . . , n− 1, there must be a 1 ≤ k ≤ n− 1 satisfying
(xk − xk−1)(xk − xk+1) ≥ 0. By Condition H3,

h(xk−1, xk) + h(xk, xk+1) ≥ h(xk−1, xk+1) + h(xk, xk).

Let x1 = (xk, xk) and xn−1 = (x0, . . . , xk−1, xk+1, . . . , xn). Then x1 ∈ X̂(1), xn−1 ∈ X̂(n− 1),
and at least one of d(xn−1, U) ≥ δ and d(x1, U) ≥ δ must be true, so

n−1∑
i=0

ai(x) ≥ h(x0, . . . , xk−1, xk+1, . . . , xn) − (n− 1)c+ h(xk, xk) − c ≥ φ(δ, 1).

Since x is arbitrary, φ(δ, n) ≥ φ(δ, 1). Hence φ(δ) = φ(δ, 1). By the definition of φ(δ, 1), it is
not hard to see it is continuous and monotonically increasing with respect to δ.

For the rest of the lemma, again by induction we assume the corresponding result holds for
k = 1, . . . , n− 1, if x ∈ X̂(n) satisfies (2.2). We divide the proof to two different cases.

Case 1 There is a j ∈ {1, . . . , n− 1}, such that xj = x0 = xn. Then {xi}j
i=0 ∈ X̂(j) satisfies

(2.2) with n replaced by j, and {xi}n
i=j ∈ X̂(n− j) satisfies (2.2) with n replaced by n− j. By

the induction assumption

n−1∑
i=0

ai(x) =
j−1∑
i=0

ai(x) +
n−1∑
i=j

ai(x) ≥ jφ(δ) + (n− j)φ(δ) = nφ(δ).

Case 2 xj �= x0, ∀j ∈ {1, . . . , n − 1}. Then there is a 1 ≤ k ≤ n − 1 satisfying (xk −
xk−1)(xk − xk+1) ≥ 0. Let x1 and xn−1 be defined as above. Then xn−1 satisfies (2.2) with n
replaced by n− 1. As a result,

n−1∑
i=0

ai(x) ≥ h(x0, . . . , xk−1, xk+1, . . . , xn) − (n− 1)c+ h(xk, xk) − c ≥ nφ(δ). �

By the previous lemma, we can show that
∑n−1

i=0 ai(x) has a uniform lower bound, for any
x ∈ X(n). For this we set C := Lip(h) for the rest of the paper (recall that h is Lipschitz
continuous). Then for any real numbers ξ, ξ′, ζ, and ζ ′,

|h(ξ, ξ′) − h(ζ, ζ ′)| ≤ C(|ξ − ζ| + |ξ′ − ζ ′|).
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Lemma 2.8 For any δ > 0 and n ∈ N, if x ∈ X(n) satisfies d(x, U) ≥ δ,

n−1∑
i=0

ai(x) ≥ φ(δ) − C|xn − x0| ≥ −C|xn − x0|

with φ(δ) defined by (2.1). Moreover there is a constant B ∈ R, such that

n−1∑
i=0

ai(x) = h(x0, . . . , xn) − nc ≥ B, ∀x ∈ X(n) and n ∈ N.

Proof First let us assume d(x, U) = minj∈{0,1}{|xk − uj |} for some k �= 0. Now we define a
x̂ ∈ X̂(n) as

x̂i =

⎧⎨
⎩
xn, if i = 0,

xi, if i = 1, . . . , n.

Obviously d(x̂, U) ≥ δ, which implies
∑n−1

i=0 ai(x̂) ≥ φ(δ). Meanwhile
∣∣∣∣
n−1∑
i=0

ai(x) −
n−1∑
i=0

ai(x̂)
∣∣∣∣ = |h(x0, x1) − h(xn, x1)| ≤ C|xn − x0|.

As a result,
n−1∑
i=0

ai(x) ≥
n−1∑
i=0

ai(x̂) − C|xn − x0| ≥ φ(δ) − C|xn − x0|.

Now let us assume d(x, U) = min{|x0 − u0|, |x0 − u1|}. Then we set

x̂i =

⎧⎨
⎩
xi, if i = 0, . . . , n− 1,

x0, if i = n,

and repeat the previous argument. This proves the first part of the lemma.
For any n ∈ Z

+ and x ∈ X(n), by what we just proved

n−1∑
i=0

ai(x) ≥ φ(d(x, U)) − C|xn − x0| ≥ φ(0) − C|xn − x0|

≥ −C|xn − x0| ≥ −C(u1 − u0) =: B.

This proves the second part of the lemma. �
In general, we can not expect B in the above lemma to be non-negative. With the above

lemma, following an approach given in [6], we get the next proposition, which plays a key role
in our proof of the main result. We postpone its proof to Section 6.

Proposition 2.9 J is a well-defined function from X to R∪ {+∞}. Moreover, if x ∈ X and
J(x) < +∞, then x(±∞) = u0 or u1.

Again we can not except the lower bound of J to be non-negative. However if we restrict
ourselves to a class of homoclinic configurations, it does have a non-negative lower bound, as
shown by the following lemma.

Lemma 2.10 If x ∈ X satisfying x(+∞) = x(−∞) = u0 (or x(+∞) = x(−∞) = u1) and
xi �= u0 (or xi �= u1) for some i ∈ Z, then J(x) > 0.
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Proof First there is an i0 ∈ Z, such that 0 < δ = |xi0 − u0| < (u1 − u0)/2. For an integer
N > 0 large enough, we have |xn −u0| ≤ φ(δ)

2C , ∀|n| ≥ N . Therefore |xn −x−n| ≤ φ(δ)
2C , ∀n > N .

By Lemma 2.8,
n−1∑

i=−n

ai(x) ≥ φ(δ) − C|xN − x−N | ≥ φ(δ)
2

> 0.

Since this is true for any n ≥ N , J(x) > 0. �
The multi-bump homoclinic and heteroclinic connections will be found as local minimizers

of J . For this, we need to make sure each component of them does not equal to u0 or u1. For
this, the next two lemmas will be needed.

Lemma 2.11 For any δ ∈ (0, u1 − u0], if {xi}2
i=0 satisfies

(a) xi ∈ [u0, u1] for all i = 0, 1, 2;
(b) x1 ∈ [u1 − δ, u1], and x0 �= u1 or x2 �= u1;
(c) h(x0, x1, x2) ≤ h(x0, ξ, x2), ∀ξ ∈ [u1 − δ, u1],

then x1 �= u1. The statement still holds if we replace every u1 by u0 and every [u1 − δ, u1] by
[u0, u0 + δ].

Lemma 2.12 If a finite configuration x = {xi}n1
i=n0

satisfies
(a) xi ∈ [u0, u1] for all i = n0, . . . , n1;
(b) h(xn0 , . . . , xn1) ≤ h(yn0 , . . . , yn1), for any {yi}n1

i=n0
satisfying yn0 = xn0 , yn1 = xn1 and

yi ∈ [u0, u1],
then x is a minimal configuration. Moreover, if x also satisfies xn0 /∈ {u0, u1} or xn1 /∈ {u0, u1},
then xi /∈ {u0, u1} for all i = n0 + 1, . . . , n1 − 1.

The proofs of the above two lemmas can be found in Section 7.
We finish this section by a comparison lemma, which will be needed later.

Definition 2.13 For any j ∈ {0, 1} and k ∈ Z, we define the following operators, G±
j (k) :

X → X, as

(G+
j (k)x)i =

⎧⎨
⎩
xi, if i ≤ k,

uj , if i > k
and (G−

j (k)x)i =

⎧⎨
⎩
uj , if i < k,

xi, if i ≥ k.

By Definition 2.13 and the Lipschitz continuity of h, we get

Lemma 2.14 For any x ∈ X,
∣∣∣∣J(G+

j (k)x) −
k−1∑

i=−∞
ai(x)

∣∣∣∣ ≤ C|uj − xk|;
∣∣∣∣J(G−

j (k)x) −
+∞∑
i=k

ai(x)
∣∣∣∣ ≤ C|uj − xk|.

3 Minimal Heteroclinic Connections

In this section we prove the existence of minimal heteroclinic connections from u0 to u1 and
from u1 to u0. The result is not new. We include it here because it illuminates some of the ideas
that will be needed in the next section. The strategy is to consider a class of configurations
with the desired asymptotic behaviors, and show that J has at least one minimizer in it, which
is the desired minimal heteroclinic connection.
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Definition 3.1

X0 := X0(u0, u1) := {x ∈ X : x(−∞) = u0 and x(+∞) = u1};
X1 := X1(u0, u1) := {x ∈ X : x(−∞) = u1 and x(+∞) = u0};
c0 := inf{J(x) : x ∈ X0}, c1 := inf{J(x) : x ∈ X1}.

Remark 3.2 It is easy to see that c0 and c1 are finite constants.

Definition 3.3

M0 := M0(u0, u1) := {x ∈ X0 : J(x) = c0};
M1 := M1(u0, u1) := {x ∈ X1 : J(x) = c1}.

Theorem 3.4 M0 (resp., M1) is a non-empty set. If x ∈ M0 (resp., x ∈ M1), then x is
a minimal configuration, furthermore it is a heteroclinic connection from u0 to u1 (resp., from
u1 to u0).

Proof Choose a δ ∈ (0, (u1 − u0)/2) small enough. Let {xn}n∈N ⊂ X0 be a minimizing
sequence of J , i.e., limn→+∞ J(xn) = c0. Since J(xn) are invariant under translation operators
Tk, ∀k ∈ Z, we may assume

δ ≤ |xn
1 − u0| ≤ u1 − u0

2
and |xn

i − u0| ≤ δ, ∀i ≤ 0, ∀n ∈ N. (3.1)

By the compactness of X and lower semi-continuity of J , xn (passing to a subsequence if
necessary) converges to an x ∈ X with J(x) ≤ c0. Then Proposition 2.9 tells us x(±∞) ∈ U .
Since every xn satisfies (3.1), we must have x(−∞) = u0. To prove x ∈ X0, we only need to
show x(+∞) = u1.

By a contradiction argument, assume x(+∞) = u0. Choose 0 < ε ≤ φ(δ)/4C, there is an
N large enough such that xi ≤ u0 + ε/2, for all i ≥ N .

For n large enough, we have xn
N ≤ u0 + ε. Because xn(−∞) = u0, there exists −kn large

enough, such that xn
k ≤ u0 + ε, ∀k ≤ kn. Since d((xn

k , . . . , x
n
N ), U) ≥ |xn

1 − u0| ≥ δ,

N−1∑
i=k

ai(xn) ≥ φ(δ) − C|xn
N − xn

kn
| ≥ φ(δ) − Cε,

As this holds for all k ≤ kn,
∑N−1

i=−∞ ai(xn) ≥ φ(δ) − Cε.

Now set x̄n = G−
0 (N)xn. Obviously x̄n ∈ X0, and by Lemma 2.14

J(x̄n) ≤
+∞∑
i=N

ai(xn) + Cε = J(xn) −
N−1∑

i=−∞
ai(xn) + Cε

≤ J(xn) − φ(δ) + Cε+ Cε

≤ J(xn) − φ(δ)/2.

This implies lim infn→+∞ J(x̄n) ≤ lim infn→+∞ J(xn)−φ(δ)/2 < c0, which is absurd. Hence
x(+∞) = u1 and x ∈ X0 and J(x) ≥ c0. As a result, J(x) = c0 and x ∈ M0.

Although x is just a minimizer of J among configurations in X0. By Lemmas 2.11 and 2.12,
xi /∈ U for any i ∈ Z and in fact it is a (global) minimal configuration, so x is a heteroclinic
connection from u0 to u1. �
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By Theorem 3.4,
M0 ⊂ M+

0 (u0, u1), M1 ⊂ M−
0 (u0, u1). (3.2)

Next proposition shows these minimal configurations are monotone.

Proposition 3.5 If x ∈ M0 (resp., x ∈ M1), then x is strictly monotonically increasing
(resp., decreasing), i.e., xi < xi+1 (resp., xi > xi+1), for all i ∈ Z.

Proof First we show xk �= xk+1, ∀k ∈ Z. Proof by contradiction. Let’s assume xk = xk+1 for
some k ∈ Z. From the proof of Theorem 3.4, xi ∈ (u0, u1), ∀i ∈ Z. Then ak(x) = h(xk, xk)−c >
0. Set x̄ = (. . . , xk−1, xk+1, . . . ), then J(x̄) = J(x) − (h(xk, xk+1) − c) < c0, which is absurd.

Next assume there is a k ∈ Z satisfying (xk − xk−1)(xk − xk+1) > 0. By Condition H3,

h(xk−1, xk) + h(xk, xk+1) > h(xk−1, xk+1) + h(xk, xk).

Set x̄ = (. . . , xk−1, xk+1, . . . ), then

c0 = J(x) > J(x̄) + h(xk, xk) − c ≥ J(x̄).

Since x̄ ∈ X0, we get a contradiction. Therefore x must be strictly monotonic and the asymp-
totic behaviors of x guarantee that it must be increasing. �

4 Multi-bump Homoclinic and Heteroclinic Connections

In this section, we prove Theorem 1.7 for x0 = u0 and x1 = u1, namely for a pair of (0, 1)-
periodic neighboring minimal configurations. First we find minimizers of J on a class of con-
figurations with desired asymptotic and oscillating behaviors. Then we show these minimizers
are stationary configurations.

If we replace x0, x1 and x0
0, x

1
0 in Theorem 1.7 by u0, u1 correspondingly, then by (3.2), the

condition (gap) implies
I0 �= (u0, u1) and I1 �= (u0, u1), (∗)

where Ij := {x0 : x ∈ Mj} for j = 0, 1.
We assume (∗) holds for the rest of this section.

Proposition 4.1 For any δ̂ > 0, there are δi ∈ (0, δ̂), i = 0, . . . , 3, and positive constants
e0 = e0(δ0, δ2), e1 = e1(δ1, δ3), such that

inf{J(x) : x ∈ X0, x0 = u0 + δ0, or x0 = u1 − δ2} ≥ c0 + e0;

inf{J(x) : x ∈ X1, x0 = u1 − δ1, or x0 = u0 + δ3} ≥ c1 + e1.

Proof We give a detailed proof of the first inequality. The proof of the other is similar and
will be omitted.

By (∗) there is a u ∈ (u0, u1) \ I0. From the ordering structure of M0 inherited from
M+

0 (u0, u1), there is a pair of minimal configurations y < z from M0 satisfying u ∈ (y0, z0)
and no other configuration from M0 lies between y and z.

By Proposition 3.5, there is a −n0 ∈ Z
+ large enough such that

u0 < yn0 < zn0 < u0 + δ̂.

Choose a δ0 ∈ (yn0 − u0, zn0 − u0). Then δ0 ∈ (u0, u1) \ I0. Let

Y 0
n0

= {x ∈ X0 : xn0 = u0 + δ0} and b0 = inf{J(x) : x ∈ Y 0
n0
}.
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Obviously b0 is finite and δ0 ∈ (u0, u1) \ I0 implies

b0 > c0. (4.1)

Since J(Tn0x) = J(x), this implies

inf{J(x) : x ∈ Y 0
0 } = b0 > c0, where Y 0

0 = {x ∈ X0 : x0 = u0 + δ0}.
Similarly there is an n1 ∈ Z

+ large enough, such that u1 − δ̂ < yn1 < zn1 < u1. Then we can
find a δ2 ∈ (yn1 , zn1), such that

b2 = {J(x) : x ∈ X0, x0 = u1 − δ2} > c0.

Letting e0 = min{b0 − c0, b2 − c0}, we get the desired result. �
For the rest of this section, we choose a constant δ̄ ∈ (0, (u1 − u0)/2) and set

ε∗ := min{ρ(ξ, ζ) : ξ, ζ ∈ [u0, u1]}; (4.2)

ε̄ := min{φ(δ̄), ε∗(u1 − u0 − 2δ̄)2}. (4.3)

Obviously both ε∗ and ε̄ are positive.
From now on we assume δ̂ in Proposition 4.1 also satisfies

0 < δ̂ < δ̄ and δ̂ ≤ 1
4C

ε̄. (4.4)

Definition 4.2 For an m ∈ N, we set

Z0 := {x ∈ X : x−m ≤ u0 + δ0, xm ≥ u1 − δ2};
Z1 := {x ∈ X : x−m ≥ u1 − δ1, xm ≤ u0 + δ3},

where δi, i = 0, . . . , 3, are those given in Proposition 4.1.

Obviously Z0, Z1 depend on the choice of m, so it will be fixed in all our results. The precise
requirement of m will be given later. For the moment, we just assume it is large enough, so that
both M0 ∩Z0 and M1 ∩Z1 are non-empty. Choose two minimal configurations y0 ∈ M0 ∩Z0

and y1 ∈ M1 ∩ Z1.

Remark 4.3 For the sake of simplicity, from now on we make the following agreement that
when we label c, e, u, y, Z and G± by an index, that index is considered mod 2.

Let m be a positive integer and q = {qi}i∈Z a bi-infinite sequence of integers satisfying
qi+1 − qi ≥ 4m, ∀i ∈ Z.

Figure 1 The Aubry graph of an x ∈ Z(0, 2)
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Definition 4.4 For any pair of integers j ≤ k, we define

Z(j, k) := {x ∈ X : x(−∞) = uj , x(+∞) = uk+1 and Tql
x ∈ Zl, ∀l ∈ {j, . . . , k}},

and c(j, k) := inf{J(x) : x ∈ Z(j, k)}.
Proposition 4.5 For any two integers j ≤ k, there exists at least one minimizer xjk ∈ Z(j, k)
satisfying J(xjk) = c(j, k).

Proof The proposition is trivial when j = k, since in this case c(j, k) = cj and T−qj
yj ∈ Z(j, k)

with J(T−qj
yj) = J(yj) = cj .

When j < k, let {xn}n∈Z ⊂ Z(j, k) be a minimizing sequence, limn→+∞ J(xn) = c(j, k).
Similar to the proof of Theorem 3.4, we may assume xn converges to an x ∈ X, such that

lim inf
n→+∞ J(xn) = c(j, k) ≥ J(x).

It is easy to see Tql
x ∈ Zl for j ≤ l ≤ k, since Tql

xn ∈ Zl and xn
i converges to xi as n goes to

infinity, ∀i ∈ Z. To prove x ∈ Z(j, k), we need to show that x(−∞) = uj and x(+∞) = uk+1.
Since J(x) is finite, Proposition 2.9 implies x(±∞) ∈ U . Therefore it is enough to show that
x(−∞) �= uj+1 and x(+∞) �= uk. For k being even, we give a detailed proof of x(+∞) �= uk.
The other cases can be proven similarly.

By contradiction, let’s assume x(+∞) = uk = u0 (since we are considering the case that k
is even). Then there is an N large enough (N > qk +m), such that

xN ≤ u0 + δ2/2,

where δ2 is the same as defined in Proposition 4.1. Then for n large enough,

xn
N ≤ u0 + δ2.

Meanwhile since xn ∈ Z(j, k), xn(+∞) = uk+1 = u1. Hence for each xn, there is a pn > N

large enough, such that xn
p ≥ u1 − δ2, ∀p ≥ pn.

Now for each {xn
i }p

i=qk+m, there are two possibilities.

Case 1 There is a j ∈ [qk+m, p]∩Z, such that xn
j ∈ [u0+δ̄, u1−δ̄]. Then d({xn

i }p
i=qk+m, U) ≥

δ̄. By Lemma 2.8,
p−1∑

i=qk+m

ai(xn) ≥ φ(δ̄) − C|xn
p − xn

qk+m| ≥ φ(δ̄) − Cδ2. (4.5)

The second inequality follows from the fact that xn
p and xn

qk+m belong to [u1 − δ2, u1].

Case 2 For any j ∈ [qk +m, p]∩Z, xn
j /∈ [u0 + δ̄, u1 − δ̄]. Because xn

qk+m ∈ [u1 − δ2, u1], xn
N ∈

[u0, u0 + δ2] and xn
p ∈ [u1 − δ2, u1], there exist two integers j0 ≤ j1 from [qk +m+ 1, p− 1] ∩ Z

satisfying
xn

j0 ∈ [u1 − δ̄, u1], xn
j0+1 ∈ [u0, u0 + δ̄],

xn
j1 ∈ [u0, u0 + δ̄], xn

j1+1 ∈ [u1 − δ̄, u1].

By condition H5,

h(xn
j0 , x

n
j0+1) + h(xn

j1 , x
n
j1+1) ≥ h(xn

j1 , x
n
j0+1) + h(xn

j0 , x
n
j1+1) +

∫ xn
j0

xn
j1

∫ xn
j1+1

xn
j0+1

ρ
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≥ h(xn
j1 , x

n
j0+1) + h(xn

j0 , x
n
j1+1) + ε∗(u1 − u0 − 2δ̄)2. (4.6)

At the same time,
p−1∑

i=qk+m

ai(xn) = h(xn
qk+m, . . . , x

n
j0) + h(xn

j0+1, . . . , x
n
j1) + h(xn

j1+1, . . . , x
n
p )

− (p− qk −m)c+ h(xn
j0 , x

n
j0+1) + h(xn

j1 , x
n
j1+1). (4.7)

Combine (4.6) and (4.7),
p−1∑

i=qk+m

ai(xn) ≥ h(xn
qk+m, . . . , x

n
j0) + h(xn

j0 , x
n
j1+1) + h(xn

j1+1, . . . , x
n
p )

+ h(xn
j1 , x

n
j0+1) + h(xn

j0+1, . . . , x
n
j1) − (p− qk −m)c

+ ε∗(u1 − u0 − 2δ̄)2.

By Lemma 2.7,

h(xn
j1 , x

n
j0+1) + h(xn

j0+1, . . . , x
n
j1) − (j1 − j0)c ≥ φ(0) ≥ 0.

Then Lemma 2.8 implies

h(xn
qk+m, . . . , x

n
j0) + h(xn

j0 , x
n
j1+1) + h(xn

j1+1, . . . , x
n
p ) − (p− qk −m− j1 + j0)c

≥ φ(0) − Cδ2 ≥ −Cδ2.
As a result,

p−1∑
i=qk+m

ai(xn) ≥ ε∗(u1 − u0 − 2δ̄)2 − Cδ2. (4.8)

This finishes our discussion of the two different cases.
Recall that ε̄ := min{φ(δ̄), ε∗(u1 − u0 − 2δ̄)2} > 0. By (4.5) and (4.8),

p−1∑
i=qk+m

ai(xn) ≥ ε̄− Cδ2.

Since the above inequality holds for all p ≥ pn, the following also holds
+∞∑

i=qk+m

ai(xn) ≥ ε̄− Cδ2.

Consider the sequence {G+
1 (qk +m)xn}n∈N ⊂ Z(j, k). By Lemma 2.14 and our assumption

on δ̂,

J(G+
1 (qk +m)xn) ≤ J(xn) −

+∞∑
i=qk+m

ai(xn) + Cδ2 ≤ J(xn) − ε̄+ Cδ2 + Cδ2

≤ J(xn) − ε̄+ 2Cδ̂ ≤ J(xn) − ε̄/2.

This then implies

lim inf
n→+∞ J(G+

1 (qk +m)xn) ≤ lim inf
n→+∞ J(xn) − ε̄/2 ≤ c(j, k) − ε̄/2 < c(j, k),

which is a contradiction. This finishes our proof. �
In the rest of this section we will show minimizers obtained in Proposition 4.5 are stationary

configurations.
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Lemma 4.6 Every minimizer xjk ∈ Z(j, k) with J(xjk) = c(j, k) satisfies xjk /∈ {u0, u1} for
all i ∈ Z.

Proof This lemma is an immediate consequence of Lemmas 2.11 and 2.12, once the readers
notice that xjk �= u0 and xjk �= u1. �

Lemma 4.7 Every xjk ∈ Z(j, k) with J(xjk) = c(j, k) satisfies

xi−1 < xi, ∀i ≤ qj −m, if j(mod 2) = 0;

xi−1 > xi, ∀i ≤ qj −m, if j(mod 2) = 1;

xi+1 > xi, ∀i ≥ qk +m, if k(mod 2) = 0;

xx+1 < xi, ∀i ≥ qk +m, if k(mod 2) = 1.

Proof The proof is the same as the proof of Proposition 3.5. �
For the rest of the section, we assume

0 < ε <
min{e1, e2}

4C
, (4.9)

and fix an m ∈ Z
+ satisfying the following conditions:

m ≥ 2Cδ̂
φ(ε)

; (4.10)

y0
−2m < u0 + δ3 and y0

2m > u1 − δ1; (4.11)

y1
−2m > u1 − δ2 and y1

2m < u0 + δ0, (4.12)

where δi, i = 0, . . . , 3, are those given in Proposition 4.1.

Lemma 4.8 c(j, k) < c(j, l) + c(l + 1, k), for any j ≤ l < k.

Proof We give a detailed proof for l being odd. The other is similar.
We claim it is possible to find two minimizers x ∈ Z(j, l) and y ∈ Z(l+ 1, k) (J(x) = c(j, l)

and J(y) = c(l + 1, k)) satisfying

xql+1−m < u0 + δ0, yql+m < u0 + δ3. (4.13)

If l = j, set x = T−ql
y1. Then by the conditions required for m,

xql+1−m < xql+2m
= y1

2m < u0 + δ0.

If j < l < k, set x̄ = T−ql
y1. Then x̄ql−1−m is close to u1 and xql−1−m is close to u0. Hence

x̄ql−1−m > xql−1−m. (4.14)

At the same time, by (4.12),
x̄ql+1−m < u0 + δ0.

Assume the first inequality in (4.13) does not hold. Then

xql+1−m > x̄ql+1−m. (4.15)

By (4.14) and (4.15), (xql−1−m, . . . , xql+1−m) and (x̄ql−1−m, . . . , x̄ql+1−m) have at least one in-
tersection (see Figure 2, where Au(x) is denoted by the solid curve and Au(x̄) by the dashed
curve).
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Figure 2 Aubry graphs Au(x) and Au(x̄)

Set

x+ = {x+
i }+∞

i=−∞, where x+
i = max{xi, x̄i}, ∀i ∈ Z;

x− = {x−i }+∞
i=−∞, where x−i = min{xi, x̄i}, ∀i ∈ Z.

A simple application of condition H5 gives

J(x−) + J(x+) ≤ J(x) + J(x̄).

Since x− ∈ Z(j, l) and Tql
x+ ∈ Z(l, l),

J(x−) ≤ J(x−) + J(x+) − c1 ≤ J(x) + J(x̄) − c1 = c(j, l).

Therefore x− is also a minimizer of J in Z(j, l), but satisfies

x−ql+1−m < u0 + δ0.

So we can simply rename x− to x.
A similar argument as above can be applied to y as well.
With the claim justified, by Lemma 4.7, the Aubry graphs of x and y must intersect at least

once between ql −m and ql+1 +m (see Figure 3, where Au(x) is denoted by the solid curve and
Au(y) by the dashed curve).

Figure 3 Aubry graphs Au(x) and Au(y)

Set

z+ = {z+
i }+∞

i=−∞, where z+
i = max{xi, yi}, ∀i ∈ Z;

z− = {z−i }+∞
i=−∞, where z−i = min{xi, yi}, ∀i ∈ Z.



Chaotic Dynamics of Monotone Twist Maps 195

Then z+ ∈ Z(j, k) and z− ∈ X with z−(±∞) = u0. Lemmas 2.10 and 4.6 imply J(z−) > 0.
Therefore

c(j, k) ≤ J(z+) < J(z+) + J(z−) ≤ J(x) + J(y) = c(j, l) + c(l + 1, k). �

Now we are ready to prove the xjk’s are stationary.

Theorem 4.9 Under the assumption (∗), for any two different integers j < k, if xjk ∈
Z(j, k) satisfies J(xjk) = c(j, k), it is a stationary configuration, and therefore a homoclinic or
heteroclinic connection from uj to uk+1.

Proof For simplicity, set x = xjk. By Lemma 4.6, xi /∈ {u0, u1}, so it is enough to show for
l = j, . . . , k,

xql−m < u0 + δ0, xql+m > u1 − δ2, when l is even, (4.16)

xql−m > u1 − δ1, xql+m < u0 + δ3, when l is odd. (4.17)

Define a finite configuration x∗ = {x∗i }ql+1−m
i=ql+m as

x∗i =

⎧⎨
⎩
xi, if i = ql +m or ql+1 −m;

ul+1, if ql +m < i < ql+1 −m.

Since x is a minimizer of J in Z(j, k),

ql+1−m−1∑
i=ql+m

ai(x) ≤
ql+1−m−1∑

i=ql+m

ai(x∗) ≤ 2Cδ̂. (4.18)

Set Il = [ql +m, ql+1 −m] ∩ Z. We claim there is a pl ∈ Il, such that

|xpl
− ul+1| < ε, ∀l ∈ {j, . . . , k − 1}. (4.19)

Before proving the claim, we first show |xi − ul+1| is uniformly bounded by δ̄,

|xi − ul+1| ≤ δ̄, ∀i ∈ Il and l ∈ {j, . . . , k − 1}. (4.20)

Notice that there is no xi satisfying min{|xi−ul|, |xi−ul+1|} ≥ δ̄, as otherwise d({xi}i∈Il
, U)

≥ δ̄. By Lemma 2.8,

ql+1−m−1∑
i=ql+m

ai(x) ≥ φ(δ̄) − Cδ̂ ≥ ε̄− Cδ̂ ≥ 4Cδ̂ − Cδ̂ > 2Cδ̂.

The two inequalities in the middle follow from (4.3), (4.4) on ε̄ and δ̂. This is a contradiction
to (4.18).

Now we will show there is no xi satisfying |xi − ul| ≤ δ̄. If not, by

|uql+m − ul+1| ≤ δ̂, |uql+1−m − ul+1| ≤ δ̂,

and what we just showed, there exist two integers j0 < j1 ∈ Il, such that

|xj0 − ul+1| ≤ δ̄ and |xj0+1 − ul| ≤ δ̄; (4.21)

|xj1 − ul| ≤ δ̄ and |xj1+1 − ul+1| ≤ δ̄. (4.22)
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By the same argument of the proof of Proposition 4.5,
ql+1−m−1∑

i=ql+m

ai(x) ≥ ε∗(u1 − u0 − 2δ̄)2 − Cδ̂ ≥ ε̄− Cδ̂ > 2Cδ̂.

This violates (4.18), which proves (4.20).
Since 0 < δ̄ < (u1 − u0)/2,

min{|xi − ul|, |xi − ul+1|} = |xi − ul+1|, ∀i ∈ Il and l ∈ {j, . . . , k}.
Now we are ready to prove our claim. Given an arbitrary l ∈ {j, . . . , k − 1}, let’s assume

|xi − ul+1| ≥ ε, ∀i ∈ Il. Define a finite configuration x̄ = {x̄i}ql+1−m+1
i=ql+m−1 as

x̄i =

⎧⎨
⎩
ul+1, if i = ql +m− 1 or ql+1 −m+ 1;

xi, if i ∈ Il.

Since x̄ ∈ X̂(ql+1 − ql − 2m+ 2;U), by Lemma 2.7,
ql+1−m+1∑
i=qL+m−1

ai(x̄) ≥ (ql+1 − ql − 2m+ 2)φ(ε).

Combining with (4.18), we get

2Cδ̂ ≥
ql+1−m∑
i=ql+m

ai(x) ≥
ql+1−m∑

i=ql+m−1

ai(x̄) − 2Cδ̂

≥ (ql+1 − ql − 2m+ 2)φ(ε) − 2Cδ̂ > 2mφ(ε) − 2Cδ̂.

This implies m < 2Cδ̂/φ(ε), which violates (4.10). As a result, for any l = j, . . . , k− 1, there is
at least one pl ∈ Il satisfying (4.19).

Finally we are ready to prove (4.16), (4.17). If j < l < k, set

x+ = G+
l (pl−1)x, x− = G−

l+1(pl)x, x′ = G−
l (pl−1) ◦G+

l+1(pl)x.

Notice that x+ ∈ Z(j, l − 1), x− ∈ Z(l + 1, k) and x′ ∈ Zl.

Figure 4 Aubry graphs of Au(x+), Au(x−) and Au(x′)

Assume x violates either (4.16) or (4.17), then so does x′. Figure 4 show the Aubry graphs
of x+, x− and x′ for an even l. By Proposition 4.1, J(x′) ≥ cl + el. Then Lemmas 2.14 and 4.8
imply

cl + el ≤ J(x′) ≤ J(x) − J(x+) − J(x−) + 4Cε
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≤ c(j, k) − c(j, l − 1) − c(l + 1, k) + 4Cε

< c(l, l) + 4Cε = cl + 4Cε,

which is a contradiction to (4.9).
If l = j, we can choose −pl−1 large enough, such that |xpl−1 −ul| < ε. This is possible, since

x(−∞) = uj , ∀x ∈ Z(j, k). Now we just repeat the above argument with the only modification
that J(x−) > 0, because x− ∈ X and x(±∞) = uj . The proof for the case l = k is similar. As
a result, x satisfies (4.16) and (4.17), so it is a locally minimal configuration. As a result, x is
a homoclinic or heteroclinic connection from uj to uk+1. �

Remark 4.10 Theorems 3.4 and 4.9 still hold even when {u0, u1} is just a pair of local
minimizers of h̄ satisfying h̄(u) > h̄(u0) = h̄(u1), ∀u ∈ (u0, u1). Results about heteroclinic
connection between local minimizers can be found in [21] and [19].

5 Generalization to Configurations with Non-zero Rational Rotation Numbers

In this section, we will generalize our result from the previous section to periodic neighboring
minimal configurations with non-zero rational rotation numbers and give a proof of Theorem 1.7.

Choose an arbitrary variational principle h and an arbitrary rational number α = p/q �= 0.
Let x− < x+ be an arbitrary pair of (p, q)-periodic neighboring minimal configurations of h.

Definition 5.1

Xα(q) := Xα(q;x−, x+) := {x = {xi}q
i=0 : xi ∈ [x−i , x

+
i ], i = 0, . . . , q};

X̂α(q) := X̂α(q;x−, x+) := {x ∈ Xα(q) : xq = x0 + p};
Xα := Xα(x−, x+) := {x = {xi}+∞

i=−∞ : xi ∈ [x−i , x
+
i ], ∀i ∈ Z}.

To use results from the previous section, we define a new function H : R
2 → R

2 associated
to h as

H(ξ, ξ′) := h∗q(ξ, ξ′ + p), ∀(ξ, ξ′) ∈ R
2.

Here h∗q = h ∗ · · · ∗ h is a q-fold conjunction of h with itself.

Definition 5.2 Given two variational principles h1 and h2, we define h ∗ h′ : R
2 → R given

below as their conjunction:

h1 ∗ h2(ξ, ξ′) = min
ζ∈R

{h1(ξ, ζ) + h2(ζ, ξ′)}.

Remark 5.3 As showed by Mather [14], the conjunction of two variational principles h1 and
h2 must be a variational principle as well. This means H is also a variational principle.

Lemma 5.4 For any i ∈ Z, {x−i , x+
i } is a pair of (0, 1)-periodic neighboring minimal config-

urations of H.

Proof We give a detailed proof for i = 0 (the others are similar). By a contradiction argument,
let’s assume there is a ζ ∈ (x−0 , x

+
0 ), such that

H(ζ, ζ) ≤ H(x−0 , x
−
0 ) = H(x+

0 , x
+
0 ),

then,
h∗q(ζ, ζ + p) ≤ h∗q(x−0 , x

−
0 + p) = h∗q(x+

0 , x
+
0 + p),
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This is a contradiction to the fact that x−, x+ is a pair of Since x−, x+ is a pair of (p, q)-periodic
neighboring minimal configurations of h. �

Definition 5.5 For any y = {yi}+∞
i=−∞ ∈ X({x−0 , x+

0 }) (see Definition 2.2), we define a
corresponding x = {xi}+∞

i=−∞ as
(a) xiq = yi + ip, ∀i ∈ Z;
(b) {xj}(i+1)q

j=iq is a minimal configuration of h, i.e.,

h(xiq, . . . , x(i+1)q) = H(xiq, x(i+1)q) = H(yi, yi+1), ∀i ∈ Z.

Notice that x defined above must belong to ∈ Xα(x−, x+).

Proposition 5.6 Let y ∈ X({x−0 , x+
0 }) and x ∈ Xα(x−, x+) be defined as in Definition 5.5.

If y is a stationary configuration of H, x must be a stationary configuration of h. Moreover if
y(±∞) = x±0 , then x(±∞) = x± correspondingly.

First we explain the main result can be proven by the above proposition.
Proof of Theorem 1.7 It follows immediately from Proposition 5.6 and Theorem 4.9. �

The rest of the section is devoted to the proof of Proposition 5.6.

Definition 5.7 For any x ∈ Xα(q), we define

dα(x) := dα(x, {x−, x+}) := max
0≤i≤q

min{|xi − x−i |, |xi − x+
i |}.

We set λi := 1
2 |x+

i − x−i | for i = 0, . . . , q, and λ := min{λi : i = 0, . . . , q}.
Lemma 5.8 We set cα := h(x−0 , . . . , x

−
q ) = h(x+

0 , . . . , x
+
q ). For any 0 ≤ δ ≤ λ, let

φα(δ) := inf{h(x0, . . . , xq) − cα : x = {xi}q
i=0 ∈ X̂α(q), dα(x) ≥ δ} ≥ 0,

then φα is a monotonically increasing and continuous function of δ satisfying

φα(δ) > 0, if δ > 0; φα(δ) = 0, if δ = 0.

The proof of this lemma is a simpler version of the proof of Lemma 2.7, so we omit it here.

Lemma 5.9 Let C := Lip(h). Then for any 0 ≤ δ ≤ λ, if x = {xi}q
i=0 ∈ Xα(q) with dα(x)

≥ δ, we have
h(x0, . . . , xq) − cα ≥ φα(δ) − C|xq − x0 − p|.

Again the proof is similar to the proof of Lemma 2.8 and we omit it here.

Definition 5.10 For 0 ≤ ε ≤ φα(λ)
4C+1 , we define

ψα(ε) := inf{0 ≤ δ ≤ λ : φα(δ) ≥ (4C + 1)ε}.
By the continuity of φα,

φα(ψα(ε)) ≥ (4C + 1)ε > 4Cε. (5.1)

Because φα is a monotonically increasing continuous function, by simple calculation we see ψα

is also a monotonically increasing continuous function w.r.t. ε and ψα(0) = 0.
Let y ∈ X({x−0 , x+

0 }) and x ∈ Xα(x−, x+) be defined as in Definition 5.5, the key to the
proof of Proposition 5.6 is to show that for any i ∈ Z, |xj − x±j |, j = iq + 1, . . . , (i+ 1)q − 1 is
controlled by |xi − x±i | and this can be done by the following two lemmas.
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Lemma 5.11 For 0 ≤ ε ≤ φα(λ)
4C+1 , if x ∈ Xα(q;x−, x+) is a minimal configuration of h, which

satisfies |xi − x+
i | ≤ ε, i = 0, q or |xi − x−i | ≤ ε, i = 0, q, then dα(x) < ψα(ε) for ψα(ε) defined

as above.

Proof We will give the detailed proof for the case |xi − x+
i | ≤ ε, i = 0, q, while the other is

similar.
Assuming dα(x) ≥ ψα(ε), then by Lemma 5.9,

h(x0, . . . , xq) − cα ≥ φα(ψα(ε)) − C|xq − x0 − p| ≥ φα(ψα(ε)) − 2Cε. (5.2)

The last inequality follows from

|xq − (x0 + p)| = |xq − x+
q + x+

0 + p− (x0 + p)| ≤ |xq − x+
q | + |x+

0 − x0| ≤ 2ε.

Then the minimality of x and the Lipschitz continuity of h tell us

h(x0, . . . , xq) ≤ h(x0, x
+
1 , . . . , x

+
q−1, xq) ≤ cα + 2Cε. (5.3)

Combining (5.2) and (5.3), we have

φα(ψα(ε)) ≤ 4Cε,

but this contradicts (5.1). Hence dα(x) < ψα(ε). �

Lemma 5.12 There is a small enough ε∗ > 0, such that if x ∈ Xα(q;x−, x+) is a minimal
configuration and |xi − x+

i | ≤ ε∗, i = 0, q (resp., |xi − x−i | ≤ ε∗, i = 0, q), then |xi − x+
i | < λi

for all i = 1, . . . , q − 1 (resp., |xi − x−i | < λi for all i = 1, . . . , q − 1).

Proof We will only show the proof for the case |xi − x+
i | ≤ ε∗, i = 0, q. Assume the lemma is

not true, then there is a sequence of positive numbers {εn}n∈N ↘ 0 and a sequence of minimal
configurations {xn}n∈N ⊂ Xα(q), such that

|xn
i − x+

i | ≤ εn, i = 0, q, ∀n ∈ N,

while there is at least one in ∈ {1, . . . , q − 1} with

|xn
in

− x+
in
| ≥ λin

, ∀n ∈ N.

Replacing {xn} by a subsequence if necessary, we may assume there is a fixed j ∈ {1, . . . , q−1},
such that

|xn
j − x+

j | ≥ λj , ∀n ∈ N. (5.4)

Passing to a subsequence if necessary, xn converges to an x = {xi}q
i=0 ∈ Xα(q). Since every xn

is minimal, so is x.
Then xi = limn→+∞ xn

i = x+
i , for i = 0, q. Because x is minimal, we must have xi = x+

i for
all i = 0, . . . , q.

On the other hand, since xj = limn→+∞ xn
j , by (5.4), |xj − x+

j | ≥ λj , which is a contradic-
tion. So the assumption we made is incorrect and we are done. �

Now we are ready to prove Proposition 5.6.
Proof of Proposition 5.6 If y ∈ X({x−0 , x+

0 }) is a stationary configuration of H, i.e., locally
minimal w.r.t. H, by the way x ∈ X(x−, x+) is defined, it is not hard to see x is locally minimal
w.r.t. h, so x is a stationary configuration of h.
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By the monotonicity of ψα, for ε∗ satisfying Lemma 5.12, we can find a 0 < ε̂ ≤ φα(λ)
4C+1 , such

that
0 < ψα(ε) ≤ ε∗ for 0 < ε < ε̂.

We will prove that y(+∞) = x+
0 implies x(+∞) = x+. The other cases are similar.

By the way x is defined, we have

lim
i→+∞

|xiq − x+
iq| = lim

i→+∞
|xiq − (x+

0 + ip)| = lim
i→+∞

|yi − x+
0 | = 0.

Hence, for any 0 < ε < ε̂, there is an n0 large enough, such that

|xiq − x+
iq| < ε, i > n0.

Because every {xj}(i+1)q
j=iq is a minimal configuration of h, Lemma 5.11 tells us

dα({xj}(i+1)q
j=iq ) < ψα(ε) ≤ ε∗, ∀i > n0.

Then by Lemma 5.12,

|xj − x+
j | < λj (mod q), for j = iq + 1, . . . , (i+ 1)q − 1, ∀i > n0.

Because of the periodicity of x−, x+, we have
|x+

j −x−
j |

2 = λj (mod q) for any j ∈ Z. Therefore,

|xj − x+
j | < ψα(ε), for j = iq + 1, . . . , (i+ 1)q − 1, ∀i > n0.

Since ψ(ε) goes to zero when ε goes to zero, we have x(+∞) = x+. �

6 Proof of Proposition 2.9

Lemma 6.1 For any x ∈ X, if lim supn→+∞
∑n−1

i=−n ai(x) = +∞, then

J(x) = lim
n→+∞

n−1∑
i=−n

ai(x) = +∞.

Proof By a contradiction argument, let’s assume

lim inf
n→+∞

n−1∑
i=−n

ai(x) = A1 < +∞.

Choose a constant A2 > A1 + 1 − 2B with B given in Lemma 2.8. We can find two positive
integers n0 < n1 satisfying

n0−1∑
i=−n0

ai(x) ≥ A2,

n1−1∑
i=−n1

ai(x) ≤ A1 + 1.

As a result,
−n0−1∑
i=−n1

ai(x) +
n1−1∑
i=n0

ai(x) =
n1−1∑

i=−n1

ai(x) −
n0−1∑

i=−n0

ai(x) ≤ A1 + 1 −A2 < 2B,

This implies one of the following two inequalities must be true,
−n0−1∑
i=−n1

ai(x) < B;
n1−1∑
i=n0

ai(x) < B.

This contradicts Lemma 2.8. �
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Proof of Proposition 2.9 For the moment we assume J is well defined (this will be shown
later), and will prove the second part of the proposition first. For this it is enough to show that
if the limit of xi does not exist or the limit exists but does not equal to u0 or u1, as i → ±∞,
then J(x) = limn→+∞

∑n−1
i=−n ai(x) = +∞.

We only give the details for i → +∞. The other case is similar. Choosing a proper
δ > 0, there is a sequence of positive integers {kj ↗ +∞}j∈N, and another sequence of integers
{ij ∈ [kj , kj+1)}j∈N, such that

lim
j→+∞

|xkj
− xkj+1 | = 0; min{|xij

− u0|, |xij
− u1|} ≥ δ, ∀ij .

After passing kj to a subsequence, we may assume |xkj+1 −xkj
| < φ(δ)

2C , ∀kj . By Lemma 2.8,

kj+1−1∑
i=kj

ai(x) ≥ φ(δ) − C|xkj+1 − xkj
| > φ(δ)

2
.

As a result, for any n ∈ Z
+,

kn−1∑
i=−kn

ai(x) ≥ B +
kn−1∑
i=k0

ai(x) ≥ B +
n−1∑
j=1

kj+1−1∑
i=kj

ai(x) ≥ B +
nφ(δ)

2
.

Hence lim supn→+∞
∑n−1

i=−n ai(x) = +∞. Then by Lemma 6.1, J(x) = +∞.

Next we will show J(x) is well defined. Because of what we have just shown above, it
is enough to prove that when x(±∞) ∈ U , limn→+∞

∑n−1
i=−n ai(x) either exists and is finite

number, or diverges.
We only give details for the case with x(−∞) = u0 and x(+∞) = u1 (the other cases are

similar). Set

A1 = lim inf
n→+∞

n−1∑
i=−n

ai(x), A2 = lim sup
n→+∞

n−1∑
i=−n

ai(x).

First by Lemma 6.1, if A2 = +∞, J(x) diverges to +∞. Now let’s assume A2 is a finite number.
Then it is enough to show A1 = A2.

By a contradiction argument, let’s assume A1 �= A2. Since A1 ≤ A2, this implies A1 < A2.
We can find two sequences of positive integers {lj ↗ +∞}j∈N and {nj ↗ +∞}j∈N satisfying
lj + 1 < nj < lj+1 − 1, ∀j ∈ Z

+, and

lim
j→+∞

lj−1∑
i=−lj

ai(x) = A2 > lim
j→+∞

nj−1∑
i=−nj

ai(x) = A1.

Hence for j large enough,
−lj−1∑
i=−nj

ai(x) +
nj−1∑
i=lj

ai(x) =
nj−1∑

i=−nj

ai(x) −
lj−1∑

i=−lj

ai(x) <
A1 −A2

2
< 0. (6.1)

Meanwhile x(−∞) = u0 implies |x−nj
− x−lj | < |A1−A2|

4C for j large enough. Then by
Lemma 2.8,

−lj−1∑
i=−nj

ai(x) ≥ −C|x−nj
− x−lj | >

A1 −A2

4
.
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Similarly,
nj−1∑
i=lj

ai(x) ≥ −C|xnj
− xlj | >

A1 −A2

4
.

Therefore for j large enough,
−lj−1∑
i=−nj

ai(x) +
nj−1∑
i=lj

ai(x) >
A1 −A2

2
,

which contradicts (6.1). �

7 Proof of Lemmas 2.11 and 2.12

Lemma 7.1 Let x = {xi}n1
i=n0

and y = {yi}n1
i=n0

be two minimal configurations. Then the
intersection of their Aubry graphs Au(x) ∩ Au(y) contains at most two points. In particular
if it indeed contains two points, they must be the endpoints of the graphs, i.e., xn0 = yn0 and
xn1 = yn1 .

Proof A proof can be found in [5] or [17]. �

Lemma 7.2 If (ξ, η, ζ) �= (ξ′, η, ζ ′) are two locally minimal configurations of a variational
principle h, then

(ξ − ξ′)(ζ − ζ ′) < 0.

Proof It follows from the conditions H4 and H5. For a proof see Mather [14]. �
Proof of Lemma 2.11 We claim h(x0, x1, x2) ≤ h(x0, ξ, x2), ∀ξ ∈ (u1,+∞). Assume this is
not true. There is a η ∈ (u1,+∞), such that

h(x0, η, x2) < h(x0, x1, x2) ≤ h(x0, u1, x2).

By Condition H3,

h(x0, u1) + h(u1, η) + h(η, u1) + h(u1, x2)

< h(x0, η) + h(η, x2) + h(u1, u1) + h(u1, u1).

As a result,
h(u1, η) + h(η, u1) < h(u1, u1) + h(u1, u1),

which is absurd.
Now both (x0, x1, x2) and (u1, u1, u1) are locally minimal configurations satisfying (x0 −

u1)(x2 − u1) ≥ 0. If x1 = u1, it will contradict Lemma 7.2. Hence x1 �= u1. �
Proof of Lemma 2.12 First it is easy to see there must be a minimal configuration z = {zi}n1

i=n0

satisfying zn0 = xn0 and zn1 = xn1 . If zi ∈ [u0, u1], ∀i ∈ (n0, n1) ∩ Z, by the definition of x,

h(xn0 , . . . , xn1) = h(zn0 , . . . , zn1),

so x is a minimal configuration as well.
Assume there is an n0 < i0 < n1, such that zi0 /∈ [u0, u1], then Au(z) has at least two

intersections with Au(u0) or Au(u1). When the two intersections are the two end points of
Au(z), a basic result of Aubry–Mather theory (see [5]) implies zi = u0 or u1, ∀i ∈ (n0, n1) ∩Z.
This means zi ∈ [u0, u1], ∀i ∈ (n0, n1) ∩ Z.
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When the two intersections are not the end points of Au(z), it contradicts Lemma 7.1,
because z, u0 and u1 are minimal configurations. This proves the first part of the lemma.

For the second part, without loss of generality, we assume xn0 /∈ {u0, u1}. By Lemma 2.11,
xn0+1 /∈ {u0, u1}. By repeating this process, we get xi /∈ {u0, u1}, ∀i ∈ (n0, n1) ∩ Z. �
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