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Abstract In this paper, we consider the imaginary highest weight modules and the imaginary Whit-

taker modules for the affine Nappi–Witten algebra. We show that simple singular imaginary Whittaker

modules at level (κ, c) (κ ∈ C
�) are simple imaginary highest weight modules. The necessary and suffi-

cient conditions for these imaginary modules to be simple are given. All simple imaginary modules are

classified.

Keywords Affine Nappi–Witten algebra, imaginary Verma modules, imaginary highest weight mod-

ules, imaginary Whittaker modules, simple modules

MR(2010) Subject Classification 17B10, 17B20, 17B65, 17B66, 17B68

1 Introduction

Two-dimensional conformal field theory has many applications both in physics and mathe-
matics. One of the richest classes of models on conformal field theory consists of the Wess–
Zumino–Novikov–Witten (WZNW) models, which were studied originally within the framework
of semisimple (abelian) groups [16]. However, there has been a great interest in WZNW models
based on non-abelian non-semisimple Lie groups (see [11, 13, 14]) while few results on WZNW
models for non-reductive groups. In the early 1990s, Nappi and Witten showed in [14] that
a WNZW model (NW model) based on a central extension of the two-dimensional Euclidean
group describes the homogeneous four-dimensional space-time corresponding to a gravitational
wave. The corresponding Lie algebra H4 is called Nappi–Witten algebra and the affine Nappi–
Witten algebra ̂H4 is defined to be the central extension of the loop algebra of H4.

The study of representation theory of the affine Nappi–Witten algebra ̂H4 was started in
[13]. In [2], the authors conducted a systematic study of representations of the affine Nappi–
Witten algebra and gave a necessary and sufficient condition for each Verma module to be
irreducible. A class of polynomial representations for the affine Nappi–Witten algebra was
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constructed in [4]. The authors classified a class of simple restricted modules for the affine
Nappi–Witten algebra in [8]. Verma modules for two classes of twisted affine Nappi–Witten
algebras were studied in [6].

In the present paper, we study a new class of modules over ̂H4 which we call the imaginary
modules. It consists of two subclasses: the imaginary highest weight modules and the imaginary
Whittaker modules. Whittaker modules were first introduced for sl2(C) by Arnal and Pinzcon
[1]. In [10], Kostant studied Whittaker modules in the setting of complex semisimiple Lie
algebras g and showed that irreducible Whittaker modules correspond to maximal ideals of
the center of U(g). The definition of Whittaker modules can be easily generalized to other
Lie algebras with a triangular decomposition (see [3, 10, 15]). For imaginary modules, V.
Futorny studies imaginary Verma modules for affine Lie algebras [7]. In [3], Christodoulopoulou
constructed imaginary Whittaker modules for a non-twisted affine Lie algebra from irreducible
Whiitaker modules of its Lie subalgebra ˜t, an infinite-dimensional Heisenberg algebra adjoining
a degree derivation. Xu studied the simplicity of a family of weighted imaginary Whittaker
modules for affine Nappi–Witten algebra (see [17]). In this paper, we will classify all simple
imaginary Whittaker modules.

For the affine Nappi–Witten algebra ̂H4, we give two definitions for imaginary modules. In
the first definition, imaginary Whittaker (highest weight) modules are realized as generalized
Verma modules from irreducible Whittaker (highest weight) modules of an infinite-dimensional
Heisenberg algebra as in [3]. In the second definition, imaginary Whittaker (highest weight)
modules are realized as Whittaker (highest weight) modules associated with a triangular de-
composition, which is different from the triangular decomposition given in [2]. We show the
two definitions for imaginary modules coincide to some extent (see Remark 2.5).

Since ̂H4 is a central extension of loop algebra of H4, the central element K acts as a
scalar, called the central charge, on an irreducible module of ̂H4. Also, we call an ̂H4-module
of central charge l a module at level l. We study the simplicity of imaginary modules and give
a classification of simple imaginary modules.

This paper is organized as follows. In Section 2, we recall the definition of the affine Nappi–
Witten algebra ̂H4 and introduce the two definitions of imaginary modules for ̂H4 (Definitions
2.1 and 2.4). We also collect some basic results in this section. In Section 3, we determine the
set of imaginary Whittaker vectors (see Proposition 3.2). And we give a classification of simple
imaginary modules (see Theorem 4.3, Theorem 4.8 and Theorem 4.10).

Throughout the paper, we denote by Z, Z+, Z�, N, C and C
� the set of all integers, non-

negative integers, nonzero integers, positive integers, complex numbers and nonzero complex
numbers, respectively. Denote by V ∗ the dual space of a vector space V .

2 Preliminaries

We will recall some basic definitions and results in this section.

Verma Modules and Whittaker Modules Let g be a Lie algebra with a triangular
decomposition g = g+ ⊕ g0 ⊕ g− where g0, g± are Lie subalgebras and g0-modules. In this
paper, all g0’s are finite dimensional. One can define Verma modules and Whittaker modules
over g as follows.
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Definition 2.1 Let ϕ : g+ → C be a Lie algebra homomorphism and let V be a g-module.

1. A nonzero vector w ∈ V is called a weight vector if xw = λ(x)w for some λ ∈ (g0)∗ and
for all x ∈ g0.

2. A nonzero vector w ∈ V is called a Whittaker vector of type ϕ if xw = ϕ(x)w for all
x ∈ g+. In particular, a Whittaker vector of type 0 is called a singular vector.

3. V is called a highest weight module of weight λ ∈ (g0)∗ if V contains a cyclic singular
weight vector of weight λ.

4. V is called a Whittaker module of type ϕ if V contains a cyclic Whittaker vector of
type ϕ. If ϕ �= 0, we call V a nonsingular Whittaker module of type ϕ, otherwise, we call V a
singular Whittaker module.

Let Z be the finite dimensional center of g. For any g-module on which any z ∈ Z acts as
a scalar z(z) with z ∈ Z∗, we call it a g-module at level z. Denote by Cϕ the 1-dimensional
g+-module with respect to the Lie algebra homomorphism ϕ : g+ → C. Then Cϕ becomes a
(g+ + Z)-module Cz,ϕ by letting the action of Z on Cϕ as z(z) for some z ∈ Z∗ and all z ∈ Z.

Set

M(z, ϕ)g = U(g) ⊗U(g++Z) Cz,ϕ. (2.1)

Define an action of U(g) on M(z, ϕ)g by left multiplication. M(z, ϕ)g is a Whittaker g-module
at level z, called the universal Whittaker module of type ϕ at level z.

For ϕ with ϕ([g0, g+]) = 0, Cz,ϕ becomes a (g++g0+Z)-module Cλ,z,ϕ by letting the action
of g0 on Cz,ϕ as λ(x) for some λ ∈ (g0)∗ and all x ∈ g0. Set

M(λ, z, ϕ)g = U(g) ⊗U(g++g0+Z) Cλ,z,ϕ. (2.2)

Define an action of U(g) on M(λ, z, ϕ)g by left multiplication. M(λ, z, 0)g is a highest weight
g-module of weight λ at level z, called the Verma module of weight λ at level z. Clearly,
M(λ, z, 0)g = M(z, 0)/

∑

x∈g0
U(g)(x − λ(x))(1 ⊗ 1).

M(z, ϕ)g (M(λ, z, 0)g, respectively) is universal in the sense that any simple Whittaker
g-module of type ϕ (highest weight g-module of weight λ, respectively) at level z is a sim-
ple quotient of M(z, ϕ)g (M(λ, z, 0)g, respectively). Furthermore, any simple highest weight
module is a simple singular Whittaker module. However, the converse is not always true, for
example, quasi-Whittaker modules defined in [5] provide an example of simple singular Whit-
taker modules which are not highest weight modules for the Schrödinger algebra. Denote by
1 = 1 ⊗ 1 ∈ M(z, ϕ)g (M(λ, z, 0)g, respectively) the cyclic Whittaker (singular weight, respec-
tively) vector.

The Affine Nappi–Witten Algebra The Nappi–Witten Lie algebra H4 is a four dimen-
sional vector space

H4 = Ca ⊕ Cb ⊕ Cc ⊕ Cd

equipped with the bracket relations

[a, b] = c, [d, a] = a, [d, b] = −b, [c, H4] = 0.
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Let ( , ) be the symmetric bilinear form on H4 defined by
⎧

⎨

⎩

(a, b) = (c, d) = 1,

( , ) = 0, otherwise.

It is straightforward to check that ( , ) is the unique (up to multiplication of scalars on (a, b)
and (c, d) respectively) non-degenerate H4-invariant symmetric bilinear on H4.

To the pair (H4, ( , )), we associate the affine Nappi–Witten Lie algebra ̂H4 with the under-
lying vector space

̂H4 = H4 ⊗ C[t, t−1] ⊕ CK

equipped with the bracket relations

[h1 ⊗ tm, h2 ⊗ tn] = [h1, h2] ⊗ tm+n + m(h1, h2)δm+n,0K, ∀h1, h2 ∈ H4, m, n ∈ Z,

[ ̂H4, K] = 0.

Denote any element x ⊗ m ∈ ̂H4 by x(m).
The quotient algebra ˜H4 = ̂H4/CK is the loop Nappi–Witten algebra. Denote by any

z ∈ (CK ⊕ Cc)∗ by (κ, z). Clearly, the category of ̂H4-modules at level (0, c) is equivalent to
the category of ˜H4-modules at level c.

Triangular Decompositions for the Affine Nappi–Witten Algebra It is clear that
the Lie algebra ̂H4 is Z-graded:

̂H4 =
∐

n∈Z

̂H
(n)
4 ,

where ̂H
(0)
4 = H4 ⊕ CK, ̂H

(n)
4 = H4 ⊗ tn, n �= 0.

Then one has the following triangular decomposition for ̂H4 (see [2]):

̂H4 = ̂H
(+)
4 ⊕ ̂H

(0)
4 ⊕ ̂H

(−)
4 , (2.3)

where ̂H
(±)
4 =

∐

n∈N
̂H

(±n)
4 .

Define

̂H+
4 = (Cc ⊕ Cd) ⊗ tC[t] ⊕ Ca ⊗ C[t, t−1],

̂H0
4 = Cc ⊕ Cd ⊕ CK,

̂H−
4 = (Cc ⊕ Cd) ⊗ t−1

C[t−1] ⊕ Cb ⊗ C[t, t−1].

It is easy to check that these are subalgebras of ̂H4 and

̂H4 = ̂H+
4 ⊕ ̂H0

4 ⊕ ̂H−
4 (2.4)

is another triangular decomposition for ̂H4.

Simple Highest Weight Modules and Whittaker Modules for the Heisenberg Al-
gebra The subalgebra h spanned by {c(i), d(j), K | i, j ∈ Z�} is isomorphic to an infinite
dimensionial Heisenberg Lie algebra. h has a classical triangular decomposition

h = h+ ⊕ h0 ⊕ h−, (2.5)
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where h+ = span
C
{c(i), d(j) | i, j ∈ N}, h0 = CK, h− = span

C
{c(i), d(j) | i, j ∈ −N}. With

respect to this triangular decomposition, highest weight modules and Whittaker modules for
the Heisenberg algebra h are defined. Moreover, singular Whittaker modules for h are highest
weight modules.

Classification of simple highest weight modules of infinite-dimensional Heisenberg Lie alge-
bra is well-known (see [9]).

Theorem 2.2 The Verma module M(κ, κ, 0)h = M(κ, 0)h over the infinite-dimensional Hei-
senberg algebra at level κ ∈ C is simple if and only if κ �= 0. Any simple quotient of M(0, 0)h

is one-dimensional.

The following theorem in [3] gives a classification of simple nonsingular Whittaker modules
of infinite-dimensional Heisenberg algebra.

Theorem 2.3 Let φ : h+ → C be a nonzero Lie algebra homomorphism and κ ∈ C.
1. For κ �= 0, the universal Whittaker module M(κ, φ)h is the unique (up to isomorphism)

irreducible Whittaker h-module of type φ at level κ.
2. The universal Whittaker module M(0, φ)h is reducible, and any simple quotient of

M(0, φ)h is one-dimensional.

Clearly, any simple quotient of M(0, φ)h for some Lie algebra homomorphism φ : h+ → C,
is isomorphic to

L(φ̃) = M(0, φ)h/U(h)
∑

i∈N

((c(−i) − φ̃(c(−i)))1 + (d(−i) − φ̃(d(−i)))1),

where φ̃ : h → C is a Lie algebra homomorphism with φ̃|h+ = φ.

Imaginary Modules Now let us give the construction of imaginary Verma modules and
imaginary Whittaker modules for ̂H4.

Let n+ = Ca ⊗ C[t, t−1], n− = Cb ⊗ C[t, t−1]. Then ̂H4 has the following decomposition:

̂H4 = n+ ⊕ (Cc ⊕ Cd ⊕ h) ⊕ n−.

The subalgebra p = n+ ⊕ (Cc ⊕ Cd ⊕ h) is a parabolic subalgebra of ̂H4 and n+ is an ideal of
p. Following from [3, 7], we can define the imaginary Verma modules and imaginary Whittaker
modules over ̂H4 as the following generalized Verma modules.

Definition 2.4 Let V be a simple h-module. One can define a U(p)-module structure on V

be letting

cw = λ(c)w, dw = λ(d)w, n+w = 0, ∀w ∈ V,

where λ ∈ (Cc⊕Cd)∗. Set ˜V (λ) = U( ̂H4)⊗U(p) V . Define an action of U( ̂H4) on ˜V (λ) by left
multiplication on U( ̂H4).

1. If V is a simple highest weight module for h, then ˜V (λ) is called an imaginary highest
weight module for ̂H4.

2. If V is a simple Whittaker module for h, then ˜V (λ) is called an imaginary Whittaker
module for ̂H4.

Let ϕ : ̂H+
4 → C be a nonzero Lie algebra homomorphism. Since

ϕ(a(i)) = [ϕ(d(1)), ϕ(a(i− 1))] = 0, ∀i ∈ Z,
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ϕ is uniquely determined by its restriction on (Cc⊕Cd)⊗ tC[t]. We also denote the restriction
by ϕ for convenience.

With respect to the triangular decomposition (2.4), we can also define highest weight mod-
ules and Whittaker modules in the classical way. We also call them imaginary highest weight
modules and imaginary Whittaker modules, respectively. In particular, we call Whittaker
vectors, singular vectors and weight vectors with respective to the triangular decomposition
(2.4) imaginary Whittaker vectors, imaginary singular vectors and imaginary weight vectors,
respectively. For any z ∈ (CK + Cc)∗ with (z(K), z(c)) = (κ, c) ∈ C2, we write M(z, ϕ)

̂H4
as

M(κ, c, ϕ)
̂H4

. We call any simple quotient of M(κ, c, ϕ)
̂H4

a simple imaginary module of type
ϕ at level (κ, c). Also, we write M(λ, κ, c, ϕ)

̂H4
for M(λ, z, ϕ)

̂H4
with λ ∈ (Cd)∗ ∼= C.

Remark 2.5 Here is the reason why we call modules with respect to the decomposition (2.4)
imaginary modules. Suppose V is a simple Whittaker (higheset weight, respectively) module
over h with cyclic vector w, then w is a cyclic imaginary Whittaker vector (imaginary singular
weight vector, respectively) for the imaginary module ˜V (λ) since for i ∈ Z, and j, k ∈ N,

a(i)w = 0, c(j)w = ϕ(c(j))w, d(k)w = ϕ(d(k))w, cw = λ(c)w, dw = λ(d)w

for some ϕ. Hence ˜V (λ) is a quotient of M(κ, λ(c), ϕ)
̂H4

(M(λ(d), κ, λ(c), 0)
̂H4

, respectively)
by the ̂H4-homomorphism mapping 1 to w.

The goal of this paper is to classify all simple imginary Whittaker modules over ̂H4. To
classify these modules, it suffices to classify all simple quotients of M(κ, c, ϕ)

̂H4
for any κ, c ∈ C

and Lie algebra homomorphism ϕ.

3 Imaginary Whittaker Vectors and Singular Weight Vectors

In this section, we will determine the set of all imaginary Whittaker (singular weight, respec-
tively) vectors in M(κ, c, ϕ)

̂H4
(ϕ �= 0) (M(λ, κ, c)

̂H4
, respectively).

Partitions and Basis for Imaginary Modules To prove our main result, we need some
concepts on partitions.

A non-decreasing partition is a sequence α = (α1, α2, . . . , αr) of integers in non-decreasing
order and we denote P for the set of all non-decreasing partitions. A nonnegative (positive,
respectively) non-increasing partition is a sequence α = (α1, α2, . . . , αr) of non-negative (pos-
itive, respectively) integers in non-increasing order and we denote T (T +, respectively) for
the set of all nonnegative (positive, respectively) non-increasing partitions. For a partition
α = (α1, α2, . . . , αr), we call r the length of α, denoted by l(α).

Let α = (α1, α2, . . . , αr) and β = (β1, β2, . . . , βs) be two non-decreasing partitions. Define
an ordering on P as follows: α 	 β if r > s; or if r = s and

α1 = β1, α2 = β2, . . . , αi−1 = βi−1, αi < βi

for some i, 1 ≤ i ≤ r.
For a sequence α = (α1, α2, . . . , αr) of integers and x ∈ H4, we denote

− α := (−α1,−α2, . . . ,−αr),

x(α) := x(α1)x(α2) · · ·x(αr),

x(−α) := x(−α1)x(−α2) · · ·x(−αr).
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It is clear that if α is a partition in T , then −α is a partition in P. In particular, we view ∅ as
a non-decreasing partition as well as a non-negative non-increasing partition and set

l(∅) = 0, x(∅) = 1, ∀x ∈ H4.

For an integer i and a non-decreasing (non-increasing) partition α, we denote mi(α) the times
i occurring in α. We construct a new partition called α minus i, denoted by α \ i, as follows: if
i occurs in α, we delete one i from α; if i does not occur in α, we keep the partition invariant.

Following from PBW theorem, we know that M(κ, c, ϕ)
̂H4

(ϕ �= 0) has a basis

{b(α)c(−β)d(−γ)1 |α ∈ P, β ∈ T +, γ ∈ T },

and M(λ, κ, c, ϕ)
̂H4

has a basis

{b(α)c(−β)d(−γ)1 |α ∈ P, β, γ ∈ T +}.

Also, M̃(κ, φ)h (λ)(κ �= 0) has a basis

{b(α)c(−β)d(−γ)1 |α ∈ P, β, γ ∈ T +},

and ˜L(φ̃)(λ) has a basis

{b(α)1 |α ∈ P}.

Since we have defined an ordering on P, there is a natural lexicographic ordering on these bases.

Imaginary Whittaker Vectors and Singular Weight Vectors Now, let us determine
the set of all imaginary Whittaker (singular weight) vectors.

Following from straightforward computation using PBW theorem, we have the following
lemma.

Lemma 3.1 Let v be an imaginary Whiitaker (Whittaker weight, respectively) vector of
M(κ, c, ϕ)

̂H4
(M(λ, κ, c, ϕ)

̂H4
, respectively). Then following equations hold for any i ∈ Z, j ∈ N

(Z+, respectively), β ∈ T +, γ ∈ T (T +, respectively),

a(i)c(−β)d(−γ)v = 0,

c(j)c(−β)d(−γ)v = jmj(γ) · κ · c(−β)d(−γ \ j)v + ϕ(c(j)) · c(−β)d(−γ)v,

d(j)c(−β)d(−γ)v = −jmj(β) · κ · c(−β \ j)d(−γ)v + ϕ(d(j)) · c(−β)d(−γ)v.

Proposition 3.2 gives the set of all imaginary Whittaker (Whittaker weight, respectively)
vectors in M(κ, c, ϕ)

̂H4
(M(λ, κ, c, ϕ)

̂H4
, respectively).

Proposition 3.2 1. Any imaginary Whittaker vector in M(0, c, ϕ)
̂H4

is a linear combination
of

{c(−β)d(−γ)1 |β ∈ T +, γ ∈ T }.

2. Any imaginary singular weight vector in M(λ, 0, c, 0)
̂H4

is a linear combination of

{c(−β)d(−γ)1 |β, γ ∈ T +}.

3. Suppose κ �= 0. Then the set of all imaginary Whittaker vectors in M(κ, c, ϕ)
̂H4

is

C[d]1 \ {0}.
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4. Suppose κ �= 0. Then the set of all imaginary Whittaker weight vectors in M(λ, κ, c, ϕ)
̂H4

is C
�1.

Proof We only prove the first statement, similar arguments deduce the other statements. It
follows from Lemma 3.1 that any linear combination of {c(−β)d(−γ)1 |β ∈ T +, γ ∈ T } is an
imaginary Whittaker vector in M(0, c, ϕ)

̂H4
. Now we consider a nonzero vector X of the form

X =
n

∑

i=1

kib(αi)c(−βi)d(−γi)1

with ki ∈ C
∗, α1 �= ∅ and b(αi)c(−βi)d(−γi) decreasing in the lexicographic order on the PBW

basis. By Lemma 3.1,

a(j)X =
n

∑

i=1

ki[a(j), b(αi)]c(−βi)d(−γi)1.

Set m = l(α1). Denote s the maximal positive integer satisfying the following condition:

l(αi) = m, αi
t = α1

t , ∀1 ≤ i ≤ s, 1 ≤ t ≤ m − 1.

Set r = max{l(β1), l(β2), . . . , l(βs)} and take p the minimal positive integer satisfying

p ≤ s, l(βp) = r.

Then for sufficiently small j, the vector a(j)X is nonzero with the leading term

b(αp
1)b(α

p
2) · · · b(α

p
m−1)c(j + αp

m)c(−βp)d(−γp)1.

Hence X is not an imaginary Whittaker vector. We finish the proof. �

4 Simple Imaginary Modules

In this section, we will classify all simple imaginary Whittaker modules.

4.1 Simple Imaginary Modules at Level (κ, c)

First let us classify all simple imaginary modules at level (κ, c) for κ ∈ C
�, c ∈ C. Throughout

this subsection, we assume that κ �= 0. In the following lemma, we establish a bijection between
the set of submodules of M(κ, c, ϕ)

̂H4
and the set of ideals of the polynomial ring C[d].

Lemma 4.1 Let κ ∈ C
�, c ∈ C. Then there is a one-one correspondence between the set of

proper submodules of M(κ, c, ϕ) and the set of proper ideals of C[d].

Proof For any proper submodule W of M(κ, c, ϕ), let S = {f(d) | f(d)1 ∈ W} = W ∩ C[d].
Then the lemma holds if W = U( ̂H4)S1. It is trivial that W ⊇ U( ̂H4)S1. The hard part
is to prove that W ⊆ U( ̂H4)S1. By PBW theorem, we write a nonzero vector w in W as
ΣN

i=1b(α
i)c(−βi)d(−γi)gi(d)1, with (l(αi), l(βi), αi,−βi,−γi) decreasing in the natural lexico-

graphic order on the product set Z2 × P3 and gi(d) ∈ C[d]. To prove w ∈ U( ̂H4)S1, we need
to prove gi(d) ∈ S. Indeed we only need to prove g1(d) ∈ S. For sufficient small r, the leading
term of a(r)pw is a nonzero multiple of

c(r + α1
1)c(r + α1

2) · · · c(r + α1
p)c(−β1

q ) · · · c(−β1
2)c(−β1

1)d(−γ1
s ) · · · d(−γ1

2)d(−γ1
1)g1(d)1,
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where p = l(α1), q = l(β1) and s = l(γ1). Then
∏

1≤k≤s
1≤j≤q
1≤i≤p

(c(γ1
s+1−k) − ϕ(c(γ1

s+1−k)))

(d(β1
q+1−j) − ϕ(d(β1

q+1−j)))(d(−r − α1
i ) − ϕ(d(−r − α1

i )))a(r)pw

is a nonzero multiple of g1(d)1. Hence g1(d) ∈ S. We finish the proof. �
To classify all simple imaginary modules at level (κ, c) with κ �= 0, we only need the maximal

submodules of M(κ, c, ϕ).

Lemma 4.2 Let κ ∈ C�, c ∈ C and let W be a maximal submodule of M(κ, c, ϕ). Then there
exists λ ∈ C such that W ∼= U( ̂H4)(d − λ)1.

Proof Let S = {f(d) | f(d)v ∈ W} = W ∩ C[d]. By Lemma 4.1, S is a maximal ideal of C[d]
and hence S = (d − λ)C[d] for λ ∈ C. Then we finish the proof. �

Theorem 4.3 gives a classification of simple imaginary Whittaker modules of type ϕ at level
(κ, c) for κ ∈ C�, c ∈ C.

Theorem 4.3 Let κ ∈ C
�, c ∈ C and let V be a simple imaginary Whittaker modules of type

ϕ for ̂H4 at level (κ, c). Then V ∼= M(λ, κ, c, ϕ)
̂H4

for some λ ∈ C.

Proof Following from the universal property of M(κ, c, ϕ)
̂H4

, there exists a surjective module
homomorphism φ : M(κ, c, ϕ) → V ;1 �→ w. So V is isomorphic to some simple quotient of
M(κ, c, ϕ)

̂H4
, and therefore by Lemma 4.2, V ∼= M(λ, κ, c, ϕ)

̂H4
for some λ ∈ C. �

Following from Theorem 4.3, we have

Corollary 4.4 Let κ ∈ C�, c ∈ C.

1. Any simple imaginary Whittaker module at level (κ, c) is a simple imaginary weight
module. In particular, any simple singular imaginary Whittaker module is a simple imaginary
highest weight module.

2. ˜M(κ, ϕ)h(λ) (κ �= 0) is simple for any λ ∈ (Cc ⊕ Cd)∗.

4.2 Simple Imaginary Modules at Level (0, c)

Now let us study simple imaginary modules at level (0, c) for c ∈ C. We will consider such
modules as ˜H4-modules at level c. Following from Schur’s Lemma and the fact c(i)’s are
central in ˜H4, we have

Lemma 4.5 Let c ∈ C and V be a simple imaginary Whittaker module over ̂H4 of type ϕ at
level (0, c). Then V is a quotient of ̂L(ϕ̃) for some Lie algebra homomorphism

ϕ̃ : span
C
{c(i) | i ∈ Z} → C

with

ϕ̃|span
C
{c(i) | i∈N} = ϕ, ϕ̃(c) = c,

where ̂L(ϕ̃) is defined as follows: ̂L(ϕ̃) = M(0, c, ϕ)
̂H4

/
∑

i∈N
U( ̂H4)(c(−i) − ϕ̃(c(−i)))1.

To describe our results, we need the following definition in combinatorics.
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Definition 4.6 1. Let s ∈ N. An order-s homogeneous linear recurrence with constant
coefficients is an equation of the form f(n) =

∑s−1
j=1 rjf(n + j), where r1, . . . , rs−2 ∈ C and

rs−1 ∈ C∗.

2. A sequence {f(n) |n ∈ Z} is a constant-recursive sequence of order s if there exists s ∈ N

and an order-s homogeneous linear recurrence with constant coefficients that it satisfies for all
n ∈ Z and for any t < s, any order-t homogeneous linear recurrence with constant coefficients
does not hold for some n.

Let ci ∈ C, i ∈ Z. To classify simple imaginary modules for ̂H4 of type ϕ at level (0, c0) on
which c(i) acts as ci for all i ∈ Z, we need to classify maximal submodules of ̂L(ϕ̃), where ϕ̃ is
defined by ϕ̃(c(i)) = ci, i ∈ Z. Suppose that {ci | i ∈ Z} is not a constant-recursive sequence,
we establish a bijection of the set of submodules of ̂L(ϕ̃) and the set of ideals of the polynomial
ring C[d(−i) | i ∈ Z+] in the following lemma.

Lemma 4.7 Suppose that {ci | i ∈ Z} is not a constant-recursive sequence. There is a one-one
correspondence between the set of submodules of ̂L(ϕ̃) and the set of proper ideals of C[d(−i) | i ∈
Z+].

Proof For any proper submodule W of ̂L(ϕ̃), let S = {f(d) | f(d)1 ∈ W} = W ∩ C[d(−i) | i ∈
Z+]. We want to prove that W = U( ̂H4)S1. As in the proof of Lemma 4.1, we only need to
prove that W ⊆ U( ̂H4)S1. A nonzero vector w in W is of the form

w =
n

∑

k=1

b(αk)gk(d)1,

where αk decreases in P and gk(d) ∈ C[d(−i) | i ∈ Z+]. Define the height of w to be the length
l(α1). As in the proof of Lemma 4.1, we only need to prove that g1(d) ∈ S. We use induction
on the height of w. The case of height zero is trivial. Choose p to be the maximal integer
satisfying

1. l(α1) = l(α2) = · · · = l(αp) = t;

2. αi coincides with α1 in the first t − 1 entries for every 1 ≤ i ≤ p.
Since {ci | i ∈ Z} is not a constant-recursive sequence, there exists j1 ∈ Z such that

u1 = (mcα1
t +j1 , cα2

t+j1 , . . . , cαp
t +j1)

is a nonzero vector, where m is the multiplicity of α1
t in α1. Then the dimension of space

W1 = {v ∈ Cp | (u1,v) = 0} is p − 1. Choose a nonzero vector v1 in W1. Because of the
non-constant-recursive condition, there exists j2 ∈ Z such that the inner product of

u2 = (mcα1
t +j2 , cα2

t+j2 , . . . , cαp
t +j2)

and v1 is nonzero. Applying this procedure several times, we obtain a sequence of nonzero
vectors uk = (mcα1

t +jk
, cα2

t +jk
, . . . , cαp

t +jk
), 1 ≤ k ≤ p, and a sequence of nonzero vectors

v1, . . . ,vp−1 such that

(uj ,vi) = 0, j ≤ i;

(ui+1,vi) �= 0.
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Therefore we get a sequence of integers j1, j2, . . . , jp such that the determinant of the following
matrix

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

mcα1
t+j1 mcα1

t+j2 · · · mcα1
t +jp

cα2
t +j1 cα2

t +j2 · · · cα2
t +jp

...
...

. . .
...

cαp
t +j1 cαp

t +j2 · · · cαp
t +jp

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

is nonzero. So there exists a column vector

k = (k1, k2, . . . , kp)T

such that Ak = (1, 0, 0, . . . , 0)T . Then we know that

b(α1
1)b(α

1
2) · · · b(α1

t−1)g1(d)1

is the leading term of the vector

(k1a(j1) + k2a(j2) + · · · + kpa(jp))w.

By induction on height, g1(d) lies in S. We finish the proof. �
Theorem 4.8 gives a classification for simple imaginary modules over ̂H4 at zero level under

the condition that {ci | i ∈ Z} is not a constant-recursive sequence.

Theorem 4.8 Suppose {ci | i ∈ Z} ⊆ C is not a constant-recursive sequence. Let V be a
simple imaginary module for ̂H4 of type ϕ at level (0, c0) on which c(i) acts as ci for all i ∈ Z.
Then there exists an extended Lie algebra homomorphism ϕ̂ : h → C such that V ∼= L̃(ϕ̂)(λ),
where λ = ϕ̂|Cc+Cd.

Proof As in the proof of Lemma 4.2, V is a simple quotient of ̂L(ϕ̃) and hence is determined
by a maximal ideal S of C[d(−i) | i ∈ Z+]. By the generalized Hilbert’s Nullstellensatz Theorem
(see [12]), S is generated by {d(−i)−d−i | i ∈ Z+} for some d−i ∈ C. Extend ϕ̃ to a Lie algebra
homomorphism ϕ̂ : h → C by setting ϕ̂(d(−i)) = d−i. Recall the notations in Section 2, we
have

L̃(ϕ̂)(λ) ∼= ̂L(ϕ̂)/
∑

j∈Z+

U( ̂H4)(d(−j) − ϕ̂(d(−j)))1.

Then we finish the proof. �
Now suppose {ci | i ∈ Z} being a constant-recursive sequence of order s such that

ci =
s−1
∑

j=1

rjci+j , ∀i ∈ Z,

where r1, r2, . . . , rs−2 ∈ C and rs−1 ∈ C∗. We will study the simple imaginary Whittaker
modules of type ϕ at level (0, c0) on which c(i) acts as ci for all i ∈ Z. Let D =

∑

i∈Z
Cd(i) and

Bϕ =
∑

r∈Z
CB(r) with B(r) = b(r)−

∑s−1
j=1 rjb(r + j). Then D+Bϕ is a subalgebra of ̂H4 and

any simple (D+Bϕ)-module V can be viewed as a simple F = (D+Bϕ +
∑

i∈Z
(Cc(i)+Ca(i))+

CK)-module by letting c(i) acts as ci and the actions of a(i)’s and K are trivial. Denote such
a module by V F .



1052 Bao Y. X. and Cai Y. A.

Proposition 4.9 Let V be a nonzero (D + Bϕ)-module. Then Ind
̂H4
F (V F ) is a simple ̂H4-

module at level (0, c0) if and only if V is a simple (D + Bϕ)-module.

Proof Let V be a nonzero (D + Bϕ)-module. Let {vi | i ∈ I} be a basis of V , where I

is a countable set. Since I is a countable basis, we may define a total order on I. Since
{B(r), b(i), a(r), c(r), d(r), K | r ∈ Z, 1 ≤ i ≤ s − 1} is a basis for ̂H4, by PBW theorem,
{b(1)j1b(2)j2 · · · b(s − 1)js−1vi | j1, j2, . . . , js−1 ∈ Z+, i ∈ I} is a basis of Ind

̂H4
F (V F ). A nonzero

vector w in Ind
̂H4
F (V F ) can be written as

w =
N

∑

p=1

kpb(1)jp
1 b(2)jp

2 · · · b(s − 1)jp
s−1vip

with (
∑s−1

h=1 jp
h, jp

1 , jp
2 , . . . , jp

s−1, ip) decreasing in the natural lexicographic order on (Z+)s × I.
Denote t the maximal integer such that j1

t is nonzero. Let {q1 = 1, q2, . . . , qM} be the maximal
subset of {1, 2, . . . , N} satisfying

1. b(1)j
qh
1 b(2)j

qh
2 · · · b(s−1)j

qh
s−1 = b(1)j1

1 b(2)j1
2 · · · b(t)j1

t −1b(th) for 1 ≤ h ≤ M , where th ≥ t;
2. i1 = iq1 = iq2 = · · · = iqM

.
It is clear that M ≤ s − 1. Then the coefficient of the term b(1)j1

1 · · · b(t)j1
t −1vi1 in a(l)w is

kq1j
1
t ξ(c(l + t1)) + kq2ξ(c(l + t2)) + · · · + kqM

ξ(c(l + tM )).

Since {ξ(c(i)) | i ∈ Z} is a constant-recursive sequence of order s, there exists an integer l

such that the coefficient is nonzero. We note that the leading term in a(l)w is not necessarily
a multiple b(1)j1

1 · · · b(t)j1
t −1vi1 but of the form b(1)j1

1 · · · b(t)j1
t −1ṽi. Applying this procedure

several times, we may reduce w into a nonzero vector in V . �
Theorem 4.10 classifies all simple imaginary Whittaker modules of type ϕ on which K acts

trivially and c(i) acts as ci for all i ∈ Z, under the condition that {ci | i ∈ Z} is a constant-
recursive sequence.

Theorem 4.10 Suppose {ci | i ∈ Z} is a constant-recursive sequence of order s. Let V be an
imaginary module of type ϕ for ̂H4 at level (0, c0) on which c(i) acts as ci for all i ∈ Z. Then
there exists a simple (D + Bϕ)-module W such that

1. d(i)’s (i > 0) have a common eigenvector on W ;
2. V ∼= Ind

̂H4
F (WF).

Proof Let v be the cyclic imaginary Whittaker vector of V and W = U(D+Bϕ)v. Then there
is a surjective homomorphism from Ind

̂H4
F (WF ) to V by mapping v to v. Since V is simple, W

is a simple (D + Bϕ)-module. This completes the proof. �
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