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Abstract This paper is mainly concerned with the following nonlinear p-Laplacian equation
—Apu(z) + (Aa(z) + Dluf*(2)u(e) = f(z,u(z)), nV

on a locally finite graph G = (V, E) with more general nonlinear term, where A, is the discrete p-
Laplacian on graphs, p > 2. Under some suitable conditions on f and a(z), we can prove that the
equation admits a positive solution by the Mountain Pass theorem and a ground state solution uy via
the method of Nehari manifold, for any A > 1. In addition, as A — 400, we prove that the solution ux

converge to a solution of the following Dirichlet problem
—Apu(a) + [uP A (@)u(@) = f(z,u(@)), nQ,
u(z) =0, on 092,
where Q = {z € V : a(x) = 0} is the potential well and Q2 denotes the the boundary of Q.
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1 Introduction

In Euclidean space, the nonlinear Schrédinger type equation of the form
—Au(z) + V(z)u(z) = f(z,u(x)), inQ

has been extensively studied during the past several decades, where @ C RY, f: QxR — R is
a nonlinear continuous function and V() is a given potential. It has attracted great interest
because of its importance in applications. The readers can refer to [2-4, 7, 9, 17, 20, 21, 25—
27, 32, 33] and the references therein. In particular, Bartsch and Wang [2] showed the existence

of a least energy solution uy(z) of the following nonlinear Schrédinger equation
—Au(z) + (a(z) + Du(z) = uP(z), u>0,zcRY, (1.1)

for large A, where 1 < p < (N+2)/(N —2), N > 3 and a(x) > 0. As A — oo they proved uy(z)
converged strongly in H'(RY) to a least energy solution of the elliptic problem

—Au4u=uP, u>0, in{,
u =0, on 0.
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Recently, there were many works about the differential equations on graphs (cf. [5, 6, 10—

16, 18, 19, 22-24, 29-31]). For example, Grigor'yan, Lin and Yang studied some nonlinear

elliptic equations on graphs by using the variational method. Specifically, in [13], using the

calculus of variations and a method of upper and lower solutions, they studied the Kazdan—
Warner equation

Au=c—he", inV (1.2)

on finite graphs, where A is a discrete graph Laplacian, ¢ € R is a constant and h: V — R is a
function. In [14], for any p > 2, they proved the existence of nontrivial solutions to the Yamabe

type equation

—Au — au = [ulP~2u, in Q°,
u =0, on 0f)

by using the Mountain Pass theorem, where €2 is a bounded domain on locally finite graphs or
finite graphs, 2° and 052 denote the interior and the boundary of € respectively. And they also
considered similar problems involving the p-Laplacian and poly-Laplacian by the same method

in [14]. In [15], they established existence results for the equation
—Au(z) + h(z)u(z) = f(z,u(z)), zeV. (1.3)

In particular, they proved that the equation (1.3) has strictly positive solutions under the
assumption for h and f. Specifically, h : V — R and f : V xR — R are two functions satisfying
the assumptions:

(Hy) There exists a constant hg > 0 such that h(x) > hg for all x € V;

(Hs) ;11 e L'(V);

(F1) f(x,s) is continuous in s € R, f(x,0) = 0, and for any fired M > 0 there exists a
constant Ay such that max,eoar f(,8) < Apy for all z €V

(Fg) There exists a constant 6 > 2 such that if s > 0 then there holds

0<0F(x,s):= 9/8 flz,t)dt < sf(x,s), VrxeV,
0

(F3) limsup,_,o+ QFS’S) <Ar=infy 214, Sy (IVul? + hu?)dp.
Zhang and Zhao [31] studied the convergence of ground state solutions for the following
Schrédinger equation
—~Au+ Mo+ Du=[ufftu, inV

on a locally finite graph, where A is discrete graph Laplacian. And Keller and Schwarz [19]
studied the Kazdan—Warner equation on canonically compact graphs.

In addition, there were many works about the differential equations on infinite graphs. In
[10], under the assumption that A < 0 and some other conditions, Ge and Jiang proved the
existence of a solution to the Kazdan—Warner equation (1.2) on an infinite graph by using a
heat flow method. In [11], under the assumption that the graph Laplacian A is a bounded
operator, g is bounded and h is large at infinity, they also proved the existence of a solution to
the graph Yamabe equation

Au + hu = glulP~2u
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on an infinite graph.

In this paper, motivated by [15, 31], we consider the nonlinear p-Laplacian equation
—Apu(z) + a(z) + D|uP2(z)u(z) = f(z,u(z)), inV (1.4)

on a locally finite graph G = (V, E) with more general nonlinear term, where A, is the discrete
p-Laplacian on graphs, p > 2 and f(x,u) is continuous in u € R, for any z € V. We prove
that the equation admits a positive solution by the Mountain Pass theorem and a ground state
solution uy via the method of Nehari manifold, for any A > 1. Moreover, as A\ — +oo, the
solution u) converges to a solution of the Dirichlet problem.

Before we state our works, let us introduce some concepts and assumptions. Let G = (V, E)
be a graph, where V denotes the set of vertices and E denotes the set of edges, wy,, : VXV — R
be an edge weight function and p : V' — R™ be a finite positive function on G = (V, E). We
say it is a uniformly positive measure if there exists a constant pi,i, > 0 such that p(z) > pimin
for all x € V. We say that a graph is locally finite if for any x € V', there holds Zng 1<o0. A
graph is connected if any two vertices  and y can be connected via finitely many edges. Note
that the information of G contains V, E, i and w. Throughout this paper, we always assume
that G satisfies the following assumptions.

(G1) For any vy € E, wyy = wye > 0 and M := sup,cy i?i”; < +o0, where deg, :=
ZyEV Wry-

(G2) G is a locally finite and connected graph with uniformly positive measure.

The graph distance d(x,y) of two vertices z,y € V is defined by the minimal number of
edges which connect these two vertices. We call 2 C V' a bounded domain in V, if the distance
d(x,y) is uniformly bounded from above for any x,y € Q. Note that a bounded domain of a
locally finite graph contains only finitely many vertices. We denote the boundary of 2 by

N :={yeV,y¢Q:3z € Qsuch that zy € E}

and the interior of 2 by 2°. Note that Q° = € which is different from the Euclidean case.
For any function v : V' — R, the p-Laplacian (or Laplacian for short) of u is defined as
1
Au(x) := wey (u(y) — u(x)). 1.5
)=y D (0(5) = ) (15)
The associated gradient form is defined by

Dl 0)(w) 1= o ) Dy (0(0) — u(w) (o) = v(a). (16)

Write I'(u) = I'(u, v). Sometimes we use VuVo instead of I'(u,v). We denote the length of its
gradient by

1 >
Vulla) = VO = (5 ) Sn () ~ u(@)?) (1.7

Yy~x
With respect to the vertex weight u, the integral of w over V is defined by

/Vudu = Z,u(ac)u(:v) (1.8)

zeV
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The p-Laplacian of u : V' — R, namely Apu, is defined by

1 o .
2M(x)y¥m(‘VU| 2(y) + |Vl 2(;5))wxy(u(y) —u(x)). (1.9)

Apu(z) ==
Remark 1.1 Ge [12] studied the following p-th Yamabe equation on a connected finite graph
G:

App + hpP™t = Aot (1.10)
where A, is the discrete p-Laplacian, h and f > 0 are fixed real functions defined on all
vertices. He proved that the above equation always has a positive solution for some constant
A € R. However, it is remarkable that their A, considered in the equation (1.10) is different
from ours when p # 2.

To state the main results, we introduce the following assumptions on f : V x R — R and
a:V — R. Here A > 1 and p > 2 are constants.

(f1) For any x € V, f(x,s) is continuous in s € R, f(x,0) =0, and for any fized M > 0
there exists a constant Ay such that max g<ps f(x,8) < Apg for allz € V.

(f2) There exists some oo > p such that for any s € R\ {0} there holds

0 < aF(x,s):= a/sf(x,t)dt < sf(z,s), VYxeV
0

(f3) For any x € V, there holds

VulP + (Ma + 1)|ulP)d
1imsup|f(x’j)| < Ap = inf S (IVul? + (Aa + 1)[ul?)dp
=0 [sl? u0 Jy lulpdp

(f4) There exist some g > p and C > 0 such that
|f (2, 8)] < C(1+|s|7Y), uniformly in x € V.

(f5) s — (S(‘ffl) is strictly increasing on (—o00,0) and (0,400) for all z € V.

Our assumptions on the potential a(x) are:

(A1) a(x) > 0 and the potential well Q@ = {x € V : a(x) = 0} is a non-empty, connected and
bounded domain in V.

(A2) (a(z) + 1)~ € Lo-1 (V).
Remark 1.2 For brevity, we use [i, f(x,u)dp for [, f(-,u(:))dp and [, F(x,u)dp for [, F(-,
ul))d.

Define

WhP (V) i={u:V = R: |ulwrsq < +00}, (1.11)

where )
el = ( [ avur+ ulp)du)

We can verify that W1P(V) is reflexive (see, Corollary 5.8 in Appendix). Consider a function

space

E, = {u cWhP(V): / AalulPdp < +oo}
%
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with the norm )
Julles = (f (9P + O+ Djup)an)
\4

Clearly, E) is a Banach space and also a reflexive space.
The functional related to (1.4) is
N / (IVul? + (Aa + 1) ul’)dp — / Fla, u)dp. (1.12)
pJv %4
Let
H(u) = ; / (Vul” + (Aa+ Dluf)du, u e Bs. (1.13)
1%

Then
Ja(u) = Hy(u) —/ F(z,u)dp.

v
We can easily verify that Jy € C*(E\,R) and

Jy\(u)v = Hy (u)v — /V f(x,u)vdu, Vv € Ejy, (1.14)

where
HY (u)o = / (IVulP 2T (4, v) + (Aa + 1)|ul?~2uv)dp.
1%

The Nehari manifold related to (1.4) is defined as
Ny = {u € Ex\ {0} : J{(u)u = 0}.

Let my be

my = uleI}\f}/\J)\(u)

If my can be achieved by some function uy € Ny and uy is a critical point of the functional
Jy, then we call uy a ground state solution of (1.4). Our main theorems are
Theorem 1.3 Let G = (V, E) be a graph satisfying (G1)—~(Gz). Assume a(x): V — [0,400)
is a function satisfying (A1), (A2) and f:V xR — R satisfies (f1)—(f3). Then for any positive
constants A > 1 and p > 2, the equation (1.4) has a positive solution.
Remark 1.4 If we replace Aa + 1 by a function h satisfying (Hy) and (Hs), then we have
the same conclusion as Grigor’yan—Lin—Yang in [15] and our results generalize their work from
p=2top>2
Theorem 1.5 Let G = (V,E) be a graph satisfying (G1)—~(Gz). Assume a(x): V — [0, +00)
is a function satisfying (A1), (A2) and f:V xR — R satisfies (f1)—(f5). Then for any positive
constants A > 1 and p > 2, there ezists a ground state solution uy of the equation (1.4).
Remark 1.6 We can easily check that the function |u|?~2u is a typical example of f that
satisfy the assumption (f;)—(f5), where ¢ > p.

For the asymptotic behavior of u) as A — +o00, we introduce the limit problem which is

defined on the potential well Q:

—Apu(x) + [uf 2 (2)u(z) = f(z,u(x)), nQ,

(1.15)
u(x) =0, on 09,
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where Q = {z € V : a(z) = 0} is the potential well.
Let W, ?(Q) be the completion of C..(€2) under the norm

1
P
N R

The functional related to (1.15) is

1 1
Ja(u) = / [VulPdp + / |ulPdp — | F(x,u)dpy. (1.16)
D Jauvsn P Ja Q
We can easily verify that Jo € C'(Wy?(Q),R) and
Jo(w)d = |Vu|P~2T (u, ¢)du +/ |ulP~2ugpdu —/ flz,u)pdp, Yo e WyP(Q). (1.17)
QUIR Q Q

The corresponding Nehari manifold is

NQ = {u S WOLP(Q) \ {0} : ||UH€[/0113(Q) = /Qf(x’u)UdM}

And

;= inf .
ma = 1of Jalw)

Similar to (1.4), the Dirichlet problem also has a ground state solution.
Theorem 1.7 Let G = (V, E) be a graph satisfying (G1)—(Gz), Q be a non-empty, connected
and bounded domain in V. Assume f:V x R — R satisfies (f1)—(f5). Then for any p > 2, the
equation (1.15) has a ground state solution uy € Wy (Q).

We can prove that (1.15) is some kind of limit problem for (1.4). More precisely, we have

Theorem 1.8 Under the same assumptions as in Theorem 1.5, we have that, for any sequence
A — 00, up to a subsequence, the corresponding ground state solutions wuy, of (1.4) converge
in WHP(V) to a ground state solution of (1.15).

As far as we know, there is no such results on p-Laplacian equations defined on locally finite
graphs. Our works generalize the results in [31] to p-Laplacian equations but the proofs are
more complicated than those in [31].

This paper is organized as follows. In Section 2, we mainly prove that the formula of
integration by parts and Sobolev embedding theorem hold on the graph. In Section 3, we prove
the existence of positive and ground state solutions of (1.4) by using the Mountain Pass theorem
and the method of Nehari manifold. In Section 4, we demonstrate the desired convergence
behavior, namely as A\ — +o0o, the ground state solutions uy of (1.4) tend to a ground state

solution of (1.15) in . In Section 5, some necessary lemmas are given in Appendix.

2 Preliminaries

In this section, we introduce some preliminaries and basic functional settings. In particular,
we shall prove formulas of integration by parts and embedding theorems of Sobolev spaces on
locally finite graphs.

Lemma 2.1 Assume that u € WYP(V) and its p-Laplacian is defined by (1.9). Then for any
v € C(V) we have

/ |Vu|p*2Vqudu:/ |Vu\p*2F(u,v)dﬂ:—/(Apu)vd,u.
% % %
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Proof By the definition of I'(u,v), we have

/ V2D (u, v)dps = / Vulr?, Z oy (1) — () (0(y) — v())ds

0 1
= |Vul’~ (x)2u( )way(U(y) — u(x))(v(y) — v(z))pu(z)

= =

- Zvi 9l (0)3 ()~ o))

- EZV;w“(x);ww(u(y) ~ u())o(a)

= ;; IVu\p*Q(y)gwmy(u(x) — u(y))o(z)
- ;/;Vulp *( yz;cwxy — u(@))v()

=1 +1I,

where I = Y, ey HIVUP2(5) 2, 0y oy (@) ~u(y)o(a) and IT = — 3,0y VU 2() 3, .,
way (u(y) — u(x))v(z). Noting that v € C.(V), there are finite vertices in V' such that v(x) # 0.

Then we have

1= 3 IVl ()Y oy (ul) — uly)u(a)

yGV T~y

ZZIWI” 2 (y)way (u(z) — u(y))v(@).

mGVy"‘z

And then we can obtain

/ |Vu|P~2T (u,v)dp = T + 11
14

ZZW“VD Y)way(u(z) — u(y))v(x) + 11

xEVy"fL’
ZZ [VulP~2(y) + [Vul? = (2))way (u(y) — u(@))v(@) ' ()
IEV?/NI /,L(l')
= —ZZ |VU|p () + [VulP =2 (2))way (u(y) — u(z))o(@)u(z)
zEVyNI
= —/ (Apu)vdp. O
14

Remark 2.2 By Lemma 2.1, we know that the definition of p-Laplacian in (1.9) is reasonable.

Lemma 2.3 Let Q C V be a bounded domain. Assume that uw € WHP (V) and its p-Laplacian
Ayu is defined by (1.9). Then for any v € C.(Q), we have

/ |Vu|P~2VuVodu :/ |Vu|P~2T (u, v)dp = —/(Apu)vd,u.
QUAQ QUAQ Q

Proof By using Lemma 2.1, we only need to prove that

/ |VulP~2T (u, v)dp = 0,
V\{QuaQ}
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ie, I'(u,v)(x) =0, for all z € V \ {QUIN}. Since v € C.(), v =0 on V \ Q. Thus, for
any x € V \ {Q U IN}, there hold v(z) = 0 and v(y) = 0 for all y ~ x. Therefore, we get for
x e V\{QuUaIQ},

1
T 0)E) = 5 3 iy (uls) = ) (014) = () = 0.
and the lemma is proved. O
The weak solution of (1.4) and (1.15) are defined as
Definition 2.4 If for any ¢ € E\, there holds

/ (IValPT(w, ) + (Aa + D]l 2ud)du = / F(a,u)bd, € By,
\% Vv

then w is called a weak solution of (1.4).

Definition 2.5 If for any ¢ € Wol’p(Q), there holds

/ IVl 2T, @)yt + / P2 uddy = / o, w)bdu, e WEP(Q),
QUON Q Q

then u is called a weak solution of (1.15).
Finally in this section, we prove the Sobolev embedding theorems on the graphs.

Lemma 2.6 Assume that A > 1 and a(z) satisfies (A1) and (Az). Then Ey is continuously
embedded into LI(V') for any q € [1,+00] and the embedding is independent of A\. Namely there
exists a constant & depending on q, p, imin and ||(a + 1)1 1 such that for any u € Ej,

lullg < &llullz, - (2.1)
Moreover, for any bounded sequence {ur} C Ey, there exists u € E) such that, up to subse-
quence,
up — u, in Ey;
ug(x) — u(z), VreV,
ug — u, in L1(V), Vqell,+o00].

Proof Suppose u € Ey. At any vertex zy € V, we have

IME=AWW+WHWWML

> / |ulPdp
14

= lu(@)Pu(z)

zeV
2 ,U/min|u(x0)‘p>

which gives
1
1 P
o < (1) s, (22)
/’Lmln
Therefore, £\ — L*°(V) continuously and the embedding is independent of A. Thus E) —
L(V') continuously for any p < ¢ < co. In fact, for any u € E), we have u € LP(V'). Then, for
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any p < ¢,
/ fultdjs = / P 0Tt < (i) |57 / ulPds < (ttmin) 7" [l < +00,  (2.3)
\% 1% \%

which implies that v € LY(V) and

il = ([ 16) " < G 5 il foramy < . 24
Next, we prove that E) — L%(V) continuously for any 1 < ¢ < p. Indeed, (As) implies that
Aa+1)"te Lot (V), VA> 1. (2.5)

Then, for any u € E),

1
/|u\d/¢ /)\a—i-l) »(Aa+1)7|uldp

< (/V()\a—i-l) bl 1d,u> B (/‘/(Aa+1)|u|pdu);

= (ha+ 1717, </()\a+1)u|pd,u>
p—1 v
< |[(Aa + 1)’1||:11 l|ul 2,

1
<la+D7H7s e,
< 00, (2.6)
which implies that u € L'(V). And it follows from

1
lull e < / fulds
Mmin Jv

that

_ 1 18
/ jultdps = / Ml < (/ luldu) < @ )T g, @)
p—1

Therefore, for any 1 < ¢ < p, E,\ — Lq(V continuously and

1
q 1—q _ 11)
foll = ([ toftdn) < Guui) ¥ e+ 071l (2:5)
By (2.4) and (2.8), we can obtain that there exists a constant 1 depending on ¢, p, fimin and
[(Aa+ 1)~ 1 such that for any u € E,
ot
lullg < &llullz, -
Let p* be the exponent conjugate to p. Each element v € L?” (V') defines a linear functional
¢y on LP(V) via
Do (u) = / wodp, w e LP(V).
v
Noting that F) is reflexive, for {ug} bounded in Ey, we have that, up to a subsequence, up — u

in Fy. On the other hand, {ux} C Ej is also bounded in LP(V') and we have uy — w in LP(V),
which tell us that

lim ¢y, (up, —u) = Um [ (up —w)vdy

n—00 k—o0 v
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= lim. > @) (ue(x) — u(@))v(x) =0, Yo LP (V). (2.9)
zeV

Take any g € V' and let

1, x=wo;
vo(z) = 0 o
, X Zo-

Obviously it belongs to LP" (V). By substituting vy into (2.9) we have
Jm u(zo) (ur(zo) — u(zo)) =0, (2.10)

which implies that limy_,o ug(z) = u(x) for any z € V.
We now prove up, — w in LI(V) for all 1 < ¢ < +00. Since {uy} is bounded in F) and

u € E), there exists some constant Cy such that
/ (Aa + 1)|ug, — ulPdu < Ch.
1%
Let zp € V be fixed. For any € > 0, in view of (2.5), there exists some R > 0 such that

/ (/\a+1)7plldu<ep.
dist(z,z0)>R

Hence by the Holder inequality,

/ T—
dist(x,z0)>R

:/ ()\a+1)_;(x\a+1)117|uk—u\du
dist(z,z9)>R

p—1 1
(Lo o) ([ o)
dist(x,z0)>R dist(z,z0)>R
1
<Cpert. (2.11)
Moreover, we have that up to a subsequence,
lim |up — uldp = 0. (2.12)

k—+oo dist(z,z0)<R

Combining (2.11) and (2.12), we conclude

liminf/ lup — uldp = 0.
k—+oo Jy/

In particular, there holds up to a subsequence, uj, — w in L'(V). Since
1
lup — ul|poo vy < |ug, — uldp,
Mmin Jv

there holds for any 1 < ¢ < 400,
1 q
/ lug —ulfdp < (/ |ug — u|d,u) .
Vv Hmin Vv

Therefore, up to a subsequence, uy — u in L4(V) for all 1 < g < 4o0. O
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Lemma 2.7 Assume that Q is a bounded domain in V.. Then W, () is compactly embedded
into L1(QY) for any q € [1,+00]. In particular, there exists a constant C depending only on q
and Q such that for any u € Wy (Q),

lully < Cllullyprq). (2.13)
Moreover, Wol’p(Q) is pre-compact, namely, if ux is bounded in Wol’p(Q), then up to a subse-
quence, there exists some u € Wy P(Q) such that uj, — u in Wy (Q).

Proof Since § is a finite set in V/, Wol’p(Q) is a finite dimensional space. Hence, Wg’p(Q) is

pre-compact. And the proof of (2.13) is similar to [14, Theorem 7], which we omit here. O

3 The Existence of Positive and Ground State Solutions
3.1 Existence of Positive Solution

In this subsection, under the assumptions (f;)—(f3) and (A1), (A2), we prove that the equation
(1.4) admits a positive solution by using the Mountain Pass theorem.

Definition 3.1 ((PS). condition [1, Definition 1.16]) Let (X, || -||) be a Banach space, J €
CY(X,R). We say the function J satisfies the (PS). condition, if any {ur} C X such that

J(ug) — ¢ and J'(u) — 0 as k — +00 has a convergent subsequence.

Lemma 3.2 (Mountain Pass theorem [1, Theorem 1.17]) Let (X, ||-||) be a Banach space and
J € CY(X,R) be a functional satisfying the (PS). condition. If there exist e € X and r > 0
satisfying |le]| > r such that

b:= inf J(u) > J(0) > J(e),

llull=r

then c is a critical value of J, where

:= inf t
¢i= Inf max J(y(1))

and
[':={y € C([0,1], X) : 7(0) = 0,7(1) = e}.
Lemma 3.3 Ifu € E) is a weak solution of (1.4), then u is also a point-wise solution of (1.4).
Proof If u € E) is a weak solution of (1.4), then for any ¢ € E), there holds
/(|VU\p_2F(u,¢) + (Aa+ D)|ulP2ug)dp :/ f (@, u)pdp.
1% 1%

Then Lemma 2.1 gives

/ (=Aue+ (Aa + D)[ulP~2ug)dy = / Flo,u)bdu, Vo e Co(V). (3.1)

1% v

For any fixed zg € V, taking a test function ¢ : V' — R in (3.1) with

1, ===,

R
and ¢ € E), then we have
—Apu(zo) + (Aa(xo) + 1)|u(zo) P~ u(z0) — f(20, u(x0)) = 0.

Since z is arbitrary, we conclude that u is a point-wise solution of (1.4).
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Define
- 0, 5 <0,
f(xa 3) = (32)
f(z,s), s>0.
We consider the following equation
—Apu(x) + (Aa(x) + D|ulP~2(z)u(z) = f(w,u(m)), in V. (3.3)

Lemma 3.4 If f satisfies (f2) and u € Ey is a nontrivial weak solution of (3.3), then u is a

strictly positive solution of (1.4).

Proof Let u € Ey be a nontrivial weak solution of (3.3). And let 4~ = min{u,0}. We claim
that
D(u™,u)(z) > |Vu|?(z) (3.4)

and
T'(u)(z) > |Vu™ [2(z). (3.5)

In fact, by the definition of I'(u,v) we have
I(u®,u™)(z) =T(u",u’)(z)

= 9u() ;ny(u (y) = u” (2))(u*(y) — u™(2))

- 2ul(x) ;‘”zy[u (W)u(y) —u” (yut(z) —u™ (@)u’(y) + u™ (2)u™(z)]

_ _2;(%);6%@ (y)ut (@) +u™ (@)t (y)]

>0 (3.6)

It follows from (3.6) that
T ,u)=Tw ,ut +u” ) =T ,u”)+T(u,u") >T(u",u") = |Vu %

Thus, we have

(
=T(u",u) +Tut,ut +u™)
=T(u,u) + Tt ut) +T(ut,u)
>T(u™,u”) = [Vu~|?,
which implies (3.5) and
[VulP > |Vu™|P. (3.7)
Note that
lu )P = u P2 P =u—uT P2 (u—uT)u” = u—u P uu = [ufPRun < JulP. (3.8)

By (3.7) and (3.8), we have u~ € E) whenever u € E).
Testing the above equation u™~, we have

/ —u_Apudu—l-/ (Aa(x) 4+ 1)|u|P?uu"dp :/ u” f(z,u)dp.
% 1% %
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Then, by (3.4), (3.7) and the definition of weak solution of the equation (3.3), we have
o, = [ (9P + Q) + D)
< [ 49 P2 + Oala) + Dl
= [ 190 P2r ) + Qala) + Dl
< [ A9l =P ) + ale) + 1l )
= / u” f(x,u)dp < 0.
s

We have by the above inequality that u~ = 0. We claim that u(z) > 0 for all z € V. In fact, if
u(zg) = 0 for some z, then one can see from (3.3) that

—Apu(zo) + (Aa(zo) + 1)|u(xo) P 2u(wo) = f (w0, u(w),

then we get

—Ayu(zo) = f(2,0) = 0.

By the definition of Ayu, we have u(z) = u(xo) = 0 for all z ~ x. Thus, u = 0, which
is a contradiction. Therefore, u is a strictly positive solution of (3.3). By this together with
the hypothesis (f2), we have f(z,u) > 0. Hence f(m,u) = f(z,u) and w is a strictly positive
solution of (1.4). O

By Lemma 3.4, we know that we only need to prove that the equation (3.3) has a nontrivial
weak solution in order to prove Theorem 1.3. Thus, we assume f(z,u) = 0 as v < 0 in the

following and f also satisfies (f;)—(f3).

Lemma 3.5 Assume (f1)—(f3) hold. Then there exist positive constants §, r such that Jy(u) >

d for all functions v with ||u||g, = .

Proof By (f3), there exist positive constants 7 and ¢ such that if |s| < o, then
£(@,8)] < O = 78l (3.9)

and

Assume ||lul|g, < 1. If |s| > o, then by (f;) and (f3)

1

Fle,s)| < s

[PHF(,5)] < ClsP*2,
where C' depends on o and A;. Thus, for all (z,s) € V x R, there holds

)\ —
|F(z,s)| < ”p 1P + C|s|P*2. (3.11)
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Hence,

In(w) = Ll - /V Fa u)dp

Ap— T +2
> ulf, - pp [ully = Cllully

p+2

1
p
1
p
1 A -7
> _ Po_ p+2
> (5= T Y, — el
g

- csmn%x)nu@x

Setting r = min{1, (szTcg);}’ we have Jy(u) = 5\ r? := 0 for all u with [jul[g, = r. This

completes the proof of the lemma. O

Lemma 3.6 Assume (f2) holds. Then there exists some non-negative function u € E\ such

that Jy(tu) — —o0 as t — 4o0.
Proof We obtain from (f;) and (f2) that there exist positive constants C; and Cs such that
F(x,s) > C18* —Cy, V(z,5) eV xR. (3.12)

Indeed, for some 0 < R € R, if 0 < |s| < R, then by (f;) we have

(2, 5)] = ‘/Osf(x,t)dt’ <C, Vs <R (3.13)
For |s| > R, if s > R, then by (f2) we have
0<aF(a.s) < sf(z.s) =57 )
and J dF(z.5)
a 8‘9 < F(;:) (3.14)

and after integrating over the interval [R, sg], we obtain

a(lnsg —InR) <In F(x,s9) — In F(x, R),

that is F( )
se T, Sg
In 0 <1 ’
" Re =" F(a,R)’
which implies that
F(z,s0) > Css(. (3.15)
For s < —R, by (f3), we have
dF
0 < aF(z,s) <sf(x,s)=s (z,5)
ds
wnd ds _ dF(x,s)
s z, s
> ’ 1
“s = F(z,s)’ (3.16)

since s < 0 and F(z,s) > 0. Then after integrating over the interval [sg, —R], we obtain

a(ln R —In|sg|) > In F(z, —R) — In F(z, so),
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that is
R§ F(z,—R)

In n ,
[so|* = F(x,50)
which implies that
F(z,s0) > Cysg. (3.17)
Therefore, by (3.13), (3.15) and (3.17), we can obtain (3.12).
Let xg be fixed. Take a function

Note that F'(z,0) = 0, then we have

Ja(tu) = tp/(|Vu”+(/\a(x)+1)|u|p)du—/‘/F(x,tu)du

p
" Y Ivur(a) ;Z@a( )+ Dfule) i) — Y @) F (e, tu(x)

xEV zEV zeV
Z Vul (e)a(x) + » (M(SUO) + Dlu(zo)[P p(xo) — p(xo) F(xo, tu(xo))
mGV

= Z |Vul?(z)p(z) + ;()\a(sco) + Du(zo) — p(xo) F (20, t)
xEV

< S IVul @n(a) + | (Aaeo) + lan) = plan)Cat® + o) o
mEV

By the definition of u(x), the nonzero terms of >, |VulP(x)u(x) are finite, since G = (V, E)
is a locally finite graph. Then ) . [Vul?(z)u(x) is bounded. Therefore,

tp
Z [VuP @)+ (alzo) + (o) = alwo)Crt® + plae) Ca — —o0
zGV

as t — 400, since a > p.
Next, we prove that Jy satisfies the (PS). condition. And first we need the following two

lemmas.

Lemma 3.7 For any u,v € Ey, it holds that
(Hy\(w) = Hy () (w = 0) > ([l = ol D (lelle, = [v]le,)- (3.18)
Proof  We follow the idea of the proof of [20, Lemma 3.1]. By direct computations, we have

(Hx(u) = Hy(v))(u = v)
= H; (u)(u — v) = Hy(v)(u - )

- /V (V"L (u, u — v) + (Aa(z) + 1) ul?~>u(u - v))du
- /V IV}~ (0, u — v) + (Aa(2) + D]el>0(u - v)d)p

= /V(IVU\p_2F(u,U) = [VulP~?T(u, v) + (Aa(z) + D|uf~*(w* — wv))dp
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- /V(\VUV"?F(U,U) — [VolP?T(v,0) + (Aa(z) + D]o[P =2 (vu — v*))dp
= /V(|Vu\p + |[VolP — |VuP 72T (u, v) — |Vv|P2T (v, u))dp
+ [ (atw) + 0l + o = 2w o ~20)
= |lul, +Ilvl%E, — /V(\VUV’_QF(%@) + (Aa(x) + 1)ul"~?uv)dp

- / (|VoP~2T (v, u) + (Aa(z) + 1)|v[P~2vu)dpu.
v
Applying Hoélder’s inequality,

/V (VP2 (u,v) + (Aa(z) + 1) ufP~2uv)dp

= Vul|P~2 L w —u(x))(v —v(x)) + (Aalz) + P~ 2uw
= VulP~2 1 E wé u(y) — u(x w% v(y) — v(x)) + (Aa(z) + D|ulP 2uw |du

= / (IVuP~2(D(w)) 2 (D(v))2 + (Na(z) + 1)]ulP~2uv)du
Vv

- / (VP2 Vul| o] + (Aa(z) + Dlul’2uv)du
1%

< ([ ( [ roopan)’
4 </V()\a(x)+1)|updu> B (/V()\a(x)—i—l)|v|pd,u>;

Using the following inequality
(a+b)P(c+d)' P >d?cP 4 vPd P (3.19)

which holds for any 8 € (0,1) and for any a,b,c,d > 0. (For the proof of (3.19), we refer to
Lemma 5.9 in Appendix.) Set 8 = p;1 and

a= [ IVl b= [ Ga@ Dl o= [ 1Vopdu d= [ Ga)DloPdn, (320
we get that
/V(|Vu|p2F(u, v) + (Aa(z) + 1)|u|P2uv)du
< ([ 0vur+ 0a@) + vjuryan) © ([ 196 + Gate) + il )
— [l ol (3.21)

Similarly, we obtain

/ (Vo]0 (0,0) + (Ma(z) + Dol Pvu)dp < Jlo]lf |lu] 5,
.
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Therefore, we have
-1 -1
(Hy(u) = Hy(0))(u = v) > [lull, + vllE, — llullp lolle, = vl lulle,
= (llulley = ol (lull ey = 10]l5,)- O
Lemma 3.8 If u, — u in E\ and H}(uy)(u, —u) — 0, then u, — u in Ej.

Proof Since E) is a reflexive Banach space, weak convergence and norm convergence imply
strong convergence. Therefore we only need to show that ||u,|| g, — ||| &, -
Note that
lim (HS(un) — H\(w))(up, —u) = lim Hj (u,)(un — u) — HA (u)(u, —u) = 0.
n— 00 n—0o0

By Lemma 3.7 we have
(HA(un) = H3 () (un — ) 2 (Junlf” =l ) (lunll sy — llulls,)-
Hence ||up ||l g, — ||ullg, as n — oo and the assertion follows. O

Now, we prove that Jy satisfies the (P.S). condition.

Lemma 3.9 Under the assumptions (A1), (A2) and (f1)—(f3), J satisfies the (PS). condition
for any c € R.

Proof Note that Jy(ui) — c and J3(ug) — 0 as k — 400 are equivalent to
1
s, - /‘/F(a:,uk)du — et on(1), (3.22)
and

H (ur)p — /V F(y ) pdp

— [ (VP 9) + Ovala) + Dl 2w~ | flayu)pdu
v v
=ox(lelle,, Ve € Ex. (3.23)
Here and in the sequel, o;(1) — 0 as k — +o0o. Taking ¢ = uy in (3.23), we have
ol = [ Fauusdi-+ ouD)

In view of (f2), we have by combining (3.22) and (3.23) that
Junlly, = [ P udd + pet on(1)
v

< p/f(xauk)ukdﬂ+pc+0k(1)
a Jy

= P luell, + on(D)uslz, +pe -+ ox(1). (3.24)

Since o > p, by (3.24) we get that {uy} is bounded in Ey. Then Lemma 2.6 implies that up
to a subsequence, there exists u € E) such that uy — w in Ey, ux — w in LY(V) for any
1 < g < +oo. It follows from (f;) that

/v f (@, ) (wr — U)dﬂ‘ < C/V |ug — uldp = o(1).
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Replacing ¢ by ur — u in (3.23), we have

()0 =) = [ (=Dl — )+ O+ D — )

:Ajuwmw—mw+%aw%—w&

= o0x(1),
which implies that H}(uy)(ur —u) — 0 as k — oo. Then, it follows from Lemma 3.8 that
up — uin By as k — oo. Il
Proof of Theorem 1.3 By Lemma 3.5, Lemma 3.6 and Lemma 3.9, J) satisfies all the assump-
tions of the Mountain Pass theorem. Thus we obtain that ¢ = inf,er max;c[o,1) Jx(7(t)) is the

critical value of Jy. In particular, there exists some u € E such that Jy(u) = ¢. By Lemma 3.5,
Ja(u)=c>6d>0, (3.25)

so, u Z 0. Thus, u is a nontrivial weak solution of (3.3). By Lemma 3.4, we obtain that u is a

a positive solution of the equation (1.4). O

3.2 Existence of a Ground State Solution

In this subsection, under the assumptions (A;), (As) and (f;)—(f5), we prove the existence of a

ground state solution by the method of Nehari manifold.
Lemma 3.10 Assume (f1)—(f5) hold. Then for any u € Ex\{0} there exists a unique t(u) > 0
such that t(u)u € Ny. The function

t:Ex\ {0} — (0,+00) : u— t(u)
is continuous and the map ¥ : u v t(u)u defines a homeomorphism of the unit sphere of E)
with Ny.
Proof Let u € Ey \ {0} be fixed and define the function g(t) := Jx(tu) on [0, 4+00). Clearly

we have

g () =0stue N,

1
ol =, /Vf(x,tu)udu. (3.26)
It is easy to verify that g(0) = 0. By (f3), there exist positive constants 7 and § such that
[f(z )] < (A —7)[sP7 Vs| <6 (3.27)
and
Ap—T
|F(z,s)] < ) [s]P, V|s|] <. (3.28)

Then, by (3.28) and Lemma 2.6, for |[tu| < § we have

tp
mwamm:pw&—/mew
\%

7 Ap

-7
lull, — [[ully

\%

Ap =T
' T,

\%

.
» [ulls, — 1
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tPrT »
= . [ull, > 0.
Next, we prove that g(t) < 0 for ¢ large. By (3.12) and (3.28), we can obtain that there exist

constants C's > 0 and C4 > 0 such that
F(z,u) > Cslul* — Cql|ul?, VY(z,u) €V xR, (3.29)

Then, by (3.29) and (2.1), we have

tp
ott) = n(e0) = Jully, ~ | Plo.tu)a
tp
<"l — [ (Calead® — Caleup)a
1%
tp p (03 « P P
<"l - Cat s + Cagt?ull,
<(1+Ci8)" ully, — Cat*ul: (3:30)

Note that u € Ey \ {0} and by (2.2), we have

Julla = [ Juldi= [ ful*rluld
v v
< (min) "7 [l 7 /V fulPdp < (pmin) 7" Jull, < +oc. (3:31)
Therefore, we can obtain
g(t) = Jh(tu) < (1+ C4§) Hu|| — C5t™||ul|s — —c0  as t — +oo, (3.32)

since a > p. Thus, g(t) < 0 for ¢ large.
Therefore, there exists ¢ = #(u) such that maxy o) 9 = g(t(u)). Thus, ¢'(t(u)) = 0 and
t(u)u € Ny.

We claim that ¢(u) is unique. In fact, for any ¢ > 0, we have

flo.tu) u>0

f(a?,tu)u [z, tu) o — tufp=1 " ,
=t T (tupmt f(x,tu)

 Jtulpt uf?, u<0.

(z,tu)
tp—1

It follows from (f5) that /
is an increasing function for ¢ > 0. Then there exists a unique ¢(u) such that ||u\|7]”5A =

u is an increasing function for ¢ > 0, hence b, [}, f(z, tu)udp

wo1 [y [ (@, tu)udp, ie., there exists a unique ¢(u) such that t(u)u € N.
To prove the continuity of ¢(u), assume that w, — w in E) \ {0}. We only need to prove
that ¢(u,) — t(u) as u, — w in Ey \ {0}. We claim that {¢(u,)} is bounded. Otherwise,

t(upn) — 400 as n — oo. Note that

g(t(un)) = max g(t) > 0. (3.33)

However, by (3.29) and (2.1), we have

lun 1, /V F (s ()
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< t(un)p P _ C o C P d

< i, [ (Calttununl® = Calttun ) P
t(un)P o o

< ) B~ Catn)un | + Cat(un)?]lun B,
<(1+0o ) tnl, — Ct(an)® funl2

— —00 asn — 00, (3.34)

which is a contradiction. Hence, using the boundedness of {t(u,)}, we have that there exists
to such that
t(un) — to asn — oo. (3.35)

Then, we only need to prove ty = t(u), i.e., J§(tou)u = 0. Noting that J{ (¢t un)u, = 0, we
only need to prove that

IS (tnun ) un — Ji(tou)u as n — oo. (3.36)
Since
I\t )un = [[t(un)un g, — /Vf(x,t(un)un)und,u (3.37)
and
[t(un)unl, — lltoully, asn— oo, (3.38)
it is enough to prove
/ f(z, t(up)upn ) undp —>/ f(z, tou)udp  as n — oo. (3.39)
v v

Indeed, by (f3) and (fs), there exists a positive constant Cs such that
[f (@)l < (Ap = 7)™ + Csful ", (3.40)

where ¢ is given in (fy). Note that u, — w in Ey \ {0} and t(u,) — to as n — oo, then
t(Un,)Un, — tou in LI(V) and

t(un)un, — tou in LP(V)N LIY(V).
It follows from Lemma 5.12 in Appendix that
fla, t(un)un) — fz,tou), in Le"r (V)4 La 1 (V). (3.41)
Then by (3.41) and (f;), we have

’/ (@, t(un )t )y, — f(ac,tou)u)du‘
< /V |f (x, t(un)upn)un — f(z, tou)uldp
- /V U (@ V) — F (@ bt + £ o) (ot — )
< /V 1 (@t Ytn) — £z tou) umldp + /V (s tow)| (i — )| dp
< 1@ tun)un) — F(z, tou)|

—0 asn— oo,

Lot (v)+Lq31(v)Hu””L”(V)ﬂL‘I(V) + C/V |(un —w)ldp
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which implies (3.39). Thus to = t(u).

Finally, we prove that the map 1 : u — t(u)u is a homeomorphism of the unit sphere B of
E) with Ny.

(i) Obviously, v is continuous, since ¢(u) is continuous.

(ii) % is injective.

Let u,v € B C Ey and u # v. We have |lul|g, = ||v]|g, = 1. We need to prove that
P(u) # P(v), ie., t(u)u # t(v)v. Indeed, if t(u) # t(v), then

[t(w)ullzy = lullest(u) = t(u) # t(v) = o]z, t(v) = [[t(v)v]z,, (3.42)

where t(u), t(v) > 0. Thus t(u)u # t(v)v.
If t(u) = t(v), we also have t(u)u # t(v)v, since u # v.

(iil) ¢ is surjective.

For any u € Ny, let v = Julls, » then v € B. Note that |lu]| gz, v = v and ¢ is unique, we have
A
t(v) = ||lul]|g,. Thus ¢¥(v) =t(v)v = ||u|| g, ”MTEA =u e N,. O
Define
= inf t
O el A
and
c:= inf max Jy(y(¢
inf max A(Y(®))s
where

r.= {7 € C([Oa l]aE)\) : V(O) = Oa JX(’Y(l)) < 0}7
then we have the following lemma.
Lemma 3.11 Assume (f1)—(f5) hold. Then ¢y = ¢ =my > 0.

Proof First we prove that ¢; = my. Let u € E) \ {0} be fixed and define the function
g(t) := Jx(tu) on [0,400). Lemma 3.10 implies that for any u € Ey \ {0} there exists a unique
t(u) > 0 such that

max g(t) = max Jx(tu) = g(t(u)) = Jx(t(u)u). (3.43)
Then we have
0= ueéﬁl’fu¢01{1§(§c Ja(tu) = ue}é?,fuyéoJ)‘(t(u)u) = uler}\f&JA(u) = my. (3.44)

Next, we prove that ¢; > c¢. Indeed, (3.32) implies that there exists ¢y > 0 such that
Jx(tou) < 0. Define
l:te|0,1] — ttou € E},

then I(t) € T = {v € C([0,1], Ey) : v(0) = 0, Jx(y(1)) < 0}, since {(0) = 0,J,(I(1)) < 0. For
any u € Ex\{0},
> = >
max Jx(tu) 2 tren[gﬁ]h(ttou) tgl[gflc]h(l(t)) > inf e I (1)),
then

inf Ji(tu) > inf In(y(t)).
el O 2 Rk gy O

That is ¢; > c.
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Next, we prove that ¢; = my < c¢. By Lemma 3.10 we know that for any v € E \ {0} there
exists a unique t(u) > 0 such that ¢(u)u € Ny. Then we can separate F) into two components
according to t(u) > 1 or t(u) < 1. That means, E) = E}UFE?%, where E} = {u € Ej : t(u) > 1},
Ei={u€E):t(u) <1}

We claim that every v € T has to cross N,. In fact, it is easy to see that v(¢) and 0
are in the same component E)l\7 if ¢ is small enough. We only need to prove y(1) € Ei Set
g(t) = J(t(y(1))),t € [0,400), then g(0) = 0 and ¢g(1) < 0. By (f3), if ¢ small enough, we have

[f(, ty(1))] < Xt~ (D) P

Then, if ¢ small enough, we have
o) = tp\lv( 1, / F(a,t7(1))dn
") /fxm (1)dp
» Hv(l)l\%A W ||7(1)H£

>0,

| \/

| \/

since o > p. Thus, there exists ¢ € (0, 1) such that g(t) = maxc(o1] g(t), i.e., J3(ty(1))y(1) = 0.
Therefore, ¢(y(1)) < 1, i.e., v(1) € E}. Thus, by the continuity of the map v(t) — t(y(t)) we
know that every v € T has to cross N,.

Thus, Vy € T, v(t) NN, # 0, then there exists o € (0,1) such that y(to) € Ny. Thus we
can obtain

Jnf Ta(u) < Ja(y(to)) < max JA(1(1)):

Thus

— f < inf =C.
my = ulen )\JA(U) irell“tren[g}i] J)\( ( )) C

Therefore, ¢c; = ¢ = m,,.
Finally, we prove that my > 0. If u € N, we have

By (3.40), we have

sj}up—ﬂww+ammmM

= (Ap — 7)lullh + Csllull§
Ap— T

<
=N

[ull, + Cs&?llullg, ,

then
.
N Jull, < Cs&lullg, -
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Since g > p, we get
T q—p
U > > 0.
|| HEA —_ <>\pC5£q)

my = 1nf I (u)
u€EN

uggg ( el / P, u)du)

This gives that

I WV,
e e
z5 =25
/_\/_\
N
\ E
- £
\_/
&H
H
Q
Q
QL
=
N———

p

S 1_1 T ‘J*P>O
“\p  a)\NCs&a ’

since p < a. (]

By Theorem 1.3, we know that J, satisfies the (P.S). condition, and there exists a solution
u such that Jy(u) = ¢ = my, thus we completed the proof of Theorem 1.5.
In the following, we can provide another way to prove Theorem 1.5.

Lemma 3.12 ((Deformation Lemma) [1, Lemma 2.3]) Let (X,| -||) be a Banach space, J €
CY{X,R), S C X,ceR. If there exist €,0 > 0 such that
8e
5’
where Sos = {x € X : d(x,S) < 20}, X* is the dual space of X, then there exists n €
C([0,1] x X, X) such that

(i) n(t,u) =u, ift =0 or ifu ¢ J([c — 2¢,c + 2¢]) N Sas,

(i) n(1, J 7Y ((=o0,c+€¢)) N S) C J~((—o0,c —¢]),

(iii) J(n(-,u)) is non-increasing, Vu € X.

Yu € J (e — 2¢, ¢+ 2€]) N Sas : ||J (u)]| x+ >

Lemma 3.13 Ifuy € Ny and Jx(uy) = my, then uy is a critical point of Jy.
Proof Assume that uy € Ny, Jy(uy) = my and J{(uy) # 0. Then there exist 6 > 0, ¢ > 0
such that

lu — uxllp, <36 = [[J3 (W)l (50~ = €

where (Ey)* is the dual space of Ey. For € := min{"}}, 485}, S := B(ux,d), Lemma 3.12 yields

a deformation 7 satisfying (i)—(iii). We claim that
r{l;igcJA(n(l,tu)\)) < my. (3.45)

In fact, by Lemma 3.10 we know that for any u € E) \ {0}, there exists ¢(u) > 0 such that
t(u)u € Ny and maxssg Jy(tw) = Jx(¢t(u)u). Since uy € Ny,

Ja(tun) < Ja(ua) = I?ftg(JA(tU,\) =my < my + €,
that is tuy € J; ' ((—o0,mx + ).

1° If for any ¢ > 0, tuy € S, then we have n(1,tuy) € J; '((—oo,mx — €]) by using (ii) in
Lemma 3.12.
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2° If for some £ > 0, tuy € S, then there exist t; and ¢, satisfying t; < 1 < t5 such that
tuy € S, Vit € (tl,tg)

and

tuy € S, Vtel[0,t1] ort € [ta,+00).

Let g(t) := Jx(tuy). We have
§(t) = T (tur)uy = 17 un [, — / £ tunJurdp
1%

:t”*l/vf(m,uA)u,\du—/Vf(x,tu,\)uAdu

:t”1</vf(:c,m)wdu—tpl_1 /Vf(:c,tm)wdu)

then we can obtain that J(tuy) is increasing in [0, 1] and decreasing in [1, +00] about ¢. Thus,

Jx(tuy) is increasing in [0,¢1] and decreasing in [ty, +00] about t. And we have
Ja(tuy) < max{Jx(tiuy), Ia(taupr)} < Ja(uy) —d =my —d,
where d = min{Jy(uy) — Jx(t1uy), Jx(uyn) — Ja(taur)}. Thus, by (iii) we have
In(m(1,tuy)) < Ia(n(0,tuy)) = Ja(tuy) < my —d.
Combining 1° and 2°, we get
Ia(n(1,tuy)) < max{my —e,my —d} <my, Vt>0,

which gives (3.45).
Since for any u € Ey \ {0}, Jx(tu) — —oo as t — +o00, there exists tg > 0 such that

J,\(tou,\) <0 <my—2e.

Then we have tgu) ¢ J/\_l([m,\ —2¢,my + 2€]) N Sas. Let y(t) = n(1, ttouy), t € [0,1]. It follows
from (i) that v(0) = n(1,0) = 0 and Jx(7v(1)) = Jx(n(1,tour)) = Ja(tour) < 0. Hence, by the
definition of I" we have () € T.

By the definition of ¢, we have

> maxJy (n(1, tuy)) > Ia(n(1,tt = Ja(v(t)) > inf T~ (1) = ¢ =
ma > max An(,uxngfégﬁlxﬁﬂ, oux)) Eﬁﬁ]*h())*éﬁréﬁﬁ A(Y() = c=my,

which is a contradiction. Thus, J}(ux) = 0, i.e., uy is a critical point of Jy. O

4 Convergence of Ground State Solutions

In this section, under the assumptions (f;)—(f5), we prove that the ground state solution uy of
(1.4) converges to a ground state solution of (1.15) as A — 400, which also implies Theorem 1.7.
Lemma 4.1 There exists v > 0 such that for any critical point uw € Ex\{0} of Jx, we have
lu|lg, > v, where v is independent of .

Proof Lemma 2.6 tells us that

[ullg < &llullz,,
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where ¢ is independent of A and ¢ is given in (fj). Since u is a critical point of Jy and by (3.40)
we have that

0= (= ullp, = [ fGo.upud
> Jlullt, — /V (hp — 7)[ul? + Cslul®)dp

Ap—T
> p _ P
= ||uHEA >‘p

T _
~ull, (- cagtlul?)
P

lull, — Cs&?llull’,

Then we have

lalles> () foer) (w1

and we can choose v = (, & ., )" O
P

Lemma 4.2 There exists C1 > 0 which is independent of X such that if {uy} is a (PS).

sequence of Jy, then

ap
lim sup||ug < c 4.2
msupluip, < (@)

and either ¢ > Cy or ¢ = 0, where « is given in (f2).
Proof Since Jy(ux) — ¢ and J§(ur) — 0 as k — 400, we have

1
¢ = limsup (J)\(uk) - J;\(uk)uk)
k—+o0 «

1 1 1
li p — d
= ;miup{( )|uk||EA +/V < Iz, ug)ug F(x,uk)> /L:|

1 1
zlimsup( - ) ugl||%
imsup (1= 1),

_ e Dy P
= lim sup|uk ||z, ,

— 400
which gives (4.2).
For any u € Ey, by (f3), (3.40) and Lemma 2.6 we have

T (wyu = JJullh, / F ()

ZM%—’;IM%—%ﬂM%
P

T _
~ ull, (] - culul?)
4

and there exists p = (5, 7 ¢q) o> such that
D

Ji(u)u lull, for [lullz, < p.

2)\
Take Cy = O‘a;ppp and suppose ¢ < C1. Since {uy} is a (PS). sequence, (4.2) gives

« «
pC< pClzp”.
-p a

tim supljug |, <
— 400 .
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Hence, for k large, we have

T

9) uk %, < JA(ur)ur = or(1)|luk &, -
g

Then we have |lug||g, — 0 as k — +oo which gives Jy(ur) — ¢ = 0 and the desired results are
— — P

proved for Cy = ° FpP = aapp(zxpa;gq Ya-p. O

Remark 4.3 By Lemma 3.11, we know that for any ground state solutions u), there exists

a (PS). sequence {u} which converges weakly to uy in E), where ¢ = m). By weak lower
apm

semi-continuity of the norm || - || g,, we get that [[ux[|g, is bounded by "

For the ground states my and mgq, we have

Lemma 4.4 m) — mgqg as A\ — oco.

Proof Since N C Ny, we obviously have that my < mgq for any A > 0. Take a sequence
A, — oo such that
lim my, = M < mgq, (4.3)
k—o0

where m, is the ground state of the ground state solution uy, € Ny, of (1.4). Then Lemma 3.11
tells us that M > 0. By Remark 4.3, {uy, } is uniformly bounded in Ej, up to a subsequence,

we assume that there exists some ug € W1P(V) such that

Uy, — up in By,

ux,, (o) — uo(zo),
and
uy, — ug in LY(V),
where ¢ is given in (fy).
We claim that ug|ge = 0. If not, there exists a vertex z¢ ¢ € such that ug(xzg) # 0. Since

uy, € Ny, we have

1
Ia(un,) = Ia(un,) — aJQ(UAk)UAk

1 1 1
= (3= ol + [ (Lrtanus, = Pl )

p

11 )
(5= 2 ol

_a-p P
= ap ||u>\kHE>\k

a—
p)\k / aluy, [Pdu
%

Y

vV

ap
«

v

. () lur, o) (o)

Since zg ¢ Q, a(xg) > 0 and p(xg) > fmin > 0, ux, (o) — uo(xo) # 0 as Ay — oo, then we
know that

lim J)\k(u,\k) = 00,
k—oo

which is a contradiction to the fact that my, < mq.
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In view of (f;), there exists some constant C' such that
|F(z,ux,) = F(z,u0)| < Clux, —uol,

which leads to

/V(F(x,uAk) — F(x, uo))du‘ —0 ask— +o0 (4.4)

Similar to the proof of Lemma 3.10, we can prove that there exists ¢ > 0 such that tug € Nq,

ie.,
/ ([tVuo|P + |tuo|P)dp = / [z, tug)tuodp. (4.5)
QUON Q

By (4.4), we get that
1
Ja(tug) = / ([tVuo|? + [tuo|?)dp —/ F(z,tug)dp
D Javaa Q
1
< /(\tVu0|p+ |tu0|p)d,u—/ F(x,tug)du
bJv v

< lim inf [/ ! ([tVux, [P + (Aga + 1)|tur, |P)dp — / F(x,tu,\k)du}
v D

k=00 v
= liminfJy, (tuy,)
k— o0
< liminfJy, (uy,) = M.
k— o0
Consequently, M > mgq. Then we get that
)\ILH;O my = mgq. O
Proofs of Theorem 1.7 and Theorem 1.8  We need to prove that for any sequence Ay, — oo, the
corresponding uy, € Ny, satisfying Jy, (uy,) = my, converges in W1P(V) to a ground state
solution ug of (1.15) along subsequence.

Lemma 4.2 gives that uy, is bounded in E), and the upper-bound is independent of Ag.
Consequently, we have that {uy,} is also bounded in W1?(V'). Therefore, we can assume that
for any ¢ € [1, +00),

— o in WHP(V).

’(,L)\k

Moreover, we get from Lemma 4.1 that ug Z 0. We have proved in Lemma 4.4 that ug|oe =0

and (4.4). Now we claim that as k — oo, we have

)\k/ aluy, [Pdp — 0, (4.6)
1%

and

/\Vu,\k|pdu—>/ [Vug |Pds. (4.7)
v v

In fact, similar to the proof of (4.5) in Lemma 4.4, we can also find ¢ > 0 such that tuy € Nq.
If

lim )\k/ alux,|Pdp =6 >0,
k—oo v i
or

liminf/ |VuAk|pd,u>/ Vg |[Pdp,
k—+oo Jy/ \%
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we have

1
Jo(tug) = / (£ ? + |tuo|?)dp — / Fla, tuo)dy
D Jausn Q
1
= /(\tVuo|p+|tuo|p)du—/ F(z,tug)dp
bJv 1%

1
< liminf { / ([tVux, [P + (Aka + 1)[tun, |P)dp — / F(:c,tu)\k)du}
k—-+oco p 1% Vv

= Ik}gigofj)\k (tu)\k)
< Jiminf . (ua)
=mgq,

which is contradiction.

Now we prove that ug is a ground state solution of (1.15). In fact, since J}, (ux,) = 0, for
any 0 # ¢ € W, (), we have

/ (IVr, [P~V un, Vé + (Aea + 1) Jun, [P~ ux, &) du = / F(,un, ) dd.
A% Vv

Since Q = {z € V : a(z) = 0}, a(z)p(x) =0, for any x € V. Then

/ |Vu>\k\p_2Vu,\kV¢du+/ |u,\k\p_2u,\k¢du:/f(gc,u,\k)gbdu.
QUAN Q Q

Let k — co. The above equality becomes

[ Vol VaoVodu-+ [ Juoluesdi = [ fa.u0)odn.
QUON Q Q

which tells us that J¢,(ug) = 0, up € Ngo and ug is a solution of (1.15).
On the other hand, by (4.4), (4.6) and (4.7), we have

1
Tfus) = / (IVaun P + (hea + 1) s, [?)dps — / F(z,un,)dp
1% 1%

1
— [ (Vo +uoP)d — | Flous)du+ on)

pJv 14

1
= | wwldat | JuoPdu [ Plauodu+ o)

D Jauan Q Q

= JQ(’LL()) + Ok(l).

Since Jy, (uyr,) = my,, Lemma 4.4 tells Jo(ug) = mg. Thus we get that u is a solution of
(1.15) which achieves the ground state. Thus Theorem 1.7 and Theorem 1.8 are proved. O

5 Appendix

In the Appendix, we mainly prove that LP(V') is complete, uniformly convex, reflexive and
WLP(V) is reflexive.

Lemma 5.1 If G = (V,E) is a connected locally finite graph then the set of vertices V is
either finite or countably infinite.

Define
LP(V) = {u :V—-R: / |ulPdu < —l—oo}
1%
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full = ([ tupan)
\4

where V' is the vertex set of a locally finite graph.

Lemma 5.2 If G = (V, E) satisfies (G1)—~(Gz), then LP(V') is a Banach space, 1 < p < co.

with the norm

The proof of Lemma 5.1 and Lemma 5.2 are standard, so we omit it.

Lemma 5.3 Letz,weC. Ifl1<p<2andyp = pfl, then

’ / 1
2+ wl? z—wlP 1 1 p—1
< P P . 1
: S| < (Gl plur) 6.1
If 2 < p < o0, then
24w’ |z—wl|’ 1 1
< P P )
i U<l (52)
Proof For the proof of Lemma 5.3 we can refer to [1, Lemma 2.37]. O

Definition 5.4 The space X is said to be uniformly convez if for each € € (0,2], there exists
§(e) > 0 such that if ||z|| = ||yl =1 and ||z — y|| > & then | *3Y|| < 1—4(e).

Lemma 5.5 If G = (V,E) satisfies (G1)—(G2) and 1 < p < oo, then LP(V) is uniformly
conver.

Proof Let u,v € LP(V) satisty |ull, = ||v|l, = 1 and |lu — v|, > ¢ where ¢ € (0,2]. If
2 < p < o0, then (5.2) implies that

P _ P 1
uy @ @@ @ 4 @, veew

2 2 2 2

Then we have
u(z) +o(x)|? | fu(z) —v(x)|” 1 1
Z( @ o) uw) < 3 (L@l + (@) ) uta).
eV zeV
That is p P
u-+v uU—v 1 1
< 4 v
2, 2 - 2HU||p + 2||UH”’
which implies that
u+ov|” <1_ 5p.
2, 2p
If 1 < p <2, then (5.1) implies that
p/ _ p’ 1 1 il
u(z) + v(z) n u(x) —v(x) < Jul@)P + |u()P ’ , Y eV,
2 2 2 2
where p’ = pfl. Then we have
P’ _ P\ p—1
( ue) T el vl ) < @+ @), VeeV.
Note that
() ;U(I) p+ u(x);v(x) P . < u(x);rv(x) v N U(I);U(x) p/>p17 Vz € V.




1674 Han X. L. and Shao M. Q.

Thus, we can also obtain

utvl|f u—v|’ 1 1
< lully + o lvl3s
2, 2 |, 2 2
which implies that
p P
U+ v <1- €p~
2 » 2
In either case there exists 6 = §(¢) > 0 such that
B IS O
p

Corollary 5.6 If G = (V,E) satisfies (G1)—(Gz2) and 1 < p < oo, then LP(V') is reflexive.

Proof A uniformly convex Banach space is reflexive ([1, Theorem 1.21]). Thus, Lemma 5.2

and Lemma 5.5 imply that LP(V) is reflexive. O
Define
WP (V) i={u:V = R: |ulwrsp < +00}, (5.3)
where

1
p

Jullw sy = f 9+ )i
Proposition 5.7 If G = (V, E) satisfies (G1)—~(Gz), then WP (V) is the completion of C..(V')
under the norm ||u||€v1,p(v) = [, (IVulP + |ul?)dp.
Proof  The proof of Proposition 5.7 is similar to [16, Proposition 2.1].
Corollary 5.8 If G = (V, E) satisfies (G1)-(G2) and 2 < p < oo, then WHP(V) is reflexive.
Proof Let {ur} € WHP(V) be a sequence and uy — u in LP(V). Next we prove that u €

WhP(V). Obviously, u € LP(V). We only need to prove that ||[Vullb = [, [Vu[Pdu < +oo.
Indeed, by Holder’s inequality and (G1), we have

IVul2 = /V VulPdy

= 30 ) s (0ls) e’

zeV 'U/(:E y~z
p 1 2 [ 9 B
=2t Suto ) _ngyw(y)—u(w))}
—9275 T deg, di wmyu —ux2g
=275 o) (55 )3 g 0t~ )
iy s :
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—2 Y () (degw) Y5 ) — i

= w(z)) £ deg,
<2TEMETNY N wpyfuly) — u(@)]?
zeVy~x
<272 M5 N Cway (Ju(y)” + [u@)[?)
zeVy~a
<2l-sppat Z Way|u(z) [P
z,yeV

= 2505 de, fu(a)

< P EAE Y Mu(a)u(a)?
eV
=2'7E M ulf?
< 400,
since u € LP(V).
Thus, WHP(V) C LP(V) is closed with respect to the norm topology of LP(V'). The reflex-
ivity of LP(V) and [1, Theorem 1.22] imply that W1P(V) is reflexive. O

Lemma 5.9 The following inequality
(a+b)P(c+d)' P >d?cP 4 pPd P (5.4)

holds for any 8 € (0,1) and a,b,c,d > 0.
Proof Ifa =0 or c=0, it is obvious. If a # 0,¢ # 0, then for any a,b,¢,d > 0, (5.4) is

equivalent to
B 1-8 B 1-8
d
<1%b> <1+d) ZI+~<b) < )
a c a c

Let u = Z, v = ‘Ci. We only need to prove
Qu) = (1+u)?(1+v) P —ufp'=F —1>0.
Without loss of generality, we assume u > v. Then we have
1-8 1-8
1+v > v and 1+v > v .
14+u " u 14+u U
Note that Q(0) = 0, and
Q' (u) = (1 +u)’ 11 +0)F - gufP~to!=F
14w 1-5 A
= — > 0.
i) -0) ]2

Hence, Q(u) is an increasing function about u. And we get Q(u) > Q(0) = 0. O

Next, we consider the continuity of the operator

A:LP(V) = LI(V) :u— f(z,u).
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Lemma 5.10 Let G = (V, E) be a locally finite graph and 1 < p < co. If u,, — u in LP(V),
there exists a subsequence {v,} of {un} and h € LP(V) such that for all x € V, v, (x) — u(zx)
and

lu(z)| < h(z), |vn(z)| < h(z).
Proof The proof is similar to [28, Theorem A.1]. Going if necessary to a subsequence, we can

assume that u, (z) — u(z) for all z € V. There exists a subsequence {v,,} of {u,} such that
lojn = villp <277, Vi > 1.
Let us define

h(z) := |v1(z |+Z|U]+1 — v ()]

It is clear that, for all x € V, |v,(x)| < h(x) and so |u(z)| < h(x). O
Definition 5.11 On the space LP (V)N L9(V'), we define the norm
lull e (vynzavy = llullp + [lullg-
On the space LP(V) + L9(V), we define the norm
[ull Lo vy s Laqvy = mf{|[oll, + lwllg : v € L (V),w € LYV),u = v+ w}.
Lemma 5.12 Let G = (V, E) be a locally finite graph and 1 < p,q,r,s < co. For any z € V,

f(z,u) is continuous in u € R and
)] < of .
Then, for every uw € LP(V)NLYV), f(-,u) € L"(V) + L*(V) and the operator
A:LP(V)NLYV) - L™ (V) + L*(V) :u— f(z,u)

15 continuous.

Proof Let ® € C§°((—2,2)) be such that ® =1 on (—1,1) and define
hi(z,u) = @(u)f(z,u), ha(x,u):=(1—0(w))f(x,u).

We can assume that ” < ?. Hence we obtain

[, u)| < alul”,  [ha(z,u)| <

Assume that u,, — u in LP(V) N LY(V). Let {v,} and h be given by the preceding lemma.
Since
‘hl('ra Un) - hl(z7u)‘r < 27"a7‘|h‘p7
it follows from Lebesgue dominated convergence theorem that hiv,, — hyu in L™(V). And then
hit, — hywin L™(V). Similarly, we have ho(z,u,) — hao(z,u) in L5(V).
Since

|f(x7un) - f(x7u)|r,s S ‘hl(x;un) - hl(xau”r + |h2(x;un) - hg(.’E,U)|5
it follows that f(x,u,) — f(z,u) in L"(V) + L*(V). O
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