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Abstract This paper is mainly concerned with the following nonlinear p-Laplacian equation

−Δpu(x) + (λa(x) + 1)|u|p−2(x)u(x) = f(x, u(x)), in V

on a locally finite graph G = (V,E) with more general nonlinear term, where Δp is the discrete p-

Laplacian on graphs, p ≥ 2. Under some suitable conditions on f and a(x), we can prove that the

equation admits a positive solution by the Mountain Pass theorem and a ground state solution uλ via

the method of Nehari manifold, for any λ > 1. In addition, as λ → +∞, we prove that the solution uλ

converge to a solution of the following Dirichlet problem
⎧
⎨

⎩

−Δpu(x) + |u|p−2(x)u(x) = f(x, u(x)), in Ω,

u(x) = 0, on ∂Ω,

where Ω = {x ∈ V : a(x) = 0} is the potential well and ∂Ω denotes the the boundary of Ω.

Keywords p-Laplacian equation, locally finite graph, ground state solution
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1 Introduction

In Euclidean space, the nonlinear Schrödinger type equation of the form

−Δu(x) + V (x)u(x) = f(x, u(x)), in Ω

has been extensively studied during the past several decades, where Ω ⊂ R
N , f : Ω×R → R is

a nonlinear continuous function and V (x) is a given potential. It has attracted great interest
because of its importance in applications. The readers can refer to [2–4, 7, 9, 17, 20, 21, 25–
27, 32, 33] and the references therein. In particular, Bartsch and Wang [2] showed the existence
of a least energy solution uλ(x) of the following nonlinear Schrödinger equation

−Δu(x) + (λa(x) + 1)u(x) = up(x), u > 0, x ∈ R
N , (1.1)

for large λ, where 1 < p < (N +2)/(N − 2), N ≥ 3 and a(x) ≥ 0. As λ→ ∞ they proved uλ(x)
converged strongly in H1(RN ) to a least energy solution of the elliptic problem

⎧
⎨

⎩

−Δu+ u = up, u > 0, in Ω,

u = 0, on ∂Ω.
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Recently, there were many works about the differential equations on graphs (cf. [5, 6, 10–
16, 18, 19, 22–24, 29–31]). For example, Grigor’yan, Lin and Yang studied some nonlinear
elliptic equations on graphs by using the variational method. Specifically, in [13], using the
calculus of variations and a method of upper and lower solutions, they studied the Kazdan–
Warner equation

Δu = c− heu, in V (1.2)

on finite graphs, where Δ is a discrete graph Laplacian, c ∈ R is a constant and h : V → R is a
function. In [14], for any p ≥ 2, they proved the existence of nontrivial solutions to the Yamabe
type equation

⎧
⎨

⎩

−Δu− αu = |u|p−2u, in Ω◦,

u = 0, on ∂Ω

by using the Mountain Pass theorem, where Ω is a bounded domain on locally finite graphs or
finite graphs, Ω◦ and ∂Ω denote the interior and the boundary of Ω respectively. And they also
considered similar problems involving the p-Laplacian and poly-Laplacian by the same method
in [14]. In [15], they established existence results for the equation

−Δu(x) + h(x)u(x) = f(x, u(x)), x ∈ V. (1.3)

In particular, they proved that the equation (1.3) has strictly positive solutions under the
assumption for h and f . Specifically, h : V → R and f : V ×R → R are two functions satisfying
the assumptions:

(H1) There exists a constant h0 > 0 such that h(x) ≥ h0 for all x ∈ V ;
(H2) 1

h ∈ L1(V );
(F1) f(x, s) is continuous in s ∈ R, f(x, 0) = 0, and for any fixed M > 0 there exists a

constant AM such that maxs∈[0,M ] f(x, s) ≤ AM for all x ∈ V ;
(F2) There exists a constant θ > 2 such that if s > 0 then there holds

0 < θF (x, s) := θ

∫ s

0

f(x, t)dt ≤ sf(x, s), ∀x ∈ V ;

(F3) lim sups→0+
2F (x,s)

s2 < λ1 := inf∫

V
u2=1dμ

∫

V
(|∇u|2 + hu2)dμ.

Zhang and Zhao [31] studied the convergence of ground state solutions for the following
Schrödinger equation

−Δu+ (λa+ 1)u = |u|p−1u, in V

on a locally finite graph, where Δ is discrete graph Laplacian. And Keller and Schwarz [19]
studied the Kazdan–Warner equation on canonically compact graphs.

In addition, there were many works about the differential equations on infinite graphs. In
[10], under the assumption that h ≤ 0 and some other conditions, Ge and Jiang proved the
existence of a solution to the Kazdan–Warner equation (1.2) on an infinite graph by using a
heat flow method. In [11], under the assumption that the graph Laplacian Δ is a bounded
operator, g is bounded and h is large at infinity, they also proved the existence of a solution to
the graph Yamabe equation

Δu+ hu = g|u|p−2u
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on an infinite graph.
In this paper, motivated by [15, 31], we consider the nonlinear p-Laplacian equation

−Δpu(x) + (λa(x) + 1)|u|p−2(x)u(x) = f(x, u(x)), in V (1.4)

on a locally finite graph G = (V,E) with more general nonlinear term, where Δp is the discrete
p-Laplacian on graphs, p ≥ 2 and f(x, u) is continuous in u ∈ R, for any x ∈ V . We prove
that the equation admits a positive solution by the Mountain Pass theorem and a ground state
solution uλ via the method of Nehari manifold, for any λ > 1. Moreover, as λ → +∞, the
solution uλ converges to a solution of the Dirichlet problem.

Before we state our works, let us introduce some concepts and assumptions. Let G = (V,E)
be a graph, where V denotes the set of vertices and E denotes the set of edges, ωxy : V ×V → R

+

be an edge weight function and μ : V → R
+ be a finite positive function on G = (V,E). We

say it is a uniformly positive measure if there exists a constant μmin > 0 such that μ(x) ≥ μmin

for all x ∈ V . We say that a graph is locally finite if for any x ∈ V , there holds
∑

y∼x 1 <∞. A
graph is connected if any two vertices x and y can be connected via finitely many edges. Note
that the information of G contains V,E, μ and ω. Throughout this paper, we always assume
that G satisfies the following assumptions.

(G1) For any xy ∈ E, ωxy = ωyx > 0 and M := supx∈V
degx

μ(x) < +∞, where degx :=
∑

y∈V ωxy.

(G2) G is a locally finite and connected graph with uniformly positive measure.
The graph distance d(x, y) of two vertices x, y ∈ V is defined by the minimal number of

edges which connect these two vertices. We call Ω ⊂ V a bounded domain in V , if the distance
d(x, y) is uniformly bounded from above for any x, y ∈ Ω. Note that a bounded domain of a
locally finite graph contains only finitely many vertices. We denote the boundary of Ω by

∂Ω := {y ∈ V, y /∈ Ω : ∃x ∈ Ω such that xy ∈ E}

and the interior of Ω by Ω◦. Note that Ω◦ = Ω which is different from the Euclidean case.
For any function u : V → R, the μ-Laplacian (or Laplacian for short) of u is defined as

Δu(x) :=
1

μ(x)

∑

y∼x

ωxy(u(y) − u(x)). (1.5)

The associated gradient form is defined by

Γ(u, v)(x) :=
1

2μ(x)

∑

y∼x

ωxy(u(y) − u(x))(v(y) − v(x)). (1.6)

Write Γ(u) = Γ(u, u). Sometimes we use ∇u∇v instead of Γ(u, v). We denote the length of its
gradient by

|∇u|(x) :=
√

Γ(u)(x) =
(

1
2μ(x)

∑

y∼x

ωxy(u(y) − u(x))2
) 1

2

. (1.7)

With respect to the vertex weight μ, the integral of u over V is defined by
∫

V

udμ =
∑

x∈V

μ(x)u(x). (1.8)
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The p-Laplacian of u : V → R, namely Δpu, is defined by

Δpu(x) :=
1

2μ(x)

∑

y∼x

(|∇u|p−2(y) + |∇u|p−2(x))ωxy(u(y) − u(x)). (1.9)

Remark 1.1 Ge [12] studied the following p-th Yamabe equation on a connected finite graph
G:

Δpϕ+ hϕp−1 = λfϕα−1, (1.10)

where Δp is the discrete p-Laplacian, h and f > 0 are fixed real functions defined on all
vertices. He proved that the above equation always has a positive solution for some constant
λ ∈ R. However, it is remarkable that their Δp considered in the equation (1.10) is different
from ours when p �= 2.

To state the main results, we introduce the following assumptions on f : V × R → R and
a : V → R. Here λ > 1 and p ≥ 2 are constants.

(f1) For any x ∈ V , f(x, s) is continuous in s ∈ R, f(x, 0) = 0, and for any fixed M > 0
there exists a constant AM such that max|s|<M f(x, s) ≤ AM for all x ∈ V .

(f2) There exists some α > p such that for any s ∈ R \ {0} there holds

0 < αF (x, s) := α

∫ s

0

f(x, t)dt ≤ sf(x, s), ∀x ∈ V.

(f3) For any x ∈ V , there holds

lim sup
|s|→0

|f(x, s)|
|s|p−1

< λp := inf
u �≡0

∫

V
(|∇u|p + (λa+ 1)|u|p)dμ

∫

V
|u|pdμ .

(f4) There exist some q > p and C > 0 such that

|f(x, s)| ≤ C(1 + |s|q−1), uniformly in x ∈ V.

(f5) s �→ f(x,s)
|s|p−1 is strictly increasing on (−∞, 0) and (0,+∞) for all x ∈ V .

Our assumptions on the potential a(x) are:
(A1) a(x) ≥ 0 and the potential well Ω = {x ∈ V : a(x) = 0} is a non-empty, connected and

bounded domain in V .
(A2) (a(x) + 1)−1 ∈ L

1
p−1 (V ).

Remark 1.2 For brevity, we use
∫

V
f(x, u)dμ for

∫

V
f(·, u(·))dμ and

∫

V
F (x, u)dμ for

∫

V
F (·,

u(·))dμ.

Define
W 1,p(V ) := {u : V → R : ‖u‖W 1,p(V ) < +∞}, (1.11)

where

‖u‖W 1,p(V ) =
( ∫

V

(|∇u|p + |u|p)dμ
) 1

p

.

We can verify that W 1,p(V ) is reflexive (see, Corollary 5.8 in Appendix). Consider a function
space

Eλ :=
{

u ∈W 1,p(V ) :
∫

V

λa|u|pdμ < +∞
}
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with the norm

‖u‖Eλ
=

( ∫

V

(|∇u|p + (λa+ 1)|u|p)dμ
) 1

p

.

Clearly, Eλ is a Banach space and also a reflexive space.
The functional related to (1.4) is

Jλ(u) =
1
p

∫

V

(|∇u|p + (λa+ 1)|u|p)dμ−
∫

V

F (x, u)dμ. (1.12)

Let
Hλ(u) =

1
p

∫

V

(|∇u|p + (λa+ 1)|u|p)dμ, u ∈ Eλ. (1.13)

Then
Jλ(u) = Hλ(u) −

∫

V

F (x, u)dμ.

We can easily verify that Jλ ∈ C1(Eλ,R) and

J ′
λ(u)v = H ′

λ(u)v −
∫

V

f(x, u)vdμ, ∀v ∈ Eλ, (1.14)

where
H ′

λ(u)v =
∫

V

(|∇u|p−2Γ(u, v) + (λa+ 1)|u|p−2uv)dμ.

The Nehari manifold related to (1.4) is defined as

Nλ := {u ∈ Eλ \ {0} : J ′
λ(u)u = 0}.

Let mλ be
mλ := inf

u∈Nλ

Jλ(u).

If mλ can be achieved by some function uλ ∈ Nλ and uλ is a critical point of the functional
Jλ, then we call uλ a ground state solution of (1.4). Our main theorems are

Theorem 1.3 Let G = (V,E) be a graph satisfying (G1)–(G2). Assume a(x) : V → [0,+∞)
is a function satisfying (A1), (A2) and f : V × R → R satisfies (f1)–(f3). Then for any positive
constants λ > 1 and p ≥ 2, the equation (1.4) has a positive solution.

Remark 1.4 If we replace λa + 1 by a function h satisfying (H1) and (H2), then we have
the same conclusion as Grigor’yan–Lin–Yang in [15] and our results generalize their work from
p = 2 to p > 2.

Theorem 1.5 Let G = (V,E) be a graph satisfying (G1)–(G2). Assume a(x) : V → [0,+∞)
is a function satisfying (A1), (A2) and f : V × R → R satisfies (f1)–(f5). Then for any positive
constants λ > 1 and p ≥ 2, there exists a ground state solution uλ of the equation (1.4).

Remark 1.6 We can easily check that the function |u|q−2u is a typical example of f that
satisfy the assumption (f1)–(f5), where q > p.

For the asymptotic behavior of uλ as λ → +∞, we introduce the limit problem which is
defined on the potential well Ω:

⎧
⎨

⎩

−Δpu(x) + |u|p−2(x)u(x) = f(x, u(x)), in Ω,

u(x) = 0, on ∂Ω,
(1.15)
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where Ω = {x ∈ V : a(x) = 0} is the potential well.
Let W 1,p

0 (Ω) be the completion of Cc(Ω) under the norm

‖u‖W 1,p
0 (Ω) =

( ∫

Ω∪∂Ω

|∇u|pdμ+
∫

Ω

|u|pdμ
) 1

p

.

The functional related to (1.15) is

JΩ(u) =
1
p

∫

Ω∪∂Ω

|∇u|pdμ+
1
p

∫

Ω

|u|pdμ−
∫

Ω

F (x, u)dμ. (1.16)

We can easily verify that JΩ ∈ C1(W 1,p
0 (Ω),R) and

J ′
Ω(u)φ =

∫

Ω∪∂Ω

|∇u|p−2Γ(u, φ)dμ+
∫

Ω

|u|p−2uφdμ−
∫

Ω

f(x, u)φdμ, ∀φ ∈W 1,p
0 (Ω). (1.17)

The corresponding Nehari manifold is

NΩ :=
{

u ∈W 1,p
0 (Ω) \ {0} : ‖u‖p

W 1,p
0 (Ω)

=
∫

Ω

f(x, u)udμ
}

.

And
mΩ := inf

u∈NΩ
JΩ(u).

Similar to (1.4), the Dirichlet problem also has a ground state solution.

Theorem 1.7 Let G = (V,E) be a graph satisfying (G1)–(G2), Ω be a non-empty, connected
and bounded domain in V . Assume f : V × R → R satisfies (f1)–(f5). Then for any p ≥ 2, the
equation (1.15) has a ground state solution u0 ∈W 1,p

0 (Ω).

We can prove that (1.15) is some kind of limit problem for (1.4). More precisely, we have

Theorem 1.8 Under the same assumptions as in Theorem 1.5, we have that, for any sequence
λk → ∞, up to a subsequence, the corresponding ground state solutions uλk

of (1.4) converge
in W 1,p(V ) to a ground state solution of (1.15).

As far as we know, there is no such results on p-Laplacian equations defined on locally finite
graphs. Our works generalize the results in [31] to p-Laplacian equations but the proofs are
more complicated than those in [31].

This paper is organized as follows. In Section 2, we mainly prove that the formula of
integration by parts and Sobolev embedding theorem hold on the graph. In Section 3, we prove
the existence of positive and ground state solutions of (1.4) by using the Mountain Pass theorem
and the method of Nehari manifold. In Section 4, we demonstrate the desired convergence
behavior, namely as λ → +∞, the ground state solutions uλ of (1.4) tend to a ground state
solution of (1.15) in Ω. In Section 5, some necessary lemmas are given in Appendix.

2 Preliminaries

In this section, we introduce some preliminaries and basic functional settings. In particular,
we shall prove formulas of integration by parts and embedding theorems of Sobolev spaces on
locally finite graphs.

Lemma 2.1 Assume that u ∈W 1,p(V ) and its p-Laplacian is defined by (1.9). Then for any
v ∈ Cc(V ) we have

∫

V

|∇u|p−2∇u∇vdμ =
∫

V

|∇u|p−2Γ(u, v)dμ = −
∫

V

(Δpu)vdμ.
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Proof By the definition of Γ(u, v), we have
∫

V

|∇u|p−2Γ(u, v)dμ =
∫

V

|∇u|p−2 1
2μ(x)

∑

y∼x

ωxy(u(y) − u(x))(v(y) − v(x))dμ

=
∑

x∈V

|∇u|p−2(x)
1

2μ(x)

∑

y∼x

ωxy(u(y) − u(x))(v(y) − v(x))μ(x)

=
∑

x∈V

1
2
|∇u|p−2(x)

∑

y∼x

ωxy(u(y) − u(x))v(y)

−
∑

x∈V

1
2
|∇u|p−2(x)

∑

y∼x

ωxy(u(y) − u(x))v(x)

=
∑

y∈V

1
2
|∇u|p−2(y)

∑

x∼y

ωxy(u(x) − u(y))v(x)

−
∑

x∈V

1
2
|∇u|p−2(x)

∑

y∼x

ωxy(u(y) − u(x))v(x)

= I + II,

where I =
∑

y∈V
1
2 |∇u|p−2(y)

∑
x∼y ωxy(u(x)−u(y))v(x) and II = −∑

x∈V
1
2 |∇u|p−2(x)

∑
y∼x

ωxy(u(y)− u(x))v(x). Noting that v ∈ Cc(V ), there are finite vertices in V such that v(x) �= 0.
Then we have

I =
∑

y∈V

1
2
|∇u|p−2(y)

∑

x∼y

ωxy(u(x) − u(y))v(x)

=
1
2

∑

x∈V

∑

y∼x

|∇u|p−2(y)ωxy(u(x) − u(y))v(x).

And then we can obtain
∫

V

|∇u|p−2Γ(u, v)dμ = I + II

=
1
2

∑

x∈V

∑

y∼x

|∇u|p−2(y)ωxy(u(x) − u(y))v(x) + II

= −1
2

∑

x∈V

∑

y∼x

(|∇u|p−2(y) + |∇u|p−2(x))ωxy(u(y) − u(x))v(x)
1

μ(x)
μ(x)

= −
∑

x∈V

∑

y∼x

1
2μ(x)

(|∇u|p−2(y) + |∇u|p−2(x))ωxy(u(y) − u(x))v(x)μ(x)

= −
∫

V

(Δpu)vdμ. �

Remark 2.2 By Lemma 2.1, we know that the definition of p-Laplacian in (1.9) is reasonable.

Lemma 2.3 Let Ω ⊂ V be a bounded domain. Assume that u ∈W 1,p(V ) and its p-Laplacian
Δpu is defined by (1.9). Then for any v ∈ Cc(Ω), we have

∫

Ω∪∂Ω

|∇u|p−2∇u∇vdμ =
∫

Ω∪∂Ω

|∇u|p−2Γ(u, v)dμ = −
∫

Ω

(Δpu)vdμ.

Proof By using Lemma 2.1, we only need to prove that
∫

V \{Ω∪∂Ω}
|∇u|p−2Γ(u, v)dμ = 0,
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i.e., Γ(u, v)(x) = 0, for all x ∈ V \ {Ω ∪ ∂Ω}. Since v ∈ Cc(Ω), v = 0 on V \ Ω. Thus, for
any x ∈ V \ {Ω ∪ ∂Ω}, there hold v(x) = 0 and v(y) = 0 for all y ∼ x. Therefore, we get for
x ∈ V \ {Ω ∪ ∂Ω},

Γ(u, v)(x) =
1

2μ(x)

∑

y∼x

ωxy(u(y) − u(x))(v(y) − v(x)) = 0,

and the lemma is proved. �
The weak solution of (1.4) and (1.15) are defined as

Definition 2.4 If for any φ ∈ Eλ, there holds
∫

V

(|∇u|p−2Γ(u, φ) + (λa+ 1)|u|p−2uφ)dμ =
∫

V

f(x, u)φdμ, u ∈ Eλ,

then u is called a weak solution of (1.4).

Definition 2.5 If for any φ ∈W 1,p
0 (Ω), there holds

∫

Ω∪∂Ω

|∇u|p−2Γ(u, φ)dμ+
∫

Ω

|u|p−2uφdμ =
∫

Ω

f(x, u)φdμ, u ∈W 1,p
0 (Ω),

then u is called a weak solution of (1.15).

Finally in this section, we prove the Sobolev embedding theorems on the graphs.

Lemma 2.6 Assume that λ > 1 and a(x) satisfies (A1) and (A2). Then Eλ is continuously
embedded into Lq(V ) for any q ∈ [1,+∞] and the embedding is independent of λ. Namely there
exists a constant ξ depending on q, p, μmin and ‖(a+ 1)−1‖ 1

p−1
such that for any u ∈ Eλ,

‖u‖q ≤ ξ‖u‖Eλ
. (2.1)

Moreover, for any bounded sequence {uk} ⊂ Eλ, there exists u ∈ Eλ such that, up to subse-
quence,

⎧
⎪⎪⎨

⎪⎪⎩

uk ⇀ u, in Eλ;

uk(x) → u(x), ∀x ∈ V ;

uk → u, in Lq(V ), ∀q ∈ [1,+∞].

Proof Suppose u ∈ Eλ. At any vertex x0 ∈ V, we have

‖u‖p
Eλ

=
∫

V

(|∇u|p + (λa+ 1)|u|p)dμ

≥
∫

V

|u|pdμ

=
∑

x∈V

|u(x)|pμ(x)

≥ μmin|u(x0)|p,
which gives

u(x0) ≤
(

1
μmin

) 1
p

‖u‖Eλ
. (2.2)

Therefore, Eλ ↪→ L∞(V ) continuously and the embedding is independent of λ. Thus Eλ ↪→
Lq(V ) continuously for any p ≤ q ≤ ∞. In fact, for any u ∈ Eλ, we have u ∈ Lp(V ). Then, for
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any p ≤ q,
∫

V

|u|qdμ =
∫

V

|u|p|u|q−pdμ ≤ (μmin)
p−q

p ‖u‖q−p
Eλ

∫

V

|u|pdμ ≤ (μmin)
p−q

p ‖u‖q
Eλ

< +∞, (2.3)

which implies that u ∈ Lq(V ) and

‖u‖q =
( ∫

V

|u|qdμ
) 1

q

≤ (μmin)
p−q
pq ‖u‖Eλ

for any p ≤ q. (2.4)

Next, we prove that Eλ ↪→ Lq(V ) continuously for any 1 ≤ q < p. Indeed, (A2) implies that

(λa+ 1)−1 ∈ L
1

p−1 (V ), ∀λ > 1. (2.5)

Then, for any u ∈ Eλ,
∫

V

|u|dμ =
∫

V

(λa+ 1)−
1
p (λa+ 1)

1
p |u|dμ

≤
( ∫

V

(λa+ 1)−
1
p · p

p−1 dμ

) p−1
p

( ∫

V

(λa+ 1)|u|pdμ
) 1

p

= ‖(λa+ 1)−1‖
1
p
1

p−1

( ∫

V

(λa+ 1)|u|pdμ
) 1

p

≤ ‖(λa+ 1)−1‖
1
p
1

p−1
‖u‖Eλ

≤ ‖(a+ 1)−1‖
1
p
1

p−1
‖u‖Eλ

< +∞, (2.6)

which implies that u ∈ L1(V ). And it follows from

‖u‖L∞(V ) ≤ 1
μmin

∫

V

|u|dμ

that
∫

V

|u|qdμ =
∫

V

|u|q−1|u|dμ ≤ 1
μmin

q−1

( ∫

V

|u|dμ
)q

≤ 1
μmin

q−1
‖(a+ 1)−1‖

q
p
1

p−1
‖u‖q

Eλ
. (2.7)

Therefore, for any 1 ≤ q ≤ p, Eλ ↪→ Lq(V ) continuously and

‖u‖q =
( ∫

V

|u|qdμ
) 1

q

≤ (μmin)
1−q

q ‖(a+ 1)−1‖
1
p
1

p−1
‖u‖Eλ

. (2.8)

By (2.4) and (2.8), we can obtain that there exists a constant η depending on q, p, μmin and
‖(λa+ 1)−1‖ 1

p−1
such that for any u ∈ Eλ,

‖u‖q ≤ ξ‖u‖Eλ
.

Let p∗ be the exponent conjugate to p. Each element v ∈ Lp∗
(V ) defines a linear functional

φv on Lp(V ) via

φv(u) =
∫

V

uvdμ, u ∈ Lp(V ).

Noting that Eλ is reflexive, for {uk} bounded in Eλ, we have that, up to a subsequence, uk ⇀ u

in Eλ. On the other hand, {uk} ⊂ Eλ is also bounded in Lp(V ) and we have uk ⇀ u in Lp(V ),
which tell us that

lim
n→∞φv(un − u) = lim

k→∞

∫

V

(uk − u)vdμ
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= lim
k→∞

∑

x∈V

μ(x)(uk(x) − u(x))v(x) = 0, ∀v ∈ Lp∗
(V ). (2.9)

Take any x0 ∈ V and let

v0(x) =

{
1, x = x0;

0, x �= x0.

Obviously it belongs to Lp∗
(V ). By substituting v0 into (2.9) we have

lim
k→∞

μ(x0)(uk(x0) − u(x0)) = 0, (2.10)

which implies that limk→∞ uk(x) = u(x) for any x ∈ V.

We now prove uk → u in Lq(V ) for all 1 ≤ q ≤ +∞. Since {uk} is bounded in Eλ and
u ∈ Eλ, there exists some constant C1 such that

∫

V

(λa+ 1)|uk − u|pdμ ≤ C1.

Let x0 ∈ V be fixed. For any ε > 0, in view of (2.5), there exists some R > 0 such that
∫

dist(x,x0)>R

(λa+ 1)−
1

p−1 dμ < εp.

Hence by the Hölder inequality,
∫

dist(x,x0)>R

|uk − u|dμ

=
∫

dist(x,x0)>R

(λa+ 1)−
1
p (λa+ 1)

1
p |uk − u|dμ

≤
( ∫

dist(x,x0)>R

(λa+ 1)−
1

p−1 dμ

) p−1
p

( ∫

dist(x,x0)>R

(λa+ 1)|uk − u|pdμ
) 1

p

≤ C
1
p

1 ε
p−1. (2.11)

Moreover, we have that up to a subsequence,

lim
k→+∞

∫

dist(x,x0)≤R

|uk − u|dμ = 0. (2.12)

Combining (2.11) and (2.12), we conclude

lim inf
k→+∞

∫

V

|uk − u|dμ = 0.

In particular, there holds up to a subsequence, uk → u in L1(V ). Since

‖uk − u‖L∞(V ) ≤ 1
μmin

∫

V

|uk − u|dμ,

there holds for any 1 < q < +∞,
∫

V

|uk − u|qdμ ≤ 1
μq−1

min

( ∫

V

|uk − u|dμ
)q

.

Therefore, up to a subsequence, uk → u in Lq(V ) for all 1 ≤ q ≤ +∞. �
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Lemma 2.7 Assume that Ω is a bounded domain in V . Then W 1,p
0 (Ω) is compactly embedded

into Lq(Ω) for any q ∈ [1,+∞]. In particular, there exists a constant C depending only on q

and Ω such that for any u ∈W 1,p
0 (Ω),

‖u‖q ≤ C‖u‖W 1,p
0 (Ω). (2.13)

Moreover, W 1,p
0 (Ω) is pre-compact, namely, if uk is bounded in W 1,p

0 (Ω), then up to a subse-
quence, there exists some u ∈W 1,p

0 (Ω) such that uk → u in W 1,p
0 (Ω).

Proof Since Ω is a finite set in V , W 1,p
0 (Ω) is a finite dimensional space. Hence, W 1,p

0 (Ω) is
pre-compact. And the proof of (2.13) is similar to [14, Theorem 7], which we omit here. �

3 The Existence of Positive and Ground State Solutions

3.1 Existence of Positive Solution

In this subsection, under the assumptions (f1)–(f3) and (A1), (A2), we prove that the equation
(1.4) admits a positive solution by using the Mountain Pass theorem.

Definition 3.1 ((PS)c condition [1, Definition 1.16]) Let (X, ‖ · ‖) be a Banach space, J ∈
C1(X,R). We say the function J satisfies the (PS)c condition, if any {uk} ⊂ X such that
J(uk) → c and J ′(uk) → 0 as k → +∞ has a convergent subsequence.

Lemma 3.2 (Mountain Pass theorem [1, Theorem 1.17]) Let (X, ‖ · ‖) be a Banach space and
J ∈ C1(X,R) be a functional satisfying the (PS)c condition. If there exist e ∈ X and r > 0
satisfying ‖e‖ > r such that

b := inf
‖u‖=r

J(u) > J(0) ≥ J(e),

then c is a critical value of J , where

c := inf
γ∈Γ

max
t∈[0,1]

J(γ(t))

and
Γ := {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = e}.

Lemma 3.3 If u ∈ Eλ is a weak solution of (1.4), then u is also a point-wise solution of (1.4).

Proof If u ∈ Eλ is a weak solution of (1.4), then for any φ ∈ Eλ, there holds
∫

V

(|∇u|p−2Γ(u, φ) + (λa+ 1)|u|p−2uφ)dμ =
∫

V

f(x, u)φdμ.

Then Lemma 2.1 gives
∫

V

(−Δpuφ+ (λa+ 1)|u|p−2uφ)dμ =
∫

V

f(x, u)φdμ, ∀φ ∈ Cc(V ). (3.1)

For any fixed x0 ∈ V , taking a test function φ : V → R in (3.1) with

φ(x) =

{
1, x = x0,

0, x �= x0,

and φ ∈ Eλ, then we have

−Δpu(x0) + (λa(x0) + 1)|u(x0)|p−2u(x0) − f(x0, u(x0)) = 0.

Since x0 is arbitrary, we conclude that u is a point-wise solution of (1.4).
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Define

f̃(x, s) =

⎧
⎨

⎩

0, s < 0,

f(x, s), s ≥ 0.
(3.2)

We consider the following equation

−Δpu(x) + (λa(x) + 1)|u|p−2(x)u(x) = f̃(x, u(x)), in V. (3.3)

Lemma 3.4 If f satisfies (f2) and u ∈ Eλ is a nontrivial weak solution of (3.3), then u is a
strictly positive solution of (1.4).

Proof Let u ∈ Eλ be a nontrivial weak solution of (3.3). And let u− = min{u, 0}. We claim
that

Γ(u−, u)(x) ≥ |∇u−|2(x) (3.4)

and
Γ(u)(x) ≥ |∇u−|2(x). (3.5)

In fact, by the definition of Γ(u, v) we have

Γ(u+, u−)(x) = Γ(u−, u+)(x)

=
1

2μ(x)

∑

y∼x

ωxy(u−(y) − u−(x))(u+(y) − u+(x))

=
1

2μ(x)

∑

y∼x

ωxy[u−(y)u+(y) − u−(y)u+(x) − u−(x)u+(y) + u−(x)u+(x)]

= − 1
2μ(x)

∑

y∼x

ωxy[u−(y)u+(x) + u−(x)u+(y)]

≥ 0. (3.6)

It follows from (3.6) that

Γ(u−, u) = Γ(u−, u+ + u−) = Γ(u−, u−) + Γ(u−, u+) ≥ Γ(u−, u−) = |∇u−|2.
Thus, we have

Γ(u) = Γ(u− + u+, u) = Γ(u−, u) + Γ(u+, u)

= Γ(u−, u) + Γ(u+, u+ + u−)

= Γ(u−, u) + Γ(u+, u+) + Γ(u+, u−)

≥ Γ(u−, u−) = |∇u−|2,
which implies (3.5) and

|∇u|p ≥ |∇u−|p. (3.7)

Note that

|u−|p = |u−|p−2|u−|2 = |u− u+|p−2(u− u+)u− = |u− u+|p−2uu− = |u|p−2uu− ≤ |u|p. (3.8)

By (3.7) and (3.8), we have u− ∈ Eλ whenever u ∈ Eλ.
Testing the above equation u−, we have

∫

V

−u−Δpudμ+
∫

V

(λa(x) + 1)|u|p−2uu−dμ =
∫

V

u−f̃(x, u)dμ.
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Then, by (3.4), (3.7) and the definition of weak solution of the equation (3.3), we have

‖u−‖p
Eλ

=
∫

V

(|∇u−|p + (λa(x) + 1)|u−|p)dμ

≤
∫

V

(|∇u−|p−2Γ(u−, u) + (λa(x) + 1)|u−|p)dμ

=
∫

V

(|∇u−|p−2Γ(u, u−) + (λa(x) + 1)|u−|p)dμ

≤
∫

V

(|∇u|p−2Γ(u, u−) + (λa(x) + 1)|u−|p)dμ

=
∫

V

u−f̃(x, u)dμ ≤ 0.

We have by the above inequality that u− ≡ 0. We claim that u(x) > 0 for all x ∈ V . In fact, if
u(x0) = 0 for some x0, then one can see from (3.3) that

−Δpu(x0) + (λa(x0) + 1)|u(x0)|p−2u(x0) = f̃(x0, u(x0),

then we get

−Δpu(x0) = f̃(x, 0) = 0.

By the definition of Δpu, we have u(x) = u(x0) = 0 for all x ∼ x0. Thus, u ≡ 0, which
is a contradiction. Therefore, u is a strictly positive solution of (3.3). By this together with
the hypothesis (f2), we have f(x, u) > 0. Hence f̃(x, u) = f(x, u) and u is a strictly positive
solution of (1.4). �

By Lemma 3.4, we know that we only need to prove that the equation (3.3) has a nontrivial
weak solution in order to prove Theorem 1.3. Thus, we assume f(x, u) ≡ 0 as u ≤ 0 in the
following and f also satisfies (f1)–(f3).

Lemma 3.5 Assume (f1)–(f3) hold. Then there exist positive constants δ, r such that Jλ(u) ≥
δ for all functions u with ‖u‖Eλ

= r.

Proof By (f3), there exist positive constants τ and σ such that if |s| ≤ σ, then

|f(x, s)| ≤ (λp − τ )|s|p−1 (3.9)

and

|F (x, s)| ≤ λp − τ

p
|s|p. (3.10)

Assume ‖u‖Eλ
≤ 1. If |s| ≥ σ, then by (f1) and (f2)

|F (x, s)| ≤ 1
σp+1

|s|p+1|F (x, s)| ≤ C|s|p+2,

where C depends on σ and A1. Thus, for all (x, s) ∈ V × R, there holds

|F (x, s)| ≤ λp − τ

p
|s|p + C|s|p+2. (3.11)
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Hence,

Jλ(u) =
1
p
‖u‖p

Eλ
−

∫

V

F (x, u)dμ

≥ 1
p
‖u‖p

Eλ
− λp − τ

p
‖u‖p

p − C‖u‖p+2
p+2

≥
(

1
p
− λp − τ

pλp

)

‖u‖p
Eλ

− Cξ‖u‖p+2
Eλ

≥
(

τ

pλp
− Cξ‖u‖2

Eλ

)

‖u‖p
Eλ
.

Setting r = min{1, ( τ
2pλpCξ )

1
2 }, we have Jλ(u) ≥ τ

2pλp
rp := δ for all u with ‖u‖Eλ

= r. This
completes the proof of the lemma. �

Lemma 3.6 Assume (f2) holds. Then there exists some non-negative function u ∈ Eλ such
that Jλ(tu) → −∞ as t→ +∞.

Proof We obtain from (f1) and (f2) that there exist positive constants C1 and C2 such that

F (x, s) ≥ C1s
α − C2, ∀(x, s) ∈ V × R. (3.12)

Indeed, for some 0 < R ∈ R, if 0 < |s| ≤ R, then by (f1) we have

|F (x, s)| =
∣
∣
∣
∣

∫ s

0

f(x, t)dt
∣
∣
∣
∣ ≤ C, ∀|s| ≤ R. (3.13)

For |s| ≥ R, if s ≥ R, then by (f2) we have

0 < αF (x, s) ≤ sf(x, s) = s
dF (x, s)
ds

and

α
ds

s
≤ dF (x, s)

F (x, s)
(3.14)

and after integrating over the interval [R, s0], we obtain

α(ln s0 − lnR) ≤ lnF (x, s0) − lnF (x,R),

that is

ln
sα
0

Rα
≤ ln

F (x, s0)
F (x,R)

,

which implies that

F (x, s0) ≥ C3s
α
0 . (3.15)

For s ≤ −R, by (f2), we have

0 < αF (x, s) ≤ sf(x, s) = s
dF (x, s)
ds

and

α
ds

s
≥ dF (x, s)

F (x, s)
, (3.16)

since s < 0 and F (x, s) > 0. Then after integrating over the interval [s0,−R], we obtain

α(lnR− ln |s0|) ≥ lnF (x,−R) − lnF (x, s0),
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that is

ln
Rα

0

|s0|α ≥ ln
F (x,−R)
F (x, s0)

,

which implies that

F (x, s0) ≥ C4s
α
0 . (3.17)

Therefore, by (3.13), (3.15) and (3.17), we can obtain (3.12).
Let x0 be fixed. Take a function

u(x) =

{
1, x = x0;

0, x �= x0.

Note that F (x, 0) = 0, then we have

Jλ(tu) =
tp

p

∫

V

(|∇u|p + (λa(x) + 1)|u|p)dμ−
∫

V

F (x, tu)dμ

=
tp

p

∑

x∈V

|∇u|p(x)μ(x) +
tp

p

∑

x∈V

(λa(x) + 1)|u(x)|pμ(x) −
∑

x∈V

μ(x)F (x, tu(x))

=
tp

p

∑

x∈V

|∇u|p(x)μ(x) +
tp

p
(λa(x0) + 1)|u(x0)|pμ(x0) − μ(x0)F (x0, tu(x0))

=
tp

p

∑

x∈V

|∇u|p(x)μ(x) +
tp

p
(λa(x0) + 1)μ(x0) − μ(x0)F (x0, t)

≤ tp

p

∑

x∈V

|∇u|p(x)μ(x) +
tp

p
(λa(x0) + 1)μ(x0) − μ(x0)C1t

α + μ(x0)C2.

By the definition of u(x), the nonzero terms of
∑

x∈V |∇u|p(x)μ(x) are finite, since G = (V,E)
is a locally finite graph. Then

∑
x∈V |∇u|p(x)μ(x) is bounded. Therefore,

Jλ(tu) ≤ tp

p

∑

x∈V

|∇u|p(x)μ(x) +
tp

p
(λa(x0) + 1)μ(x0) − μ(x0)C1t

α + μ(x0)C2 → −∞

as t→ +∞, since α > p.
Next, we prove that Jλ satisfies the (PS)c condition. And first we need the following two

lemmas.

Lemma 3.7 For any u, v ∈ Eλ, it holds that

(H ′
λ(u) −H ′

λ(v))(u− v) ≥ (‖u‖p−1
Eλ

− ‖v‖p−1
Eλ

)(‖u‖Eλ
− ‖v‖Eλ

). (3.18)

Proof We follow the idea of the proof of [20, Lemma 3.1]. By direct computations, we have

(H ′
λ(u) −H ′

λ(v))(u− v)

= H ′
λ(u)(u− v) −H ′

λ(v)(u− v)

=
∫

V

(|∇u|p−2Γ(u, u− v) + (λa(x) + 1)|u|p−2u(u− v))dμ

−
∫

V

(|∇v|p−2Γ(v, u− v) + (λa(x) + 1)|v|p−2v(u− v)d)μ

=
∫

V

(|∇u|p−2Γ(u, u) − |∇u|p−2Γ(u, v) + (λa(x) + 1)|u|p−2(u2 − uv))dμ
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−
∫

V

(|∇v|p−2Γ(v, u) − |∇v|p−2Γ(v, v) + (λa(x) + 1)|v|p−2(vu− v2))dμ

=
∫

V

(|∇u|p + |∇v|p − |∇u|p−2Γ(u, v) − |∇v|p−2Γ(v, u))dμ

+
∫

V

(λa(x) + 1)(|u|p + |v|p − |u|p−2uv − |v|p−2vu)dμ

= ‖u‖p
Eλ

+ ‖v‖p
Eλ

−
∫

V

(|∇u|p−2Γ(u, v) + (λa(x) + 1)|u|p−2uv)dμ

−
∫

V

(|∇v|p−2Γ(v, u) + (λa(x) + 1)|v|p−2vu)dμ.

Applying Hölder’s inequality,
∫

V

(|∇u|p−2Γ(u, v) + (λa(x) + 1)|u|p−2uv)dμ

=
∫

V

(

|∇u|p−2 1
2μ(x)

∑

y∼x

ωxy(u(y) − u(x))(v(y) − v(x)) + (λa(x) + 1)|u|p−2uv

)

dμ

=
∫

V

(

|∇u|p−2 1
2μ(x)

∑

y∼x

ω
1
2
xy(u(y) − u(x))ω

1
2
xy(v(y) − v(x)) + (λa(x) + 1)|u|p−2uv

)

dμ

≤
∫

V

(|∇u|p−2(Γ(u))
1
2 (Γ(v))

1
2 + (λa(x) + 1)|u|p−2uv)dμ

=
∫

V

(|∇u|p−2|∇u‖∇v| + (λa(x) + 1)|u|p−2uv)dμ

≤
( ∫

V

|∇u|pdμ
) p−1

p
( ∫

V

|∇v|pdμ
) 1

p

+
( ∫

V

(λa(x) + 1)|u|pdμ
) p−1

p
( ∫

V

(λa(x) + 1)|v|pdμ
) 1

p

.

Using the following inequality

(a+ b)β(c+ d)1−β ≥ aβc1−β + bβd1−β (3.19)

which holds for any β ∈ (0, 1) and for any a, b, c, d ≥ 0. (For the proof of (3.19), we refer to
Lemma 5.9 in Appendix.) Set β = p−1

p and

a =
∫

V

|∇u|pdμ, b =
∫

V

(λa(x)+1)|u|pdμ, c =
∫

V

|∇v|pdμ, d =
∫

V

(λa(x)+1)|v|pdμ, (3.20)

we get that
∫

V

(|∇u|p−2Γ(u, v) + (λa(x) + 1)|u|p−2uv)dμ

≤
( ∫

V

(|∇u|p + (λa(x) + 1)|u|p)dμ
) p−1

p
( ∫

V

(|∇v|p + (λa(x) + 1)|v|p)dμ
) 1

p

= ‖u‖p−1
Eλ

‖v‖Eλ
. (3.21)

Similarly, we obtain
∫

V

(|∇v|p−2Γ(v, u) + (λa(x) + 1)|v|p−2vu)dμ ≤ ‖v‖p−1
Eλ

‖u‖Eλ
.
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Therefore, we have

(H ′
λ(u) −H ′

λ(v))(u− v) ≥ ‖u‖p
Eλ

+ ‖v‖p
Eλ

− ‖u‖p−1
Eλ

‖v‖Eλ
− ‖v‖p−1

Eλ
‖u‖Eλ

= (‖u‖p−1
Eλ

− ‖v‖p−1
Eλ

)(‖u‖Eλ
− ‖v‖Eλ

). �

Lemma 3.8 If un ⇀ u in Eλ and H ′
λ(un)(un − u) → 0, then un → u in Eλ.

Proof Since Eλ is a reflexive Banach space, weak convergence and norm convergence imply
strong convergence. Therefore we only need to show that ‖un‖Eλ

→ ‖u‖Eλ
.

Note that

lim
n→∞(H ′

λ(un) −H ′
λ(u))(un − u) = lim

n→∞H
′
λ(un)(un − u) −H ′

λ(u)(un − u) = 0.

By Lemma 3.7 we have

(H ′
λ(un) −H ′

λ(u))(un − u) ≥ (‖un‖p−1
Eλ

− ‖u‖p−1
Eλ

)(‖un‖Eλ
− ‖u‖Eλ

).

Hence ‖un‖Eλ
→ ‖u‖Eλ

as n→ ∞ and the assertion follows. �
Now, we prove that Jλ satisfies the (PS)c condition.

Lemma 3.9 Under the assumptions (A1), (A2) and (f1)–(f3), Jλ satisfies the (PS)c condition
for any c ∈ R.

Proof Note that Jλ(uk) → c and J ′
λ(uk) → 0 as k → +∞ are equivalent to

1
p
‖uk‖p

Eλ
−

∫

V

F (x, uk)dμ = c+ ok(1), (3.22)

and

H ′
λ(uk)ϕ−

∫

V

f(x, uk)ϕdμ

=
∫

V

(|∇uk|p−2Γ(uk, ϕ) + (λa(x) + 1)|uk|p−2ukϕ)dμ−
∫

V

f(x, uk)ϕdμ

= ok(1)‖ϕ‖Eλ
, ∀ϕ ∈ Eλ. (3.23)

Here and in the sequel, ok(1) → 0 as k → +∞. Taking ϕ = uk in (3.23), we have

‖uk‖p
Eλ

=
∫

V

f(x, uk)ukdμ+ ok(1)‖uk‖Eλ
.

In view of (f2), we have by combining (3.22) and (3.23) that

‖uk‖p
Eλ

= p

∫

V

F (x, uk)dμ+ pc+ ok(1)

≤ p

α

∫

V

f(x, uk)ukdμ+ pc+ ok(1)

=
p

α
‖uk‖p

Eλ
+ ok(1)‖uk‖Eλ

+ pc+ ok(1). (3.24)

Since α > p, by (3.24) we get that {uk} is bounded in Eλ. Then Lemma 2.6 implies that up
to a subsequence, there exists u ∈ Eλ such that uk ⇀ u in Eλ, uk → u in Lq(V ) for any
1 ≤ q ≤ +∞. It follows from (f1) that

∣
∣
∣
∣

∫

V

f(x, uk)(uk − u)dμ
∣
∣
∣
∣ ≤ C

∫

V

|uk − u|dμ = ok(1).
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Replacing ϕ by uk − u in (3.23), we have

H ′
λ(uk)(uk − u) =

∫

V

(|∇uk|p−2Γ(uk, uk − u) + (λa+ 1)|uk|p−2uk(uk − u))dμ

=
∫

V

f(x, uk)(uk − u)dμ+ ok(1)‖uk − u‖Eλ

= ok(1),

which implies that H ′
λ(uk)(uk − u) → 0 as k → ∞. Then, it follows from Lemma 3.8 that

uk → u in Eλ as k → ∞. �
Proof of Theorem 1.3 By Lemma 3.5, Lemma 3.6 and Lemma 3.9, Jλ satisfies all the assump-
tions of the Mountain Pass theorem. Thus we obtain that c = infγ∈Γ maxt∈[0,1] Jλ(γ(t)) is the
critical value of Jλ. In particular, there exists some u ∈ Eλ such that Jλ(u) = c. By Lemma 3.5,

Jλ(u) = c ≥ δ > 0, (3.25)

so, u �≡ 0. Thus, u is a nontrivial weak solution of (3.3). By Lemma 3.4, we obtain that u is a
a positive solution of the equation (1.4). �

3.2 Existence of a Ground State Solution

In this subsection, under the assumptions (A1), (A2) and (f1)–(f5), we prove the existence of a
ground state solution by the method of Nehari manifold.

Lemma 3.10 Assume (f1)–(f5) hold. Then for any u ∈ Eλ\{0} there exists a unique t(u) > 0
such that t(u)u ∈ Nλ. The function

t : Eλ \ {0} → (0,+∞) : u �→ t(u)

is continuous and the map ψ : u �→ t(u)u defines a homeomorphism of the unit sphere of Eλ

with Nλ.

Proof Let u ∈ Eλ \ {0} be fixed and define the function g(t) := Jλ(tu) on [0,+∞). Clearly
we have

g′(t) = 0 ⇔ tu ∈ Nλ

⇔ ‖u‖p
Eλ

=
1

tp−1

∫

V

f(x, tu)udμ. (3.26)

It is easy to verify that g(0) = 0. By (f3), there exist positive constants τ and δ such that

|f(x, s)| ≤ (λp − τ )|s|p−1, ∀|s| < δ (3.27)

and
|F (x, s)| ≤ λp − τ

p
|s|p, ∀|s| < δ. (3.28)

Then, by (3.28) and Lemma 2.6, for |tu| < δ we have

g(t) = Jλ(tu) =
tp

p
‖u‖p

Eλ
−

∫

V

F (x, tu)dμ

≥ tp

p
‖u‖p

Eλ
− tp

λp − τ

p
‖u‖p

p

≥ tp

p
‖u‖p

Eλ
− tp

λp − τ

pλp
‖u‖p

Eλ
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=
tpτ

pλp
‖u‖p

Eλ
> 0.

Next, we prove that g(t) < 0 for t large. By (3.12) and (3.28), we can obtain that there exist
constants C3 > 0 and C4 > 0 such that

F (x, u) ≥ C3|u|α − C4|u|p, ∀(x, u) ∈ V × R, (3.29)

Then, by (3.29) and (2.1), we have

g(t) = Jλ(tu) =
tp

p
‖u‖p

Eλ
−

∫

V

F (x, tu)dμ

≤ tp

p
‖u‖p

Eλ
−

∫

V

(C3|tu|α − C4|tu|p)dμ

≤ tp

p
‖u‖p

Eλ
− C3t

α‖u‖α
α + C4ξt

p‖u‖p
Eλ

≤ (1 + C4ξ)
tp

p
‖u‖p

Eλ
− C3t

α‖u‖α
α. (3.30)

Note that u ∈ Eλ \ {0} and by (2.2), we have

‖u‖α
α =

∫

V

|u|αdμ =
∫

V

|u|α−p|u|pdμ

≤ (μmin)
p−α

p ‖u‖α−p
Eλ

∫

V

|u|pdμ ≤ (μmin)
p−α

p ‖u‖α
Eλ

< +∞. (3.31)

Therefore, we can obtain

g(t) = Jλ(tu) ≤ (1 + C4ξ)
tp

p
‖u‖p

Eλ
− C3t

α‖u‖α
α → −∞ as t→ +∞, (3.32)

since α > p. Thus, g(t) < 0 for t large.
Therefore, there exists t = t(u) such that max[0,+∞) g = g(t(u)). Thus, g′(t(u)) = 0 and

t(u)u ∈ Nλ.

We claim that t(u) is unique. In fact, for any t > 0, we have

f(x, tu)
tp−1

u =
f(x, tu)
(tu)p−1

up =

⎧
⎪⎪⎨

⎪⎪⎩

f(x, tu)
|tu|p−1

up, u > 0,

− f(x, tu)
|tu|p−1

|u|p, u < 0.

It follows from (f5) that f(x,tu)
tp−1 u is an increasing function for t > 0, hence 1

tp−1

∫

V
f(x, tu)udμ

is an increasing function for t > 0. Then there exists a unique t(u) such that ‖u‖p
Eλ

=
1

tp−1

∫

V
f(x, tu)udμ, i.e., there exists a unique t(u) such that t(u)u ∈ Nλ.

To prove the continuity of t(u), assume that un → u in Eλ \ {0}. We only need to prove
that t(un) → t(u) as un → u in Eλ \ {0}. We claim that {t(un)} is bounded. Otherwise,
t(un) → +∞ as n→ ∞. Note that

g(t(un)) = max
t≥0

g(t) > 0. (3.33)

However, by (3.29) and (2.1), we have

g(t(un)) = Jλ(t(un)un) =
t(un)p

p
‖un‖p

Eλ
−

∫

V

F (x, t(un)un)dμ
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≤ t(un)p

p
‖un‖p

Eλ
−

∫

V

(C3|t(un)un|α − C4|t(un)un|p)dμ

≤ t(un)p

p
‖un‖p

Eλ
− C3t(un)α‖un‖α

α + C4ξt(un)p‖un‖p
Eλ

≤ (1 + C4ξ)
t(un)p

p
‖un‖p

Eλ
− C3t(un)α‖un‖α

α

→ −∞ as n→ ∞, (3.34)

which is a contradiction. Hence, using the boundedness of {t(un)}, we have that there exists
t0 such that

t(un) → t0 as n→ ∞. (3.35)

Then, we only need to prove t0 = t(u), i.e., J ′
λ(t0u)u = 0. Noting that J ′

λ(tnun)un = 0, we
only need to prove that

J ′
λ(tnun)un → J ′

λ(t0u)u as n→ ∞. (3.36)

Since
J ′

λ(tnun)un = ‖t(un)un‖p
Eλ

−
∫

V

f(x, t(un)un)undμ (3.37)

and
‖t(un)un‖p

Eλ
→ ‖t0u‖p

Eλ
as n→ ∞, (3.38)

it is enough to prove
∫

V

f(x, t(un)un)undμ→
∫

V

f(x, t0u)udμ as n→ ∞. (3.39)

Indeed, by (f3) and (f4), there exists a positive constant Cδ such that

|f(x, u)| ≤ (λp − τ )|u|p−1 + Cδ|u|q−1, (3.40)

where q is given in (f4). Note that un → u in Eλ \ {0} and t(un) → t0 as n → ∞, then
t(un)un → t0u in Lq(V ) and

t(un)un → t0u in Lp(V ) ∩ Lq(V ).

It follows from Lemma 5.12 in Appendix that

f(x, t(un)un) → f(x, t0u), in L
p

p−1 (V ) + L
q

q−1 (V ). (3.41)

Then by (3.41) and (f1), we have
∣
∣
∣
∣

∫

V

(f(x, t(un)un)un − f(x, t0u)u)dμ
∣
∣
∣
∣

≤
∫

V

|f(x, t(un)un)un − f(x, t0u)u|dμ

=
∫

V

|[f(x, t(un)un) − f(x, t0u)]un + f(x, t0u)(un − u)|dμ

≤
∫

V

|[f(x, t(un)un) − f(x, t0u)]un|dμ+
∫

V

|(f(x, t0u)‖(un − u)|dμ

≤ ‖f(x, t(un)un) − f(x, t0u)‖
L

p
p−1 (V )+L

q
q−1 (V )

‖un‖Lp(V )∩Lq(V ) + C

∫

V

|(un − u)|dμ
→ 0 as n→ ∞,
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which implies (3.39). Thus t0 = t(u).
Finally, we prove that the map ψ : u �→ t(u)u is a homeomorphism of the unit sphere B of

Eλ with Nλ.
(i) Obviously, ψ is continuous, since t(u) is continuous.
(ii) ψ is injective.
Let u, v ∈ B ⊂ Eλ and u �= v. We have ‖u‖Eλ

= ‖v‖Eλ
= 1. We need to prove that

ψ(u) �= ψ(v), i.e., t(u)u �= t(v)v. Indeed, if t(u) �= t(v), then

‖t(u)u‖Eλ
= ‖u‖Eλ

t(u) = t(u) �= t(v) = ‖v‖Eλ
t(v) = ‖t(v)v‖Eλ

, (3.42)

where t(u), t(v) > 0. Thus t(u)u �= t(v)v.
If t(u) = t(v), we also have t(u)u �= t(v)v, since u �= v.
(iii) ψ is surjective.
For any u ∈ Nλ, let v = u

‖u‖Eλ
, then v ∈ B. Note that ‖u‖Eλ

v = u and t is unique, we have
t(v) = ‖u‖Eλ

. Thus ψ(v) = t(v)v = ‖u‖Eλ

u
‖u‖Eλ

= u ∈ Nλ. �
Define

c1 := inf
u∈Eλ,u �=0

max
t≥0

Jλ(tu)

and
c := inf

γ∈Γ
max

t∈[0,1]
Jλ(γ(t)),

where
Γ := {γ ∈ C([0, 1], Eλ) : γ(0) = 0, Jλ(γ(1)) < 0},

then we have the following lemma.

Lemma 3.11 Assume (f1)–(f5) hold. Then c1 = c = mλ > 0.

Proof First we prove that c1 = mλ. Let u ∈ Eλ \ {0} be fixed and define the function
g(t) := Jλ(tu) on [0,+∞). Lemma 3.10 implies that for any u ∈ Eλ \ {0} there exists a unique
t(u) > 0 such that

max
t≥0

g(t) = max
t≥0

Jλ(tu) = g(t(u)) = Jλ(t(u)u). (3.43)

Then we have

c1 = inf
u∈Eλ,u �=0

max
t≥0

Jλ(tu) = inf
u∈Eλ,u �=0

Jλ(t(u)u) = inf
u∈Nλ

Jλ(u) = mλ. (3.44)

Next, we prove that c1 ≥ c. Indeed, (3.32) implies that there exists t0 > 0 such that
Jλ(t0u) < 0. Define

l : t ∈ [0, 1] → tt0u ∈ Eλ,

then l(t) ∈ Γ = {γ ∈ C([0, 1], Eλ) : γ(0) = 0, Jλ(γ(1)) < 0}, since l(0) = 0, Jλ(l(1)) < 0. For
any u ∈ Eλ\{0},

max
t≥0

Jλ(tu) ≥ max
t∈[0,1]

Jλ(tt0u) = max
t∈[0,1]

Jλ(l(t)) ≥ inf
γ∈Γ

max
t∈[0,1]

Jλ(γ(t)),

then
inf

u∈Eλ,u �=0
max
t≥0

Jλ(tu) ≥ inf
γ∈Γ

max
t∈[0,1]

Jλ(γ(t)).

That is c1 ≥ c.
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Next, we prove that c1 = mλ ≤ c. By Lemma 3.10 we know that for any u ∈ Eλ \ {0} there
exists a unique t(u) > 0 such that t(u)u ∈ Nλ. Then we can separate Eλ into two components
according to t(u) ≥ 1 or t(u) < 1. That means, Eλ = E1

λ∪E2
λ, where E1

λ = {u ∈ Eλ : t(u) ≥ 1},
E2

λ = {u ∈ Eλ : t(u) < 1}.
We claim that every γ ∈ Γ has to cross Nλ. In fact, it is easy to see that γ(t) and 0

are in the same component E1
λ, if t is small enough. We only need to prove γ(1) ∈ E2

λ. Set
g(t) = J(t(γ(1))), t ∈ [0,+∞), then g(0) = 0 and g(1) < 0. By (f3), if t small enough, we have

|f(x, tγ(1))| < λpt
p−1|γ(1)|p−1.

Then, if t small enough, we have

g(t) =
tp

p
‖γ(1)‖p

Eλ
−

∫

V

F (x, tγ(1))dμ

≥ tp

p
‖γ(1)‖p

Eλ
− t

α

∫

V

f(x, tγ(1))γ(1)dμ

≥ tp

p
‖γ(1)‖p

Eλ
− tp

α
‖γ(1)‖p

p

> 0,

since α > p. Thus, there exists t ∈ (0, 1) such that g(t) = maxt∈[0,1] g(t), i.e., J ′
λ(tγ(1))γ(1) = 0.

Therefore, t(γ(1)) < 1, i.e., γ(1) ∈ E2
λ. Thus, by the continuity of the map γ(t) → t(γ(t)) we

know that every γ ∈ Γ has to cross Nλ.
Thus, ∀γ ∈ Γ, γ(t) ∩ Nλ �= ∅, then there exists t0 ∈ (0, 1) such that γ(t0) ∈ Nλ. Thus we

can obtain
inf

u∈Nλ

Jλ(u) ≤ Jλ(γ(t0)) ≤ max
t∈[0,1]

Jλ(γ(t)).

Thus
mλ = inf

u∈Nλ

Jλ(u) ≤ inf
γ∈Γ

max
t∈[0,1]

Jλ(γ(t)) = c.

Therefore, c1 = c = mλ.

Finally, we prove that mλ > 0. If u ∈ Nλ, we have

‖u‖p
Eλ

=
∫

V

f(x, u)udμ.

By (3.40), we have

‖u‖p
Eλ

=
∫

V

f(x, u)udμ

≤
∫

V

|f(x, u)u|dμ

≤
∫

V

((λp − τ )|u|p + Cδ|u|q)dμ

= (λp − τ )‖u‖p
p + Cδ‖u‖q

q

≤ λp − τ

λp
‖u‖p

Eλ
+ Cδξ

q‖u‖q
Eλ
,

then
τ

λp
‖u‖p

Eλ
≤ Cδξ

q‖u‖q
Eλ
.
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Since q > p, we get

‖u‖Eλ
≥

(
τ

λpCδξq

) 1
q−p

> 0.

This gives that
mλ = inf

u∈Nλ

Jλ(u)

= inf
u∈Nλ

(
1
p
‖u‖p

Eλ
−

∫

V

F (x, u)dμ
)

≥ inf
u∈Nλ

(
1
p
‖u‖p

Eλ
−

∫

V

1
α
f(x, u)udμ

)

= inf
u∈Nλ

(
1
p
− 1
α

)

‖u‖p
Eλ

≥
(

1
p
− 1
α

)(
τ

λpCδξq

) p
q−p

> 0,

since p < α. �
By Theorem 1.3, we know that Jλ satisfies the (PS)c condition, and there exists a solution

u such that Jλ(u) = c = mλ, thus we completed the proof of Theorem 1.5.
In the following, we can provide another way to prove Theorem 1.5.

Lemma 3.12 ((Deformation Lemma) [1, Lemma 2.3]) Let (X, ‖ · ‖) be a Banach space, J ∈
C1(X,R), S ⊂ X, c ∈ R. If there exist ε, δ > 0 such that

∀u ∈ J−1([c− 2ε, c+ 2ε]) ∩ S2δ : ‖J ′(u)‖X∗ ≥ 8ε
δ
,

where S2δ = {x ∈ X : d(x, S) < 2δ}, X∗ is the dual space of X, then there exists η ∈
C([0, 1] ×X,X) such that

(i) η(t, u) = u, if t = 0 or if u /∈ J−1([c− 2ε, c+ 2ε]) ∩ S2δ,
(ii) η(1, J−1((−∞, c+ ε]) ∩ S) ⊂ J−1((−∞, c− ε]),
(iii) J(η(·, u)) is non-increasing, ∀u ∈ X.

Lemma 3.13 If uλ ∈ Nλ and Jλ(uλ) = mλ, then uλ is a critical point of Jλ.

Proof Assume that uλ ∈ Nλ, Jλ(uλ) = mλ and J ′
λ(uλ) �= 0. Then there exist δ > 0, ζ > 0

such that
‖u− uλ‖Eλ

≤ 3δ ⇒ ‖J ′
λ(u)‖(Eλ)∗ ≥ ζ,

where (Eλ)∗ is the dual space of Eλ. For ε := min{mλ

2 , ζδ
8 }, S := B(uλ, δ), Lemma 3.12 yields

a deformation η satisfying (i)–(iii). We claim that

max
t>0

Jλ(η(1, tuλ)) < mλ. (3.45)

In fact, by Lemma 3.10 we know that for any u ∈ Eλ \ {0}, there exists t(u) > 0 such that
t(u)u ∈ Nλ and maxt>0 Jλ(tu) = Jλ(t(u)u). Since uλ ∈ Nλ,

Jλ(tuλ) ≤ Jλ(uλ) = max
t>0

Jλ(tuλ) = mλ ≤ mλ + ε,

that is tuλ ∈ J−1
λ ((−∞,mλ + ε]).

1◦ If for any t > 0, tuλ ∈ S, then we have η(1, tuλ) ∈ J−1
λ ((−∞,mλ − ε]) by using (ii) in

Lemma 3.12.
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2◦ If for some t̃ > 0, t̃uλ �∈ S, then there exist t1 and t2 satisfying t1 < 1 < t2 such that

tuλ ∈ S, ∀t ∈ (t1, t2)

and

tuλ �∈ S, ∀t ∈ [0, t1] or t ∈ [t2,+∞).

Let g(t) := Jλ(tuλ). We have

g′(t) = J ′
λ(tuλ)uλ = tp−1‖uλ‖p

Eλ
−

∫

V

f(x, tuλ)uλdμ

= tp−1

∫

V

f(x, uλ)uλdμ−
∫

V

f(x, tuλ)uλdμ

= tp−1

( ∫

V

f(x, uλ)uλdμ− 1
tp−1

∫

V

f(x, tuλ)uλdμ

)

,

then we can obtain that Jλ(tuλ) is increasing in [0, 1] and decreasing in [1,+∞] about t. Thus,
Jλ(tuλ) is increasing in [0, t1] and decreasing in [t2,+∞] about t. And we have

Jλ(tuλ) ≤ max{Jλ(t1uλ), Jλ(t2uλ)} ≤ Jλ(uλ) − d = mλ − d,

where d = min{Jλ(uλ) − Jλ(t1uλ), Jλ(uλ) − Jλ(t2uλ)}. Thus, by (iii) we have

Jλ(η(1, tuλ)) ≤ Jλ(η(0, tuλ)) = Jλ(tuλ) ≤ mλ − d.

Combining 1◦ and 2◦, we get

Jλ(η(1, tuλ)) ≤ max{mλ − ε,mλ − d} < mλ, ∀t ≥ 0,

which gives (3.45).
Since for any u ∈ Eλ \ {0}, Jλ(tu) → −∞ as t→ +∞, there exists t0 > 0 such that

Jλ(t0uλ) < 0 < mλ − 2ε.

Then we have t0uλ �∈ J−1
λ ([mλ − 2ε,mλ + 2ε])∩S2δ. Let γ(t) = η(1, tt0uλ), t ∈ [0, 1]. It follows

from (i) that γ(0) = η(1, 0) = 0 and Jλ(γ(1)) = Jλ(η(1, t0uλ)) = Jλ(t0uλ) < 0. Hence, by the
definition of Γ we have γ(t) ∈ Γ.

By the definition of c, we have

mλ > max
t≥0

Jλ(η(1, tuλ)) ≥ max
t∈[0,1]

Jλ(η(1, tt0uλ)) = max
t∈[0,1]

Jλ(γ(t)) ≥ inf
γ∈Γ

max
t∈[0,1]

Jλ(γ(t)) = c = mλ,

which is a contradiction. Thus, J ′
λ(uλ) = 0, i.e., uλ is a critical point of Jλ. �

4 Convergence of Ground State Solutions

In this section, under the assumptions (f1)–(f5), we prove that the ground state solution uλ of
(1.4) converges to a ground state solution of (1.15) as λ→ +∞, which also implies Theorem 1.7.

Lemma 4.1 There exists ν > 0 such that for any critical point u ∈ Eλ\{0} of Jλ, we have
‖u‖Eλ

≥ ν, where ν is independent of λ.

Proof Lemma 2.6 tells us that

‖u‖q ≤ ξ‖u‖Eλ
,
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where ξ is independent of λ and q is given in (f4). Since u is a critical point of Jλ and by (3.40)
we have that

0 = J ′
λ(u)u = ‖u‖p

Eλ
−

∫

V

f(x, u)udμ

≥ ‖u‖p
Eλ

−
∫

V

((λp − τ )|u|p + Cδ|u|q)dμ

≥ ‖u‖p
Eλ

− λp − τ

λp
‖u‖p

Eλ
− Cδξ

q‖u‖q
Eλ

= ‖u‖p
Eλ

(
τ

λp
− Cδξ

q‖u‖q−p
Eλ

)

.

Then we have

‖u‖Eλ
≥

(
τ

λpCδξq

) 1
q−p

(4.1)

and we can choose ν =
(

τ
λpCδξq

) 1
q−p . �

Lemma 4.2 There exists C1 > 0 which is independent of λ such that if {uk} is a (PS)c

sequence of Jλ, then
lim sup
k→+∞

‖uk‖p
Eλ

≤ αp

α− p
c (4.2)

and either c ≥ C1 or c = 0, where α is given in (f2).

Proof Since Jλ(uk) → c and J ′
λ(uk) → 0 as k → +∞, we have

c = lim sup
k→+∞

(

Jλ(uk) − 1
α
J ′

λ(uk)uk

)

= lim sup
k→+∞

[(
1
p
− 1
α

)

‖uk‖p
Eλ

+
∫

V

(
1
α
f(x, uk)uk − F (x, uk)

)

dμ

]

≥ lim sup
k→+∞

(
1
p
− 1
α

)

‖uk‖p
Eλ

=
α− p

αp
lim sup
k→+∞

‖uk‖p
Eλ
,

which gives (4.2).
For any u ∈ Eλ, by (f3), (3.40) and Lemma 2.6 we have

J ′
λ(u)u = ‖u‖p

Eλ
−

∫

V

f(x, u)udμ

≥ ‖u‖p
Eλ

− λp − τ

λp
‖u‖p

Eλ
− Cδξ

q‖u‖q
Eλ

= ‖u‖p
Eλ

(
τ

λp
− Cδξ

q‖u‖q−p
Eλ

)

,

and there exists ρ = ( τ
2λpCδξq )

1
q−p such that

J ′
λ(u)u ≥ τ

2λp
‖u‖p

Eλ
for ‖u‖Eλ

≤ ρ.

Take C1 = α−p
αp ρ

p and suppose c < C1. Since {uk} is a (PS)c sequence, (4.2) gives

lim sup
k→+∞

‖uk‖p
Eλ

≤ αp

α− p
c <

αp

α− p
C1 = ρp.
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Hence, for k large, we have
τ

2λp
‖uk‖p

Eλ
≤ J ′

λ(uk)uk = ok(1)‖uk‖Eλ
.

Then we have ‖uk‖Eλ
→ 0 as k → +∞ which gives Jλ(uk) → c = 0 and the desired results are

proved for C1 = α−p
αp ρ

p = α−p
αp ( τ

2λpCδξq )
p

q−p . �

Remark 4.3 By Lemma 3.11, we know that for any ground state solutions uλ, there exists
a (PS)c sequence {uk} which converges weakly to uλ in Eλ, where c = mλ. By weak lower
semi-continuity of the norm ‖ · ‖Eλ

, we get that ‖uλ‖Eλ
is bounded by αpmλ

α−p .

For the ground states mλ and mΩ, we have

Lemma 4.4 mλ → mΩ as λ→ ∞.

Proof Since NΩ ⊂ Nλ, we obviously have that mλ ≤ mΩ for any λ > 0. Take a sequence
λk → ∞ such that

lim
k→∞

mλk
= M ≤ mΩ, (4.3)

wheremλk
is the ground state of the ground state solution uλk

∈ Nλk
of (1.4). Then Lemma 3.11

tells us that M > 0. By Remark 4.3, {uλk
} is uniformly bounded in Eλ, up to a subsequence,

we assume that there exists some u0 ∈W 1,p(V ) such that

uλk
⇀ u0 in Eλ,

uλk
(x0) → u0(x0),

and

uλk
→ u0 in Lq(V ),

where q is given in (f4).
We claim that u0|Ωc = 0. If not, there exists a vertex x0 /∈ Ω such that u0(x0) �= 0. Since

uλk
∈ Nλk

, we have

Jλ(uλk
) = Jλ(uλk

) − 1
α
J ′

λ(uλk
)uλk

=
(

1
p
− 1
α

)

‖uλk
‖p

Eλk
+

∫

V

(
1
α
f(x, uλk

)uλk
− F (x, uλk

)
)

dμ

≥
(

1
p
− 1
α

)

‖uλk
‖p

Eλk

=
α− p

αp
‖uλk

‖p
Eλk

≥ α− p

αp
λk

∫

V

a|uλk
|pdμ

≥ α− p

αp
λka(x0)|uλk

(x0)|pμ(x0).

Since x0 /∈ Ω, a(x0) > 0 and μ(x0) ≥ μmin > 0, uλk
(x0) → u0(x0) �= 0 as λk → ∞, then we

know that
lim

k→∞
Jλk

(uλk
) = ∞,

which is a contradiction to the fact that mλk
≤ mΩ.
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In view of (f1), there exists some constant C such that

|F (x, uλk
) − F (x, u0)| ≤ C|uλk

− u0|,
which leads to ∣

∣
∣
∣

∫

V

(F (x, uλk
) − F (x, u0))dμ

∣
∣
∣
∣ → 0 as k → +∞ (4.4)

Similar to the proof of Lemma 3.10, we can prove that there exists t > 0 such that tu0 ∈ NΩ,
i.e., ∫

Ω∪∂Ω

(|t∇u0|p + |tu0|p)dμ =
∫

Ω

f(x, tu0)tu0dμ. (4.5)

By (4.4), we get that

JΩ(tu0) =
1
p

∫

Ω∪∂Ω

(|t∇u0|p + |tu0|p)dμ−
∫

Ω

F (x, tu0)dμ

≤ 1
p

∫

V

(|t∇u0|p + |tu0|p)dμ−
∫

V

F (x, tu0)dμ

≤ lim inf
k→∞

[∫

V

1
p
(|t∇uλk

|p + (λka+ 1)|tuλk
|p)dμ−

∫

V

F (x, tuλk
)dμ

]

= lim inf
k→∞

Jλk
(tuλk

)

≤ lim inf
k→∞

Jλk
(uλk

) = M.

Consequently, M ≥ mΩ. Then we get that

lim
λ→∞

mλ = mΩ. �

Proofs of Theorem 1.7 and Theorem 1.8 We need to prove that for any sequence λk → ∞, the
corresponding uλk

∈ Nλk
satisfying Jλk

(uλk
) = mλk

converges in W 1,p(V ) to a ground state
solution u0 of (1.15) along subsequence.

Lemma 4.2 gives that uλk
is bounded in Eλk

and the upper-bound is independent of λk.
Consequently, we have that {uλk

} is also bounded in W 1,p(V ). Therefore, we can assume that
for any q ∈ [1,+∞),

uλk
⇀ u0 in W 1,p(V ).

Moreover, we get from Lemma 4.1 that u0 �≡ 0. We have proved in Lemma 4.4 that u0|Ωc = 0
and (4.4). Now we claim that as k → ∞, we have

λk

∫

V

a|uλk
|pdμ→ 0, (4.6)

and ∫

V

|∇uλk
|pdμ→

∫

V

|∇u0|pdμ. (4.7)

In fact, similar to the proof of (4.5) in Lemma 4.4, we can also find t > 0 such that tu0 ∈ NΩ.
If

lim
k→∞

λk

∫

V

a|uλk
|pdμ = θ > 0,

or
lim inf
k→+∞

∫

V

|∇uλk
|pdμ >

∫

V

|∇u0|pdμ,
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we have

JΩ(tu0) =
1
p

∫

Ω∪∂Ω

(|t∇u0|p + |tu0|p)dμ−
∫

Ω

F (x, tu0)dμ

=
1
p

∫

V

(|t∇u0|p + |tu0|p)dμ−
∫

V

F (x, tu0)dμ

< lim inf
k→+∞

[
1
p

∫

V

(|t∇uλk
|p + (λka+ 1)|tuλk

|p)dμ−
∫

V

F (x, tuλk
)dμ

]

= lim inf
k→+∞

Jλk
(tuλk

)

≤ lim inf
k→+∞

Jλk
(uλk

)

= mΩ,

which is contradiction.
Now we prove that u0 is a ground state solution of (1.15). In fact, since J ′

λk
(uλk

) = 0, for
any 0 �= φ ∈W 1,p

0 (Ω), we have
∫

V

(|∇uλk
|p−2∇uλk

∇φ+ (λka+ 1)|uλk
|p−2uλk

φ)dμ =
∫

V

f(x, uλk
)φdμ.

Since Ω = {x ∈ V : a(x) = 0}, a(x)φ(x) ≡ 0, for any x ∈ V . Then
∫

Ω∪∂Ω

|∇uλk
|p−2∇uλk

∇φdμ+
∫

Ω

|uλk
|p−2uλk

φdμ =
∫

Ω

f(x, uλk
)φdμ.

Let k → ∞. The above equality becomes
∫

Ω∪∂Ω

|∇u0|p−2∇u0∇φdμ+
∫

Ω

|u0|p−2u0φdμ =
∫

Ω

f(x, u0)φdμ.

which tells us that J ′
Ω(u0) = 0, u0 ∈ NΩ and u0 is a solution of (1.15).

On the other hand, by (4.4), (4.6) and (4.7), we have

Jλk
(uλk

) =
1
p

∫

V

(|∇uλk
|p + (λka+ 1)|uλk

|p)dμ−
∫

V

F (x, uλk
)dμ

=
1
p

∫

V

(|∇u0|p + |u0|p)dμ−
∫

V

F (x, u0)dμ+ ok(1)

=
1
p

∫

Ω∪∂Ω

|∇u0|pdμ+
∫

Ω

|u0|pdμ−
∫

Ω

F (x, u0)dμ+ ok(1)

= JΩ(u0) + ok(1).

Since Jλk
(uλk

) = mλk
, Lemma 4.4 tells JΩ(u0) = mΩ. Thus we get that u0 is a solution of

(1.15) which achieves the ground state. Thus Theorem 1.7 and Theorem 1.8 are proved. �

5 Appendix

In the Appendix, we mainly prove that Lp(V ) is complete, uniformly convex, reflexive and
W 1,p(V ) is reflexive.

Lemma 5.1 If G = (V,E) is a connected locally finite graph then the set of vertices V is
either finite or countably infinite.

Define

Lp(V ) :=
{

u : V → R :
∫

V

|u|pdμ < +∞
}
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with the norm

‖u‖p :=
(∫

V

|u|pdμ
) 1

p

where V is the vertex set of a locally finite graph.

Lemma 5.2 If G = (V,E) satisfies (G1)–(G2), then Lp(V ) is a Banach space, 1 ≤ p ≤ ∞.

The proof of Lemma 5.1 and Lemma 5.2 are standard, so we omit it.

Lemma 5.3 Let z, w ∈ C. If 1 < p ≤ 2 and p′ = p
p−1 , then

∣
∣
∣
∣
z + w

2

∣
∣
∣
∣

p′

+
∣
∣
∣
∣
z − w

2

∣
∣
∣
∣

p′

≤
(

1
2
|z|p +

1
2
|w|p

) 1
p−1

. (5.1)

If 2 ≤ p <∞, then ∣
∣
∣
∣
z + w

2

∣
∣
∣
∣

p

+
∣
∣
∣
∣
z − w

2

∣
∣
∣
∣

p

≤ 1
2
|z|p +

1
2
|w|p. (5.2)

Proof For the proof of Lemma 5.3 we can refer to [1, Lemma 2.37]. �

Definition 5.4 The space X is said to be uniformly convex if for each ε ∈ (0, 2], there exists
δ(ε) > 0 such that if ‖x‖ = ‖y‖ = 1 and ‖x− y‖ ≥ ε then

∥
∥x+y

2

∥
∥ ≤ 1 − δ(ε).

Lemma 5.5 If G = (V,E) satisfies (G1)–(G2) and 1 < p < ∞, then Lp(V ) is uniformly
convex.

Proof Let u, v ∈ Lp(V ) satisfy ‖u‖p = ‖v‖p = 1 and ‖u − v‖p ≥ ε where ε ∈ (0, 2]. If
2 ≤ p <∞, then (5.2) implies that

∣
∣
∣
∣
u(x) + v(x)

2

∣
∣
∣
∣

p

+
∣
∣
∣
∣
u(x) − v(x)

2

∣
∣
∣
∣

p

≤ 1
2
|u(x)|p +

1
2
|v(x)|p, ∀x ∈ V.

Then we have
∑

x∈V

(∣
∣
∣
∣
u(x) + v(x)

2

∣
∣
∣
∣

p

+
∣
∣
∣
∣
u(x) − v(x)

2

∣
∣
∣
∣

p)

μ(x) ≤
∑

x∈V

(
1
2
|u(x)|p +

1
2
|v(x)|p

)

μ(x).

That is ∥
∥
∥
∥
u+ v

2

∥
∥
∥
∥

p

p

+
∥
∥
∥
∥
u− v

2

∥
∥
∥
∥

p

p

≤ 1
2
‖u‖p

p +
1
2
‖v‖p

p,

which implies that ∥
∥
∥
∥
u+ v

2

∥
∥
∥
∥

p

p

≤ 1 − εp

2p
.

If 1 < p ≤ 2, then (5.1) implies that
∣
∣
∣
∣
u(x) + v(x)

2

∣
∣
∣
∣

p′

+
∣
∣
∣
∣
u(x) − v(x)

2

∣
∣
∣
∣

p′

≤
(

1
2
|u(x)|p +

1
2
|v(x)|p

) 1
p−1

, ∀x ∈ V,

where p′ = p
p−1 . Then we have

(∣
∣
∣
∣
u(x) + v(x)

2

∣
∣
∣
∣

p′

+
∣
∣
∣
∣
u(x) − v(x)

2

∣
∣
∣
∣

p′)p−1

≤ 1
2
|u(x)|p +

1
2
|v(x)|p, ∀x ∈ V.

Note that
∣
∣
∣
∣
u(x) + v(x)

2

∣
∣
∣
∣

p

+
∣
∣
∣
∣
u(x) − v(x)

2

∣
∣
∣
∣

p

≤
(∣

∣
∣
∣
u(x) + v(x)

2

∣
∣
∣
∣

p′

+
∣
∣
∣
∣
u(x) − v(x)

2

∣
∣
∣
∣

p′)p−1

, ∀x ∈ V.
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Thus, we can also obtain
∥
∥
∥
∥
u+ v

2

∥
∥
∥
∥

p

p

+
∥
∥
∥
∥
u− v

2

∥
∥
∥
∥

p

p

≤ 1
2
‖u‖p

p +
1
2
‖v‖p

p,

which implies that ∥
∥
∥
∥
u+ v

2

∥
∥
∥
∥

p

p

≤ 1 − εp

2p
.

In either case there exists δ = δ(ε) > 0 such that
∥
∥
∥
∥
u+ v

2

∥
∥
∥
∥

p

≤ 1 − δ. �

Corollary 5.6 If G = (V,E) satisfies (G1)–(G2) and 1 < p <∞, then Lp(V ) is reflexive.

Proof A uniformly convex Banach space is reflexive ([1, Theorem 1.21]). Thus, Lemma 5.2
and Lemma 5.5 imply that Lp(V ) is reflexive. �

Define
W 1,p(V ) := {u : V → R : ‖u‖W 1,p(V ) < +∞}, (5.3)

where

‖u‖W 1,p(V ) =
(∫

V

(|∇u|p + |u|p)dμ
) 1

p

.

Proposition 5.7 If G = (V,E) satisfies (G1)–(G2), then W 1,p(V ) is the completion of Cc(V )
under the norm ‖u‖p

W 1,p(V ) =
∫

V
(|∇u|p + |u|p)dμ.

Proof The proof of Proposition 5.7 is similar to [16, Proposition 2.1].

Corollary 5.8 If G = (V,E) satisfies (G1)–(G2) and 2 < p <∞, then W 1,p(V ) is reflexive.

Proof Let {uk} ⊂ W 1,p(V ) be a sequence and uk → u in Lp(V ). Next we prove that u ∈
W 1,p(V ). Obviously, u ∈ Lp(V ). We only need to prove that ‖∇u‖p

p =
∫

V
|∇u|pdμ < +∞.

Indeed, by Hölder’s inequality and (G1), we have

‖∇u‖p
p =

∫

V

|∇u|pdμ

=
∑

x∈V

μ(x)
[

1
2μ(x)

∑

y∼x

ωxy(u(y) − u(x))2
] p

2

= 2−
p
2

∑

x∈V

μ(x)
(

1
μ(x)

) p
2
[
∑

y∼x

ωxy(u(y) − u(x))2
] p

2

= 2−
p
2

∑

x∈V

μ(x)
(

degx

μ(x)

) p
2
[
∑

y∼x

ωxy

degx

(u(y) − u(x))2
] p

2

= 2−
p
2

∑

x∈V

μ(x)
(

degx

μ(x)

) p
2
[
∑

y∼x

(
ωxy

degx

) p−2
p + 2

p

(u(y) − u(x))2
] p

2

= 2−
p
2

∑

x∈V

μ(x)
(

degx

μ(x)

) p
2
[
∑

y∼x

(
ωxy

degx

) p−2
p

(
ωxy

degx

) 2
p

(u(y) − u(x))2
] p

2

≤ 2−
p
2

∑

x∈V

μ(x)
(

degx

μ(x)

) p
2
(

∑

y∼x

ωxy

degx

) p−2
2 ∑

y∼x

ωxy

degx

|u(y) − u(x)|p
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= 2−
p
2

∑

x∈V

μ(x)
(

degx

μ(x)

) p
2 ∑

y∼x

ωxy

degx

|u(y) − u(x)|p

≤ 2−
p
2M

p
2−1

∑

x∈V

∑

y∼x

ωxy|u(y) − u(x)|p

≤ 2−
p
2M

p
2−1

∑

x∈V

∑

y∼x

ωxy(|u(y)|p + |u(x)|p)

≤ 21− p
2M

p
2−1

∑

x,y∈V

ωxy|u(x)|p

= 21− p
2M

p
2−1

∑

x

degx|u(x)|p

≤ 21− p
2M

p
2−1

∑

x∈V

Mμ(x)|u(x)|p

= 21− p
2M

p
2 ‖u‖p

p

< +∞,

since u ∈ Lp(V ).
Thus, W 1,p(V ) ⊂ Lp(V ) is closed with respect to the norm topology of Lp(V ). The reflex-

ivity of Lp(V ) and [1, Theorem 1.22] imply that W 1,p(V ) is reflexive. �

Lemma 5.9 The following inequality

(a+ b)β(c+ d)1−β ≥ aβc1−β + bβd1−β (5.4)

holds for any β ∈ (0, 1) and a, b, c, d ≥ 0.

Proof If a = 0 or c = 0, it is obvious. If a �= 0, c �= 0, then for any a, b, c, d > 0, (5.4) is
equivalent to

(

1 +
b

a

)β (

1 +
d

c

)1−β

≥ 1 +
(
b

a

)β (
d

c

)1−β

.

Let u = b
a , v = d

c . We only need to prove

Q(u) = (1 + u)β(1 + v)1−β − uβv1−β − 1 ≥ 0.

Without loss of generality, we assume u ≥ v. Then we have

1 + v

1 + u
≥ v

u
and

(
1 + v

1 + u

)1−β

≥
(
v

u

)1−β

.

Note that Q(0) = 0, and

Q′(u) = β(1 + u)β−1(1 + v)1−β − βuβ−1v1−β

= β

[(
1 + v

1 + u

)1−β

−
(
v

u

)1−β]

≥ 0.

Hence, Q(u) is an increasing function about u. And we get Q(u) ≥ Q(0) = 0. �
Next, we consider the continuity of the operator

A : Lp(V ) → Lq(V ) : u �→ f(x, u).
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Lemma 5.10 Let G = (V,E) be a locally finite graph and 1 ≤ p < ∞. If un → u in Lp(V ),
there exists a subsequence {vn} of {un} and h ∈ Lp(V ) such that for all x ∈ V , vn(x) → u(x)
and

|u(x)| ≤ h(x), |vn(x)| ≤ h(x).

Proof The proof is similar to [28, Theorem A.1]. Going if necessary to a subsequence, we can
assume that un(x) → u(x) for all x ∈ V . There exists a subsequence {vn} of {un} such that

‖vj+1 − vj‖p ≤ 2−j , ∀j ≥ 1.

Let us define

h(x) := |v1(x)| +
∞∑

j=1

|vj+1(x) − vj(x)|.

It is clear that, for all x ∈ V , |vn(x)| ≤ h(x) and so |u(x)| ≤ h(x). �

Definition 5.11 On the space Lp(V ) ∩ Lq(V ), we define the norm

‖u‖Lp(V )∩Lq(V ) := ‖u‖p + ‖u‖q.

On the space Lp(V ) + Lq(V ), we define the norm

‖u‖Lp(V )+Lq(V ) := inf{‖v‖p + ‖w‖q : v ∈ Lp(V ), w ∈ Lq(V ), u = v + w}.
Lemma 5.12 Let G = (V,E) be a locally finite graph and 1 ≤ p, q, r, s <∞. For any x ∈ V ,
f(x, u) is continuous in u ∈ R and

|f(x, u)| ≤ c(|u| p
r + |u| q

s ).

Then, for every u ∈ Lp(V ) ∩ Lq(V ), f(·, u) ∈ Lr(V ) + Ls(V ) and the operator

A : Lp(V ) ∩ Lq(V ) → Lr(V ) + Ls(V ) : u �→ f(x, u)

is continuous.

Proof Let Φ ∈ C∞
0 ((−2, 2)) be such that Φ = 1 on (−1, 1) and define

h1(x, u) := Φ(u)f(x, u), h2(x, u) := (1 − Φ(u))f(x, u).

We can assume that p
r ≤ q

s . Hence we obtain

|h1(x, u)| ≤ a|u| p
r , |h2(x, u)| ≤ b|u| q

s .

Assume that un → u in Lp(V ) ∩ Lq(V ). Let {vn} and h be given by the preceding lemma.
Since

|h1(x, vn) − h1(x, u)|r ≤ 2rar|h|p,
it follows from Lebesgue dominated convergence theorem that h1vn → h1u in Lr(V ). And then
h1un → h1u in Lr(V ). Similarly, we have h2(x, un) → h2(x, u) in Ls(V ).

Since

|f(x, un) − f(x, u)|r,s ≤ |h1(x, un) − h1(x, u)|r + |h2(x, un) − h2(x, u)|s
it follows that f(x, un) → f(x, u) in Lr(V ) + Ls(V ). �
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