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Abstract We characterize the complex differential equations of the form

dy

dx
= an(x)yn + an−1(x)yn−1 + · · · + a1(x)y + a0(x),
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1 Introduction and Statement of the Main Results

Let x and y be complex variables. In this paper we study the differential equations of the form

dy

dx
= an(x)yn + an−1(x)yn−1 + · · · + a1(x)y + a0(x) with an(0) �≡ 0, (1.1)

where aj(x) are meromorphic functions of x for j = 0, . . . , n. In particular, the differential
equation (1.1) contains the well-known Abel differential equations when n = 3, the Riccati
differential equations when n = 2, and the linear differential equations when n = 1.

In what follows instead of working with the differential equation (1.1) we shall work with
the equivalent differential system

ẋ = 1, ẏ = an(x)yn + an−1(x)yn−1 + · · · + a1(x)y + a0(x) with an(0) �≡ 0 (1.2)

in C
2, where the dot denotes derivative with respect to the time t, real or complex.
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The objective of this paper is to study the integrability of the differential equations (1.1)
restricted to a special kind of first integrals. For such systems the notion of integrability is based
on the existence of a first integral, and we want to characterize when the differential equations
(1.1) have either a Weierstrass first integral or a Weierstrass inverse integrating factor.

When one studies the integrability of a differential system, the first class of functions to
look for first integral is the polynomial functions. Then, one can go a step further and try to
look for analytic first integrals. Usually, this is a very hard task and instead of this, one studies
the first integrals that can be described by formal series. The use of formal series in the study
of differential equations is a classical tool (see for instance [4], where the author used formal
series to prove the Dulac’s conjecture). Here, guided by the fact that the equations in (1.1) are
polynomial in the variable y, we study the first integrals that are polynomials in the variable y

and formal series in the variable x, called Weierstrass first integrals.
The integrability of the Abel differential equations (i.e., of Equation (1.1) with n = 3) has

been studied by several authors, see [2, 3, 6, 7] to cite just a few. For instance in [2, 3] and
[6], the authors provide a list of the known integrable Abel differential equations with aj(x) for
j = 0, 1, 2, 3 rational functions, and in [8] the Weierstrass integrability of the Abel differential
equations has been characterized, see also [9].

As usual C[[x]] is the ring of formal power series in the variable x with coefficients in C, and
C[y] is the ring of polynomials in the variable y with coefficients in C. A function of the form

n∑

i=0

wi(x)yi ∈ C[[x]][y], (1.3)

is called a formal Weierstrass polynomial in y of degree n if and only if wn(x) = 1 and wi(0) = 0
for i < n. A formal Weierstrass polynomial whose coefficients are convergent is called Weier-
strass polynomial, see [1].

Let V : W → C be a function satisfying

∂V

∂x
+

∂V

∂y
(an(x)yn + an−1(x)yn−1 + · · · + a1(x)y + a0(x))

= (nan(x)yn−1 + (n − 1)an−1(x)yn−2 + · · · + a1(x))V.

Then V is an inverse integrating factor of system (1.2), and it is known that there exists a first
integral H such that

1
V

=
∂H

∂y
,

an(x)yn + an−1(x)yn−1 + · · · + a1(x)y + a0(x)
V

= −∂H

∂x
.

We say that a differential system (1.2) is Weierstrass integrable if it admits a first integral or
an inverse integrating factor which is a Weierstrass polynomial. We recall that an analytic first
integral H : U → C of System (1.2) where U is an open subset of C2 is a non-locally constant
analytic function such that it is constant on the solution of System (1.2) contained in U . In [5]
the definition of Weierstrass integrability is given in a more general context.

The main objective of this paper is to provide the differential equations (1.2) that have
Weierstrass first integrals, or Weierstrass integrating factors. More precisely: How to recog-
nize functions aj(x) (j = 0, 1, . . . , n) for which the differential equation (1.1) is Weierstrass
integrable?
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Our first result is the following.

Proposition 1.1 System (1.2) has no Weierstrass first integrals.

The proof of Proposition 1.1 is given in Section 2.
We look for inverse integrating factors given by the Weierstrass polynomial

V = ys + Vs−1(x)ys−1 + · · · + V1(x)y + V0(x) =
s∑

i=0

Vi(x)yi (1.4)

with Vs(x) = 1. Then our main result is the following.

Theorem 1.2 System (1.2) admits a Weierstrass inverse integrating factor of the form (1.4)
if and only if

an−k(0) = 0 for k = 1, . . . , n − 1, (1.5)

a0(0) =
1

nan(0)2
(an−1(0)a′

n(0) − a′
n−1(0)an(0)), (1.6)

an−k(x) =
∏k

l=2(n − l + 1)
nk−1k!

an−1(x)k

an(x)k−1
for k = 2, . . . , n − 1, (1.7)

and

a0(x) = − 1
n

d

dx

an−1(x)
an(x)

+
∏n−1

l=2 (n − l + 1)
nn−1n!

an−1(x)n

an(x)n−1
.

In this case the inverse Weierstrass integrating factor is

V = yn +
n−1∑

i=0

Vi(x)yi

with

Vi(x) =
ai(x)
an(x)

for i = 1, . . . , n − 1

and

V0(x) =
a0(x)
an(x)

+
1

nan(x)
d

dx

an−1(x)
an(x)

.

The proof of Theorem 1.2 is given in Section 2.

2 Proof of the Results

Proof of Proposition 1.1 Imposing that System (1.2) has a first integral given by the Weier-
strass polynomial

H = ys + Hs−1(x)ys−1 + · · · + H1(x)y + H0(x) =
s∑

i=0

Hi(x)yi

(with Hs(x) = 1) we obtain a polynomial in y whose coefficients must be zero. Hence we get
that

s−1∑

i=0

H ′
i(x)yi +

s∑

i=0

iHi(x)yi−1(an(x)yn + an−1(x)yn−1 + · · · + a1(x)y + a0(x)) = 0. (2.1)

The highest power in (2.1) of the variable y is s+n−1 and its coefficient is san(x) = 0. Since
an(x) �= 0 we get s = 0. So, from the definition of Weierstrass polynomial, H = H0(x) = 1
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in contradiction with the fact that a first integral H cannot be constant. This completes the
proof. �

Now we shall give some preliminary results that we shall need for proving Theorem 1.2.
Imposing that System (1.2) has an inverse integrating factor of the form (1.4) we obtain a

polynomial in y whose coefficients must be zero. Hence we get that
s∑

i=0

V ′
i (x)yi +

s∑

i=0

iVi(x)yi−1(an(x)yn + an−1(x)yn−1 + · · · + a1(x)y + a0(x))

= (nan(x)yn−1 + (n − 1)an−1(x)yn−2 + · · · + 2a2(x)y + a1(x))
( s∑

i=0

Vi(x)yi

)
. (2.2)

Now, computing the coefficients in (2.2) of ys+n−1 we get sVs(x)an(x) = nVs(x)an(x). So we
have that san(0) = nan(0). Since an(0) �= 0, it follows that s = n.

Lemma 2.1 Equation (2.2) can be written as

n−1∑

i=0

V ′
i (x)yi +a0(x)

n−1∑

i=0

(i+1)Vi+1(x)yi +
2n−2∑

l=0

yl

min{l,n}∑

i=max{0,l+1−n}
(2i−1− l)Vi(x)al−i+1(x). (2.3)

Proof Since Vn(x) = 1 and s = n, Equation (2.2) can be written as

0 =
n−1∑

i=0

V ′
i (x)yi + a0(x)

n∑

i=1

iVi(x)yi−1

+
n∑

i=0

iVi(x)yi−1(an(x)yn + an−1(x)yn−1 + · · · + a1(x)y)

− (nan(x)yn−1 + (n − 1)an−1(x)yn−2 + · · · + 2a2(x)y + a1(x))
( n∑

i=0

Vi(x)yi

)

=
n−1∑

i=0

V ′
i (x)yi + a0(x)

n−1∑

i=0

(i + 1)Vi+1(x)yi

+
n∑

i=0

iVi(x)yi−1(an(x)yn + an−1(x)yn−1 + · · · + a1(x)y)

−
n∑

i=0

Vi(x)yi−1(nan(x)yn + (n − 1)an−1(x)yn−1 + · · · + a1(x)y)

=
n−1∑

i=0

V ′
i (x)yi + a0(x)

n−1∑

i=0

(i + 1)Vi+1(x)yi

+
n∑

i=0

Vi(x)yi−1((i − n)an(x)yn + (i − n + 1)an−1(x)yn−1 + · · · + (i − 1)a1(x)y). (2.4)

We can write the last sum in (2.4) as
n∑

i=0

Vi(x)yi−1((i − n)an(x)yn + (i − n + 1)an−1(x)yn−1 + · · · + (i − 1)a1(x)y)

=
n−1∑

j=0

n∑

i=0

(i − n + j)Vi(x)an−j(x)yn+i−1−j
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=
2n−2∑

l=0

yl

min{l,n}∑

i=max{0,l+1−n}
(2i − 1 − l)Vi(x)al−i+1(x). (2.5)

Now, the proof follows immediately from (2.4) and (2.5).

Let

Sn,l(x) =
l−1∑

j=1

(l − 2j)an−j(x)an−l+j(x). (2.6)

Note that l ≤ n + 1.

Lemma 2.2 We have Sn,l(x) = 0.

Proof We consider two cases.

Case 1 l even. In this case l = 2m and Sn,l(x) = Sn,2m(x) becomes

2
2m−1∑

j=1

(m − j)an−j(x)an−2m+j(x)

= 2
m−1∑

j=1

(m − j)an−j(x)an−2m+j(x) + 2
2m−1∑

j=m+1

(m − j)an−j(x)an−2m+j(x)

= 2
2m−1∑

l=m+1

(l − m)an−2m+l(x)an−l(x) + 2
2m−1∑

j=m+1

(m − j)an−j(x)an−2m+j(x)

= 0.

Case 2 l odd. In this case l = 2m + 1 and Sn,l(x) = Sn,2m+1(x) becomes

2m∑

j=1

(2m + 1 − 2j)an−j(x)an−2m−1+j(x)

=
m∑

j=1

(2m + 1 − 2j)an−j(x)an−2m−1+j(x)

+
2m∑

j=m+1

(2m + 1 − 2j)an−j(x)an−2m−1+j(x)

= −
2m∑

l=m+1

(2m + 1 − 2l)an−2m−1+l(x)an−l(x)

+
2m∑

j=m+1

(2m + 1 − 2j)an−j(x)an−2m−1+j(x) = 0.

This concludes the proof of the lemma. �

Lemma 2.3 For k = 1, . . . , n − 1 we have that

Vn−k(x) =
an−k(x)
an(x)

. (2.7)

Proof We compute in (2.2) with s = n the coefficients of yl for l = n, . . . , 2n − 2. Note that
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in this case, by Lemma 2.1 (see (2.3)) for l = n, . . . , 2n − 2 we have
n∑

i=l+1−n

(2i − 1 − l)Vi(x)al−i+1(x) = 0. (2.8)

For k = 1, . . . , n − 1 we write l = 2n − 1 − k and (2.8) becomes

0 =
n∑

i=n−k

(2i − 2n + k)Vi(x)a2n−k−i(x) =
k∑

j=0

(k − 2j)Vn−j(x)an−k+j(x), (2.9)

where in the last sum we have taken j = n − i. We rewrite (2.9) as (recall that Vn(x) ≡ 1)

0 = kVn(x)an−k(x) − kVn−k(x)an(x) +
k−1∑

j=1

(k − 2j)Vn−j(x)an−k+j(x)

= k
(
Vn(x)an−k(x) − Vn−k(x)an(x)

)
+

k−1∑

j=1

(k − 2j)Vn−j(x)an−k+j(x)

= k
(
an−k(x) − Vn−k(x)an(x)

)
+

k−1∑

j=1

(k − 2j)Vn−j(x)an−k+j(x). (2.10)

Now we proceed by backwards induction. For k = 1 in (2.10) we have

an−1(x) − Vn−1(x)an(x) = 0 that is Vn−1(x) =
an−1(x)
an(x)

,

which proves (2.7) for k = 1. Now assume that (2.7) is true for k = 1, . . . , l − 1 and we shall
prove it for k = l. Thus, using the induction hypothesis in (2.10) we get

0 = l(an−l(x) − Vn−l(x)an(x)) +
l−1∑

j=1

(l − 2j)Vn−j(x)an−l+j(x)

= l(an−l(x) − Vn−l(x)an(x)) +
l−1∑

j=1

(l − 2j)
an−j(x)
an(x)

an−l+j(x)

= l(an−l(x) − Vn−l(x)an(x)) +
1

an(x)

l−1∑

j=1

(l − 2j)an−j(x)an−l+j(x)

= l(an−l(x) − Vn−l(x)an(x)) +
1

an(x)
Sn,l(x), (2.11)

where Sn,l(x) is introduced in (2.6). By Lemma 2.2, Sn,l(x) = 0, and thus (2.11) becomes

l
(
an−l(x) − Vn−l(x)an(x)

)
= 0 that is Vn−l(x) =

an−l(x)
an(x)

.

This concludes the proof of the lemma. �

Lemma 2.4 We have that

V0(x) =
a0(x)
an(x)

+
1

nan(x)
d

dx

an−1(x)
an(x)

.

Proof We compute in (2.2) with s = n the coefficients of yn−1. By Lemma 2.1 with l =
n − 1 < n we get

V ′
n−1(x) + na0(x)Vn(x) +

n−1∑

i=0

(2i − n)Vi(x)an−i(x) = 0.



Weierstrass Integrability 1503

Now, using Lemma 2.3 we get

0 = V ′
n−1(x) + na0(x)Vn(x) +

n−1∑

i=0

(2i − n)Vi(x)an−i(x)

= V ′
n−1(x) + na0(x)Vn(x) − nV0(x)an(x) +

1
an(x)

n−1∑

i=1

(2i − n)ai(x)an−i(x)

= V ′
n−1(x) + na0(x) − nan(x)V0(x) − Sn,n(x)

an(x)

= V ′
n−1(x) + na0(x) − nan(x)V0(x),

where in the last equality we have used (2.6) and Lemma 2.2. Therefore

V0(x) =
1

nan(x)
(na0(x) + V ′

n−1(x)) =
a0(x)
an(x)

+
1

nan(x)
d

dx

an−1(x)
an(x)

.

This concludes the proof of the lemma. �

Lemma 2.5 For k = 1, . . . , n − 1 we have that an−k(0) = 0, and

a0(0) =
1

nan(0)2
(an−1(0)a′

n(0) − a′
n−1(0)an(0)).

Proof From the definition of Weierstrass polynomial, Vk(0) = 0 for k = 0, . . . , n − 1. By
assumption an(0) �= 0, it follows from Lemma 2.3 that an−k(0) = 0 for k = 1, . . . , n − 1.

Now using that V0(0) = 0 it follows from Lemma 2.4 that

0 =
a0(0)
an(0)

+
1

nan(0)3
(a′

n−1(0)an(0) − an−1(0)a′
n(0)),

which clearly concludes the proof of the lemma. �

Lemma 2.6 We have

an−k(x) =
∏k

l=2(n − l + 1)
nk−1k!

an−1(x)k

an(x)k−1
for k = 2, . . . , n − 1. (2.12)

Proof We compute in (2.2) with s = n the coefficients of yn−k with k = 2, . . . , n − 1. By
Lemma 2.1 with l = n − k < n we get

V ′
n−k(x) + (n − k + 1)a0(x)Vn−k+1(x) +

n−k∑

i=0

(2i − 1 − n + k)Vi(x)an−k−i+1(x) = 0. (2.13)

Using Lemma 2.3 we get that (2.13) becomes

0 =
d

dx

an−k(x)
an(x)

+ (n − k + 1)a0(x)
an−k+1(x)

an(x)
+

n−k∑

i=0

(2i − 1 − n + k)Vi(x)an−k−i+1(x),

0 =
d

dx

an−k(x)
an(x)

+ (n − k + 1)a0(x)
an−k+1(x)

an(x)
− (n − k + 1)V0(x)an−k+1(x)

+
1

an(x)

n−k∑

i=1

(2i − 1 − n + k)ai(x)an−k−i+1(x)

=
d

dx

an−k(x)
an(x)

+ (n − k + 1)a0(x)
an−k+1(x)

an(x)
− (n − k + 1)V0(x)an−k+1(x)

− Sn−k+1,n−k+1(x)
an(x)

.
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Now using Lemma 2.2 we get
d

dx

an−k(x)
an(x)

+ (n − k + 1)a0(x)
an−k+1(x)

an(x)
− (n − k + 1)V0(x)an−k+1(x) = 0,

and by Lemma 2.4,

0 =
d

dx

an−k(x)
an(x)

+ (n − k + 1)a0(x)
an−k+1(x)

an(x)
− (n − k + 1)

a0(x)
an(x)

an−k+1(x)

− n − k + 1
nan(x)

an−k+1(x)
d

dx

an−1(x)
an(x)

=
d

dx

an−k(x)
an(x)

− n − k + 1
nan(x)

an−k+1(x)
d

dx

an−1(x)
an(x)

.

That is
d

dx

an−k(x)
an(x)

=
n − k + 1
nan(x)

an−k+1(x)
d

dx

an−1(x)
an(x)

. (2.14)

Now we proceed by induction on k.
For k = 2, we have

d

dx

an−2(x)
an(x)

=
n − 1

n

an−1(x)
an(x)

d

dx

an−1(x)
an(x)

=
n − 1
2n

d

dx

(
an−1(x)
an(x)

)2

.

Solving this equation we get

an−2(x)
an(x)

= K2 +
n − 1
2n

(
an−1(x)
an(x)

)2

.

Using Lemma 2.5, we get that K2 = 0 and thus

an−2(x) =
n − 1
2n

an−1(x)2

an(x)
,

which proves (2.12) for k = 2.
Now we assume that (2.12) holds for k = 2, . . . , j − 1 and we shall prove it for k = j. Thus,

using the induction hypothesis, it follows from (2.14) with k = j that

d

dx

an−j(x)
an(x)

=
n − j + 1
nan(x)

an−(j−1(x)
d

dx

an−1(x)
an(x)

=
n − j + 1
nan(x)

∏j−1
l=2 (n − l + 1)
nj−2(j − 1)!

an−1(x)j−1

an(x)j−2

d

dx

an−1(x)
an(x)

=
∏j

l=2(n − l + 1)
nj−1(j − 1)!

an−1(x)j−1

an(x)j−1

d

dx

an−1(x)
an(x)

=
∏j

l=2(n − l + 1)
nj−1j!

d

dx

(
an−1(x)
an(x)

)j

.

Solving this equation we get

an−j(x)
an(x)

= Kj +
∏j

l=2(n − l + 1)
nj−1j!

(
an−1(x)
an(x)

)j

.

Using Lemma 2.5, we get that Kj = 0 and thus

an−j(x) =
∏j

l=2(n − l + 1)
nj−1j!

an−1(x)j

an(x)j−1
,
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which proves (2.12) for k = j. This concludes the proof of the lemma. �

Lemma 2.7 We have

a0(x) = − 1
n

d

dx

an−1(x)
an(x)

+
∏n−1

l=2 (n − l + 1)
nn−1n!

an−1(x)n

an(x)n−1
.

Proof We compute in (2.2) with s = n the coefficients of y0. By Lemma 2.1 with l = 0 we get

V ′
0(x) + a0(x)V1(x) − a1(x)V0(x) = 0. (2.15)

Using Lemmas 2.3 and 2.4 we get that (2.15) can be written as

0 =
d

dx
V0(x) +

a0(x)a1(x)
an(x)

− a1(x)
(

a0(x)
an(x)

+
1

nan(x)
d

dx

an−1(x)
an(x)

)

=
d

dx
V0(x) − a1(x)

nan(x)
d

dx

an−1(x)
an(x)

.

Now using Lemma 2.6 with k = n − 1 we get

d

dx
V0(x) =

a1(x)
nan(x)

d

dx

an−1(x)
an(x)

=
∏n−1

l=2 (n − l + 1)
nn−1(n − 1)!

an−1(x)n−1

an(x)n−1

d

dx

an−1(x)
an(x)

=
∏n−1

l=2 (n − l + 1)
nn−1n!

d

dx

(
an−1(x)
an(x)

)n

.

Therefore, integrating it we get

V0(x) = K0 +
∏n−1

l=2 (n − l + 1)
nn−1n!

(
an−1(x)
an(x)

)n

.

Using Lemma 2.5 (i.e., V0(0) = 0) we get that K0 = 0 and thus

V0(x) =
∏n−1

l=2 (n − l + 1)
nn−1n!

(
an−1(x)
an(x)

)n

.

Now, using Lemma 2.4 we have

a0(x)
an(x)

+
1

nan(x)
d

dx

an−1(x)
an(x)

=
∏n−1

l=2 (n − l + 1)
nn−1n!

(
an−1(x)
an(x)

)n

,

which yields

a0(x) = − 1
n

d

dx

an−1(x)
an(x)

+
∏n−1

l=2 (n − l + 1)
nn−1n!

an−1(x)n

an(x)n−1
,

as we wanted to prove. �
Proof of Theorem 1.2 It follows readily from Lemmas 2.3–2.7. �
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