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1 Introduction

All groups considered in this paper are finite.
It is quite interesting to investigate the structure of groups by using normalizers of some

kind of subgroups. For example, a famous p-nilpotent criterion due to Frobenius [9] is that a
group G is p-nilpotent if and only if the normalizers of all p-subgroups are p-nilpotent. Bianchi,
Gillio Berta Mauri and Hauck in [3] proved that a group is nilpotent if and only if the normalizer
of every Sylow subgroup is nilpotent. Ballester-Bolinches and Shemetkov in [2] established a
p-nilpotency criterion of a group by using only normalizers of Sylow p-subgroups: a group is
p-nilpotent if and only if the normalizers of Sylow p-subgroups are p-nilpotent.

Inspired by the above research, we are interested in the class of groups in which the nor-
malizer of every non-normal cyclic subgroup of order divided by the smallest prime p of |G| is
a maximal subgroup. For convenience, if the order of an element x is divided by p, then we call
such an element a pd-element, 〈x〉 a pd-subgroup. We also call a group an NPDM-group if the
normalizer of every non-normal cyclic pd-subgroup is maximal in G.

In [4, 5] we give the classification of groups in which the normalizer of every non-normal
cyclic subgroup is a maximal subgroup, which is called NCM-groups. The following examples
illustrate that there exists NPDM-groups but they are not NCM-groups. Therefore the class of
NPDM-groups is larger than the class of NCM-groups.
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Example 1.1 Let G = (〈a〉 × 〈b〉 × 〈c〉 × 〈d〉 × 〈e〉) � 〈f〉 with a2 = b2 = c2 = d2 = e7 = f3 =
1, af = ab, bf = a, cf = cd, df = c, ef = e2. Then G is an NPDM-group but not an NCM-group.

In fact, it is easy to find that G is an NPDM-group. On the other hand, NG(〈f〉) = 〈f〉 and
〈a, f〉 = (〈a〉 × 〈b〉) � 〈f〉 �= G. So NG(〈f〉) is not maximal in G and G is not an NCM-group.

Example 1.2 Let G = PSL(2, 11). Then G is an NPDM-group but not an NCM-group.

In fact, it is easy to find that every element of G of even order is contained in a cyclic
subgroup S � C6 and NG(S) � D12 is a maximal subgroup of G. So G is an NPDM-group. On
the other hand, there exists a cyclic subgroup U � C5 such that NG(U) � D10 is not maximal
in G. Therefore G is not an NCM-group.

We will investigate NPDM-groups in this paper and then give a classification of this kind
of groups.

2 Preliminaries

In this section, we list some basic properties of NPDM-groups and also list some lemmas which
will be useful for the proof of our main results.

Lemma 2.1 Let p be the smallest prime dividing the order of a group G and N be a normal
p′-subgroup of a group G. If G is an NPDM-group, then G/N is also an NPDM-group.

Proof Let 〈x〉N/N be a non-normal pd-subgroup of G/N . Then 〈x〉 � G and x is a pd-element
in G, and therefore NG(〈x〉) is a maximal subgroup in G. It follows from NG(〈x〉)N/N ≤
NG/N (〈x〉N/N) that NG/N (〈x〉N/N) is a maximal subgroup in G/N . �

Lemma 2.2 Let p be the smallest prime dividing the order of a group G and E be a non-
normal cyclic p-subgroup of G. If G is an NPDM-group, then there is a normal Hall p′-subgroup
K of CG(E) such that every subgroup of K is normal in NG(E) and NG(E) = K � P with P

a Sylow p-subgroup of NG(E). Furthermore, K is an abelian group.

Proof If CG(E) is a p-subgroup, then, since NG(E)/CG(E) is a p-group, there is nothing need
to be proved. Now assume that CG(E) is not a p-subgroup and that F is a cyclic q-subgroup
of CG(E) with q �= p a prime. Since E is a characteristic subgroup of EF , we see EF � G

and E � NG(EF ). The maximality of NG(EF ) implies that NG(E) = NG(EF ). By the same
reason, we have F � NG(EF ) and therefore NG(F ) ≥ NG(EF ) = NG(E). It follows that every
q-subgroup of CG(E) is normal in CG(E), and therefore the Hall p′-subgroup K in CG(E) is
normal in CG(E), which also implies that every subgroup in K is normal in NG(E). Noticing
that NG(E)/CG(E) is a p-subgroup, we see NG(E) = K � P with P a Sylow p-subgroup of
NG(E). We also know that K is a Dedekind group, thus K is an abelian group. The proof of
the lemma is complete. �

Lemma 2.3 ([7, Theorem 2.2]) Let q = pf ≥ 5 with p an odd prime. Then the maximal
subgroup of PSL(2, q) are:

(1) Cf
p � C q−1

2
;

(2) Dq−1, for q ≥ 13;
(3) Dq+1, for q �= 7, 9;
(4) PGL(2, q0), for q = q0

2;
(5) PSL(2, q0), for q = q0

r where r is an odd prime;
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(6) A5, for q ≡ ±1 (mod 10) where either q = p or q = p2 and p ≡ ±3 (mod 10);
(7) A4, for q = p ≡ ±3 (mod 8) and q �≡ ±1 (mod 10);
(8) S4, for q = p ≡ ±1 (mod 8).

Lemma 2.4 ([7, Theorem 3.5]) Let G = PGL(2, q) with q = pf ≥ 5 and p an odd prime.
Then the maximal subgroup of G not containing PSL(2, q) are:

(1) Cf
p � Cq−1;

(2) D2(q−1), for q �= 5;
(3) D2(q+1);
(4) S4, for q = p ≡ ±3 (mod 8);
(5) PGL(2, q0), for q = q0

r where r is an odd prime.

Lemma 2.5 ([9, Theorems 2.8.2, 2.8.3, 2.8.4, 2.8.5]) Let G � PSL(2, q) such that q = pf

and p is a prime. Then there exist subgroups P � Cf
p , U � C q−1

2
, S � C q+1

2
of G such that

NG(P ) � Cf
p � C q−1

2
, NG(U) � Dq−1 and NG(S) � Dq+1. Moreover, every element of G must

conjugate with one element of P , U or S.

Lemma 2.6 ([5, Lemma 2.15]) Let G � PGL(2, q) such that q = pf ≥ 7 and p is an odd prime.
Then there exist subgroups P � Cf

p , U � Cq−1, S � Cq+1 of G such that NG(P ) � Cf
p � Cq−1,

NG(U) � D2(q−1) and NG(S) � D2(q+1). Moreover, every element of G must conjugate with
one element of P , U or S.

Recall that a group is called an I-group if the centralizer of every involution has a normal
2-complement. We also use O(G) and S(G) to denote the largest normal subgroup of odd
order and the largest solvable normal subgroup of a group G respectively. The structure of
non-solvable I-groups was given by Gorenstein (see [8]) as follows:

Lemma 2.7 ([8, Theorem A]) A non-solvable I-group G has one of the following structures:
(i) G/O(G) contains a normal subgroup of odd index isomorphic to PSL(2, q), PGL(2, q),

PGL∗(2, q), q odd, q > 3, or A7;
(ii) G/O(G) is isomorphic to PSL(2, 2n) or Sz(2n), n ≥ 3, or to PSL(3, 4);
(iii) S(G) = O2′2(G) ⊃ O(G), and G/S(G) is isomorphic to PSL(2, 2n), n ≥ 2, or to

Sz(2n), n ≥ 3.

By the way, we often use the following lemma.

Lemma 2.8 If M is a maximal subgroup of a solvable group G, then the index |G : M | is a
prime power.

3 Solvable NPDM-groups

In this section, we will give the structure of solvable NPDM-groups. In the following of this
section, we always assume that G is a solvable group, p is the smallest prime dividing the order
of G and P is a Sylow p-subgroup of G. We begin with the following lemma.

Lemma 3.1 If G is an NPDM-group but not an NCM-group, then
(1) there is no non-trivial cyclic normal p-subgroup in G;
(2) for any p-element 1 �= x ∈ G, there is an element g ∈ G such that P g ≤ NG(〈x〉).

Proof If there is a non-trivial cyclic normal p-subgroup in G, then there exists a normal
p-subgroup 〈x〉 of order p in G. The minimality of p implies that 〈x〉 ≤ Z(G). Let 〈y〉 be a non-
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normal cyclic p′-subgroup of G. Then NG(〈x〉×〈y〉) ≤ NG(〈y〉). It follows from the maximality
of NG(〈x〉 × 〈y〉) that NG(〈y〉) is maximal in G. Thus G is an NCM-group, a contradiction.
So (1) is true.

If there is a non-trivial cyclic p-subgroup 〈x〉 of G such that |G : NG(〈x〉)| = ps, then there
is a Hall p′-subgroup T of G such that T ≤ NG(〈x〉). Let 〈y〉 ≤ T be a non-normal cyclic
subgroup of G. Then, by Lemma 2.2, NG(〈x〉) ≤ NG(〈y〉). The maximality of NG(〈x〉) implies
that NG(〈y〉) is maximal in G. Noticing that all Hall p′-subgroups of G are conjugate in G, we
see that NG(〈z〉) is maximal in G for every non-normal cyclic p′-subgroup 〈z〉 of G. Thus G is
an NCM-group, a contradiction. So (2) is true. �

Lemma 3.2 If G is an NPDM-group but G is neither p-closed nor p-nilpotent, then Op′(G) =
Z(G).

Proof Since G is neither p-closed nor p-nilpotent, we see that G is not an NCM-group by [4,
Lemma 3.2]. By Lemma 3.1 (1), we have Z(G) ≤ Op′(G). Now we prove Op′(G) ≤ Z(G). In
fact, let 〈x〉 be a non-trivial p-subgroup of P . By Lemmas 3.1 and 2.2, NG(〈x〉) = Tx � Px

with Tx a Hall p′-subgroup of NG(〈x〉) and Px a Sylow p-subgroup of G. If Op′(G) � Tx,
then Op′(G) � NG(〈x〉). The maximality of NG(〈x〉) implies that G = Op′(G)NG(〈x〉) is
p-nilpotent, a contradiction. Thus Op′(G) ≤ Tx, and therefore x ∈ CG(Op′(G)). It follows
that P ≤ CG(Op′(G)) and therefore Px ≤ CG(Op′(G)) by Lemma 3.1 (2). Furthermore,
by Lemma 2.2 again, Tx ≤ CG(Op′(G)) and so NG(〈x〉) ≤ CG(Op′(G)). The maximality of
NG(〈x〉) implies that CG(Op′(G)) = G or CG(Op′(G)) = NG(〈x〉). If CG(Op′(G)) = NG(〈x〉),
then it follows from Tx char CG(Op′(G)) � G that Tx is normal in G. Thus Tx = Op′(G) and
CG(Op′(G)) = Op′(G)× Px, and therefore Px is normal in G, in contradiction to that G is not
p-closed. Hence CG(Op′(G)) = G and Op′(G) ≤ Z(G). The proof of the lemma is complete. �

Lemma 3.3 If G is an NPDM-group but G is neither p-closed nor p-nilpotent and Op′(G) = 1,
then P is a maximal subgroup of G and there exists a Sylow q-subgroup Q of order q with
q �= p such that G = PQ. Furthermore, QOp(G) is a Frobenius group with kernel Op(G) and
complement Q, G/Op(G) is also a Frobenius group with kernel Op(G)Q/Op(G) and complement
P/Op(G), and P/Op(G) is cyclic with |P/Op(G)| | (q−1). For the sake of convenience, we call
this kind of groups Fpq-groups.

Proof Let 〈x〉 be a non-trivial p-subgroup of P . By Lemmas 3.1 and 2.2, NG(〈x〉) = Tx � Px

with Tx a Hall p′-subgroup of NG(〈x〉) and Px a Sylow p-subgroup of G. Noticing that Op(G) ≤
Px, we see that [Tx, Op(G)] = 1 and therefore Tx ≤ CG(Op(G)). It follows from [9, Theorem
3.4.2] that Tx = 1 and therefore P is a maximal subgroup of G. Thus there exists a prime
q �= p and a Sylow q-subgroup Q of G such that G = PQ. Let H/Op(G) be a chief factor of
G. Since H � P and the maximality of P , we have G = PH, and therefore H = Op(G)Q and
Q is elementary abelian. It is easy to see that the action of Q on Op(G) is fixed-point-free.
Thus H = Op(G)Q is a Frobenius group with kernel Op(G) and complement Q. By Burnside
theorem [9, Theorem 5.8.7], Q is cyclic and therefore Q is a cyclic group of order q. On the other
hand, it is also easy to see that the action of P/Op(G) on QOp(G)/Op(G) is fixed-point-free. It
follows from the structure of Frobenius groups that P/Op(G) is cyclic or generalized quaternion
if p = 2. Noticing that Aut(Q) is cyclic, we see that P/Op(G) is cyclic and |P/Op(G)| | (q− 1).
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The proof of the lemma is complete. �

Corollary 3.4 If G is an NPDM-group but G is neither p-closed nor p-nilpotent, then there
exists a prime q such that the quotient group G/Z(G) is a Fpq-group.

Proof By Lemmas 2.1 and 3.2, we see that G/Z(G) is also an NPDM-group. If G/Z(G) is
p-closed or p-nilpotent, then it is easy to know that G is p-closed or p-nilpotent. Thus G/Z(G)
is neither p-closed nor p-nilpotent. Now the results follows from Lemmas 3.2 and 3.3. �

Theorem 3.5 If G is an NPDM-group, then G is isomorphic to one of the following groups:

(I) G is an NCM-group;

(II) G = P � T with P an abelian subgroup and T a Hall p′-subgroup of G. Furthermore
CT (P ) is an abelian subgroup and P × CT (P ) = CG(P ) is maximal in G;

(III) G = T � P with T a Hall p′-subgroup of G. Furthermore, for any p-element x ∈ G

with 〈x〉 � G, there is an element gx in G such that NG(〈x〉) = CT (x) � P gx is maximal in G;

(IV) there exists a prime q such that G is a Fpq-group;

(V) there exists a prime q such that the quotient group G/Z(G) is a Fpq-group.

Proof By the above discussion (Lemma 3.3 and Corollary 3.4), we may only investigate the
case that G is an NPDM-group but not an NCM-group and G is either p-closed or p-nilpotent.
If G is both p-closed and p-nilpotent, then it is easy to see that there exists a non-trivial
cyclic normal p-subgroup in G, in contradiction to Lemma 3.1. So we may only investigate the
following two cases.

Case 1 P � G. By Lemma 3.1 (2), P is a Dedekind group. If P is a non-abelian group, then
P � Q8 ×C2 × · · · ×C2. Noticing that C2 � �1(P ) char P � G, we see that �1(P ) is a normal
cyclic 2-subgroup of G, a contradiction. So P is an abelian group. Let G = P �T with T a Hall
p′-subgroup of G. By Lemma 2.2, NG(〈x〉) = CT (x) × P is maximal in G for any x ∈ P with
〈x〉 � G and CT (x) an abelian group. It is easy to find that NG(〈x〉) ≤ CG(P ). By maximality
of NG(〈x〉), we see that CG(P ) = G or CG(P ) = NG(〈x〉). If CG(P ) = G, then every cyclic
subgroup of P is normal in G, in contradiction to Lemma 3.1 (1). So CG(P ) = NG(〈x〉), and
furthermore CT (x) = CT (P ). So G is a group of type (II).

Case 2 G is a p-nilpotent group. Let G = T � P with T a Hall p′-subgroup of G. Then
by Lemma 3.1, for any p-element x ∈ G with 〈x〉 � G, there is an element gx in G such that
〈x〉 � P gx . Therefore by Lemma 2.2 NG(〈x〉) = CT (x) � P gx is maximal in G. So G is a group
of type (III). The proof is complete. �

4 Non-solvable NPDM-groups

Recall that a group is called a semisimple group if it has no non-trivial solvable normal subgroup.
First, we give the structure of semisimple NPDM-groups. We begin with the following lemmas.

Lemma 4.1 Let G be a semisimple NPDM-group. Then G has a unique minimal normal
subgroup N such that N � PSL(2, q) with q = pf ≥ 5 and p an odd prime or N � PSL(3, 4)
and G � Aut(N).

Proof Let g be an involution of G. Then, by Lemma 2.2, CG(g) is a solvable subgroup of
G, and therefore coreG(CG(g)) = 1. The maximality of CG(g) implies that G is a primitive
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group. If there are two minimal normal subgroups N and N∗ in G, then CG(N) = N∗ by
[6, Theorem A.15.2]. It follows that N∗ = CG(N) ≤ CG(y) for any involution y ∈ N , in
contradiction to the solvability of CG(y). So N is the unique minimal normal subgroup of G.
Let N = T1 ×T2 × · · · ×Tn with Ti � T a non-abelian simple group. If n > 1, then T2 ≤ CG(t)
for any involution t ∈ T1, in contradiction to the solvability of CG(t). So N is a non-abelian
simple group. N ∩ CG(N) = 1, thus CG(N) = 1. Therefore G � Aut(N).

If the centralizer of every involution of N is a 2-group, then by Suzuki’s main result in
[10] and [11], N is isomorphic to one of the following groups: PSL(2, p) with p a Fermat or
Mersenne prime and p > 5, PSL(2, 9), PSL(3, 4), PSL(2, 2n) with n ≥ 2 and Sz(2n) with
n ≥ 3. For any involution x ∈ Z(Q) with Q a Sylow 2-subgroup of N , we see that CN (x) = Q.
The maximality and the solvability of CG(x) = NG(〈x〉) implies that G = NCG(x). If N is
isomorphic to PSL(2, 2n) with n ≥ 2 or Sz(2n) with n ≥ 3, then CN (x) = Q < NN (Q), in
addition, Q = CN (x) � CG(x), we have CG(x) < NG(Q). Therefore Q � G, a contradiction.
So N is isomorphic to PSL(2, p) with p a Fermat or Mersenne prime and p > 5, PSL(2, 9) or
PSL(3, 4).

If there is an involution z ∈ N such that CN (z) is not a 2-group. By Lemma 2.2, CG(z)
is a solvable group and every 2′-subgroup of CG(z) is normal in CG(z). So CN (z) is also a
solvable group and O(CN(z)) �= 1. By WUGT Theorem of [1], N is isomorphic to one of the
following groups: PSL(2, q) with q an odd number, A7 or A11. If N � A7, then there exists
a subgroup F × T of N with F � A4 and T � C3. Let C2 be any cyclic subgroup of F .
Then H1 = C2 × T is a cyclic subgroup of even order. By maximality of NG(H1), we see that
NG(C2) = NG(T ) = NG(H1). F ≤ NG(T ) = NG(C2) implies that every subgroup of F with
order two is normal in F , this is a contradiction. If N � A11, then we may choose a subgroup
E × U with E � A8 and U � C3. Similarly, we can get a contradiction. Since PSL(2, 3) is
solvable, we see N � PSL(2, q) with q ≥ 5. The proof is now complete. �

Lemma 4.2 Let G = PSL(2, q) � Cf with q = pf and p an odd prime. If Cf = 〈g〉 and g

induces a field automorphism on PSL(2, q), then gi (1 ≤ i < f) is not contained in CG(C q−1
2

)
and CG(C q+1

2
).

Proof Let A =
(

a b
c d

)
with ad − bc = 1 be a matrix of SL(2, q) represent element of cyclic

subgroup C q−1
2

in PSL(2, q) of order q−1
2 . g induces a field automorphism on PSL(2, q), so

(
a b
c d

)gi

=
(

api
bpi

cpi
dpi

)
with 1 ≤ i < f . If gi is contained in CG(C q−1

2
), then api−1 = bpi−1 =

cpi−1 = dpi−1 = 1. It follows that there is a subfield GF(pj) ⊂ GF(q) with j = (i, f) such that
a, b, c, d ∈ GF(pj), furthermore

(
a b
c d

) ∈ SL(2, pj). pj < q implies that the order of the matrix
(

a b
c d

)
is not equal to q − 1, a contradiction. Similarly, we can see that gi (1 ≤ i < f) is not

contained in CG(C q+1
2

). The proof is complete. �

Theorem 4.3 A group G is a semisimple NPDM-group if and only if G is one of the following
groups:

(I) G � PSL(2, q) with q = pf , p an odd prime and q ≥ 11;
(II) G � PGL(2, q) with q = pf , p an odd prime and q ≥ 7.

Proof By Lemma 4.1, G has a unique minimal normal subgroup N such that N � PSL(2, q),
where q = pf ≥ 5 and p is an odd prime or N � PSL(3, 4). We can also find that the centralizer



312 Cao J. J. and Guo X. Y.

of every involution of G has a normal 2-complement by Lemma 2.2. If N � PSL(3, 4), then
by Lemma 2.7, G � PSL(3, 4). Also by Suzuki’s main result in [10] and [11], we see that the
centralizer of every involution of G is a 2-group. So every Sylow 2-subgroup of G is maximal
in G. On the other hand, there is a subgroup of G � PSL(3, 4) with order 960 that contains
a Sylow 2-subgroup of G, a contradiction. If N � PSL(2, q) with q = pf ≥ 5 and p an odd
prime, then by Lemma 2.7, G contains a normal subgroup of odd index isomorphic to PSL(2, q),
PGL(2, q) or PGL∗(2, q). By Lemma 4.1 again, G � Aut (N) = PGL(2, q) � Cf . So, there is a
cyclic subgroup Cn with odd order in Cf which normalizes PSL(2, q), PGL(2, q) or PGL∗(2, q).
We confirm that Cn = 1. Otherwise, let Cf = 〈g〉 and Cn = 〈gi〉 �= 1 with 1 ≤ i < f . Then gi

induces a field automorphism on PSL(2, q). We consider the following two cases.

Case 1 q ≡ 1 (mod 4). In this case, we can find that
(

a 0
0 a−1

)
with a2 = −1 represents an

involution τ in PSL(2, q). If f is an odd, then pf−1+pf−2+· · ·+1 is also an odd. Thus 4|(pf −1)

implies that 4|(p − 1) and so 4|(pi − 1). Furthermore
(

a 0
0 a−1

)gi

=
(

api
0

0 a−pi

)
=

(
a 0
0 a−1

)
. So

gi ∈ CG(τ ). By Lemmas 2.2 and 2.3, NG(〈gi〉) = CG(τ ) = 〈Dq−1, g
i〉 = T � Q with T an

abelian Hall 2′-subgroup of CG(τ ) and Q a Sylow 2-subgroup of CG(τ ). Let C q−1
2

be a cyclic
subgroup that contains τ . Then C q−1

2
is represented by 〈A〉 where A =

(
a 0
0 a−1

)
. If 〈e〉 is a Sylow

2-subgroup of C q−1
2

, then 〈τ 〉 char 〈e〉 � NG(〈e〉) implies that NG(〈e〉) = NG(〈τ 〉) = NG(〈gi〉).
So [gi, e] ≤ 〈gi〉 ∩ 〈e〉 = 1. Noticing that gi ∈ T and T is an abelian Hall 2′-subgroup of
NG(〈gi〉), we see that gi ∈ CG(C q−1

2
), in contradiction to Lemma 4.2. If f is an even, then i

is also an even since 〈gi〉 has odd order. It follows that p − 1 and pi−1 + pi−2 + · · · + 1 are all
even, furthermore 4|(pi − 1). So gi ∈ CG(τ ). Similarly, we get another contradiction.

Case 2 q ≡ −1 (mod 4). In this case,
(

0 1−1 0

)
represents an involution τ ′ in PSL(2, q).

(
0 1−1 0

)gi

=
(

0 1−1 0

)
=

(
0 1pi

(−1)pi
0

)
, since pi is an odd. So gi ∈ CG(τ ′). Similarly, we see that

gi ∈ CG(C q+1
2

), where C q+1
2

is represented by 〈B〉 with B =
(

a b
−b a

)
such that a2 + b2 = 1, in

contradiction to Lemma 4.2.

So G is isomorphic to PSL(2, q), PGL(2, q) or PGL∗(2, q). We consider the following three
cases separately.

(1) G � PSL(2, q) with q = pf and p an odd prime is an NPDM-group if and only if q ≥ 11.

Let C = 〈u〉 be a cyclic group of G � PSL(2, q) of even order. Then, by Lemma 2.5, u is
conjugate with one element of the following subgroups: U � C q−1

2
, S � C q+1

2
. Without loss of

generality, we may assume that C is contained in U or S. It follows that NG(C) � Dq+1 or
NG(C) � Dq−1.

If q < 13 and q �= 7, 11, then, by Lemma 2.5, there is a cyclic subgroup F of even order
such that NG(F ) � Dq−1. By Lemma 2.3, if q < 13, then NG(F ) � Dq−1 is not maximal in
G, a contradiction. If q = 7, then |U | = 3 implies that NG(C) � D8. On the other hand, by
Lemma 2.3 again, we see that NG(C) � D8 is not maximal in G, a contradiction. So q ≥ 11.

Conversely, if G � PSL(2, 11), then |U | = 5 implies that NG(C) � D12. By Lemma 2.3,
NG(C) is maximal in G. If G � PSL(2, q) with q ≥ 13, then, by Lemma 2.3 again, we see that
NG(C) � Dq+1 or NG(C) � Dq−1 is also maximal in G. So G is a group of type (I).

(2) G � PGL(2, q) with q = pf and p an ddd prime is an NPDM-group if and only if q ≥ 7.

Assume that G � PGL(2, 5). By [9, Theorem 2.7.2 (a)], GL(2, 5) has an abelian subgroup
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D � C4 × C4 which contains Z(GL(2, 5)). Furthermore, NGL(2,5)(D)/D � C2. Hence G

has a cyclic subgroup H(� D/Z(GL(2, 5))) with order 4 such that NG(H)/H � C2 by [9,
Theorem 2.7.2 (a)] again. Hence NG(H) � D8 or Q8, but by Lemma 2.4, NG(H) is not a
maximal subgroup of PGL(2, 5). So q ≥ 7.

Conversely, let E be a cyclic group of G � PGL(2, q) of even order with q ≥ 7. Then,
similarly, by Lemma 2.6 we can find that NG(E) contains NG(U) or NG(S). By Lemma 2.4,
we see that NG(E) is maximal in G. So G is a group of type (II).

(3) G = PGL∗(2, q) with q an odd and q = r2 for some integer r is not an NPDM-group.
If q < 13, then q = 9 and G � PGL∗(2, 9). Let S be a Sylow 2-subgroup of PGL∗(2, 9).

Then S � C8 � C2 = 〈a〉 � 〈b〉 with 〈a〉 � C8 and 〈b〉 � C2. It is easy to find that 〈ab〉 is a
cyclic subgroup of order 4 and NG(〈ab〉) = 〈a2, ab〉 < S. Therefore NG(〈ab〉) is not maximal in
G and so PGL∗(2, 9) is not an NPDM-group. So q ≥ 13.

As is well-known, Aut(PSL(2, q)) = PΓL(2, q) = PSL(2, q) � F with q = pn, F a cyclic
subgroup of order n. If |F | is even, then there are three subgroups of PΓL(2, q) containing
PSL(2, q) as a subgroup of index 2. They are PGL(2, q), 〈PSL(2, q), c〉 and PGL∗(2, q) =
〈PSL(2, q), ac〉 where 〈ac〉 and 〈a〉 are the maximal cyclic subgroups of a Sylow 2-subgroup of
PGL∗(2, q) and PGL(2, q) respectively, c induces a field automorphism on PSL(2, q). By [8,
Lemma 2.3], every Sylow 2-subgroup of PGL∗(2, q) is a semidihedral and every involution of
PGL∗(2, q) lies in PSL(2, q). If PGL∗(2, q) is an NPDM-group, then by Lemmas 2.2 and 2.3
NG(〈ac〉) = 〈Dq−1, ac〉 or 〈Dq+1, ac〉 has a normal 2-complement T and T ≤ CG(ac). So ac is
contained in CPΓL(2,q)(C q−1

2
) or CPΓL(2,q)(C q+1

2
). By (2), PGL(2, q) with q ≥ 13 is an NPDM-

group. Similarly we can find that a is contained in CPΓL(2,q)(C q−1
2

) or CPΓL(2,q)(C q+1
2

). So c is
also abelian with cyclic subgroup C q−1

2
or C q+1

2
of PGL∗(2, q), in contradiction to Lemma 4.2.

So PGL∗(2, q) is not an NPDM-group. The proof is complete. �

Corollary 4.4 Let G be a non-solvable group. If G is a non-semisimple NPDM-group. Then
S(G) = O(G) and G/O(G) is isomorphic to the groups stated in the above theorem.

Proof If G is a non-semisimple group, then by Lemma 2.7 and Theorem 4.3 we have that
S(G) = O(G). Also by Lemma 2.1, G/O(G) is a semisimple NPDM-group. So G/O(G) is a
group stated in the above theorem. �
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