Acta Mathematica Sinica, English Series Aug., 2021, Vol. 37, No. 8, pp. 1267–1277 Published online: August 15, 2021 https://doi.org/10.1007/s10114-021-0328-3 http://www.ActaMath.com

Acta Mathematica Sinica. *<u>English Series</u> English Series* © Springer-Verlag GmbH Germany & The Editorial Office of AMS 2021

Quasi-normal Family of Meromorphic Functions Whose Certain Type of Differential Polynomials Have No Zeros

Jian Ming CHANG

School of Mathematics and Statistics, Changshu Institute of Technology, Changshu 215500*, P. R. China*

and

School of Mathematical Sciences, Qufu Normal University, Qufu 273165*, P. R. China E-mail* : *jmchang@cslg.edu.cn*

Abstract Define the differential operators ϕ_n for $n \in \mathbb{N}$ inductively by $\phi_1[f](z) = f(z)$ and $\phi_{n+1}[f](z)$ $= f(z)\phi_n[f](z) + \frac{d}{dz}\phi_n[f](z)$. For a positive integer $k \geq 2$ and a positive number δ , let F be the family of functions f meromorphic on domain $D \subset \mathbb{C}$ such that $\phi_k[f](z) \neq 0$ and $|\text{Res}(f,a) - j| \geq \delta$ for all $j \in \{0, 1, \ldots, k-1\}$ and all simple poles a of f in D. Then F is quasi-normal on D of order 1.

Keywords Normal families, quasi-normal families, differential polynomials, meromorphic functions **MR(2010) Subject Classification** 30D45

1 Introduction

The following theorem was conjectured by Hayman [9, p. 23] and proved by Frank [7] for $k \geq 3$ and by Langley [10] for $k = 2$.

Theorem 1.1 *Let* $k \in \mathbb{N}$ *with* $k \geq 2$ *and let* f *be a function meromorphic on whole* \mathbb{C} *such that* $f \neq 0$ *and* $f^{(k)} \neq 0$ *. Then either* $f(z) = e^{a(z+b)}$ *or* $f(z) = a/(z+b)^n$ *for some constants* $a \neq 0$, b and $n \in \mathbb{N}$.

It follows from Theorem 1.1 that either $f'/f = a$ or $f'/f = -n/(z + b)$ for meromorphic functions f on C with the property $ff^{(k)} \neq 0$. Note that the family $\{-n/(z+b): n \in \mathbb{N}, b \in \mathbb{C}\}\$ is a normal family on C.

A heuristic principle attributed to Bloch says that if the functions meromorphic and possessing a given property on $\mathbb C$ must be constants (or weakly, form a family normal on $\mathbb C$), then the functions meromorphic and possessing the same property on a domain $D \subset \mathbb{C}$ form a family normal on D . See [2, 13, 16], where the Bloch principle is thoroughly discussed.

The normality criteria corresponding to Theorem 1.1 have been obtained by Schwick [14] for holomorphic case, and by Bergweiler [1] and Bergweiler and Langley [3] for general meromorphic case.

Theorem 1.2 *Let* $k \in \mathbb{N}$ *with* $k \geq 2$ *and let* \mathcal{F} *be a family of functions* f *meromorphic on* $D \subset \mathbb{C}$ such that $f \neq 0$ and $f^{(k)} \neq 0$. Then the family $\{f'/f : f \in \mathcal{F}\}$ is normal on D .

Received June 28, 2020, accepted November 27, 2020

Research Supported by NSFC (Grant No. 11471163)

In fact, Bergweiler and Langley [3] proved a more general result. They introduced a type of differential operators ϕ_n defined inductively by $\phi_1[f](z) = f(z)$ and

$$
\phi_{n+1}[f](z) = f(z)\phi_n[f](z) + \frac{d}{dz}\phi_n[f](z). \tag{1.1}
$$

Next we denote by $\text{Res}_1(f, D)$ (or $\text{Res}_1(f)$ simply) the set of residues of f at its simple poles in D; denote by $\mathbb{N}_k = \{0, 1, \ldots, k-1\}$ for $k \in \mathbb{N}$. Denote by

$$
dis(Res_1(f, D), \mathbb{N}_k) = inf{r - j| : r \in Res_1(f, D), j \in \mathbb{N}_k}
$$

the distance between $\text{Res}_1(f, D)$ and \mathbb{N}_k . We set dis($\text{Res}_1(f, D), \mathbb{N}_k$) = + ∞ , if f has no simple poles.

Theorem 1.3 ([3, Theorem 1.3]) *Let* $k \in \mathbb{N}$ *with* $k \geq 2$ *and* $\delta \in \mathbb{R}^+$ *with* $0 < \delta \leq 1$ *. Let* \mathcal{F} *be a family of functions f meromorphic on* $D \subset \mathbb{C}$ *such that*

(i) $\phi_k[f](z) \neq 0$ for $z \in D$;

(ii) dis($\text{Res}_1(f, D), \mathbb{N}_k$) $\geq \delta$; and

(iii) *if* $c \in D$ *and* $R > 0$ *with* $\Delta(c, R) \subset D$, *if* $\Delta(c, \delta R)$ *contains two poles of* f *counting multiplicity, and if* $\Delta(c, R) \setminus \Delta(c, \delta R)$ *contains no poles of f, then*

$$
\bigg|\sum_{a\in\Delta(c,\delta R)}\text{Res}(f,a)-(k-1)\bigg|\geq \delta.
$$

Then F *is a normal family.*

As pointed out in [3], the assumption (iii) in Theorem 1.3 is necessary to obtain normality. We consider here the following question: What can be said under the hypotheses (i) and (ii) of Theorem 1.3? Our answer is that there is quasi-normality.

Recall that a family of functions meromorphic in $D \subset \mathbb{C}$ is said to be normal (quasi-normal) in D in the sense of Montel, if each sequence ${f_n} \subset \mathcal{F}$ contains a subsequence which converges spherically locally uniformly in D (minus a set that has no accumulation point in D). The subtracted set may depend on the subsequence. If there exists an integer ν such that the subtracted sets always can be chosen at most ν points, then $\mathcal F$ is said to be quasi-normal of order ν . So, a normal family can be regarded as a quasi-normal family of order 0. See [6, 13, 15]. Now our main result can be stated as follows.

Theorem 1.4 Let $k \in \mathbb{N}$ with $k \geq 2$ and $\delta > 0$. Let F be a family of functions f meromorphic *on* $D \subset \mathbb{C}$ *such that*

- (i) $\phi_k[f](z) \neq 0$ for $z \in D$;
- (ii) dis(Res₁ $(f, D), \mathbb{N}_k$) $\geq \delta$.

Then F *is quasi-normal of order* 1*. Moreover, each sequence in* F *which is not normal at a point* $z_0 \in D$ *contains a subsequence which converges spherically locally uniformly to the function* $(k - 1)/(z - z_0)$ *on* $D \setminus \{z_0\}.$

In Section 2, we state and prove some lemmas and in Section 3, we prove our result Theorem 1.4. We remark that the idea somewhat comes from the papers [4, 12].

2 Preliminary Results

We write $f_n \stackrel{\chi}{\to} f$ on D to indicate that the sequence $\{f_n\}$ converges spherically locally uniformly to the function f on D; and write $f_n \to f$ on D if the convergence is in Euclidean metric, where the limit function f is allowed to be ∞ identically.

Lemma 2.1 ([3, Lemma 4.2]; [11, Lemma 2]) *Let* F *be a family of meromorphic functions on* D. Suppose that there exists $\delta > 0$ such that $dis(Res_1(f, D), \{0\}) \geq \delta$. Then if F is not normal *at some point* $z_0 \in D$ *, there exist a sequence* $\{f_n\} \subset \mathcal{F}$ *, a sequence of points* $\{z_n\} \subset D$ *with* $z_n \to z_0$, and a sequence of positive numbers $\{\rho_n\}$ with $\rho_n \to 0$, such that the sequence $\{g_n\}$ *defined by* $g_n(\zeta) = \rho_n f_n(z_n + \rho_n \zeta)$ *converges spherically locally uniformly on* $\mathbb C$ *to a nonconstant meromorphic function* g of finite order and g satisfies $g^{\#}(\zeta) \leq g^{\#}(0) = 1 + 1/\delta$. Moreover, dis(Res₁ $(g, \mathbb{C}), \{0\}) \geq \delta$.

Lemma 2.2 *Let* $\{f_n\}$ *be a sequence of functions meromorphic on* $D \subset \mathbb{C}$ *, and* $z_0 \in D$ *be a* point such that $f_n \xrightarrow{\chi} f$ on $D \setminus \{z_0\}$. Then the following statements are true:

(a) If f_n are holomorphic on D and $f \neq \infty$, then f is holomorphic on whole D and $f_n \to f$ *on* D;

(b) If $f_n \neq 0$ on D and $f \neq 0$, then f is meromorphic on D and $f \neq 0$ or $f \equiv \infty$, and $f_n \xrightarrow{\chi} f$ on D;

(c) If f_n are holomorphic on D and $f_n \neq 0$, then either f is holomorphic on D and $f \neq 0$ *or* $f \equiv c \in \{0, \infty\}$ *, and* $f_n \to f$ *on D*.

Proof (a) is a direct corollary to the maximum modulus principle. And (b), (c) follow from (a) .

Lemma 2.3 ([3, Lemma 1.1]) *The operators* ϕ_n *defined in* (1.1) *have the following properties:* (a) For a meromorphic function $f \not\equiv 0$,

$$
\phi_n \left[\frac{f'}{f} \right] = \frac{f^{(n)}}{f};\tag{2.1}
$$

(b) For meromorphic functions f and $g(z) = af(az + b)$ with constants a and b,

$$
\phi_n[g](z) = a^n \phi_n[f](az + b). \tag{2.2}
$$

Lemma 2.4 ([3, Lemma 2.1]) *Let* f *be meromorphic on* D*. Then*

(a) the poles of f with multiplicity $m \geq 2$ are poles of $\phi_n[f]$ multiplicity nm, and

(b) the simple poles a of f with $\text{Res}(f, a) \notin \mathbb{N}_n$ are poles of $\phi_n[f]$ with multiplicity n, and

(c) the simple poles a of f with $\text{Res}(f, a) \in \mathbb{N}_n$ are at most poles of $\phi_n[f]$ with multiplicity *less than* n*.*

Lemma 2.5 ([3, Theorem 1.1 and Theorem 1.2]) Let $k \in \mathbb{N}$ with $k \geq 2$ and $\delta > 0$. Let f be a *nonconstant meromorphic functions on* $\mathbb C$ *such that* $\phi_k[f] \neq 0$ *and* dis(Res₁(f), N_k) $\geq \delta$. Then *either*

$$
f(z) = \frac{(k-1)(z-\alpha)}{(z-\beta_1)(z-\beta_2)}
$$
\n(2.3)

or

$$
f(z) = \frac{a}{z - b},\tag{2.4}
$$

where α , β_1 , β_2 , α , β *are constants with* $\alpha \neq \beta_1$, $\alpha \neq \beta_2$ *and* $|a| \geq \delta$ *.*

Lemma 2.6 *The rational function* (2.4) *with* $|a| \ge \delta(>0)$ *satisfies* $f^*(z) \le 1/\delta$ *.*

Proof We have

$$
f^{\#}(z) = \frac{|f'(z)|}{1 + |f(z)|^2} = \frac{|a|}{|z - b|^2 + |a|^2} \le \frac{1}{|a|} \le \frac{1}{\delta}.
$$

Lemma 2.7 *If the rational function* (2.3) *has two poles* $\pm \frac{1}{2}$ *with* dis(Res₁(f), {0}) $\geq \delta (> 0)$ *, then there exists a positive constant* $K = K(k, \delta)$ *such that*

$$
\sup_{z \in \overline{\Delta}(0,1)} f^{\#}(z) \le K. \tag{2.5}
$$

Proof By the assumption,

$$
f(z) = f_{\alpha}(z) = \frac{(k-1)(z-\alpha)}{z^2 - \frac{1}{4}},
$$

so that $\text{Res}_1(f) = \{(k-1)(\frac{1}{2} \pm \alpha)\}\.$ Hence $|\frac{1}{2} \pm \alpha| \geq \frac{\delta}{k-1}$, since $\text{dis}(\text{Res}_1(f), \{0\}) \geq \delta$. It is not difficult to see that the family

$$
\mathcal{F} = \left\{ f_{\alpha}(z) = \frac{(k-1)(z-\alpha)}{z^2 - \frac{1}{4}} : \left| \frac{1}{2} \pm \alpha \right| \ge \frac{\delta}{k-1} \right\}
$$

is normal on \mathbb{C} . And hence the conclusion follows from Marty's theorem. \Box

Lemma 2.8 *Let* $k \in \mathbb{N}$ *with* $k \geq 2$ *and* $\delta > 0$ *. Let* \mathcal{F} *be a family of functions meromorphic on* $D \subset \mathbb{C}$ such that for every $f \in \mathcal{F}$, $f \neq 0$, $\phi_k[f] \neq 0$ and $dis(Res_1(f), \mathbb{N}_k) \geq \delta$. Then the family F *is normal on* D*.*

Proof Suppose that F is not normal at some point $z_0 \in D$. Since $0 \in \mathbb{N}_k$, the assumption $dis(Res_1(f), \mathbb{N}_k) \geq \delta$ implies $dis(Res_1(f), \{0\}) \geq \delta$. Hence by Lemma 2.1, there exist functions f_n in F, points $z_n \to z_0$ in D and positive numbers $\rho_n \to 0$ such that

$$
g_n(\zeta) = \rho_n f_n(z_n + \rho_n \zeta) \xrightarrow{\chi} g(\zeta) \quad \text{on } \mathbb{C}, \tag{2.6}
$$

where g is a nonconstant meromorphic function satisfying $g^{\#}(\zeta) \leq g^{\#}(0) = 1 + \frac{1}{\delta}$. And as $f_n \neq 0$, we get $g \neq 0$ on $\mathbb C$ by Hurwitz's theorem.

We claim that dis($\text{Res}_1(g), \text{N}_k$) $\geq \delta$. To prove this, let ζ_0 be a simple pole of g. Then by (2.6) and Hurwitz's theorem, g_n has a simple pole $\zeta_n \to \zeta_0$. It is obvious that $\text{Res}(g_n, \zeta_n) =$ $Res(f_n, z_n + \rho_n \zeta_n)$. Hence by the condition dis $(Res_1(f), \mathbb{N}_k) \ge \delta$, we get $|Res(g_n, \zeta_n) - j| \ge \delta$ for all $j \in \mathbb{N}_k$. It follows that $|\text{Res}(g, \zeta_0) - j| \geq \delta$ for all $j \in \mathbb{N}_k$. This proves the claim.

This claim with Lemma 2.4 shows that each pole of g must be a pole of $\phi_k[q]$.

We claim that $\phi_k[g] \neq 0$. In fact, if $\phi_k[g] \equiv 0$, then as just showed, g has no pole; g is a nonconstant entire function. Let $h(\zeta) = \exp(\int_0^{\zeta} g(t) dt)$. Then h is entire and $g = h'/h$, and hence by Lemma 2.3, $h^{(k)}(\zeta) = h(\zeta)\phi_k[g](\zeta) \equiv 0$. It follows that h is a polynomial. Since $h \neq 0$, h is a constant, and hence $g \equiv 0$. This is a contradiction.

We claim further that $\phi_k[g] \neq 0$. Suppose that $\phi_k[g](\zeta_0) = 0$. Then $g(\zeta_0) \neq \infty$, so that g is holomorphic on some neighbourhood $\Delta(\zeta_0, \eta)$ of ζ_0 . It follows that g_n for sufficiently large n are holomorphic on $\Delta(\zeta_0, \eta)$ and $g_n \to g$ on $\Delta(\zeta_0, \eta)$. Hence $\phi_k[g]$ and $\phi_k[g_n]$ are holomorphic on $\Delta(\zeta_0, \eta)$ and $\phi_k[g_n] \to \phi_k[g]$ on $\Delta(\zeta_0, \eta)$. Since $\phi_k[g](\zeta_0) = 0$ and $\phi_k[g] \neq 0$, it follows from Hurwitz's theorem that $\phi_k[g_n](\zeta_n) = 0$ for some $\zeta_n \to \zeta_0$. Direct calculation shows $\phi_k[g_n](\zeta) = \rho_n^k \phi_k[f_n](z_n + \rho_n \zeta)$. Hence $\phi_k[f_n](z_n + \rho_n \zeta_n) = 0$. This contradicts the assumption that $\phi_k[f] \neq 0$ for $f \in \mathcal{F}$.

Thus by Lemma 2.5 with noting that $g \neq 0$, g has the form (2.4) , and hence $g^{\#}(\zeta) \leq \frac{1}{\delta}$ by Lemma 2.6. This contradicts the restriction $g^{\#}(0) = 1 + \frac{1}{\delta}$.

Hence the family $\mathcal F$ is normal on D.

Lemma 2.9 *Let* $k \in \mathbb{N}$ *with* $k \geq 2$ *. Let* \mathcal{F} *be a family of functions holomorphic on* $D \subset \mathbb{C}$ *such that* $\phi_k[f] \neq 0$ *for every* $f \in \mathcal{F}$ *. Then the family* \mathcal{F} *is normal on* D *.*

Proof It is similar to the proof of Lemma 2.8 with noting that the limit function g here is an entire function. \Box

Lemma 2.10 *Let* $k \in \mathbb{N}$ *with* $k \geq 2$ *and* $\delta > 0$ *. Let* \mathcal{F} *be a family of functions meromorphic on* $D \subset \mathbb{C}$ *such that for every* $f \in \mathcal{F}$, $\phi_k[f] \neq 0$ *and* dis(Res₁ $(f), \mathbb{N}_k$) $\geq \delta$.

- *Let* ${f_n} ⊂ F$ *be a sequence and* $z_0 ∈ D$ *a point such that*
- (a) $f_n \xrightarrow{\chi} f$ *on* $D \setminus \{z_0\}$, where the limit function f may be ∞ *identically*;
- (b) *no subsequence of* $\{f_n\}$ *is normal at* z_0 *; and*

(c) *there exists a neighbourhood* $\Delta(z_0, \eta)$ *of* z_0 *in which every* f_n *has at most one single zero.*

Then the limit function $f(z) = \frac{k-1}{z-z_0}$.

Proof Say $z_0 = 0$. Since $\{f_n\}$ is not normal at 0, by a similar argument showed in the proof of Lemma 2.8, there exists a subsequence of $\{f_n\}$, which we continue to call $\{f_n\}$, points $z_n \to z_0 = 0$ and positive numbers $\rho_n \to 0$ such that

$$
g_n(\zeta) = \rho_n f_n(z_n + \rho_n \zeta) \xrightarrow{\chi} g(\zeta) = \frac{(k-1)(\zeta - \alpha)}{(\zeta - \beta_1)(\zeta - \beta_2)} \text{ on } \mathbb{C}, \tag{2.7}
$$

where α, β_1, β_2 are constants with $\alpha \neq \beta_i$.

It follows from Hurwitz's theorem that g_n has a zero α_n and two poles $\beta_{n,i}$ $(i = 1, 2)$ with

$$
\alpha_n \to \alpha, \quad \beta_{n,i} \to \beta_i \quad \text{as } n \to \infty,
$$
\n(2.8)

and hence f_n has a zero $z_{n,0} = z_n + \rho_n \alpha_n$ and two poles $z_{n,\infty}^{(i)} = z_n + \rho_n \beta_{n,i}$. Set

$$
R_n(z) = \frac{z - z_{n,0}}{(z - z_{n,\infty}^{(1)})(z - z_{n,\infty}^{(2)})}.
$$
\n(2.9)

Then we have

$$
L_n(\zeta) := \rho_n R(z_n + \rho_n \zeta) = \frac{\zeta - \alpha_n}{(\zeta - \beta_{n,1})(\zeta - \beta_{n,2})} \xrightarrow{\chi} \frac{g(\zeta)}{k - 1} \quad \text{on } \mathbb{C}.
$$
 (2.10)

Define

$$
f_n^*(z) := \frac{f_n(z)}{R_n(z)}.\t(2.11)
$$

Let $g_n^*(\zeta) := f_n^*(z_n + \rho_n \zeta)$. Since $g_n^*(\zeta)L_n(\zeta) = g_n(\zeta)$, we see from (2.7) and (2.10) that $g_n^*(\zeta) \to k-1$ on $\mathbb{C} \setminus {\alpha, \beta_1, \beta_2}$. We also see that $g_n^* \neq 0$ on \mathbb{C} locally uniformly. Thus by applying Lemma 2.2 (b),

$$
g_n^*(\zeta) = f_n^*(z_n + \rho_n \zeta) \to k - 1 \quad \text{on } \mathbb{C}.\tag{2.12}
$$

Next, we claim that there exists a neighbourhood of $z_0 = 0$ in which all f_n^* for sufficiently large n have no pole.

Suppose this is not the case. Then there exists a subsequence of $\{f_n^*\}$, say itself w.l.g., such that every f_n^* has at least one pole w_n with $w_n \to z_0 = 0$ as $n \to \infty$. We may assume that w_n is the nearest pole to z_n . Then by (2.12), $\frac{w_n-z_n}{\rho_n} \to \infty$. Thus $w_n \neq z_n$, and

$$
\rho_n^* := \frac{\rho_n}{w_n - z_n} \to 0 \tag{2.13}
$$

with $\rho_n^* \neq 0$. Now set

$$
\widehat{R}_n(z) := (w_n - z_n)R(z_n + (w_n - z_n)z) = \frac{z - \rho_n^* \alpha_n}{(z - \rho_n^* \beta_{n,1})(z - \rho_n^* \beta_{n,2})}.
$$
\n(2.14)

Then we have

$$
\widehat{R}_n(z) \xrightarrow{\chi} \frac{1}{z} \quad \text{on } \mathbb{C}^* = \mathbb{C} \setminus \{0\}. \tag{2.15}
$$

Let $\hat{f}_n^*(z) := f_n^*(z_n + (w_n - z_n)z)$. Since by (c), $f_n^* \neq 0$ on $\Delta(0, \eta)$ and hence $\hat{f}_n^*(z) \neq 0$ on \mathbb{C} locally uniformly, and since w_n is the nearest pole to z_n , $f_n^*(z) \neq \infty$ on $\Delta(0,1)$ with $f_n^*(1) = \infty$.

Now consider the sequence $\{f_n\}$ defined by

$$
\widehat{f}_n(z) = \widehat{R}_n(z)\widehat{f}_n^*(z) = (w_n - z_n)f_n(z_n + (w_n - z_n)z).
$$
\n(2.16)

It follows from Lemma 2.3 (b) and the assumption $\phi_k[f_n] \neq 0$ that

$$
\phi_k[\hat{f}_n](z) = (w_n - z_n)^k \phi_k[f_n](z_n + (w_n - z_n)z) \neq 0 \tag{2.17}
$$

on C locally uniformly. Also, we have

$$
\operatorname{dis}(\operatorname{Res}_{1}(\widehat{f}_{n}), \mathbb{N}_{k}) \ge \delta. \tag{2.18}
$$

Note that f_n either has two simple poles $\rho_n^* \beta_{n,1}$ and $\rho_n^* \beta_{n,2}$ when $\beta_{n,1} \neq \beta_{n,2}$, or has a double poles $\rho_n^* \beta_{n,1}$ when $\beta_{n,2} = \beta_{n,1}$. Hence by Lemma 2.4, $\phi_k[f_n](z)$ has at least 2k poles, counting multiplicities, that tend to 0.

Since $\hat{f}_n^*(z) \neq 0$ on $\mathbb C$ locally uniformly, we get $\hat{f}_n(z) \neq 0$ on $\mathbb C^*$ locally uniformly. Applying Lemma 2.8 yields that $\{\hat{f}_n\}$ and hence $\{\hat{f}_n^*\}$ is normal on \mathbb{C}^* . Since $\hat{f}_n^* \neq 0$, ∞ on $\Delta(0,1)$, by Lemma 2.2 (c), $\{\hat{f}_n^*\}$ is normal on $\Delta(0,1)$ and hence on whole C. By taking a subsequence and renumbering, we may say that

$$
\hat{f}_n^* \xrightarrow{\chi} \hat{f}^* \quad \text{on } \mathbb{C}. \tag{2.19}
$$

Since $f_n^*(1) = \infty$, we get $f^*(1) = \infty$; since $f_n^*(0) = f_n^*(z_n) = g_n^*(0) \to k-1$, we get $f^*(0) = k-1$. It follows that \hat{f}^* is a nonconstant meromorphic function on \mathbb{C} . Further, $\hat{f}^* \neq 0$ on \mathbb{C} , since $\widehat{f}_n^* \neq 0$ on \mathbb{C} .

Now by (2.19), (2.16) and (2.15), we have $\hat{f}_n \stackrel{X}{\to} \hat{f} := \hat{f}^*/z$ on \mathbb{C}^* . Note that \hat{f} is a nonconstant meromorphic function on $\mathbb C$ such that $\widehat{f} \neq 0$ and $\widehat{f}(0) = \widehat{f}(1) = \infty$. In particular, 0 is a simple pole with $\text{Res}(\widehat{f},0) = k-1$. Also, it follows from (2.18) that dis($\text{Res}_1(\widehat{f},\mathbb{C}^*), \mathbb{N}_k$) $\geq \delta$, and in particular, $\text{Res}(\widehat{f},1) \notin \mathbb{N}_k$. Thus by Lemma 2.4, 1 is a pole of $\phi_k[\widehat{f}]$, and hence $\phi_k[\widehat{f}] \not\equiv 0$.

Since $\hat{f}_n \stackrel{\chi}{\to} \hat{f}$ on \mathbb{C}^* , we have $\hat{f}_n \to \hat{f}$ on $\mathbb{C} \setminus A$, where A is the set of poles of \hat{f} . It follows that $\phi_k[\hat{f}_n] \to \phi_k[\hat{f}]$ on $\mathbb{C} \setminus A$. Since A has no accumulate points on \mathbb{C} and $\phi_k[\hat{f}] \not\equiv 0$, by (2.17) and Lemma 2.2 (b), we get $\phi_k[\hat{f}_n] \xrightarrow{\chi} \phi_k[\hat{f}]$ on C. Since $\phi_k[\hat{f}_n](z)$ has at least 2k poles tending

to 0, 0 is a pole of $\phi_k[f]$ with multiplicity at least 2k. However, as 0 is a simple pole of f, this contradicts Lemma 2.4.

The above claim is thus proved. By removing finitely many functions and renumbering, we may assume that $f_n^* \neq 0$, ∞ on $\Delta(0, \eta)$.

Since $f_n \xrightarrow{\chi} f$ on $D \setminus \{0\}$ and $R_n(z) \to 1/z$ on \mathbb{C}^* , it follows from (2.11) that f_n^* $\xrightarrow{\chi} f^*$ on $D \setminus \{0\}$, where $f^*(z) = zf(z)$. Since $f_n^* \neq 0$ on $\Delta(0, \eta)$, it follows from Lemma 2.2 (c) that f_n^* $x \to f^*$ on $\Delta(0, \eta)$ and hence on whole D. Since $f_n^*(z_n) = g_n^*(0) \to k-1$ and $z_n \to 0$, we get $f^*(0) = k - 1$. Thus the function

$$
f(z) = \frac{f^*(z)}{z} \neq \infty
$$
\n(2.20)

is meromorphic on D.

Next we show that $\phi_k[f] \equiv 0$ on D. Since $f_n \xrightarrow{\chi} f$ on $D \setminus \{0\}$, it follows that $\phi_k[f_n] \to \phi_k[f]$ on $D \setminus A$, where A is the set of poles of f on D. If $\phi_k[f] \neq 0$, then by $\phi_k[f_n] \neq 0$ on D and Lemma 2.2 (b) we get $\phi_k[f_n] \xrightarrow{\chi} \phi_k[f]$ on whole D. Note that f_n either has two simple poles $z_{n,\infty}^{(1)}$ and $z_{n,\infty}^{(2)}$ when $z_{n,\infty}^{(1)} \neq z_{n,\infty}^{(2)}$, or has a double poles $z_{n,\infty}^{(1)}$ when $z_{n,\infty}^{(1)} = z_{n,\infty}^{(2)}$. Hence by Lemma 2.4, $\phi_k[f_n](z)$ has at least 2k poles, counting multiplicities, that tend to 0. Thus by $\phi_k[f_n] \stackrel{\chi}{\rightarrow} \phi_k[f]$ on D, 0 is a pole of $\phi_k[f]$ with multiplicity at least 2k. On the other hand, since $f(z) = f^*(z)/z$ with $f^*(0) = k - 1$, this contradicts Lemma 2.4.

Now we show that f^* is a constant with $f^* = k-1$ to complete the proof. Since $f^*(0) = k-1$, the function

$$
h(z) = \frac{f^*(z) - (k-1)}{z} \tag{2.21}
$$

is holomorphic at 0, say on $\Delta(0, \eta)$. Let

$$
H(z) = z^{k-1} \exp\left(\int_0^z h(t)dt\right), \quad z \in \Delta(0, \eta). \tag{2.22}
$$

Then we have

$$
\frac{H'(z)}{H(z)} = \frac{k-1}{z} + h(z) = \frac{f^*(z)}{z} = f(z).
$$
\n(2.23)

Now applying Lemma 2.3 (a) yields that $H^{(k)}(z) = H(z)\phi_k[f] \equiv 0$, so that H is a polynomial with degree less than k. This occurs only when $h \equiv 0$. Thus f^* is a constant with $f^* = k - 1$.

Lemma 2.11 *Let* $k \in \mathbb{N}$ *with* $k \geq 2$ *and* $\delta > 0$ *. Let* \mathcal{F} *be a family of functions meromorphic on* $D \subset \mathbb{C}$ *such that for every* $f \in \mathcal{F}$, $\phi_k[f] \neq 0$ *and* dis(Res₁(f), \mathbb{N}_k) $\geq \delta$.

Let ${f_n} ⊂ F$ *be a sequence and* $z_0 ∈ D$ *a point such that*

- (a) *no subsequence of* $\{f_n\}$ *is normal at* z_0 ; *and*
- (b) *every* f_n *has at least two distinct zeros tending to* z_0 *.*

Then there exists a subsequence of $\{f_n\}$ *which we continue to call* $\{f_n\}$ *such that every* f_n *has at least two distinct poles* a_n *and* b_n *tending to* z_0 *such that*

$$
\sup_{z \in \overline{\Delta}(0,1)} h_n^{\#}(z) \to \infty,
$$
\n(2.24)

where

$$
h_n(z) = (a_n - b_n) f_n \left(\frac{a_n + b_n}{2} + (a_n - b_n) z \right).
$$
 (2.25)

Proof Say $z_0 = 0$. The beginning part is the same as the proof of Lemma 2.10 up to (2.12). Next, we claim that each f_n^* has at least one pole tending to $z_0 = 0$.

Suppose not, then all f_n^* are holomorphic on some neighbourhood $\Delta(0, \eta) \subset D$ of 0. By the assumption (b), each f_n^* has at least one zero tending to 0. Say the one which is nearest to z_n is $w_n \to 0$. Then $(w_n - z_n)/\rho_n \to \infty$ by (2.12), and hence

$$
\rho_n^* = \frac{\rho_n}{w_n - z_n} \to 0 \tag{2.26}
$$

with $\rho_n^* \neq 0$. Thus the rational functions

$$
\widehat{R}_n(z) := (w_n - z_n)R(z_n + (w_n - z_n)z) = \frac{z - \rho_n^* \alpha_n}{(z - \rho_n^* \beta_{n,1})(z - \rho_n^* \beta_{n,2})}
$$
(2.27)

satisfy

$$
\widehat{R}_n(z) \xrightarrow{\chi} \frac{1}{z} \quad \text{on } \mathbb{C}^* = \mathbb{C} \setminus \{0\}. \tag{2.28}
$$

Let $f_n^*(z) := f_n^*(z_n + (w_n - z_n)z)$ and

$$
\widehat{f}_n(z) := \widehat{R}_n(z)\widehat{f}_n^*(z) = (w_n - z_n)f_n(z_n + (w_n - z_n)z).
$$
\n(2.29)

Since f_n^* are holomorphic on $\Delta(0, \eta)$, the functions \hat{f}_n^* are holomorphic on $\mathbb C$ locally uniformly. Since w_n is the zero of f_n nearest to z_n , $f_n^* \neq 0$ on $\Delta(0,1)$ with $f_n^*(1) = 0$. By the assumption $\phi_k[f_n] \neq 0$ and Lemma 2.3(b),

$$
\phi_k[\hat{f}_n](z) = (w_n - z_n)^k \phi_k[f_n](z_n + (w_n - z_n)z) \neq 0.
$$
\n(2.30)

The assumption dis($\text{Res}_1(f_n), \mathbb{N}_k$) $\geq \delta$ gives

$$
\operatorname{dis}(\operatorname{Res}_{1}(\widehat{f}_{n}), \mathbb{N}_{k}) \ge \delta. \tag{2.31}
$$

It then follows from Lemma 2.4 that $\phi_k[f_n](z)$ has at least 2k poles tending to 0, counting multiplicities.

Since \hat{f}_n^* are holomorphic on $\mathbb C$ locally uniformly, we see from (2.29) that the functions \hat{f}_n are holomorphic on \mathbb{C}^* locally uniformly. Hence by Lemma 2.9, the sequence $\{\widehat{f}_n\}$ is normal on \mathbb{C}^* , and hence so is $\{\widehat{f}_n^*\}\$. Since $\widehat{f}_n^* \neq 0$, ∞ on $\Delta(0,1)$, it follows that $\{\widehat{f}_n^*\}$ is normal on $\Delta(0,1)$ and hence on whole \mathbb{C} . Taking a subsequence and renumbering, we may say that $\hat{f}_n^* \to \hat{f}^*$ on C. Since $\hat{f}_n^*(1) = 0$ and $\hat{f}_n^*(0) = f_n^*(z_n) = g_n^*(0) \to k-1$, we get $\hat{f}^*(1) = 0$ and $\hat{f}^*(0) = k-1$. This shows that f^* is a nonconstant entire function.

Let $f = f^*/z$. Then $\phi_k[f] \neq 0$. For otherwise, the same argument used in the final part of the proof of Lemma 2.10 shows that f^* is a constant $f^* \equiv k - 1$, which is a contradiction.

By (2.28) and (2.29), we also have $\hat{f}_n \to \hat{f}$ on \mathbb{C}^* , and hence $\phi_k[\hat{f}_n] \to \phi_k[\hat{f}]$ on \mathbb{C}^* . Since $\phi_k[\hat{f}_n] \neq 0$ and $\phi_k[\hat{f}] \neq 0$, by Lemma 2.2(b), we have $\phi_k[\hat{f}_n] \stackrel{X}{\to} \phi_k[\hat{f}]$ on whole \mathbb{C} . Since $\phi_k[f_n](z)$ has at least 2k poles tending to 0, it follows that 0 is a pole of $\phi_k[f]$ with multiplicity 2k at least. But by Lemma 2.4, 0 is a pole of $\phi_k[f]$ with multiplicity at most k. A contradiction.

Hence, we have proved that each f_n^* has at least one pole $z_n^* \to 0$. Note that $z_n^* \neq z_{n,\infty}^{(i)}$, and $\zeta^* = (z_n^* - z_n)/\rho_n \to \infty$ by (2.12). Now let

$$
h_n(z) = (z_{n,\infty}^{(1)} - z_n^*) f_n\left(\frac{z_{n,\infty}^{(1)} + z_n^*}{2} + (z_{n,\infty}^{(1)} - z_n^*)z\right).
$$
 (2.32)

Then we have

$$
h_n\left(\frac{1}{2}\right) = \infty, \quad h_n\left(\frac{z_{n,0} - \frac{z_{n,\infty}^{(1)} + z_n^*}{2}}{z_{n,\infty}^{(1)} - z_n^*}\right) = 0.
$$
 (2.33)

Since

$$
\frac{z_{n,0} - \frac{z_{n,\infty}^{(1)} + z_n^*}{2}}{z_{n,\infty}^{(1)} - z_n^*} = \frac{2\zeta_{n,0} - \zeta_{n,\infty}^{(1)} - \zeta_n^*}{2(\zeta_{n,\infty}^{(1)} - \zeta_n^*)} \to \frac{1}{2},
$$

we see from (2.33) that every subsequence of $\{h_n\}$ fails to be equicontinuous in any neighbourhood of $z = 1/2$, and hence fails to be normal at $1/2$. Now (2.24) follows from Marty's theorem. The proof is complete. \Box

3 Proof of Theorem 1.4

Let $\{f_n\} \subset \mathcal{F}$ be a sequence, and let $E \subset D$ be the set of points at which $\{f_n\}$ is not normal. **Claim** For each $z_0 \in E$, there exists a neighbourhood $\Delta(z_0)$ of z_0 in which every f_n has at most one single zero.

Suppose that this claim is not true. Then for some $z_0 \in E$, there exists a subsequence of ${f_n}$, which we continue to call ${f_n}$, such that each f_n has at least two distinct zeros tending to z_0 as $n \to \infty$. By Lemma 2.11, there exists a subsequence of $\{f_n\}$, which we continue to call ${f_n}$, such that each f_n has at least two distinct poles a_n and b_n tending to z_0 such that

$$
\sup_{z \in \overline{\Delta}(0,1)} h_n^{\#}(z) \ge K + 1,\tag{3.1}
$$

where h_n is defined by (2.25) and K is the constant defined in Lemma 2.7. We may assume that $K > \frac{1}{\delta}$.

Fix $\eta > 0$. We may assume that a_n and b_n are two distinct poles of f_n in $\Delta(z_0, \eta) \subset D$ satisfying (3.1) such that

$$
\tau_n = \tau(a_n, b_n) := \frac{|a_n - b_n|}{\eta - |\frac{a_n + b_n}{2} - z_0|} \text{ is minimal.}
$$
\n(3.2)

Obviously, we have $\tau_n = \tau(a_n, b_n) \to 0$.

Now we claim that no subsequence of $\{h_n\}$ is normal on $\mathbb C$. Suppose not. By taking a subsequence and renumbering, we may assume that $h_n \xrightarrow{\chi} h$ on \mathbb{C} , where the limit function h may be ∞ identically.

By (3.1), we have $\sup_{z\in\overline{\Delta}(0,1)} h^{\#}(z) \geq K+1$, so that $h \neq \infty$, and hence it is a nonconstant meromorphic function on $\mathbb C$. The assumption dis(Res₁(f_n, D), N_k) $\geq \delta$ gives dis(Res₁(h_n), N_k) $\geq \delta$ and hence dis(Res₁(h), N_k) $\geq \delta$. This guarantees that $\phi_k|h| \neq 0$. In fact, Suppose $\phi_k|h| \equiv 0$. Take a simply connected domain Ω on which h is holomorphic and a point $z_0 \in \Omega$. Define $H(z) = \exp(\int_{z_0}^{z} h(t)dt)$. Then H is holomorphic on Ω with $h = H'/H$, and hence by Lemma 2.3 (a), $H^{(k)} = H \phi_k[h] \equiv 0$. This leads that H is a polynomial with degree less than k. If H is nonconstant, then

$$
h = \frac{H'}{H} = \sum_{i=1}^{s} \frac{p_i}{z - z_i}, \quad \text{with } p_i \in \mathbb{N} \text{ and } \sum_{i=1}^{s} p_i \le k - 1.
$$
 (3.3)

Obviously, each $1 \leq p_i \leq k-1$. This contradicts with $dis(Res_1(h), \mathbb{N}_k) \geq \delta$. Thus H is a constant and hence $h \equiv 0$. This is also impossible since h is nonconstant.

1276 *Chang J. M.*

By Lemma 2.3 (b) and the assumption $\phi_k[f_n] \neq 0$, we also have

$$
\phi_k[h_n](z) = (a_n - b_n)^k \phi_k[f_n] \left(\frac{a_n + b_n}{2} + (a_n - b_n)z \right) \neq 0. \tag{3.4}
$$

Since $h_n \to h$ on $\mathbb{C} \setminus A$, where A is the set of poles of h, we get $\phi_k[h_n] \to \phi_k[h]$ on $\mathbb{C} \setminus A$. Now applying Lemma 2.2 (b) then yields that $\phi_k[h_n] \xrightarrow{\chi} \phi_k[h]$ on whole \mathbb{C} , and $\phi_k[h] \neq 0$. Thus by Lemma 2.5, h must be a rational function with the form (2.3) or (2.4) . Hence by Lemmas 2.6 and 2.7, $\sup_{z \in \overline{\Delta}(0,1)} h^{\#}(z) \leq K$. This contradicts to $\sup_{z \in \overline{\Delta}(0,1)} h^{\#}(z) \geq K + 1$.

Hence, the set $F \subset \mathbb{C}$ of points at which $\{h_n\}$ is not normal is nonempty.

Suppose first that for each $\zeta_0 \in F$, there exists a neighbourhood of ζ_0 in which each h_n has at most one single zero. Then by Lemma 2.8, $\{h_n\}$ is normal on some punctured neighbourhood of ζ_0 . It follows that $\{h_n\}$ is quasinormal on $\mathbb C$ and the set F has no accumulation point on $\mathbb C$. Suppose further that each subsequence of some subsequence of $\{h_n\}$ is not normal at at least two distinct points $\zeta_1, \zeta_2 \in F$. Then by Lemma 2.10, there exists a subsequence of $\{h_n\}$, say itself, such that $h_n(z) \stackrel{\chi}{\to} (k-1)/(z-\zeta_1)$ and $h_n(z) \stackrel{\chi}{\to} (k-1)/(z-\zeta_2)$ on $\mathbb{C} \setminus F$. It follows from the uniqueness that $\zeta_1 = \zeta_2$. A contradiction. Hence $\{h_n\}$ is quasinormal on $\mathbb C$ of order 1, and the set $F = \{\zeta_0\}$ is a singleton. Applying Lemma 2.10 again, there exists a subsequence of $\{h_n\}$, say itself, such that $h_n(z) \stackrel{\chi}{\to} (k-1)/(z-\zeta_0)$ on $\mathbb{C} \setminus {\zeta_0}$. This is also impossible, since $h_n(\pm 1/2) = \infty$.

So there exists a point $\zeta_0 \in F$ and a subsequence of $\{h_n\}$, which we continue to call $\{h_n\}$, such that each h_n has at least two distinct zeros tending to ζ_0 . Then by Lemma 2.11, there exists a subsequence of $\{h_n\}$, which we continue to call $\{h_n\}$, such that each h_n has at least two distinct poles a_n^* and b_n^* tending to ζ_0 and the functions

$$
H_n(z) = (a_n^* - b_n^*)h_n\left(\frac{a_n^* + b_n^*}{2} + (a_n^* - b_n^*)z\right)
$$
\n(3.5)

satisfy

$$
\sup_{z \in \overline{\Delta}(0,1)} H_n^{\#}(z) \ge K + 1,\tag{3.6}
$$

where K is the constant defined in Lemma 2.7.

Set

$$
A_n = \frac{a_n + b_n}{2} + (a_n - b_n)a_n^*, \quad B_n = \frac{a_n + b_n}{2} + (a_n - b_n)b_n^*.
$$
 (3.7)

Then A_n and B_n are poles of f_n by (2.25). Since $\tau_n = \tau(a_n, b_n) \to 0$ and $a_n^* \to \zeta_0$, we have

$$
|A_n - z_0| \le \left| \frac{a_n + b_n}{2} - z_0 \right| + |a_n - b_n||a_n^*| = \eta - \left(\frac{1}{\tau_n} - |a_n^*| \right) |a_n - b_n| < \eta
$$

for sufficiently large n. That is, $A_n \in \Delta(z_0, \eta)$. Similarly, $B_n \in \Delta(z_0, \eta)$.

Note that the function $\hat{H}_n(z) := (A_n - B_n) f_n \left(\frac{A_n + B_n}{2} + (A_n - B_n) z \right) \equiv H_n(z)$, so that by (3.6),

$$
\sup_{z \in \overline{\Delta}(0,1)} \widehat{H}_n^{\#}(z) = \sup_{z \in \overline{\Delta}(0,1)} H_n^{\#}(z) \ge K + 1.
$$
\n(3.8)

However, we have

$$
\frac{\tau(A_n, B_n)}{\tau(a_n, b_n)} = \frac{\eta - \left|\frac{a_n + b_n}{2} - z_0\right|}{\eta - \left|\frac{a_n + b_n}{2} - z_0 + \frac{a_n^* + b_n^*}{2}(a_n - b_n)\right|} |a_n^* - b_n^*|
$$

$$
\leq \frac{\eta - |\frac{a_n + b_n}{2} - z_0|}{\eta - |\frac{a_n + b_n}{2} - z_0| - |\frac{a_n^* + b_n^*}{2}(a_n - b_n)|} |a_n^* - b_n^*|
$$

=
$$
\frac{|a_n^* - b_n^*|}{1 - |\frac{a_n^* + b_n^*}{2}|\tau_n} \to 0.
$$
 (3.9)

It follows that $\tau(A_n, B_n) < \tau(a_n, b_n)$ for sufficiently large n, which contradicts that $\tau(a_n, b_n)$ is minimal.

Up to now, we have proved the **Claim** mentioned in the beginning of the proof. Now applying Lemma 2.8 yields that ${f_n}$ is normal on some punctured neighbourhood of each $z_0 \in E$. This shows that E has no accumulation points in D and the family F is quasi-normal on D.

Suppose now that each subsequence of some subsequence of $\{f_n\}$ is not normal at at least two distinct points $z_1, z_2 \in E$. Then by Lemma 2.10, there exists a subsequence of $\{f_n\}$, say itself, such that $f_n(z) \stackrel{\chi}{\to} (k-1)/(z-z_1)$ and $f_n(z) \stackrel{\chi}{\to} (k-1)/(z-z_2)$ on $\mathbb{D} \setminus E$. It follows from the uniqueness that $z_1 = z_2$. A contradiction. Hence the set $E = \{z_0\}$ is a singleton, so that the family $\mathcal F$ is quasinormal on D of order 1.

References

- [1] Bergweiler, W.: Normality and exceptional values of derivatives. *Proc. Amer. Math. Soc.*, **129**, 121–129 (2001)
- [2] Bergweiler, W.: Bloch's principle. *Comput. Methods Funct. Theory*, **6**, 77–108 (2006)
- [3] Bergweiler, W., Langley, J. K.: Nonvanishing derivatives and normal families. *J. Anal. Math.*, **91**, 353–367 (2003)
- [4] Chang, J. M.: On meromorphic functions whose first derivatives have finitely many zeros. *Bull. London Math. Soc.*, **44**(4), 703–715 (2012)
- [5] Clunie, J.: On integral and meromorphic functions. *J. London Math. Soc.*, **37**, 17–27 (1962)
- [6] Chuang, C. T.: Normal Families of Meromorphic Functions, World Scientific, River Edge, NJ, 1993
- [7] Frank, G.: Eine Vermutung von Hayman ¨uber Nullstellen meromorpher Funktionen. *Math. Z.*, **149**, 29–36 (1976)
- [8] Hayman, W. K.: Picard values of meromorphic functions and their derivatives. *Ann. Math.*, **70**, 9–42 (1959)
- [9] Hayman, W. K.: Meromorphic Functions, Clarendon Press, Oxford, 1964
- [10] Langley, J. K.: Proof of a conjecture of Hayman concerning *f* and *f*--. *J. London Math. Soc.*, **48**, 500–514 (1993)
- [11] Pang, X. C., Zalcman, L.: Normal families and shared values. *Bull. London Math. Soc.*, **32**, 325–331 (2000)
- [12] Pang, X. C., Nevo, S., Zalcman, L.: Quasinormal families of meromorphic functions. *Rev. Mat. Ibero.*, **21**(1), 249–262 (2005)
- [13] Schiff, J.: Normal Families, Springer-Verlag, Berlin, 1993
- [14] Schwick, W.: Normality criteria for families of meromorphic functions. *J. Anal. Math.*, **52**, 241–289 (1989)
- [15] Yang, L.: Value Distribution Theory, Springer-Verlag, Berlin, 1993
- [16] Zalcman, L.: Normal families: new perspectives. *Bull. Amer. Math. Soc.,* (*N. S.*), **35**, 215–230 (1998)