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Abstract Define the differential operators φn for n ∈ N inductively by φ1[f ](z) = f(z) and φn+1[f ](z)

= f(z)φn[f ](z)+ d
dz

φn[f ](z). For a positive integer k ≥ 2 and a positive number δ, let F be the family

of functions f meromorphic on domain D ⊂ C such that φk[f ](z) �= 0 and |Res(f, a) − j| ≥ δ for all

j ∈ {0, 1, . . . , k − 1} and all simple poles a of f in D. Then F is quasi-normal on D of order 1.
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1 Introduction

The following theorem was conjectured by Hayman [9, p. 23] and proved by Frank [7] for k ≥ 3
and by Langley [10] for k = 2.

Theorem 1.1 Let k ∈ N with k ≥ 2 and let f be a function meromorphic on whole C such
that f �= 0 and f (k) �= 0. Then either f(z) = ea(z+b) or f(z) = a/(z + b)n for some constants
a �= 0, b and n ∈ N.

It follows from Theorem 1.1 that either f ′/f = a or f ′/f = −n/(z + b) for meromorphic
functions f on C with the property ff (k) �= 0. Note that the family {−n/(z+b) : n ∈ N, b ∈ C}
is a normal family on C.

A heuristic principle attributed to Bloch says that if the functions meromorphic and pos-
sessing a given property on C must be constants (or weakly, form a family normal on C), then
the functions meromorphic and possessing the same property on a domain D ⊂ C form a family
normal on D. See [2, 13, 16], where the Bloch principle is thoroughly discussed.

The normality criteria corresponding to Theorem 1.1 have been obtained by Schwick [14] for
holomorphic case, and by Bergweiler [1] and Bergweiler and Langley [3] for general meromorphic
case.

Theorem 1.2 Let k ∈ N with k ≥ 2 and let F be a family of functions f meromorphic on
D ⊂ C such that f �= 0 and f (k) �= 0. Then the family {f ′/f : f ∈ F} is normal on D.
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In fact, Bergweiler and Langley [3] proved a more general result. They introduced a type
of differential operators φn defined inductively by φ1[f ](z) = f(z) and

φn+1[f ](z) = f(z)φn[f ](z) +
d

dz
φn[f ](z). (1.1)

Next we denote by Res1(f, D) (or Res1(f) simply) the set of residues of f at its simple poles
in D; denote by Nk = {0, 1, . . . , k − 1} for k ∈ N. Denote by

dis(Res1(f, D), Nk) = inf{|r − j| : r ∈ Res1(f, D), j ∈ Nk}
the distance between Res1(f, D) and Nk. We set dis(Res1(f, D), Nk) = +∞, if f has no simple
poles.

Theorem 1.3 ([3, Theorem 1.3]) Let k ∈ N with k ≥ 2 and δ ∈ R
+ with 0 < δ ≤ 1. Let F be

a family of functions f meromorphic on D ⊂ C such that
(i) φk[f ](z) �= 0 for z ∈ D;
(ii) dis(Res1(f, D), Nk) ≥ δ; and
(iii) if c ∈ D and R > 0 with Δ(c, R) ⊂ D, if Δ(c, δR) contains two poles of f counting

multiplicity, and if Δ(c, R) \ Δ(c, δR) contains no poles of f , then
∣
∣
∣
∣

∑

a∈Δ(c,δR)

Res(f, a) − (k − 1)
∣
∣
∣
∣
≥ δ.

Then F is a normal family.

As pointed out in [3], the assumption (iii) in Theorem 1.3 is necessary to obtain normality.
We consider here the following question: What can be said under the hypotheses (i) and (ii) of
Theorem 1.3? Our answer is that there is quasi-normality.

Recall that a family of functions meromorphic in D ⊂ C is said to be normal (quasi-normal)
in D in the sense of Montel, if each sequence {fn} ⊂ F contains a subsequence which converges
spherically locally uniformly in D (minus a set that has no accumulation point in D). The
subtracted set may depend on the subsequence. If there exists an integer ν such that the
subtracted sets always can be chosen at most ν points, then F is said to be quasi-normal of
order ν. So, a normal family can be regarded as a quasi-normal family of order 0. See [6, 13, 15].
Now our main result can be stated as follows.

Theorem 1.4 Let k ∈ N with k ≥ 2 and δ > 0. Let F be a family of functions f meromorphic
on D ⊂ C such that

(i) φk[f ](z) �= 0 for z ∈ D;
(ii) dis(Res1(f, D), Nk) ≥ δ.

Then F is quasi-normal of order 1. Moreover, each sequence in F which is not normal at
a point z0 ∈ D contains a subsequence which converges spherically locally uniformly to the
function (k − 1)/(z − z0) on D \ {z0}.

In Section 2, we state and prove some lemmas and in Section 3, we prove our result Theo-
rem 1.4. We remark that the idea somewhat comes from the papers [4, 12].

2 Preliminary Results

We write fn
χ−→ f on D to indicate that the sequence {fn} converges spherically locally uniformly

to the function f on D; and write fn −→ f on D if the convergence is in Euclidean metric, where
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the limit function f is allowed to be ∞ identically.

Lemma 2.1 ([3, Lemma 4.2]; [11, Lemma 2]) Let F be a family of meromorphic functions on
D. Suppose that there exists δ > 0 such that dis(Res1(f, D), {0}) ≥ δ. Then if F is not normal
at some point z0 ∈ D, there exist a sequence {fn} ⊂ F , a sequence of points {zn} ⊂ D with
zn → z0, and a sequence of positive numbers {ρn} with ρn → 0, such that the sequence {gn}
defined by gn(ζ) = ρnfn(zn+ρnζ) converges spherically locally uniformly on C to a nonconstant
meromorphic function g of finite order and g satisfies g#(ζ) ≤ g#(0) = 1 + 1/δ. Moreover,
dis(Res1(g, C), {0}) ≥ δ.

Lemma 2.2 Let {fn} be a sequence of functions meromorphic on D ⊂ C, and z0 ∈ D be a
point such that fn

χ−→ f on D \ {z0}. Then the following statements are true:

(a) If fn are holomorphic on D and f �≡ ∞, then f is holomorphic on whole D and fn → f

on D;
(b) If fn �= 0 on D and f �≡ 0, then f is meromorphic on D and f �= 0 or f ≡ ∞, and

fn
χ−→ f on D;

(c) If fn are holomorphic on D and fn �= 0, then either f is holomorphic on D and f �= 0
or f ≡ c ∈ {0,∞}, and fn → f on D.

Proof (a) is a direct corollary to the maximum modulus principle. And (b), (c) follow from
(a). �

Lemma 2.3 ([3, Lemma 1.1]) The operators φn defined in (1.1) have the following properties:
(a) For a meromorphic function f �≡ 0,

φn

[
f ′

f

]

=
f (n)

f
; (2.1)

(b) For meromorphic functions f and g(z) = af(az + b) with constants a and b,

φn[g](z) = anφn[f ](az + b). (2.2)

Lemma 2.4 ([3, Lemma 2.1]) Let f be meromorphic on D. Then
(a) the poles of f with multiplicity m ≥ 2 are poles of φn[f ] multiplicity nm, and
(b) the simple poles a of f with Res(f, a) �∈ Nn are poles of φn[f ] with multiplicity n, and
(c) the simple poles a of f with Res(f, a) ∈ Nn are at most poles of φn[f ] with multiplicity

less than n.

Lemma 2.5 ([3, Theorem 1.1 and Theorem 1.2]) Let k ∈ N with k ≥ 2 and δ > 0. Let f be a
nonconstant meromorphic functions on C such that φk[f ] �= 0 and dis(Res1(f), Nk) ≥ δ. Then
either

f(z) =
(k − 1)(z − α)

(z − β1)(z − β2)
(2.3)

or

f(z) =
a

z − b
, (2.4)

where α, β1, β2, a, b are constants with α �= β1, α �= β2 and |a| ≥ δ.

Lemma 2.6 The rational function (2.4) with |a| ≥ δ(> 0) satisfies f#(z) ≤ 1/δ.
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Proof We have

f#(z) =
|f ′(z)|

1 + |f(z)|2 =
|a|

|z − b|2 + |a|2 ≤ 1
|a| ≤

1
δ
. �

Lemma 2.7 If the rational function (2.3) has two poles ±1
2 with dis(Res1(f), {0}) ≥ δ(> 0),

then there exists a positive constant K = K(k, δ) such that

sup
z∈Δ(0,1)

f#(z) ≤ K. (2.5)

Proof By the assumption,

f(z) = fα(z) =
(k − 1)(z − α)

z2 − 1
4

,

so that Res1(f) = {(k − 1)( 1
2 ± α)}. Hence | 12 ± α| ≥ δ

k−1 , since dis(Res1(f), {0}) ≥ δ.
It is not difficult to see that the family

F =
{

fα(z) =
(k − 1)(z − α)

z2 − 1
4

:
∣
∣
∣
∣

1
2
± α

∣
∣
∣
∣
≥ δ

k − 1

}

is normal on C. And hence the conclusion follows from Marty’s theorem. �

Lemma 2.8 Let k ∈ N with k ≥ 2 and δ > 0. Let F be a family of functions meromorphic on
D ⊂ C such that for every f ∈ F , f �= 0, φk[f ] �= 0 and dis(Res1(f), Nk) ≥ δ. Then the family
F is normal on D.

Proof Suppose that F is not normal at some point z0 ∈ D. Since 0 ∈ Nk, the assumption
dis(Res1(f), Nk) ≥ δ implies dis(Res1(f), {0}) ≥ δ. Hence by Lemma 2.1, there exist functions
fn in F , points zn → z0 in D and positive numbers ρn → 0 such that

gn(ζ) = ρnfn(zn + ρnζ)
χ−→ g(ζ) on C, (2.6)

where g is a nonconstant meromorphic function satisfying g#(ζ) ≤ g#(0) = 1 + 1
δ . And as

fn �= 0, we get g �= 0 on C by Hurwitz’s theorem.
We claim that dis(Res1(g), Nk) ≥ δ. To prove this, let ζ0 be a simple pole of g. Then by

(2.6) and Hurwitz’s theorem, gn has a simple pole ζn → ζ0. It is obvious that Res(gn, ζn) =
Res(fn, zn + ρnζn). Hence by the condition dis(Res1(f), Nk) ≥ δ, we get |Res(gn, ζn) − j| ≥ δ

for all j ∈ Nk. It follows that |Res(g, ζ0) − j| ≥ δ for all j ∈ Nk. This proves the claim.
This claim with Lemma 2.4 shows that each pole of g must be a pole of φk[g].
We claim that φk[g] �≡ 0. In fact, if φk[g] ≡ 0, then as just showed, g has no pole; g is a

nonconstant entire function. Let h(ζ) = exp(
∫ ζ

0
g(t)dt). Then h is entire and g = h′/h, and

hence by Lemma 2.3, h(k)(ζ) = h(ζ)φk[g](ζ) ≡ 0. It follows that h is a polynomial. Since h �= 0,
h is a constant, and hence g ≡ 0. This is a contradiction.

We claim further that φk[g] �= 0. Suppose that φk[g](ζ0) = 0. Then g(ζ0) �= ∞, so that
g is holomorphic on some neighbourhood Δ(ζ0, η) of ζ0. It follows that gn for sufficiently
large n are holomorphic on Δ(ζ0, η) and gn → g on Δ(ζ0, η). Hence φk[g] and φk[gn] are
holomorphic on Δ(ζ0, η) and φk[gn] → φk[g] on Δ(ζ0, η). Since φk[g](ζ0) = 0 and φk[g] �≡ 0, it
follows from Hurwitz’s theorem that φk[gn](ζn) = 0 for some ζn → ζ0. Direct calculation shows
φk[gn](ζ) = ρk

nφk[fn](zn +ρnζ). Hence φk[fn](zn +ρnζn) = 0. This contradicts the assumption
that φk[f ] �= 0 for f ∈ F .
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Thus by Lemma 2.5 with noting that g �= 0, g has the form (2.4), and hence g#(ζ) ≤ 1
δ by

Lemma 2.6. This contradicts the restriction g#(0) = 1 + 1
δ .

Hence the family F is normal on D. �

Lemma 2.9 Let k ∈ N with k ≥ 2. Let F be a family of functions holomorphic on D ⊂ C

such that φk[f ] �= 0 for every f ∈ F . Then the family F is normal on D.

Proof It is similar to the proof of Lemma 2.8 with noting that the limit function g here is an
entire function. �

Lemma 2.10 Let k ∈ N with k ≥ 2 and δ > 0. Let F be a family of functions meromorphic
on D ⊂ C such that for every f ∈ F , φk[f ] �= 0 and dis(Res1(f), Nk) ≥ δ.

Let {fn} ⊂ F be a sequence and z0 ∈ D a point such that
(a) fn

χ−→ f on D \ {z0}, where the limit function f may be ∞ identically;

(b) no subsequence of {fn} is normal at z0; and
(c) there exists a neighbourhood Δ(z0, η) of z0 in which every fn has at most one single

zero.
Then the limit function f(z) = k−1

z−z0
.

Proof Say z0 = 0. Since {fn} is not normal at 0, by a similar argument showed in the
proof of Lemma 2.8, there exists a subsequence of {fn}, which we continue to call {fn}, points
zn → z0 = 0 and positive numbers ρn → 0 such that

gn(ζ) = ρnfn(zn + ρnζ)
χ−→ g(ζ) =

(k − 1)(ζ − α)
(ζ − β1)(ζ − β2)

on C, (2.7)

where α, β1, β2 are constants with α �= βi.
It follows from Hurwitz’s theorem that gn has a zero αn and two poles βn,i (i = 1, 2) with

αn → α, βn,i → βi as n → ∞, (2.8)

and hence fn has a zero zn,0 = zn + ρnαn and two poles z
(i)
n,∞ = zn + ρnβn,i.

Set

Rn(z) =
z − zn,0

(z − z
(1)
n,∞)(z − z

(2)
n,∞)

. (2.9)

Then we have

Ln(ζ) := ρnR(zn + ρnζ) =
ζ − αn

(ζ − βn,1)(ζ − βn,2)
χ−→ g(ζ)

k − 1
on C. (2.10)

Define

f∗
n(z) :=

fn(z)
Rn(z)

. (2.11)

Let g∗n(ζ) := f∗
n(zn + ρnζ). Since g∗n(ζ)Ln(ζ) = gn(ζ), we see from (2.7) and (2.10) that

g∗n(ζ) → k − 1 on C \ {α, β1, β2}. We also see that g∗n �= 0 on C locally uniformly. Thus by
applying Lemma 2.2 (b),

g∗n(ζ) = f∗
n(zn + ρnζ) → k − 1 on C. (2.12)

Next, we claim that there exists a neighbourhood of z0 = 0 in which all f∗
n for sufficiently

large n have no pole.
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Suppose this is not the case. Then there exists a subsequence of {f∗
n}, say itself w.l.g., such

that every f∗
n has at least one pole wn with wn → z0 = 0 as n → ∞. We may assume that wn

is the nearest pole to zn. Then by (2.12), wn−zn

ρn
→ ∞. Thus wn �= zn, and

ρ∗n :=
ρn

wn − zn
→ 0 (2.13)

with ρ∗n �= 0. Now set

R̂n(z) := (wn − zn)R(zn + (wn − zn)z) =
z − ρ∗nαn

(z − ρ∗nβn,1)(z − ρ∗nβn,2)
. (2.14)

Then we have

R̂n(z)
χ−→ 1

z
on C

∗ = C \ {0}. (2.15)

Let f̂∗
n(z) := f∗

n(zn + (wn − zn)z). Since by (c), f∗
n �= 0 on Δ(0, η) and hence f̂∗

n(z) �= 0 on C

locally uniformly, and since wn is the nearest pole to zn, f̂∗
n(z) �= ∞ on Δ(0, 1) with f̂∗

n(1) = ∞.
Now consider the sequence {f̂n} defined by

f̂n(z) = R̂n(z)f̂∗
n(z) = (wn − zn)fn(zn + (wn − zn)z). (2.16)

It follows from Lemma 2.3 (b) and the assumption φk[fn] �= 0 that

φk[f̂n](z) = (wn − zn)kφk[fn](zn + (wn − zn)z) �= 0 (2.17)

on C locally uniformly. Also, we have

dis(Res1(f̂n), Nk) ≥ δ. (2.18)

Note that f̂n either has two simple poles ρ∗nβn,1 and ρ∗nβn,2 when βn,1 �= βn,2, or has a
double poles ρ∗nβn,1 when βn,2 = βn,1. Hence by Lemma 2.4, φk[f̂n](z) has at least 2k poles,
counting multiplicities, that tend to 0.

Since f̂∗
n(z) �= 0 on C locally uniformly, we get f̂n(z) �= 0 on C

∗ locally uniformly. Applying
Lemma 2.8 yields that {f̂n} and hence {f̂∗

n} is normal on C
∗. Since f̂∗

n �= 0,∞ on Δ(0, 1), by
Lemma 2.2 (c), {f̂∗

n} is normal on Δ(0, 1) and hence on whole C. By taking a subsequence and
renumbering, we may say that

f̂∗
n

χ−→ f̂∗ on C. (2.19)

Since f̂∗
n(1) = ∞, we get f̂∗(1) = ∞; since f̂∗

n(0) = f∗
n(zn) = g∗n(0) → k−1, we get f̂∗(0) = k−1.

It follows that f̂∗ is a nonconstant meromorphic function on C. Further, f̂∗ �= 0 on C, since
f̂∗

n �= 0 on C.
Now by (2.19), (2.16) and (2.15), we have f̂n

χ−→ f̂ := f̂∗/z on C
∗. Note that f̂ is a

nonconstant meromorphic function on C such that f̂ �= 0 and f̂(0) = f̂(1) = ∞. In particular, 0
is a simple pole with Res(f̂ , 0) = k−1. Also, it follows from (2.18) that dis(Res1(f̂ , C∗), Nk) ≥ δ,
and in particular, Res(f̂ , 1) �∈ Nk. Thus by Lemma 2.4, 1 is a pole of φk[f̂ ], and hence φk[f̂ ] �≡ 0.

Since f̂n
χ−→ f̂ on C

∗, we have f̂n → f̂ on C \ A, where A is the set of poles of f̂ . It follows

that φk[f̂n] → φk[f̂ ] on C \A. Since A has no accumulate points on C and φk[f̂ ] �≡ 0, by (2.17)
and Lemma 2.2 (b), we get φk[f̂n]

χ−→ φk[f̂ ] on C. Since φk[f̂n](z) has at least 2k poles tending
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to 0, 0 is a pole of φk[f̂ ] with multiplicity at least 2k. However, as 0 is a simple pole of f̂ , this
contradicts Lemma 2.4.

The above claim is thus proved. By removing finitely many functions and renumbering, we
may assume that f∗

n �= 0,∞ on Δ(0, η).
Since fn

χ−→ f on D \ {0} and Rn(z) → 1/z on C
∗, it follows from (2.11) that f∗

n
χ−→ f∗ on

D \ {0}, where f∗(z) = zf(z). Since f∗
n �= 0 on Δ(0, η), it follows from Lemma 2.2 (c) that

f∗
n

χ−→ f∗ on Δ(0, η) and hence on whole D. Since f∗
n(zn) = g∗n(0) → k − 1 and zn → 0, we get

f∗(0) = k − 1. Thus the function

f(z) =
f∗(z)

z
�≡ ∞ (2.20)

is meromorphic on D.
Next we show that φk[f ] ≡ 0 on D. Since fn

χ−→ f on D \{0}, it follows that φk[fn] → φk[f ]

on D \ A, where A is the set of poles of f on D. If φk[f ] �≡ 0, then by φk[fn] �= 0 on D and
Lemma 2.2 (b) we get φk[fn]

χ−→ φk[f ] on whole D. Note that fn either has two simple poles

z
(1)
n,∞ and z

(2)
n,∞ when z

(1)
n,∞ �= z

(2)
n,∞, or has a double poles z

(1)
n,∞ when z

(1)
n,∞ = z

(2)
n,∞. Hence by

Lemma 2.4, φk [fn] (z) has at least 2k poles, counting multiplicities, that tend to 0. Thus by
φk[fn]

χ−→ φk[f ] on D, 0 is a pole of φk[f ] with multiplicity at least 2k. On the other hand,

since f(z) = f∗(z)/z with f∗(0) = k − 1, this contradicts Lemma 2.4.
Now we show that f∗ is a constant with f∗ = k−1 to complete the proof. Since f∗(0) = k−1,

the function

h(z) =
f∗(z) − (k − 1)

z
(2.21)

is holomorphic at 0, say on Δ(0, η). Let

H(z) = zk−1 exp
(∫ z

0

h(t)dt

)

, z ∈ Δ(0, η). (2.22)

Then we have
H ′(z)
H(z)

=
k − 1

z
+ h(z) =

f∗(z)
z

= f(z). (2.23)

Now applying Lemma 2.3 (a) yields that H(k)(z) = H(z)φk[f ] ≡ 0, so that H is a polynomial
with degree less than k. This occurs only when h ≡ 0. Thus f∗ is a constant with f∗ = k−1.�

Lemma 2.11 Let k ∈ N with k ≥ 2 and δ > 0. Let F be a family of functions meromorphic
on D ⊂ C such that for every f ∈ F , φk[f ] �= 0 and dis(Res1(f), Nk) ≥ δ.

Let {fn} ⊂ F be a sequence and z0 ∈ D a point such that
(a) no subsequence of {fn} is normal at z0; and
(b) every fn has at least two distinct zeros tending to z0.

Then there exists a subsequence of {fn} which we continue to call {fn} such that every fn has
at least two distinct poles an and bn tending to z0 such that

sup
z∈Δ(0,1)

h#
n (z) → ∞, (2.24)

where

hn(z) = (an − bn)fn

(
an + bn

2
+ (an − bn)z

)

. (2.25)
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Proof Say z0 = 0. The beginning part is the same as the proof of Lemma 2.10 up to (2.12).
Next, we claim that each f∗

n has at least one pole tending to z0 = 0.
Suppose not, then all f∗

n are holomorphic on some neighbourhood Δ(0, η) ⊂ D of 0. By the
assumption (b), each f∗

n has at least one zero tending to 0. Say the one which is nearest to zn

is wn → 0. Then (wn − zn)/ρn → ∞ by (2.12), and hence

ρ∗n =
ρn

wn − zn
→ 0 (2.26)

with ρ∗n �= 0. Thus the rational functions

R̂n(z) := (wn − zn)R(zn + (wn − zn)z) =
z − ρ∗nαn

(z − ρ∗nβn,1)(z − ρ∗nβn,2)
(2.27)

satisfy

R̂n(z)
χ−→ 1

z
on C

∗ = C \ {0}. (2.28)

Let f̂∗
n(z) := f∗

n(zn + (wn − zn)z) and

f̂n(z) := R̂n(z)f̂∗
n(z) = (wn − zn)fn(zn + (wn − zn)z). (2.29)

Since f∗
n are holomorphic on Δ(0, η), the functions f̂∗

n are holomorphic on C locally uniformly.
Since wn is the zero of fn nearest to zn, f̂∗

n �= 0 on Δ(0, 1) with f̂∗
n(1) = 0. By the assumption

φk[fn] �= 0 and Lemma 2.3(b),

φk[f̂n](z) = (wn − zn)kφk[fn](zn + (wn − zn)z) �= 0. (2.30)

The assumption dis(Res1(fn), Nk) ≥ δ gives

dis(Res1(f̂n), Nk) ≥ δ. (2.31)

It then follows from Lemma 2.4 that φk[f̂n](z) has at least 2k poles tending to 0, counting
multiplicities.

Since f̂∗
n are holomorphic on C locally uniformly, we see from (2.29) that the functions f̂n

are holomorphic on C
∗ locally uniformly. Hence by Lemma 2.9, the sequence {f̂n} is normal on

C
∗, and hence so is {f̂∗

n}. Since f̂∗
n �= 0,∞ on Δ(0, 1), it follows that {f̂∗

n} is normal on Δ(0, 1)
and hence on whole C. Taking a subsequence and renumbering, we may say that f̂∗

n → f̂∗ on
C. Since f̂∗

n(1) = 0 and f̂∗
n(0) = f∗

n(zn) = g∗n(0) → k − 1, we get f̂∗(1) = 0 and f̂∗(0) = k − 1.
This shows that f̂∗ is a nonconstant entire function.

Let f̂ = f̂∗/z. Then φk[f̂ ] �≡ 0. For otherwise, the same argument used in the final part of
the proof of Lemma 2.10 shows that f̂∗ is a constant f̂∗ ≡ k − 1, which is a contradiction.

By (2.28) and (2.29), we also have f̂n → f̂ on C
∗, and hence φk[f̂n] → φk[f̂ ] on C

∗. Since
φk[f̂n] �= 0 and φk[f̂ ] �≡ 0, by Lemma 2.2(b), we have φk[f̂n]

χ−→ φk[f̂ ] on whole C. Since

φk[f̂n](z) has at least 2k poles tending to 0, it follows that 0 is a pole of φk[f̂ ] with multiplicity
2k at least. But by Lemma 2.4, 0 is a pole of φk[f̂ ] with multiplicity at most k. A contradiction.

Hence, we have proved that each f∗
n has at least one pole z∗n → 0. Note that z∗n �= z

(i)
n,∞,

and ζ∗ = (z∗n − zn)/ρn → ∞ by (2.12). Now let

hn(z) = (z(1)
n,∞ − z∗n)fn

(
z
(1)
n,∞ + z∗n

2
+ (z(1)

n,∞ − z∗n)z
)

. (2.32)
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Then we have

hn

(
1
2

)

= ∞, hn

(
zn,0 − z(1)

n,∞+z∗
n

2

z
(1)
n,∞ − z∗n

)

= 0. (2.33)

Since
zn,0 − z(1)

n,∞+z∗
n

2

z
(1)
n,∞ − z∗n

=
2ζn,0 − ζ

(1)
n,∞ − ζ∗n

2(ζ(1)
n,∞ − ζ∗n)

→ 1
2
,

we see from (2.33) that every subsequence of {hn} fails to be equicontinuous in any neighbour-
hood of z = 1/2, and hence fails to be normal at 1/2. Now (2.24) follows from Marty’s theorem.
The proof is complete. �

3 Proof of Theorem 1.4

Let {fn} ⊂ F be a sequence, and let E ⊂ D be the set of points at which {fn} is not normal.

Claim For each z0 ∈ E, there exists a neighbourhood Δ(z0) of z0 in which every fn has at
most one single zero.

Suppose that this claim is not true. Then for some z0 ∈ E, there exists a subsequence of
{fn}, which we continue to call {fn}, such that each fn has at least two distinct zeros tending
to z0 as n → ∞. By Lemma 2.11, there exists a subsequence of {fn}, which we continue to call
{fn}, such that each fn has at least two distinct poles an and bn tending to z0 such that

sup
z∈Δ(0,1)

h#
n (z) ≥ K + 1, (3.1)

where hn is defined by (2.25) and K is the constant defined in Lemma 2.7. We may assume
that K > 1

δ .
Fix η > 0. We may assume that an and bn are two distinct poles of fn in Δ(z0, η) ⊂ D

satisfying (3.1) such that

τn = τ (an, bn) :=
|an − bn|

η − |an+bn

2 − z0|
is minimal. (3.2)

Obviously, we have τn = τ (an, bn) → 0.
Now we claim that no subsequence of {hn} is normal on C. Suppose not. By taking a

subsequence and renumbering, we may assume that hn
χ−→ h on C, where the limit function h

may be ∞ identically.
By (3.1), we have supz∈Δ(0,1) h#(z) ≥ K + 1, so that h �≡ ∞, and hence it is a nonconstant

meromorphic function on C. The assumption dis(Res1(fn, D), Nk) ≥ δ gives dis(Res1(hn), Nk)
≥ δ and hence dis(Res1(h), Nk) ≥ δ. This guarantees that φk[h] �≡ 0. In fact, Suppose φk[h] ≡ 0.
Take a simply connected domain Ω on which h is holomorphic and a point z0 ∈ Ω. Define
H(z) = exp(

∫ z

z0
h(t)dt). Then H is holomorphic on Ω with h = H ′/H, and hence by Lemma

2.3 (a), H(k) = Hφk[h] ≡ 0. This leads that H is a polynomial with degree less than k. If H is
nonconstant, then

h =
H ′

H
=

s∑

i=1

pi

z − zi
, with pi ∈ N and

s∑

i=1

pi ≤ k − 1. (3.3)

Obviously, each 1 ≤ pi ≤ k − 1. This contradicts with dis(Res1(h), Nk) ≥ δ. Thus H is a
constant and hence h ≡ 0. This is also impossible since h is nonconstant.
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By Lemma 2.3 (b) and the assumption φk[fn] �= 0, we also have

φk[hn](z) = (an − bn)kφk[fn]
(

an + bn

2
+ (an − bn)z

)

�= 0. (3.4)

Since hn → h on C \ A, where A is the set of poles of h, we get φk[hn] → φk[h] on C \ A.
Now applying Lemma 2.2 (b) then yields that φk[hn]

χ−→ φk[h] on whole C, and φk[h] �= 0. Thus

by Lemma 2.5, h must be a rational function with the form (2.3) or (2.4). Hence by Lemmas
2.6 and 2.7, supz∈Δ(0,1) h#(z) ≤ K. This contradicts to supz∈Δ(0,1) h#(z) ≥ K + 1.

Hence, the set F ⊂ C of points at which {hn} is not normal is nonempty.
Suppose first that for each ζ0 ∈ F , there exists a neighbourhood of ζ0 in which each hn has

at most one single zero. Then by Lemma 2.8, {hn} is normal on some punctured neighbourhood
of ζ0. It follows that {hn} is quasinormal on C and the set F has no accumulation point on C.
Suppose further that each subsequence of some subsequence of {hn} is not normal at at least
two distinct points ζ1, ζ2 ∈ F . Then by Lemma 2.10, there exists a subsequence of {hn}, say
itself, such that hn(z)

χ−→ (k − 1)/(z − ζ1) and hn(z)
χ−→ (k − 1)/(z − ζ2) on C \ F . It follows

from the uniqueness that ζ1 = ζ2. A contradiction. Hence {hn} is quasinormal on C of order 1,
and the set F = {ζ0} is a singleton. Applying Lemma 2.10 again, there exists a subsequence of
{hn}, say itself, such that hn(z)

χ−→ (k − 1)/(z − ζ0) on C \ {ζ0}. This is also impossible, since

hn(±1/2) = ∞.
So there exists a point ζ0 ∈ F and a subsequence of {hn}, which we continue to call {hn},

such that each hn has at least two distinct zeros tending to ζ0. Then by Lemma 2.11, there
exists a subsequence of {hn}, which we continue to call {hn}, such that each hn has at least
two distinct poles a∗

n and b∗n tending to ζ0 and the functions

Hn(z) = (a∗
n − b∗n)hn

(
a∗

n + b∗n
2

+ (a∗
n − b∗n)z

)

(3.5)

satisfy

sup
z∈Δ(0,1)

H#
n (z) ≥ K + 1, (3.6)

where K is the constant defined in Lemma 2.7.
Set

An =
an + bn

2
+ (an − bn)a∗

n, Bn =
an + bn

2
+ (an − bn)b∗n. (3.7)

Then An and Bn are poles of fn by (2.25). Since τn = τ (an, bn) → 0 and a∗
n → ζ0, we have

|An − z0| ≤
∣
∣
∣
∣

an + bn

2
− z0

∣
∣
∣
∣
+ |an − bn||a∗

n| = η −
(

1
τn

− |a∗
n|

)

|an − bn| < η

for sufficiently large n. That is, An ∈ Δ(z0, η). Similarly, Bn ∈ Δ(z0, η).
Note that the function Ĥn(z) := (An − Bn)fn

(
An+Bn

2 + (An − Bn)z
) ≡ Hn(z), so that by

(3.6),

sup
z∈Δ(0,1)

Ĥ#
n (z) = sup

z∈Δ(0,1)

H#
n (z) ≥ K + 1. (3.8)

However, we have

τ (An, Bn)
τ (an, bn)

=
η − |an+bn

2 − z0|
η − |an+bn

2 − z0 + a∗
n+b∗n

2 (an − bn)|
|a∗

n − b∗n|



Quasi-normal Family of Meromorphic Functions 1277

≤ η − |an+bn

2 − z0|
η − |an+bn

2 − z0| − |a∗
n+b∗n

2 (an − bn)|
|a∗

n − b∗n|

=
|a∗

n − b∗n|
1 − |a∗

n+b∗n
2 |τn

→ 0. (3.9)

It follows that τ (An, Bn) < τ (an, bn) for sufficiently large n, which contradicts that τ (an, bn) is
minimal.

Up to now, we have proved the Claim mentioned in the beginning of the proof. Now
applying Lemma 2.8 yields that {fn} is normal on some punctured neighbourhood of each
z0 ∈ E. This shows that E has no accumulation points in D and the family F is quasi-normal
on D.

Suppose now that each subsequence of some subsequence of {fn} is not normal at at least
two distinct points z1, z2 ∈ E. Then by Lemma 2.10, there exists a subsequence of {fn}, say
itself, such that fn(z)

χ−→ (k − 1)/(z − z1) and fn(z)
χ−→ (k − 1)/(z − z2) on D \ E. It follows

from the uniqueness that z1 = z2. A contradiction. Hence the set E = {z0} is a singleton, so
that the family F is quasinormal on D of order 1.
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