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1 Introduction

The study of single path behavior of stochastic processes is often based on the study of their
power variations and there exists a very extensive literature on the subject. Recall that, for
p > 0, the p-power variation of a process X, with respect to a subdivision πn = {0 = tn,0 <

tn,1 < · · · < tn,n = 1} of [0, 1], is defined to be the sum
n∑

k=1

|X(tn,k) − X(tn,k−1)|p.

For simplicity, consider from now on the case where tn,k = k/n, for n ∈ N and k ∈ {1, ..., n}. In
the present paper, we wish to point out some interesting phenomena when X is a solution to a
stochastic heat equation. In fact, we will also drop the absolute value (when p is odd). More
precisely, we will consider

n∑

k=1

ΔXp
k , (1.1)

where ΔXk = ΔX(k/n) denotes the increment X(k/n) − X((k − 1)/n).
The analysis of the asymptotic behavior of quantities of type (1.1) is motivated, for instance,

by the study of the exact rates of convergence of some approximation schemes of scalar stochastic
differential equations driven by a Brownian motion B (see, e.g., Corcuera et al. [2], Neuenkirch
and Nourdin [8] and Nourdin [9]), besides, of course, the traditional applications of quadratic
variations to parameter estimation problems.

Now, let us recall some known results concerning the p-power variations (for p ∈ N+), which
are today more or less classical. First, assume that B is the standard Brownian motion. Let μp

Received May 29, 2020, revised August 23, 2020, accepted December 22, 2020

Supported by ZJNSF (Grant No. LY20A010020) and NSFC (Grant No. 11671115)



1368 Wang W. S.

denote the p-moment of a standard Gaussian random variable following an N (0, 1) law, that
is, μ2p−1 = 0 and μ2p = (2p− 1)!! = (2p)!/(p!2p) for all p ∈ N+. By the scaling property of the
Brownian motion and using the central limit theorem, it is immediate that (see, e.g., Nourdin
[9]), as n → ∞:

1√
n

n∑

k=1

(np/2ΔBp
k − μp)

L→ N (0, μ2p − μ2
p). (1.2)

Assume that H �= 1/2, that is, the case where the fractional Brownian motion B has no
independent increments anymore. Then (1.2) has been extended by Dobrushin and Major [4],
Taqqu [13], Breuer and Major [1], Giraitis and Surgailis [7], Corcuera et al. [2] and Nourdin
[9]. Swanson [12] extended (1.2) to modifications of the quadratic variation of the solution of
the stochastic heat equation driven by a space-time white noise. Motivated by (1.2), in the
present paper, we show that (1.2) with different mean and variance also holds for the solution
to a stochastic heat equation driven by a space-time white noise.

Consider a centered Gaussian field W = {W (t, A); t ∈ [0, T ], A ∈ Bb(Rd)} with covariance

E[W (t, A)W (s, B)] = (s ∧ t)λ(A ∩ B), s, t ∈ [0, T ], A, B ∈ Bb(Rd), (1.3)

where λ denotes the Lebesque measure and Bb(Rd) is the collection of all bounded Borel subsets
of R

d. Also consider the stochastic partial differential equation

∂u

∂t
=

1
2
Δu + Ẇ , t ∈ [0, T ], x ∈ R

d,

u(0, x) = 0, x ∈ R
d,

(1.4)

where T > 0 is a constant and the noise W is defined by (1.3). The noise W is usually referred
to as a space-time white noise because it behaves as a Brownian motion with respect to both
the time and the space variables. It is well known (see for example the now classical paper
Dalang [3]) that (1.4) admits a unique mild solution if and only if d = 1 and this mild solution
is defined as

u(t, x) =
∫ t

0

∫

R

G(t − s, x − y)W (ds, dy), t ∈ [0, T ], x ∈ R, (1.5)

where the above integral is a Wiener integral with respect to the Gaussian process W (see, e.g.,
Dalang [3] or Walsh [15] for details) and G is the Green kernel of the heat equation given by

G(t, x) =

⎧
⎨

⎩
(2πt)−1/2e−x2/(2t) if t > 0, x ∈ R,

0 if t ≤ 0, x ∈ R.
(1.6)

Swanson [12] showed that the covariance function of the solution (1.5) satisfies the following:
for every x ∈ R we have

E[u(t, x)u(s, x)] =
1√
2π

(
√

t + s −
√
|t − s|), for every s, t ∈ [0, T ]. (1.7)

Swanson [12] showed that the process u with respect to the time has infinite quadratic vari-
ation and is not a semimartingale, and also investigated central limit theorems for modifications
of the quadratic variation of the process u with respect to the time. Tudor and Xiao [14] inves-
tigated the exact uniform and local moduli of continuity and Chung-type laws of the iterated
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logarithm of the process u with respect to the time. In fact, they investigated these path prop-
erties for a more wide class, namely, the solution to the linear stochastic heat equation driven
by a fractional noise in time with correlated spatial structure. Wang and Xiao [16] investigated
the exact moduli of non-differentiability of the process u with respect to the time by using
general methods for Gaussian random fields. In this paper we show that the fluctuations of the
realized power variation of the process u with respect to the time, properly normalized, have
Gaussian asymptotic distributions. Our proof is based on the approach method of Swanson
[12]. The new ingredients of our present paper are to make use of the product-moments of
various orders of the normal correlation surface of two variates in Pearson and Young [10] and
to establish exact convergence rates of variances of the realized power variation of the process
u with respect to the time.

In order to establish this result we first introduce some notation. Let F (t) = u(t, x), where
x ∈ R is fixed. We consider discrete Riemann sums over a uniformly spaced time partition
tk = kΔt, where Δt = n−1. Let ΔFk = F (tk) − F (tk−1) and σ2

k = E[ΔF 2
k ]. For any p ∈ N+

and n ∈ N+, we define

Un
p (F )t =

�nt�∑

k=1

ΔF 2p
k

and

V n
p (F )t =

�nt�∑

k=1

ΔF 2p−1
k .

For k ∈ N+, let γk = 2
√

k −
√

k − 1 −
√

k + 1. For real number r ≥ 1, define Jr = J(r) =∑∞
k=1 γr

k. It follows from (2.13) below that Jr is a positive and finite constant depending only
on r. For any p ∈ N+, we put

κp =
(

μ4p − μ2
2p +

(2p)!(2p)!
22p−1

p∑

u=1

J2u

(p − u)!(p − u)!(2u)!

)(
2
π

)p

(1.8)

and

χp =
(

μ4p−2 −
(2p − 1)!(2p − 1)!

22p−2

p−1∑

u=0

J2u+1

(p − 1 − u)!(p − 1 − u)!(2u + 1)!

)(
2
π

)p−1/2

. (1.9)

We will first show the exact convergence rate of variance for the realized power variation of
the process F .

Theorem 1.1 Fix p ∈ N+. Then

n−1+p Var(Un
p (F )t) → κp t, (1.10)

and

n−3/2+p Var(V n
p (F )t) → χp t (1.11)

for each fixed t > 0 as n tends to infinity.

By (1.10), we have the following convergence in probability for the realized power variation
of the process F .
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Corollary 1.2 Fix p ∈ N+. Then

n−1+p/2Un
p (F )t → Kp t (1.12)

in L2 and in probability for each fixed t > 0 as n tends to infinity, where Kp = μ2p( 2
π )p/2.

Remark 1.3 Since Un
p (F )t is monotone, (1.12) implies that n−1+p/2Un

p (F )t → Kp t uniform
convergence in probability in the time interval [0, T ] with some T > 0.

Remark 1.4 The 4-th variation, namely, p = 2 in (1.12), has also be explicitly obtained by
Posṕı̌sil and Tribe [11]. The constant is 3/π, see Proposition 3.2 of Posṕı̌sil and Tribe [11]. In
this paper, the corresponding constant is equal to K2 = 6/π. The difference comes from the
factor 1/2 in front of the Laplace operator in (1.4) because the factor of the covariance function
in (1.7) becomes 1/(2

√
π) in the case of Posṕı̌sil and Tribe [11].

The central limit theorems for the realized power variation of the process F are as follows.

Theorem 1.5 Fix p ∈ N+. Then
(

F (t),
1√
n

�nt�∑

k=1

(np/2ΔF 2p
k − Kp)

)
L→ (F (t), κ1/2

p W (t)), (1.13)

as n tends to infinity, where Kp is given in (1.12) and W = {W (t), t ∈ [0, T ]} is a Brownian
motion independent of the process F , and the convergence is in the space D([0, T ])2 equipped
with the Skorohod topology.

Theorem 1.6 Fix p ∈ N+. Then
(

F (t),
1√
n

�nt�∑

k=1

(n−1/4+p/2ΔF 2p−1
k )

)
L→ (F (t), χ1/2

p W (t)), (1.14)

as n tends to infinity, where W = {W (t), t ∈ [0, T ]} is a Brownian motion independent of the
process F , and the convergence is in the space D([0, T ])2 equipped with the Skorohod topology.

Throughout this paper, we use C to denote unspecified positive and finite constants whose
values may change in each appearance.

2 Proof of Theorem 1.1

We start with the following facts. See, e.g., Corcuera et al. [2] for the first one, and Eqs. (viii)
and (ix) in Pearson and Young [10] for the second one. The last one is cited from Lemma 2.1
of Swanson [12].

• Let ξ be a random variable following an N (0, σ2) law. Then, for any r ∈ N+,

E[ξr] = μrσ
r. (2.1)

• Suppose that (U, V ) ∼ N
(
0,

(σ2
u ρ

ρ σ2
v

))
, where ρ = (σuσv)−1

E[UV ]. Then, for any p ∈ N+,

E[U2pV 2p] =
(2p)!(2p)!

22p
σ2p

u σ2p
v

p∑

k=0

(2ρ)2k

(p − k)!(p − k)!(2k)!
, (2.2)

and

E[U2p−1V 2p−1] =
ρ(2p − 1)!(2p − 1)!

22p−2
σ2p−1

u σ2p−1
v

p−1∑

k=0

(2ρ)2k

(p − 1 − k)!(p − 1 − k)!(2k + 1)!
.

(2.3)
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• If 0 ≤ s < t, then
∣∣∣∣E|F (t) − F (s)|2 −

√
2(t − s)

π

∣∣∣∣ ≤
1

t3/2
|t − s|2. (2.4)

Proof of Theorem 1.1 We first prove (1.10). For 1 ≤ i < j ≤ �nt, define ρij = (σiσj)−1

·E[ΔFiΔFj ]. By (2.1) and (2.2), we have

Var(Un
p (F )t) = E

[∣∣∣∣
�nt�∑

k=1

(ΔF 2p
k − μ2pσ

2p
k )

∣∣∣∣
2]

=
�nt�∑

k=1

E[(ΔF 2p
k − μ2pσ

2p
k )2] + 2

�nt�∑

i=1

�nt�∑

j=i+1

E[(ΔF 2p
i − μ2pσ

2p
i )(ΔF 2p

j − μ2pσ
2p
j )]

=
�nt�∑

k=1

(E[ΔF 4p
k ] − μ2

2pσ
4p
k ) + 2

�nt�∑

i=1

�nt�∑

j=i+1

(E[ΔF 2p
i ΔF 2p

j ] − μ2
2pσ

2p
i σ2p

j )

= (μ4p − μ2
2p)

�nt�∑

k=1

σ4p
k

+
(2p)!(2p)!

22p−1

p∑

u=1

22u

(p − u)!(p − u)!(2u)!

�nt�∑

i=1

�nt�∑

j=i+1

σ2p
i σ2p

j ρ2u
ij . (2.5)

It follows from (2.4) that σ2
k ≤ Cn−1/2 for all 1 ≤ k ≤ �nt. By (2.4) and Lagrange mean value

theorem, it holds that for any real number r ≥ 2 and 1 ≤ k ≤ �nt,
∣∣∣∣σ

r
k −

(
2

nπ

)r/4∣∣∣∣ ≤
r

2

(
σr−2

k +
(

2
nπ

)(r−2)/4)∣∣∣∣σ
2
k −

√
2

nπ

∣∣∣∣

≤ C

t
3/2
k

n−3/2−r/4 ≤ C

t
3/4
k

n−3/4−r/4. (2.6)

Note that

1
n

�nt�∑

k=1

1

t
3/4
k

→
∫ t

0

x−3/4dx = 4t1/4. (2.7)

It follows from (2.6) (with r = 4p) and (2.7) that

n−1+p

�nt�∑

k=1

∣∣∣∣σ
4p
k −

(
2

nπ

)p∣∣∣∣ → 0. (2.8)

Hence

n−1+p

�nt�∑

k=1

σ4p
k = n−1+p

�nt�∑

k=1

(
σ4p

k −
(

2
nπ

)p)
+ n−1+p

(
2

nπ

)p

�nt →
(

2
π

)p

t. (2.9)

It follows from (1.7) that

E[ΔFiΔFj ] =

√
1

2nπ
(
√

j + i −
√

j − i −
√

j + i − 1 +
√

j − i + 1

−
√

j + i − 1 +
√

j − i − 1 +
√

j + i − 2 −
√

j − i),
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which simplifies to

E[ΔFiΔFj ] = −
√

1
2nπ

(γj+i−1 + γj−i). (2.10)

Thus, for 1 ≤ u ≤ p and 1 ≤ i < j ≤ �nt, by binomial expansion,

σ2p
i σ2p

j ρ2u
ij = σ2p−2u

i σ2p−2u
j (E[ΔFiΔFj ])2u

= (2π)−uσ2p−2u
i σ2p−2u

j (n−1/2γj+i−1 + n−1/2γj−i)2u

= (2π)−u
2u∑

ν=0

σ2p−2u
i σ2p−2u

j

(
2u

ν

)
(n−1/2γj+i−1)ν(n−1/2γj−i)2u−ν . (2.11)

If we write γk = f(k−1)− f(k), where f(x) =
√

x + 1−
√

x, then for each k ≥ 2, the mean
value theorem gives γk = |f ′(k − θ1)| = 1

4 (k − θ1 + θ2)−3/2 for some θ1, θ2 ∈ [0, 1]. This yields
that for all k ∈ N,

0 < γk ≤ 1√
2k3/2

, (2.12)

and hence, for any r ≥ 1,
M∑

k=1

γr
k → Jr (2.13)

with some Jr = J(r) > 0 as M → ∞.
Note that since j + i − 1 ≥ (j + i)/2, we have

n−1/2γj+i−1 ≤ n−1/2

√
2((j + i)/2)3/2

=
2
n2

1
(ti + tj)3/2

. (2.14)

Note that (2.4) gives that σ2
k ≤ Cn−1/2 for all 1 ≤ k ≤ �nt, and that (2.12) gives n−1/2γj−i ≤

Cn−1/2 and n−1/2γj+i−1 ≤ Cn−1/2 for all 1 ≤ i < j ≤ �nt. Hence, by (2.14), for all
1 ≤ ν ≤ 2u,

n−1+p

�nt�∑

i=1

�nt�∑

j=i+1

σ2p−2u
i σ2p−2u

j (n−1/2γj+i−1)ν(n−1/2γj−i)2u−ν

≤ Cn−1/2

�nt�∑

i=1

�nt�∑

j=i+1

(n−1/2γj+i−1)

≤ Cn−5/2

�nt�∑

i=1

�nt�∑

j=i+1

1
(ti + tj)3/2

, (2.15)

which tends to zero as n → ∞ since
∫ t

0

∫ t

0
(x + y)−3/2dxdy < ∞.

Let BH = {BH(t), t ∈ R+} be a fractional Brownian motion with index H ∈ (0, 1), which
is a centered Gaussian process with E[(BH(t) − BH(s))2] = |s − t|2H for s, t ∈ R+. Then, for
H0 = 1/4,

E

[(
BH0

(
j + 1

n

)
− BH0

(
j

n

))(
BH0

(
i + 1

n

)
− BH0

(
i

n

))]

= −1
2

[
2
(

j − i

n

)1/2

−
(

j − i − 1
n

)1/2

−
(

j − i + 1
n

)1/2]

= −1
2
n−1/2γj−i. (2.16)
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Thus,

n−1/2

�nt�∑

i=1

�nt�∑

j=i+1

γj−i = n−1/2

�nt�−1∑

i=1

�nt�∑

j=i+1

γj−i

= −2
�nt�−1∑

i=1

�nt�∑

j=i+1

E

[(
BH0

(
j + 1

n

)
− BH0

(
j

n

))(
BH0

(
i + 1

n

)
− BH0

(
i

n

))]

= −2
�nt�−1∑

i=1

E

[(
BH0

(
�nt + 1

n

)
− BH0

(
i + 1

n

))(
BH0

(
i + 1

n

)
− BH0

(
i

n

))]

= −
�nt�−1∑

i=1

[
−

(
�nt − i

n

)1/2

+
(
�nt + 1 − i

n

)1/2

−
(

1
n

)1/2]

= −
(
�nt
n

)1/2

+ �ntn−1/2. (2.17)

This yields

n−1

�nt�∑

i=1

�nt�∑

j=i+1

γj−i → t. (2.18)

Note that for M > 0, by (2.12), we have

n−1+p

�nt�∑

i=1

�nt�∑

j=i+M+1

σ2p−2u
i σ2p−2u

j (n−1/2γj−i)2u

≤ CM−3(2u−1)/2n−1/2

�nt�∑

i=1

�nt�∑

j=i+M+1

(n−1/2γj−i)

≤ CM−3(2u−1)/2n−1

�nt�∑

i=1

�nt�∑

j=i+1

γj−i. (2.19)

This, together with (2.18), yields

n−1+p

�nt�∑

i=1

�nt�∑

j=i+M+1

σ2p−2u
i σ2p−2u

j (n−1/2γj−i)2u ≤ CM−3(2u−1)/2t (2.20)

which tends to zero by letting M → ∞.
By (2.6) (with r = 2p − 2u), (2.7) and (2.16), we have

n−1+p

�nt�∑

i=1

�nt�∑

j=i+1

∣∣∣∣σ
2p−2u
i −

(
2

nπ

)p/2−u/2∣∣∣∣σ
2p−2u
j (n−1/2γj−i)2u

≤ Cn−5/4

�nt�∑

i=1

�nt�∑

j=i+1

1

t
3/4
i

(n−1/2γj−i)

≤ −Cn−5/4

�nt�∑

i=1

1

t
3/4
i

[
−

(
�nt − i

n

)1/2

+
(
�nt + 1 − i

n

)1/2

−
(

1
n

)1/2]

≤ −Cn−1/2

�nt�∑

i=1

[
−

(
�nt − i

n

)1/2

+
(
�nt + 1 − i

n

)1/2]
+ n−7/4

�nt�∑

i=1

C

t
3/4
i
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= −Cn−1/2

[(
1
n

)1/2

+
(
�nt
n

)1/2]
+ n−7/4

�nt�∑

i=1

C

t
3/4
i

(2.21)

which tends to zero as n → ∞ since
∫ t

0
x−3/4dx < ∞. Hence, we have

n−1+p

�nt�∑

i=1

�nt�∑

j=i+1

(
σ2p−2u

i −
(

2
nπ

)p/2−u/2)
σ2p−2u

j (n−1/2γj−i)2u → 0. (2.22)

Similarly, we have

n−1+p

�nt�∑

i=1

�nt�∑

j=i+1

(
2

nπ

)p/2−u/2(
σ2p−2u

j −
(

2
nπ

)p/2−u/2)
(n−1/2γj−i)2u → 0. (2.23)

For any M > 0,

n−1+p

�nt�∑

i=1

i+M∑

j=i+1

(
2

nπ

)p−u

(n−1/2γj−i)2u =
(

2
π

)p−u �nt
n

M∑

k=1

γ2u
k →

(
2
π

)p−u

J2ut (2.24)

as n → ∞ and M → ∞.
Note that for 1 ≤ u ≤ p and 1 ≤ i < j ≤ �nt,

σ2p−2u
i σ2p−2u

j =
(

σ2p−2u
i −

(
2

nπ

)p/2−u/2)
σ2p−2u

j

+
(

2
nπ

)p/2−u/2(
σ2p−2u

j −
(

2
nπ

)p/2−u/2)
+

(
2

nπ

)p−u

. (2.25)

Hence, by (2.22)–(2.24), we have

n−1+p

�nt�∑

i=1

i+M∑

j=i+1

σ2p−2u
i σ2p−2u

j (n−1/2γj−i)2u →
(

2
π

)p−u

J2ut (2.26)

as n → ∞ and M → ∞. Thus, combining (2.11), (2.15), (2.20) and (2.26), we have for any
1 ≤ u ≤ p,

n−1+p

�nt�∑

i=1

�nt�∑

j=i+1

σ2p
i σ2p

j ρ2u
ij → (2π)−u

(
2
π

)p−u

J2ut (2.27)

Therefore, by (2.5), (2.9) and (2.27), we have

n−1+p Var(Un
p (F )t)

→
(

μ4p − μ2
2p +

(2p)!(2p)!
22p−1

p∑

u=1

J2u

(p − u)!(p − u)!(2u)!

)(
2
π

)p

t = κp t. (2.28)

This proves (1.10).
We now prove (1.11). If follows from (2.1) and (2.3) that

Var(V n
p (F )t)

=
�nt�∑

i=1

�nt�∑

j=1

E[ΔF 2p−1
i ΔF 2p−1

j ]

=
�nt�∑

k=1

E[ΔF 4p−2
k ] + 2

�nt�∑

i=1

�nt�∑

j=i+1

E[ΔF 2p−1
i ΔF 2p−1

j ]
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= μ4p−2

�nt�∑

k=1

σ4p−2
k

+
(2p − 1)!(2p − 1)!

22p−3

p−1∑

u=0

22u

(p−1 −u)!(p−1 −u)!(2u+1)!

�nt�∑

i=1

�nt�∑

j=i+1

σ2p−1
i σ2p−1

j ρ2u+1
ij . (2.29)

It follows from (2.6) (with r = 4p − 2) and (2.7) that

n−3/2+p

�nt�∑

k=1

σ4p−2
k

= n−3/2+p

�nt�∑

k=1

(
σ4p−2

k −
(

2
nπ

)p−1/2)
+ n−3/2+p

(
2

nπ

)p−1/2

�nt

→
(

2
π

)p−1/2

t. (2.30)

Similarly to the argument of (2.27), we have for any 0 ≤ u ≤ p − 1,

n−3/2+p

�nt�∑

i=1

�nt�∑

j=i+1

σ2p−1
i σ2p−1

j ρ2u+1
ij → −(2π)−u−1/2

(
2
π

)p−u−1

J2u+1t. (2.31)

Therefore, by (2.29)–(2.31), we have

n−3/2+p Var(V n
p (F )t)

→
(

μ4p−2 −
(2p − 1)!(2p − 1)!

22p−2

p−1∑

u=0

J2u+1

(p − 1 − u)!(p − 1 − u)!(2u + 1)!

)

·
(

2
π

)p−1/2

t = χp t. (2.32)

This proves (1.11). The proof of Theorem 1.1 is completed. �
Proof of Corollary 1.2 Write

n−1+p/2Un
p (F )t − Kpt

= n−1+p/2(Un
p (F )t − E[Un

p (F )t]) + μ2pn
−1+p/2

�nt�∑

k=1

(
σ2p

k −
(

2
nπ

)p/2)

+ μ2p

(
2
π

)p/2(�nt
n

− t

)
. (2.33)

Obviously, the third term of (2.33) tends to zero as n → ∞. It follows from (2.6) (with r = 2p)
and (2.7) that the second term of (2.33) tends to zero as n → ∞. Hence, by (1.10), we have

E[|n−1+p/2Un
p (F )t − Kpt|2] → 0.

This proves (1.12). �

3 Proofs of Theorems 1.5 and 1.6

The following lemma is needed to prove Theorems 1.5 and 1.6.
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Lemma 3.1 Let X1, . . . , X4 be mean zero, jointly normal random variables, such that E[X2
k ] =

1 and ρij = E[XiXj ]. Put ξk = Xp
k − E[Xp

k ]. Then, for any p ∈ N+,
∣∣∣∣E

[ 4∏

k=1

ξk

]∣∣∣∣ ≤ C

(
|ρ12 ρ34| +

1√
1 − ρ2

12

max
i≤2<j

|ρij |
)

(3.1)

whenever |ρ12| < 1. Moreover,
∣∣∣∣E

[ 4∏

k=1

ξk

]∣∣∣∣ ≤ C max
2≤k≤4

|ρ1k|. (3.2)

Furthermore, there exists ε > 0 such that
∣∣∣∣E

[ 4∏

k=1

ξk

]∣∣∣∣ ≤ C max
1≤i�=j≤4

ρ2
ij (3.3)

whenever |ρij | < ε for all 1 ≤ i �= j ≤ 4.

Proof Following the same lines as the proof of Lemma 3.3 in Swanson [12] with hk(Xk) = ξk,
1 ≤ k ≤ 4, we get Lemma 3.1 immediately. �

Proposition 3.2 Fix r ∈ N+. Put

cr =

⎧
⎨

⎩
μr, if r is even,

0, if r is odd,

and

Wn
r (F )t = n−1/2+r/4

�nt�∑

k=1

(ΔF r
k − crσ

r
k).

Then, there exists a constant C such that

E[|Wn
r (F )t − Wn

r (F )s|4] ≤ C

(
�nt − �ns

n

)2

(3.4)

for all 0 ≤ s < t and all n ∈ N. The sequence {Wn
r (F )} is therefore relatively compact in the

Skorohod space DR[0,∞).

Proof We follow the method of Proposition 3.5 in Swanson [12] to prove (3.4). Let S = {k ∈
N

4
+ : �ns+1 ≤ k1 ≤ · · · ≤ k4 ≤ �nt}. For k ∈ S and i ∈ {1, 2, 3}, define hi = ki+1−ki and let

Si = {k ∈ S : hi = max{h1, h2, h3}}. Define N = �nt−(�ns+1) and for j ∈ {0, 1, . . . , N}, let
Sj

i = {k ∈ Si : max{h1, h2, h3} = j}. Further define T �
i = T j,�

i = {k ∈ Sj
i : min{h1, h2, h3} =

�} and Vv
i = Vj,�,v

i = {k ∈ T �
i : med{h1, h2, h3} = v}, where “med” denotes the median

function. For k ∈ S, define

Uk =
4∏

j=1

(ΔF r
kj

− crσ
r
kj

).

Observe that

E[|Wn
r (F )t − Wn

r (F )s|4] = n−2+r
E

[∣∣∣∣
�nt�∑

k=�ns�+1

(ΔF r
k − crσ

r
k)

∣∣∣∣
4]

≤ 4!n−2+r
∑

k∈S
|E[Uk]|
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≤ 4!n−2+r
3∑

i=1

∑

k∈Si

|E[Uk]|, (3.5)

and that

∑

k∈Si

|E[Uk]| =
N∑

j=0

∑

k∈Sj
i

|E[Uk]|

=
N∑

j=0

�
√

j�∑

�=0

∑

k∈T �
i

|E[Uk]| +
N∑

j=0

j∑

�=�
√

j�+1

∑

k∈T �
i

|E[Uk]|

=
N∑

j=0

�
√

j�∑

�=0

j∑

v=�

∑

k∈Vv
i

|E[Uk]| +
N∑

j=0

j∑

�=�
√

j�+1

j∑

v=�

∑

k∈Vv
i

|E[Uk]|. (3.6)

Let Xj = σ−1
kj

ΔFkj
and

ξj = Xr
j − E[Xr

j ] = σ−r
kj

(ΔF r
kj

− crσ
r
kj

).

Then

|E[Uk]| =
( 4∏

j=1

σr
kj

)∣∣∣∣E
[ 4∏

j=1

ξj

]∣∣∣∣. (3.7)

By (2.10) and (2.12), we have for all i �= j ∈ N,

|E[ΔFiΔFj ]| ≤
2n−1/2

|i − j|3/2
. (3.8)

It follows from (2.4) that for all 1 ≤ k ≤ �nt,

π−1/2n−1/2 ≤ |E[ΔF 2
k ]| ≤ 2n−1/2. (3.9)

It follows from (3.8) and (3.9) that

|ρij | = |E[XiXj ]| = σ−1
ki

σ−1
kj

|E[ΔFki
ΔFkj

]| ≤ 2
√

π

|ki − kj |3/2
. (3.10)

Suppose 0 ≤ � ≤ �
√

j. Fix v and let k ∈ Vv
i be arbitrary. If i = 1, then j =

max{h1, h2, h3} = h1 = k2 − k1. If i = 3, then j = max{h1, h2, h3} = h3 = k4 − k3. In
either case, by (3.2) and (3.10), we have

|E[Uk]| ≤ Cn−r

j3/2
≤ C

(
1

(�v)3/2
+

1
j3/2

)
n−r.

If i = 2, then j = max{h1, h2, h3} = h2 = k3 − k2 and �v = h3h1 = (k4 − k3)(k2 − k1). Hence,
by (3.1) and (3.10),

|E[Uk]| ≤ C

(
1

(�v)3/2
+

1
j3/2

)
n−r.

Now choose i′ �= i such that hi′ = �. With i′ given, k is determined by ki. Since there are two
possibilities for i′ and N + 1 possibilities for ki, |Vv

i | ≤ 2(N + 1). Therefore,

�
√

j�∑

�=0

j∑

v=�

∑

k∈Vv
i

|E[Uk]| ≤ C(N + 1)
�
√

j�∑

�=0

j∑

v=�

(
1

(�v)3/2
+

1
j3/2

)
n−r
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≤ C(N + 1)
�
√

j�∑

�=0

(
1

�3/2
+

1
j1/2

)
n−r

≤ C(N + 1)n−r. (3.11)

For the second summation, suppose �
√

j + 1 ≤ � ≤ j. (In particular, j ≥ 1.) In this case,
if k ∈ T �

i , then � = min{h1, h2, h3}, so that by (3.3) and (3.10),

|E[Uk]| ≤ Cn−r

�3
.

Since
∑j

v=� |Vv
i | ≤ 2(N + 1)j, we have

j∑

�=�
√

j�+1

j∑

v=�

∑

k∈Vv
i

|E[Uk]| ≤ C(N + 1)j
j∑

�
√

j�+1

n−r

�∼3

≤ C(N + 1)j
(∫ ∞

�
√

j�

1
x3

dx

)
n−r

≤ C(N + 1)n−r. (3.12)

Thus, using (3.5), (3.6), (3.11) and (3.12), we have

n−2+r
E

[∣∣∣∣
�nt�∑

j=�ns�+1

(ΔF r
j − crσ

r
j )

∣∣∣∣
4]

≤ C

N∑

j=0

(N + 1)n−2 = C

(
�nt − �ns

n

)2

,

which is (3.4).
To show that a sequence of cadlag processes {Xn} is relatively compact, it suffices to show

that for each T > 1, there exist constants β > 0, C > 0, and α > 1 such that

RXn
(t, h) = E[|Xn(t + h) − Xn(t)|β|Xn(t) − Xn(t − h)|β] ≤ Chα

for all n ∈ N, all t ∈ [0, T ] and all h ∈ [0, t]. (See, e.g., Theorem 3.8.8 in Ethier and Kurtz [6].)
Taking β = 2 and using (3.4) together with Hölder inequality gives

RW n
r (F )(t, h) ≤ C

(
�nt + nh − �nt

n

)(
�nt − �nt − nh

n

)
.

If nh < 1/2, then the right-hand side of this inequality is zero. Assume nh ≥ 1/2. Then

�nt + nh − �nt
n

≤ nh + 1
n

≤ 3h.

The other factor is similarly bounded, so that RW n
r (F )(t, h) ≤ Ch2. �

Proposition 3.3 Fix 0 ≤ s < t and r ∈ N+. Then

Wn
r (F )t − Wn

r (F )s
L→ σr(s, t)N

as n → ∞, where N is a standard normal random variable and

σr(s, t) =

⎧
⎨

⎩
κ

1/2
p |t − s|1/2, if r = 2p,

χ
1/2
p |t − s|1/2, if r = 2p − 1.

Here κp and χp are defined in (1.8) and (1.9), respectively.
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Proof Let {n(j)}∞j=1 be any sequence of natural numbers. We will prove that there exists a

subsequence {n(jm)} such that W
n(jm)
r (F )t−W

n(jm)
r (F )s converges in law to the given random

variable.
For each m ∈ N+, choose n(jm) ∈ {n(j)} such that n(jm) > n(jm−1) and n(jm) ≥ m4(t −

s)−1. Let b = b(m) = n(jm)(t − s)/m. For 0 ≤ k ≤ m, define uk = n(jm)s + kb, so that

Wn(jm)
r (F )t − Wn(jm)

r (F )s = n(jm)−1/2+r/4

�n(jm)t�∑

i=�n(jm)s�+1

(ΔF r
i − crσ

r
i )

= n(jm)−1/2+r/4
m∑

k=1

uk∑

i=uk−1+1

(ΔF r
i − crσ

r
i ). (3.13)

Let us now introduce the filtration

Ft = σ{W (A) : A ⊂ R × [0, t], λ(A) < ∞},

where λ denotes Lebesgue measure on R
2. Let τk = n(jm)−1uk−1. For each pair (i, k) such

that uk−1 < i ≤ uk,
ξi,k = ΔFi − E[ΔFi|Fτk

].

Note that ξi,k is Fτk+1 -measurable and independent of Fτk
. Recall that

F (t) =
∫ t

0

∫

R

G(t − s, x − y)W (ds, dy). (3.14)

Also, given constants 0 ≤ τ ≤ s ≤ t, we have

E[F (t)|Fτ ] =
∫ τ

0

∫

R

G(t − s, x − y)W (ds, dy). (3.15)

It follows from (3.14) and (3.15) that

F (t + τk) − E[F (t + τk)|Fτk
] =

∫ t+τk

τk

∫

R

G(t + τk − s, x − y)W (ds, dy).

This yields that {ξi,k} has the same law as {ΔFi−uk−1}.
Now define σ2

i,k = E[ξ2
i,k] = σ2

i−uk−1
and

ζm,k =
uk∑

i=uk−1+1

(ξr
i,k − crσ

r
i,k),

so that ζm,k, 1 ≤ k ≤ m, are independent and

Wn(jm)
r (F )t − Wn(jm)

r (F )s = n(jm)−1/2+r/4
m∑

k=1

ζm,k + εm, (3.16)

where

εm = n(jm)−1/2+r/4
m∑

k=1

uk∑

i=uk−1+1

((ΔF r
i − crσ

r
i ) − (ξr

i,k − crσ
r
i,k)).

Since ξi,k and ΔFi − ξi,k = E[ΔFi|Fτk
] are independent, we have

σ2
i = E[ΔF 2

i ] = E[ξ2
i,k] + E[|ΔFi − ξi,k|2]

= σ2
i,k + E[|ΔFi − ξi,k|2]. (3.17)
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This, together with (2.4), gives

E[|ΔFi − ξi,k|2] = σ2
i − σ2

i,k ≤ 2n(jm)−2

(ti − τk)3/2
=

2n(jm)−1/2

(i − uk−1)3/2
. (3.18)

Thus, since ΔFi − ξi,k is Gaussian, by (2.1), we have

E[|ΔFi − ξi,k|4] ≤
Cn(jm)−1

(i − uk−1)3
. (3.19)

Note that (2.1) implies E[|ΔFi|4r−4] ≤ Cσ4r−4
i and E[|ξi,k|4r−4] ≤ CE[|ΔFi|4r−4] ≤ Cσ4r−4

i .
By Lagrange mean value theorem,

|ΔF r
i − ξr

i,k| ≤ C(|ΔFi|r−1 + |ξi,k|r−1)|ΔFi − ξi,k|.

Thus, by Hölder inequality, (3.19) and the fact σ2
i ≤ Cn(jm)−1/2 for all i ∈ N,

E[|ΔF r
i − ξr

i,k|2] ≤ C(E[|ΔFi|4r−4] + E[|ξi,k|4r−4])1/2(E[|ΔFi − ξi,k|4])1/2

≤ Cn(jm)−r/2

(i − uk−1)3/2
. (3.20)

It follows (3.18) and Lagrange mean value theorem that

|σr
i − σr

i,k| ≤ C(|σi|r−2 + |σi,k|r−2)|σ2
i − σ2

i,k| ≤
Cn(jm)−r/4

(i − uk−1)3/4
. (3.21)

Therefore, by Hölder inequality, (3.20) and (3.21),

E[|εm|] ≤ n(jm)−1/2+r/4
m∑

k=1

uk∑

j=uk−1+1

((E[|ΔF r
i − ξr

i,k|2])1/2 + cr|σr
j − σ̄r

j,k|)

≤ Cn(jm)−1/2
m∑

k=1

uk∑

i=uk−1+1

1
(i − uk−1)3/4

= Cn(jm)−1/2
m∑

k=1

uk−uk−1∑

i=1

i−3/4.

Since uk − uk−1 ≤ b, this gives

E[|εm|] ≤ Cn(jm)−1/2mb1/4 = Cm3/4n(jm)−1/4(t − s)1/4.

But since n(jm) was chosen so that n(jm) ≥ m4(t − s)−1, we have E[|εm|] ≤ Cm−1/4|t − s|1/2

and εm → 0 in L1 and in probability. Therefore, by (3.16), we need only to show that

n(jm)−1/2+r/4
m∑

k=1

ζm,k
L→ σr(s, t)N

in order to complete the proof.
For this, we will use the Lindeberg–Feller theorem (see, e.g., Theorem 2.4.5 in Durrett [5]),

which states the following: for each m, let ζm,k, 1 ≤ k ≤ m, be independent random variables
with E[ζm,k] = 0. Suppose:

(a) n(jm)−1+r/2
∑m

k=1 E[ζ2
m,k] → ν2, and

(b) for all ε > 0, limm→∞ n(jm)−1+r/2
∑m

k=1 E[|ζm,k|2I{n(jm)−1/2+r/4|ζm,k|>ε}] → 0.

Then n(jm)−1/2+r/4
∑m

k=1 ζm,k
L→ νN as n → ∞.
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To verify these conditions, recall that {ξi,k} and {ΔFi−uk−1} have the same law, so that

E[|ζm,k|4] = E

[∣∣∣∣
uk−uk−1∑

i=1

(ΔF r
i − crσ

r
i )

∣∣∣∣
4]

.

Hence, by (3.4),
n(jm)−2+r

E[|ζm,k|4] ≤ C(uk − uk−1)2n(jm)−2.

Jensen inequality now gives m−1+r/2
∑m

k=1 E[|ζm,k|2] ≤ Cmbn(jm)−1 = C(t − s), so that by
passing to a subsequence, we may assume that (a) holds for some ν ≥ 0.

For (b), let ε > 0 be arbitrary. Then

n(jm)−1+r/2

m∑

k=1

E[|ζm,k|2I{n(jm)−1/2+r/4|ζm,k|>ε}] ≤ ε−2n(jm)−2+r

m∑

k=1

E[|ζm,k|4]

≤ Cε−2mb2n(jm)−2

= Cε−2m−1(t − s)2,

which tends to zero as m → ∞.
It therefore follows that n(jm)−1/2+r/4

∑m
k=1 ζm,k

L→ νN as n → ∞ and it remains only
to show that ν = σr(s, t). For this, observe that the continuous mapping theorem implies
that |Wm

r (F )t − Wm
r (F )s|2

L→ ν2N 2. By the Skorohod representation theorem, we may
assume that the convergence is a.s. By Proposition 3.2, the family |Wm

r (F )t − Wm
r (F )s|2 is

uniformly integrable. Hence, |Wm
r (F )t−Wm

r (F )s|2 → ν2N 2 in L1, which implies E[|Wm
r (F )t−

Wm
r (F )s|2] → ν2. But by Theorem 1.1, E[|Wm

r (F )t − Wm
r (F )s|2] → σr(s, t)2, so ν = σr(s, t)

and the proof is complete. �
We now prove Theorems 1.5 and 1.6. It is sufficient to prove Theorem 1.5 since the proof

of Theorem 1.6 is similar to that of Theorem 1.5.
Proof of Theorem 1.5 Let {n(j)}∞j=1 be any sequence of natural numbers. By Proposition

3.2, the sequence {(F, W
n(j)
2p (F ))} is relatively compact. Therefore, there exists a subsequence

{n(jk)} and a cadlag process X such that (F, W
n(jk)
2p (F )) L→ (F, X). Fix 0 < s1 < s2 < · · · <

sd < s < t. With notation as in Proposition 3.3, let

ζn = n−1/2+p/2

�nt�∑

i=�ns�+2

(ξr
i,k − crσ

r
i,k),

and define
ηn = Wn

2p(F )t − Wn
2p(F )s − ζn.

As in the proof of Proposition 3.3, ηn → 0 in probability. It therefore follows that

(Wn(jk)
2p (F )s1 , . . . , W

n(jk)
2p (F )sd

, ζn(jk))
L→ (X(s1), . . . , X(sd), X(t) − X(s)).

Note that F(�ns�+1)Δt and ζn are independent. Hence, (Wn
2p(F )s1 , . . . , W

n
2p(F )sd

) and ζn are
independent, which implies X(t) − X(s) and (X(s1), . . . , X(sd)) are independent. This yields
that the process X has independent increments.

By Proposition 3.3, the increment X(t)−X(s) is normally distributed with mean zero and
variance κp|t − s|. Also, X(0) = 0 since Wn

2p(F )0 = 0 for all n. Hence, X is equal in law to
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κ
1/2
p W , where W is a standard Brownian motion. It remains only to show that F and W are

independent.

Fix 0 < s1 < s2 < · · · < sd. Let Z = (F (s1), . . . , F (sd))T and Σ = E[ZZT ], and define the
vectors bj ∈ R

d by bj = E[ZΔFj ], and wj = Σ−1bj . Let ξj = ΔFj −wT
j Z, so that ξj and Z are

independent.

Define

W̃n
2p(F )t = n−1/2+p/2

�nt�∑

j=1

(ξ2p
j − c2pσ

2p
j ).

Then

|W n
2p(F )t − W̃n

2p(F )t| ≤ n−1/2+p/2

∣∣∣∣
�nt�∑

j=1

(ΔF 2p
j − ξ2p

j )
∣∣∣∣.

By binomial expansion, (2.1) and Hölder inequality,

E

[
sup

0≤t≤T
|Wn

2p(F )t − W̃n
2p(F )t|

]
≤ Cn−1/2+p/2

2p∑

ν=1

�nT�∑

j=1

(E[ΔF 4p−2ν
j ])1/2(E[(wT

j Z)2ν ])1/2

≤ C

2p∑

ν=1

n−1/2+ν/4

�nT�∑

j=1

(E[(wT
j Z)2ν ])1/2

≤ C max
1≤i≤d

2p∑

ν=1

n−1/2+ν/4

�nT�∑

j=1

|E[F (si)ΔFj ]|ν .

Note that by Hölder inequality, we have |E[F (si)ΔFj ]| ≤ Cσj ≤ Cn−1/4 for all 1 ≤ i ≤ d

and 1 ≤ j ≤ �nt, and that by (1.7) and Lagrange mean value theorem,

E[F (si)ΔFj ] =
1√
2π

(
√

si + tj −
√

si + tj−1 −
√

si − tj +
√

si − tj−1)

=
1

2n
√

2π

((
si +

j − θ1

n

)−1/2

+
(

si −
j − θ2

n

)−1/2)
,

where θ1, θ2 ∈ (0, 1). Then,

n−1/2+ν/4

�nT�∑

j=1

|E[F (si)ΔFj ]|ν

≤ Cn−5/4

�nT�∑

j=1

((
si +

j − θ1

n

)−1/2

+
(

si −
j − θ2

n

)−1/2)
,

which tends to zero as n → ∞ since
∫ t

0
((si+x)−1/2+(si−x)−1/2)dx < ∞. Thus, (Z, W̃n

2p(F )s1 ,

. . . , W̃n
2p(F )sd

) L→ (Z, κ
1/2
p W (s1), . . . , κ

1/2
p W (sd)). Since Z and W̃n

2p(F ) are independent, this
finishes the proof. �
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