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1 Introduction

The classification of manifolds is an interesting and challenging task in topology. In this article,
we mainly concern the following:

Problem 1.1 Classify all 1-connected 8-manifolds with the same homology as S3 × S5.

We call such 8-manifolds of type (∗). These manifolds are related to a class of 1-connected
7-manifolds satisfying either

H2(M) ∼= Z{u}, H3(M) = 0, H4(M) ∼= Zr{u2} (r ≥ 1),

which will be called of type (r); or

H2(M) ∼= Z{u}, H3(M) = Z{v}, H4(M) ∼= Z{u2}, H5(M) ∼= Z{uv},

i.e., with integral cohomology ring isomorphic to that of CP 2×S3, which will be called of type
(0). Here we use the symbol Z{x} or Zr{x} to represent an infinite cyclic group or a finite
cyclic group of order r with a generator x. If we consider the S1-bundle over a manifold of type
(r) (r ≥ 0) with Euler class u, easy calculation shows that the total space is of type (∗).

There are many well-known examples for manifolds of type (r), such as Aloff–Wallach
manifolds, Eschenburg spaces, etc. These manifolds contribute many valuable examples in the
study of positively curved manifolds (cf. [28] for a survey). As for manifolds of type (0),
the most natural examples may be the total spaces of S3-bundles over CP 2 which have cross
sections. The classification of type (0) manifolds has been considered in [25]. For manifolds of
type (r), Kreck and Stolz have constructed invariants which can determine whether two such
manifolds can be homotopic, homeomorphic or diffeomorphic [16]. However, the realization of
these invariants is unknown, which means we still need more research on the structure of such
manifolds. Considering the connection between manifolds of type (∗) and (r), knowing more
about manifolds of type (∗) may help us get more information on manifolds of type (r).
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To state our main result, we take the following notations. Let P, T and S be the homotopy
equivalence, homeomorphism and diffeomorphism classes of Poincaré complexes, topological
manifolds and smooth manifolds of type (∗), respectively. Let Xr,s = (S3∨S5)∪[ι3,ι5]+ra3η6+sη5η6

D8, where ιk corresponds to the identity map of Sk, while a3η6 and η5η6 are certain elements
in π7(S3) and π7(S5), respectively (cf. Lemma 2.3). The composition with the inclusion into
S3 ∨ S5 is always omitted for short.

Our main result is the following:

Theorem 1.2 (1) P = {S3 × S5, X1,0, X0,1, X1,1, SU(3)}.
(2) T={S3×S5, SU(3), M1,0}. Here M1,0 is the total space of the only nontrivial S3-bundle

over S5 which has a cross section and M1,0 � X1,0.

(3) S = {S3 × S5, S3 × S5#Σ8, SU(3), M1,0}. Here Σ8 is the only exotic 8-sphere.

Remark 1.3 When classifying a certain class of manifolds, a complete set of invariants is
often provided. However, it seems not easy to provide complete invariants which can be quickly
calculated in our situation. In the topological case, the invariants (μ, φ) in [5] can be used.
Obviously μS3×S5 = 0, μM1,0 = 0, while μSU(3) �= 0. [5, Theorem 1.9] indicates that we must
have φS3×S5 = 0 and φM1,0 �= 0. However, we do not know how to calculate them directly. We
guess that φX0,1 = 0 and φX1,1 �= 0. If it is the case, then (μ, φ) together with the first exotic
class e defined in [7] can provide complete invariants for P. In the smooth case, Kosiński’s
invariant p′(M) [15] can distinguish S3 × S5 and S3 × S5#Σ8, although it may be hard to
calculate it in practice.

Remark 1.4 Since S3-bundles over S5 and exotic spheres are stably parallelizable, we know
from Theorem 1.2 that all smooth 8-manifolds of type (∗) are stably parallelizable. This fact
can also be seen directly by obstruction theory and Hirzebruch’s Signature Theorem. Note that
in [5], Fang and Pan have obtained a complete classification of (n−2)-connected 2n-dimensional
stably parallelizable manifolds up to homeomorphism. The topological classification has also
been obtained by Ishimoto [10] for (n− 2)-connected 2n-dimensional stably parallelizable man-
ifolds with torsion free homology groups.

As a consequence of Theorem 1.2, we have the following rigidity theorem:

Corollary 1.5 (1) Two topological 8-manifolds of type (∗) are homeomorphic if and only if
they are homotopy equivalent. All topological 8-manifolds of type (∗) are smoothable.

(2) A closed smooth 8-manifold M is diffeomorphic to M1,0 or SU(3) if and only if they are
homotopy equivalent.

Recall that for a smooth n-dimensional manifold M , its inertia group I(M) = {Σ ∈
Θn|M#Σ ∼= M}. Here Θn is the group of homotopy n-spheres. Theorem 1.2 also implies:

Corollary 1.6 I(S3 × S5) = 0, I(M1,0) = I(SU(3)) = Θ8.

Remark 1.7 The fact I(S3×S5) = 0 has already been obtained by De Sapio [2] and Schultz
[21].

For n ≥ 3, the n-th homotopy group of the total space of a circle bundle coincides with that
of the base space. Together with the obvious fact πi(M1,0) ∼= πi(S3 × S5), we also have:
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Corollary 1.8 Let N be a 7-dimensional manifold of type (r). Then either

πi(N) ∼=

⎧
⎨

⎩

Z, i = 2

πi(S3)⊕ πi(S5), i ≥ 3

or

πi(N) ∼=

⎧
⎨

⎩

Z, i = 2

πi(SU(3)), i ≥ 3.

In [4], Escher and Ziller studied the topology of certain 7-manifolds of type (r), i.e., the
total spaces of S3-bundles over CP 2 and S1-bundles over S2-bundles over CP 2. By classifying
the total spaces of S1-bundles over these manifolds, we obtain the following:

Theorem 1.9 There are infinitely many nonequivalent free smooth S1-actions on S3 × S5,
M1,0 and SU(3).

The article is organized as follows. In Section 2, we give some notations and elementary
results which will be used later. We deal with the classification problem in Sections 3 and 5.
Section 4 is a preparation for Section 5. Finally, in Section 6 we discuss a topic related to a
paper of Escher and Ziller [4].

2 Preliminaries

In this section we list some notations and basic results which will be used later. Sometimes we
use the same symbol to represent a map and its homotopy class if there is no confusion.

Let x0 = (1, 0, . . . , 0)T be the base point of Sn. There is a principal fiber bundle

SO(n) i−→ SO(n + 1)
p−→ Sn,

defined by

i : A �→

⎛

⎝
1

A

⎞

⎠ , p : B �→ Bx0.

The fiber bundle SO(3) i−→ SO(4)
p−→ S3 has a cross section σ : S3 → SO(4) given by the

canonical identification of S3 with Sp(1) ⊂ SO(4). Explicitly σ is defined by

σ :

⎛

⎜
⎜
⎜
⎜
⎜
⎝

a

b

c

d

⎞

⎟
⎟
⎟
⎟
⎟
⎠

�→

⎛

⎜
⎜
⎜
⎜
⎜
⎝

a −b −c −d

b a −d c

c d a −b

d −c b a

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Therefore we have a canonical diffeomorphism between SO(4) and SO(3)× S3, which induces
the isomorphism π4(SO(4)) ∼= π4(SO(3))⊕ π4(S3).

Identify R
4 with H, i.e., the set of quaternions, and identify S3 with the set of unit quater-

nions. Then for z ∈ S3 and x = (0, x2, x3, x4) ∈ R
4 ∼= H, it is easily checked that the first

coordinate of zxz−1 is also 0. Therefore we can define a map ρ : S3 → SO(3) by ρ(z)x = zxz−1.
Note that ρ is a two-fold covering map of SO(3).

Let η2 be the Hopf map and ηn = Σn−2η2.
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Lemma 2.1 Notations as above.
(1) π3(SO(3)) ∼= Z{ρ}, π3(SO(4)) ∼= Z{iρ} ⊕ Z{σ}, π3(SO(5)) ∼= Z{iσ};
(2) π4(SO(3)) ∼= Z2{ρη3}, π4(SO(4)) ∼= Z2{iρη3} ⊕ Z2{ση3}.
Let Gn = {f : Sn−1 → Sn−1| deg f = 1} and Fn = {f ∈ Gn|f(x0) = x0}. We have the

following ladder of fibration sequences:

SO(n) i ��

��

SO(n + 1)

��

p �� Sn

Fn+1
ī �� Gn+1

p̄ �� Sn

Here the vertical arrows are natural inclusions. We denote their induced maps between homo-
topy groups by

μ̄′ : πk(SO(n))→ πk(Fn+1), μ̄ : πk(SO(n + 1))→ πk(Gn+1).

We define the map I : πk(Fn+1)→ πk+n(Sn) as follows. Write Sk+n as (Sk×Dn)∪(Dk+1×
Sn−1), and let q : Dn → Dn/∂Dn ∼= Sn be the quotient map. For any β = [f ] ∈ πk(Fn+1), its
image I(β) is defined to be represented by

I(f)(x, y) =

⎧
⎨

⎩

f(x)(q(y)), if (x, y) ∈ Sk ×Dn,

x0, otherwise.

By definition, there is a commutative diagram

πk(SO(n))
J

�������������

μ̄′

��
πk(Fn+1)

I �� πk+n(Sn)

(†)

Theorem 2.2 ([26]) I is a group isomorphism.

For homotopy groups of spheres and J-homomorphisms, we need the following results:

Lemma 2.3 ([22, 23]) (1) πn+1(Sn) ∼=

⎧
⎨

⎩

Z{η2}, if n = 2,

Z2{ηn}, if n ≥ 3.

(2) πn+2(Sn) ∼= Z2{ηnηn+1} for n ≥ 2.
(3) π6(S3) ∼= Z12{a3} with a3 = Jρ.

π7(S4) ∼= Z{ν4} ⊕ Z12{a4} with ν4 the Hopf map and a4 = Σa3. Note that ν4 = Jσ.
(4) π7(S3) ∼= Z2{a3η6}. Note that η3ν4 = a3η6 and η3a4 = 0.

π8(S4) ∼= Z2{ν4η7} ⊕ Z2{a4η7},
πn+4(Sn) = 0, n ≥ 6.

Lemma 2.4 (1) ΣJ = −Ji∗;
(2) J(α ◦ β) = Jα ◦ Σnβ for α ∈ πk(SO(n)) and β ∈ πl(Sk).

Proof (1) See [27].
(2) It can be checked directly by definition. �

Lemma 2.5 (1) J : π4(SO(3))
∼=−→ π7(S3);

(2) J : π4(SO(4))
∼=−→ π8(S4) with J(ση3) = ν4η7 and J(iρη3) = a4η7.



On 1-connected 8-manifolds 945

Proof Using Lemma 2.3 and 2.4.

(1) J(ρη3) = (Jρ)η6 = a3η6.

(2) J(ση3) = J(σ)η7 = ν4η7.

J(iρη3) = J(iρ)η7 = (−ΣJρ)η7 = a4η7. �

Finally we have the following:

Lemma 2.6 μ̄′ : π4(SO(3))
∼=−→ π4(F4), μ̄ : π4(SO(4))

∼=−→ π4(G4).

Proof Combining Lemma 2.2, Lemma 2.5 and (†), it is easy to see that μ̄′ is an isomorphism.

For μ̄, we consider the following exact ladder:

π5(S3) �� π4(SO(3)) ��

μ̄′

��

π4(SO(4)) ��

μ̄

��

π4(S3) ∂ ��

σ∗

��
π3(SO(3))

μ̄′

��
π5(S3) �� π4(F4) �� π4(G4) �� π4(S3) ∂̄ �� π3(F4)

The top row is split, so ∂ = 0. Then ∂̄ = μ̄′∂ = 0. Therefore μ̄ is an isomorphism by the
5-Lemma. �

3 The Classification of Poincaré Complexes and Topological Manifolds

Now we prove the first two statements in Theorem 1.2. First, we deal with the classification of
Poincaré complexes.

Let X be a Poincaré complex of type (∗). Then

X � S3 ∪φ1 D5 ∪φ2 D8.

Since φ1 ∈ π4(S3) ∼= Z2{η3}, it has two choices:

(1) φ1 = η3.

In this case, we have φ2 ∈ π7(S3 ∪η3 D5) = π7(ΣCP 2) ∼= Z{β} (see [20]). If φ2 = ±β, then
X � SU(3). The cup product structure of X implies that it is the only possibility.

(2) φ1 = 0.

In this case, we have φ2 ∈ π7(S3 ∨ S5). By Hilton’s theorem [9], we have π7(S3 ∨ S5) ∼=
Z2{a3η6}⊕Z2{η5η6}⊕Z{[ι3, ι5]}. Therefore we can suppose φ2 = ra3η6 + sη5η6 + t[ι3, ι5]. The
cup product structure is essentially determined by the term t[ι3, ι5], which forces t = ±1, and
we may assume t = 1. Let Xr,s = (S3 ∨ S5) ∪ra3η6+sη5η6+[ι3,ι5] D8, r, s ∈ {0, 1}. To see that
these Xr,s are different from each other, we use the following:

Lemma 3.1 Xr,s � Xr′,s′ if and only if there exists f ∈ E(S3 ∨ S5) such that f∗(ra3η6 +
sη5η6 + [ι3, ι5]) = ±(r′a3η6 + s′η5η6 + [ι3, ι5]), where E(X) denotes the group of self homotopy
equivalences of X.

Proof “⇒” Let g : Xr,s → Xr′,s′ be a homotopy equivalence. We may assume g is a cellular
map. Let f be the restriction of g on the 5-skeleton. Obviously f ∈ E(S3 ∨ S5). Then the only
if part follows by the commutative diagram below together with the fact that ∂ sends 1 to the
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attaching maps.

Z ∼= π8(Xr,s, S
3 ∨ S5) ∂ ��

g∗∼=
��

π7(S3 ∨ S5)

f∗∼=
��

Z ∼= π8(Xr′,s′ , S3 ∨ S5) ∂ �� π7(S3 ∨ S5)

“⇐” The condition implies that f can be extended to a map g : Xr,s → Xr′,s′ . It can be
easily checked that g induces an isomorphism between the cohomology rings. Therefore g is a
homotopy equivalence. �

By Lemma 3.1, we only need to show that

f∗(ra3η6 + sη5η6 + [ι3, ι5]) = ±(ra3η6 + sη5η6 + [ι3, ι5])

for any f ∈ E(S3 ∨ S5). Clearly,

E(S3 ∨ S5) ∼=

⎧
⎨

⎩

⎛

⎝
±ι3 εη3η4

0 ±ι5

⎞

⎠

∣
∣
∣
∣
∣
ε = 0, 1

⎫
⎬

⎭
.

We only verify the case

f =

⎛

⎝
ι3 η3η4

0 ι5

⎞

⎠

below. The rest is similar.

f∗(a3η6) = a3η6,

f∗(η5η6) = (η3η4 + ι5)η5η6 = η5η6,

f∗([ι3, ι5]) = [ι3, η3η4 + ι5] = [ι3, η3η4] + [ι3, ι5] = [ι3, ι5].

Next we turn to the classification of topological manifolds. By definition M1,0 is the total
space of the S3 bundle with clutching map iρη3 ∈ π4(SO(4)). Therefore together with [11,
(3.7)] and Lemma 2.5, we have

M1,0 � (S3 ∨ S5) ∪[ι3,ι5]+Jρη3 D8 = (S3 ∨ S5) ∪[ι3,ι5]+a3η6 D8 = X1,0.

Obviously S3 × S5 � X0,0. To see that there are no other topological manifolds homotopy
equivalent to S3×S5, M1,0 and SU(3), recall that we have the following surgery exact sequence
for a simply connected n-dimensional manifold M for n ≥ 5 (cf. [24]):

Ln+1(Z)→ S TOP(M)→ [M, G/ TOP] θ−→ Ln(Z).

Note that

πn(G/ TOP) ∼= Ln(Z) ∼=

⎧
⎪⎪⎨

⎪⎪⎩

Z, n ≡ 0 mod 4,

Z2, n ≡ 2 mod 4,

0, n ≡ 1 mod 2
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(cf. [14]). If M is a topological 8-manifold of type (∗), then we have the following:

[S4 ∪D6, G/ TOP]

(Σφ)∗=0

��
[S8, G/ TOP]

��

∼=

����������������

0 = L9(Z) �� S TOP(M) �� [M, G/ TOP] θ ��

��

L8(Z) ∼= Z

[S3 ∪D5, G/ TOP] = 0

Here φ denotes the attaching map of the top cell of M . Since Σφ is a torsion element (cf. [20]
for SU(3)), we must have (Σφ)∗ = 0. The fact [S3 ∪D5, G/ TOP] = 0 is due to π3(G/ TOP) =
π5(G/ TOP) = 0. Therefore θ is an isomorphism, which makes the topological structure set
S TOP(M) only have one element.

The remaining work is to show that X0,1 and X1,1 are not homotopy equivalent to any
topological manifolds. The situation is similar to the well-known 5-dimensional case (cf. [18,
pp. 32-33]). We have

Σn(Xr,1)+ � Sn ∨ Sn+3 ∨ (Sn+5 ∪η2 Dn+8)

for n sufficiently large. Let νr,1 be the Spivak normal bundle of Xr,1 and Tr,1 be its Thom
space. Then Tr,1 is the Spanier–Whitehead duality of Σn(Xr,1)+ [1]. Therefore

Tr,1 � (Sl ∪η2 Dl+3) ∨ Sl+5 ∨ Sl+8.

This implies that the Thom space of νr,1|S3 is homotopy equivalent to Sl ∪η2 Dl+3. Since
π3(BTOP) = 0, we see that νr,1|S3 can not be given a topological bundle structure. Therefore
νr,1 also does not have a topological bundle structure, which means Xr,1 is not homotopy
equivalent to a topological manifold.

4 Self Equivalences of Sk × Sn

The key to the classification of smooth 8-manifolds of type (∗) is the following observation:
If M8 is of type (∗), then M ∼= S3 ×D5 ∪f S3 ×D5, where f ∈ Diff(S3 × S4).

Then we need to analyze Diff(S3 × S4). Our progress relies heavily on results in [17]. We will
briefly review them and add some easy observations. For simplicity we assume k < n, although
the case k = n has also been considered in [17].

We will deal with the following categories:

H : Topological spaces and homotopy classes of maps;
D : Smooth manifolds and smooth maps.

Let D̄ = D̄k,n (H̄ = H̄k,n) be the group of concordance (homotopy) classes of self-
diffeomorphisms (self-homotopy equivalences) of Sk × Sn. The symbol Ā may refer to any
of them. By saying a self-equivalence, we mean a self-diffeomorphism or a self-homotopy equiv-
alence in its suited category. There is a natural homomorphism μ : D̄k,n → H̄k,n defined by
considering a diffeomorphism merely as a homotopy equivalence.
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Let B = AutH∗(Sk × Sn) be the group of graded ring automorphisms of H∗(Sk × Sn). It
is isomorphic to Z2 ⊕ Z2. Let Φ : Āk,n → B be the obvious homomorphism. Then Φ is onto,
and its kernel A = Ak,n is the subgroup of Āk,n which contains those orientation-preserving
self-equivalences restricting to some Sk × x0 homotopic to the inclusion. Namely we have the
following exact sequence:

1→ A→ Ā
Φ−→ B → 1.

Notice that B can be realized by reflections on Sk × Sn, which makes the short exact sequence
split. Therefore Ā ∼= A � B.

Define subgroups A1, A2 and α of A to consist of those elements represented by f : Sk×Sn →
Sk × Sn satisfying:

(A1) f extends to a self-equivalence of Dk+1 × Sn;
(A2) f extends to a self-equivalence of Sk ×Dn+1;
(A3) There is some (k + n)-disk D ⊂ Sk × Sn such that f(D) ⊂ D and f |Sk×Sn−D is the

inclusion.
Subgroups Ā1, Ā2 and ᾱ of Ā are similarly defined.

Proposition 4.1 ([17, Proposition 2.3]) α = 0 in H , while α ∼= Θk+n+1, the group of exotic
(k + n + 1)-spheres, in D .

Theorem 4.2 ([17, Theorem 2.4]) For n ≥ 3, Ak,n = (A1⊕α)�φ̂ A2, with the action φ̂ trivial
on α. Besides, the groups A1, A2 and α are abelian.

Corollary 4.3 For n ≥ 3, Āk,n ∼= (A1 ⊕ α) � Ā2 and Ā2
∼= A2 � B.

Proof We already have
Ā ∼= ((A1 ⊕ α) � A2) � B.

Actually A1 ⊕ α is a normal subgroup of Ā and A2B is a subgroup of Ā, which can be easily
deduced from the observation that A1, A2 and α are invariant under the conjugation action of
B. Therefore

Ā ∼= (A1 ⊕ α) � (A2 � B).

The elements in B are represented by reflections, which obviously extend to Sk × Dn+1.
Hence A2 �B ⊂ Ā2. Since (A1⊕α)∩ Ā2 = (A1⊕α)∩A2 = {1}, we must have Ā2

∼= A2 �B. �
Now we turn to the determination of A1, A2 and the semi-direct product structure φ̂.
Let FCp

m be the group of concordance classes of framed imbeddings Sm ↪→ Sm+p. We
construct homomorphisms

λ1 : Dk,n
1 → FCk+1

n , λ2 : Dk,n
2 → FCn+1

k

as follows. Let f : Sk × Sn → Sk × Sn represent an element ξ in Dk,n
1 and F : Dk+1 × Sn →

Dk+1 × Sn be an extension of f . Then the composition of the following maps defines a framed
embedding, which represents the element λ1(ξ) ∈ FCn+1

k :

Sn ×Dk+1 F−→∼= Sn ×Dk+1 ⊂ Sn × R
k+1 ⊂ R

k+n+1.

The homomorphism λ2 is defined similarly. Note that we have natural homomorphisms

e1 : πn(SO(k + 1))→ Dk,n
1 , e2 : πk(SO(n + 1))→ Dk,n

2
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defined by associating a smooth map f : Sn → SO(k + 1) (or g : Sk → SO(n + 1)) to
the diffeomorphism (x, y) �→ (f(y)x, y) (or (x, y) �→ (x, g(x)y)), which fit into commutative
diagrams

πn(SO(k + 1))

�������������

e1

��
Dk,n

1

λ1 �� FCk+1
n

πk(SO(n + 1))

�������������

e2

��
Dk,n

2

λ2 �� FCn+1
k

(∗)

where πp(SO(m))→ FCm
p is the same as in [8, (5.10)].

Define similar homomorphisms

λ1 : Hk,n
1 → πn(Gk+1), λ2 : Hk,n

2 → πk(Gn+1)

in H as follows. Any element of H1 can be represented by a map of the form (x, y) �→
(g(x, y), y), where g : Sk × Sn → Sk corresponds to an element of πn(Gk+1). This induces the
homomorphism λ1. In a similar fashion, the homomorphism λ2 is defined. It is clear that the
following diagrams commute:

πn(SO(k + 1))
μ̄ ��

e1

��

πn(Gk+1)

Dk,n
1

μ �� Hk,n
1

λ1

��
πk(SO(n + 1))

μ̄ ��

e2

��

πk(Gn+1)

Dk,n
2

μ �� Hk,n
2

λ2

��
(∗∗)

Theorem 4.4 ([17, Theorem 3.3]) λ1, λ2 are isomorphisms, assuming n ≥ 3 and k ≥ 2.

Corollary 4.5 π4(SO(4)) e1−→∼= D3,4
1

μ−→∼= H3,4
1 , π3(SO(5)) e2−→∼= D3,4

2 .

Proof Recall the long exact sequence in [8]:

· · · → πn(SO(q))→ FCq
n → Cq

n → πn−1(SO(q))→ · · · .

Here Cq
n is the group of concordance classes of embeddings of Sn in Sn+q.

For the case FC5
3 , we have

· · · → C5
4 → π3(SO(5))→ FC5

3 → C5
3 → · · · .

Using the fact that Cq
n = 0 for n < 2q − 3 (cf. [8, (6.6)]), the fact π3(SO(5))

∼=−→ FC5
3 follows.

For FC4
4 , we have

· · · → FC4
5 → C4

5 → π4(SO(4))→ FC4
4 → C4

4 → · · · .

Note that C4
4 = 0 while C4

5 �= 0. But FC4
5 → C4

5 is surjective, since all 5-spheres in S9 have
trivial normal bundles ([13, Theorem 8.2]). Therefore π4(SO(4))

∼=−→ FC4
4 . Then the corollary

follows from Theorem 4.4, Lemma 2.6 and commutative diagrams (∗) (∗∗). �
The action φ̂ can be divided into two parts, i.e.,

φ̂(g2).g1 = φ(g2).g1 + τ (g2).g1 for gi ∈ Di,

where φ : D2 → AutD1 is a homomorphism and τ : D2 → Hom(D1, α) satisfies

τ (gg′) = τ (g)φ(g′) + τ (g′) for g, g′ ∈ D2.
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In H , the action φ can be completely determined, which will be presented below. Note that
the homomorphism μ : D̄ → H̄ preserves the action φ. Therefore a large amount of information
about φ in D can also be known.

Let θ = ī∗I−1 : πn+m(Sm) I←−∼= πn(Fm+1)
ī∗−→ πn(Gm+1). By Theorem 4.4 and the surjectiv-

ity of ī∗ : πk(Fn+1) → πk(Gn+1) when k < n, we identify Hk,n
1 with πn(Gk+1) and Hk,n

2 with
πk(Gn+1) = im θ.

Proposition 4.6 ([17, Proposition 4.2]) φ(θ(ξ)).β = β − θ(p̄∗(β) ◦ ξ) for ξ ∈ πn+k(Sn) and
β ∈ πn(Gk+1).

The function τ : D2 → Hom(D1, α), or put it another way, the pairing τ : Dk,n
1 ⊗Dk,n

2 →
Θk+n+1, can be viewed as a special case of the pairing

T : πn(SO(k + 1))⊗ πk(SO(n + 1))→ Θk+n+1

studied by Milnor in [19]. Namely, we have the following commutative diagram:

πn(SO(k + 1))⊗ πk(SO(n + 1))

e1⊗e2

��

T

������������������

Dk,n
1 ⊗Dk,n

2

τ �� Θk+n+1

Lemma 4.7 The pairing τ coincides with T for k = 3 and n = 4.

Proof By Corollary 4.5. �

5 The Classification of Smooth Manifolds

Lemma 5.1 A smooth 8-manifold M is of type (∗) if and only if M ∼= S3 ×D5 ∪f S3 ×D5

for some f ∈ Diff(S3 × S4).

Proof The “if” part can be easily seen using van Kampen theorem and Mayer–Vietories
sequence.

For the “only if” part, first note that there exists a self-indexed minimal Morse fuction
h : M → R. Namely, the function h has only 4 critical points, with values 0, 3, 5, 8, respectively.
Let W1 = h−1(−∞, 4] and W2 = h−1[4, +∞). Then M = W1 ∪ W2, and both W1 and W2

can be obtained by pasting a 3-handle D3 × D5 on D8. Since orientation preserving framed
imbeddings of S2 in S7 are all isotopic, we must have W1

∼= W2
∼= S3 ×D5. �

Let M(f) = S3 ×D5 ∪f S3 ×D5 for f ∈ Diff(S3 × S4). Note that if f0, f1 ∈ Diff(S3 × S4)
are concordant, then M(f0) ∼= M(f1). Therefore, each α = [f ] ∈ D̄ = D̄3,4 defines an element
[M(f)] ∈ S, which is denoted by M(α).

Proposition 5.2 M(α1) = M(α2) if and only if there exist β1, β2 ∈ D̄2 such that β1α1 =
α2β2.

In other words, S ∼= D̄/ ∼, where α1 ∼ α2 if there exist β1, β2 ∈ D̄2 such that β1α1 = α2β2.

Corollary 5.3 Elements in S are in one-to-one correspondence with orbits of the conjugation
action of D̄2 on D1 ⊕ α.

Proposition 5.2 and Corollary 5.3 are actually special cases of [17, Lemma 5.4 and Propo-
sition 5.7].
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Now we analyze the action of D̄2. We only analyze the action of D2, i.e., φ̂, as we will see
that it is already enough for our final result.

Proposition 5.4 Identify D1 an D2 with π4(SO(4)) and π3(SO(5)) respectively. Notations
are as in Lemma 2.1. Then

φ(iσ)(ση3) = ση3 + iρη3,

φ(iσ)(iρη3) = iρη3.

Proof By Corollary 4.5, we can pass to H to do calculations.

μ̄(φ(iσ)) = φ(μ̄(iσ)) = φ(̄i∗μ̄′σ) = φ(̄i∗I−1Jσ) = φ(θ(Jσ)) = φ(θ(ν4)).

Then using the formula of Proposition 4.6,

μ̄(φ(iσ)(ση3)) = φ(μ̄(iσ))(μ̄(ση3))

= φ(θ(ν4))(μ̄(ση3))

= μ̄(ση3)− θ(p̄∗(μ̄(ση3)) ◦ ν4)

= μ̄(ση3)− θ(p∗ση3 ◦ ν4)

= μ̄(ση3)− θ(η3ν4)

= μ̄(ση3)− ī∗I−1(J(ρη3))

= μ̄(ση3)− μ̄i∗(ρη3)

= μ̄(ση3 − iρη3)

= μ̄(ση3 + iρη3)

Similarly,

μ̄(φ(iσ)(iρη3)) = φ(θ(ν4))(μ̄(iρη3))

= μ̄(iρη3)− θ(p̄∗(μ̄(iρη3)) ◦ ν4)

= μ̄(iρη3)− θ(p∗(iρη3) ◦ ν4)

= μ̄(iρη3)

Since μ̄ is an isomorphism, it completes the proof. �
For τ : D2 → Hom(D1, α), by Lemma 4.7, it is equivalent to analyze the Milnor pairing

T : π4(SO(4))⊗ π3(SO(5))→ Θ8. It was almost done in [6].

Proposition 5.5

T : π4(SO(4))⊗ π3(SO(5)) → Θ8

(0, iσ) �→ S8

(ση3, iσ) �→ S8

(iρη3, iσ) �→ Σ8

(ση3 + iρη3, iσ) �→ Σ8

Proof Combine [6, Lemma 1, Theorem 3] and Lemma 2.5 (2). �

Corollary 5.6 The orbits of D1 ⊕ α under the action φ̂ are

{0}, {Σ8}, {iρη3, iρη3 + Σ8}, {ση3, ση3 + iρη3, ση3 + Σ8, ση3 + iρη3 + Σ8}.
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Proof of Theorem 1.2 (3) By Corollary 5.6, there are at most 4 elements in S: S3 × S5,
S3 × S5#Σ8, SU(3) and M1,0. Since α ∼= Θ8 is invariant under the action of B, we see that 0
and Σ8 must lie in different orbits. Thus S3 × S5 is not diffeomorphic to S3 × S5#Σ8, and the
theorem follows. �

6 Examples

As we have introduced in Section 1, for a 7-manifold of type (r), the total space of the S1-bundle
over it with Euler class u is an 8-manifold of type (∗). Conversely, if an 8-manifold of type (∗)
admits a smooth free S1-action, the orbit space must be a 7-manifold of type (r).

In [4], Escher and Ziller studied the topology of certain 7-manifolds of type (r), i.e., the
total spaces of S3-bundles over CP 2 and S1-bundles over S2-bundles over CP 2. Some of these
manifolds are known to admit non-negatively curved metrics and Einstein metrics. However,
there are some inaccurate statements in their paper, which are related to the following questions.
What are the homotopy groups of these manifolds? What are the total spaces of S1-bundles
over them? We will take a closer look at these manifolds and clarify the answers to these
questions.

6.1 S3-bundles over CP 2

It is well known that a 4-dimensional oriented vector bundle over CP 2 is classified by its second
Stiefel–Whitney class, first Pontryagin class and Euler class (cf. [3]). Up to isomorphism, they
can be constructed as follows. Let Vectn,+

R
(X) be the set of isomorphism classes of n-dimensional

oriented real vector bundles over a space X. Then we have Vect4,+
R

(S4) ∼= π3(SO(4)) ∼= Z{α}⊕
Z{β} with

α β

e 0 ωS4

p1 4ωS4 −2ωS4

where ωS4 is the orientation cohomology class of S4. Choose an embedded disk D ∼= D4 in CP 2.
Let q : CP 2 → S4 be the map collapsing the outer of D to a point, and v : CP 2 → CP 2∨S4 be
the map shrinking the boundary of D to a point. Then all 4-dimensional vector bundles over
CP 2 can be constructed by the following two pullback squares:

Spin case: Nonspin case:

q∗(ξk,l) ��

��

ξk,l

��
CP 2

q �� S4

v∗(ξ′k,l) ��

��

ξ′k,l

��
CP 2 v ��

CP 2 ∨ S4

where ξk,l = kα + lβ, ξ′k,l|CP 2 = γ ⊕ ε2, ξ′k,l|S4 = ξk,l, with γ the tautological line bundle over
CP 2.

Let Nk,l = S(q∗(ξk,l)) and N ′
k,l = S(v∗(ξ′k,l)), where S(ξ) is the associated sphere bundle

of the vector bundle ξ. Namely Nk,l and N ′
k,l are linear S3-bundles over CP 2. Then Nk,l and

N ′
k,l are simply connected, and of type (0) if l = 0, or of type (r) (r ≥ 1) if l �= 0. Moreover,

we have H4(Nk,l) ∼= H4(N ′
k,l) ∼= Zl.
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We are interested in the topology of S1-bundles over Nk,l and N ′
k,l. Let Ek,l and E′

k,l be
the total space of the S1-bundle over Nk,l and N ′

k,l, respectively, with Euler class a chosen
generator of their second cohomology groups. Then we have the following pullback squares of
fiber bundles:

S3

��

S3

��

S3

��

S3

��
S1 �� Ek,l ��

��

Nk,l

��

�� S(ξk,l) ��

��

S(γ4)

��
S1 �� S5 π ��

CP 2
q �� S4

fk,l �� BSO(4)

S3

��

S3

��

S3

��

S3

��
S1 �� E′

k,l
��

��

N ′
k,l

��

�� S(ξ′k,l) ��

��

S(γ4)

��
S1 �� S5 π ��

CP 2 v ��
CP 2 ∨ S4

γ̂∨fk,l �� BSO(4)

Here γ4 is the universal 4-dimensional vector bundle, and the map γ̂ and fk,l are classifying
maps of γ ⊕ ε2 and ξk,l, respectively. Thus Ek,l and E′

k,l can be regarded as total spaces of
S3-bundles over S5. To determine them, we only need to determine the classifying maps.

We will identify πn(BSO(m)) with πn−1(SO(m)). The corresponding element of α ∈
πn−1(SO(m)) in πn(BSO(m)) will be denoted by α̃. Under this convention and our nota-
tions in Lemma 2.1, we have fk,l = kĩρ + lσ̃.

Proposition 6.1 (1) fk,lqπ = 0;

(2) (γ̂ ∨ fk,l)vπ = kĩρη3 + lσ̃η3.

Proof (1) The fact CP 3/CP 1 � S4 ∪qπ D6 together with Sq2 = 0 : H4(CP 3; Z2)→ H6(CP 3;
Z2) leads to qπ = 0.

(2) We have π5(CP 2∨S4) ∼= Z{π}⊕Z2{η4}⊕Z{[ι2, ι4]}. It is easy to see that vπ = π±[ι2, ι4].
Then

(γ̂ ∨ fk,l)vπ = (γ̂ ∨ fk,l)(π ± [ι2, ι4]) = γ̂π ± [ε̃1, kĩρ + lσ̃ι3],

where ε1 generates π1(SO(4)) ∼= Z2. Note that γ̂π = 0, as γ can be extended to a bundle over
CP 3, i.e., the tautological line bundle over CP 3. Thus

(γ̂ ∨ fk,l)vπ = k[ε̃1, ĩρ] + l[ε̃1, σ̃] = k〈̃ε1, iρ〉+ l〈̃ε1, σ〉,

where 〈·, ·〉 denotes the Samelson product. Similar arguments as in the proof of [12, Theorem
1.1] show that 〈ε1, σ〉 = ση3 and 〈ε1, iρ〉 = iρη3. Hence the result follows. �

Immediately, we have

Theorem 6.2 (1) Ek,l
∼= S3 × S5;
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(2) E′
k,l
∼=

⎧
⎪⎪⎨

⎪⎪⎩

S3 × S5, if k, l are even,

M1,0, if k is odd, l is even,

SU(3), if l is odd.

Consequently, all topological 8-manifolds of type (∗) admit infinitely many nonequivalent
free S1-actions.

Corollary 6.3 (1) π4(Nk,l) ∼= Z2;

(2) π4(N ′
k,l) ∼=

⎧
⎨

⎩

0, if l is odd,

Z2, if l is even.

Remark 6.4 We do not know whether S3 × S5#Σ8 admits a smooth free S1-action.

6.2 S1-bundles over S2-bundles over CP 2

Consider S1-bundles over S2-bundles over CP 2. It is clear that S1-bundles over these manifolds
are just T 2-bundles over S2-bundles over CP 2. Recall that a T 2-bundle is determined by two
elements in the second cohomology group of the base space. Different pairs of elements which
are in the same orbit under SL(2, Z)-actions give isomorphic T 2-bundles. Since the second
cohomology group of an S2-bundle over CP 2 is all isomorphic to Z ⊕ Z, up to isomorphism,
there is a unique T 2-bundle over each S2-bundle over CP 2 whose total space is simply connected.
Thus the total space of an S1-bundle over such a 7-manifold depends only on the based S2-
bundle over CP 2 when the simply connected condition is required.

A 3-dimensional oriented vector bundle over CP 2 is determined by its second Stiefel–
Whitney class and first Pontryagin class, and can be constructed as follows:

Spin case: Nonspin case:

q∗(ξk) ��

��

ξk

��
CP 2

q �� S4

v∗(ξ′k) ��

��

ξ′k

��
CP 2 v ��

CP 2 ∨ S4

where ξk⊕ ε ∼= ξk,0 and ξ′k⊕ ε ∼= ξ′k,0. Let Lk = S(q∗(ξk)) and L′
k = S(v∗(ξ′k)). Gysin sequences

show that H2(Lk) ∼= Z{xk}⊕Z{yk} and H2(L′
k) ∼= Z{x′

k}⊕Z{y′
k} with xk and x′

k pulled back
from a generator of H2(CP 2).

Consider the S1-bundles over Lk and L′
k with Euler class xk and x′

k, and denote their total
spaces as Pk and P ′

k, respectively. Then we have the following pullback squares of fiber bundles:

S2

��

S2

��

S2

��

S2

��
S1 �� Pk

��

��

Lk

��

�� S(ξk) ��

��

S(γ3)

��
S1 �� S5 π ��

CP 2
q �� S4

fk �� BSO(3)
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S2

��

S2

��

S2

��

S2

��
S1 �� P ′

k
��

��

L′
k

��

�� S(ξ′k) ��

��

S(γ3)

��
S1 �� S5 π ��

CP 2 v ��
CP 2 ∨ S4

γ̂∨fk �� BSO(3)

Similar arguments as the first example show that

fkqπ = 0, (γ̂ ∨ fk)vπ = kρ̃η3.

Thus

Pk
∼= S5 × S2, P ′

k
∼=

⎧
⎨

⎩

S5 × S2, if k is even

S5×̃S2, otherwise.

Since S5×̃S2 � S2 ∪η2η3 e5 ∪ e7, we have π4(S5×̃S2) ∼= π4(S2 ∪η2η3 e5) = 0. It follows that
the total space of the S1-bundle over S5×̃S2 with Euler class a generator of H2(S5×̃S2) is
diffeomorphic to SU(3). For S5 × S2, the total space is S5 × S3.

In general, let Pk,a,b be the total space of the S1-bundle over Lk with Euler class axk + byk,
where a, b are relatively prime integers. Similarly, let P ′

k,a,b be the total space of the S1-bundle
over L′

k with Euler class ax′
k + by′

k. Then Pk,a,b and P ′
k,a,b are 7-manifolds of type (r). Let

Rk,a,b and R′
k,a,b be the total space of the S1-bundle over Pk,a,b and P ′

k,a,b, respectively, with
Euler class a chosen generator of their second cohomology groups. Therefore, Rk,a,b and R′

k,a,b

are T 2-bundles over Lk and L′
k, respectively. Summarizing the above discussion, we have the

following:

Theorem 6.5 (1) Rk,a,b
∼= S3 × S5;

(2) R′
k,a,b

∼=

⎧
⎨

⎩

S3 × S5, if k is even,

SU(3), if k is odd.

Consequently, there are infinitely many nonequivalent free smooth T 2-actions on S3 × S5

and SU(3).

Corollary 6.6 (1) π4(Pk,a,b) ∼= Z2;

(2) π4(P ′
k,a,b) ∼=

⎧
⎨

⎩

0, if k is odd,

Z2, if k is even.

Remark 6.7 Finally, we focus on some statements in [4] related to our discussion:
(1) In [4, p. 27], they stated that S3 × S5 and SU(3) are the only homotopy types of an

8-manifold of type (∗) which admits free S1-actions. It turns out that M1,0 also admits free
S1-actions and is not homotopy equivalent to any of them.

(2) The remark in [4, p. 34] and the second remark in [4, p. 38] are true. Note that their
notations are different from ours.

(3) The suspicion of the remark in [4, p. 45] is not the case, since π4 is Z2 in all cases.
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