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Abstract In this paper we provide some relationships between Catalan’s constant and the 3F2 and

4F3 hypergeometric functions, deriving them from some parametric integrals. In particular, using the

complete elliptic integral of the first kind, we found an alternative proof of a result of Ramanujan for

3F2, a second identity related to 4F3 and using the complete elliptic integral of the second kind we
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1 Introduction

Catalan’s constant G was defined by Eugène Charles Catalan, who introduced this constant in
[13, Eq. (4), p. 23] as the alternating series

G =
∞∑

n=0

(−1)n

(2n + 1)2
.

It is well-known, [14, Eq. (1), p. 1], that we may also express this constant with the following
definite integral ∫ 1

0

arctan x

x
dx.

This integral has stimulated the interest of Ramanujan [23]. G was also identified by James
W.L. Glaisher in 1877, see [17]. Its value is approximately G ∼= 0.915965594177 . . . and actually
it is not known if it is a rational number. The constant G is somewhat ubiquitous since it
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appears in many occurrences connected to definite integrals or series summations; we give a
(surely) non-exhaustive list of papers that provide several interesting occurrences of G, including
[1, 2, 7, 10, 15, 19, 22] and [26]. There are also interesting connections between Catalan’s
constant and the Clausen’s integrals, that is

Cl2(θ) = −
∫ θ

0

log
(

2 sin
t

2

)
dt,

the Hurwitz zeta function, Euler–Mascheroni constant and many other special functions, as one
can see for instance in [10, 15, 26]. The starting point of this paper is the connection of G with
the complete elliptic integrals of the first and second kind, namely

G =
1
2

∫ 1

0

K(s)ds and G =
∫ 1

0

E(s)ds − 1
2

where the two complete elliptic integrals for |s| ≤ 1 are given by

K(s) =
∫ 1

0

dx√
(1 − x2)(1 − s2x2)

, E(s) =
∫ 1

0

√
1 − s2x2

1 − x2
dx.

The basic idea of this paper is to arrive at well-known formulas using Catalan’s constant through
Feynman’s favourite technique of differentation under the integral sign. We can express G in
terms of the hypergeometric function 3F2, providing in Section 2 an alternative proof of the
representation of G in terms of 3F2, due to Ramanujan: in his second notebook Chapter 10, as
reported by Berndt [5, Eq. (29.3), p. 40], the following relation is established:

4G

π
= 3F2

⎛

⎝ 1/2, 1/2, 1/2

1, 3/2
; 1

⎞

⎠ . (1.1)

We deem interesting providing some details of the Ramanujan’s way to formula (1.1), in order
to emphasize how our approach requires a less sophisticated, and very different, mathematical
machinery. Equation (1.1) in [5, Entry 29(d), p. 40] is obtained as a particular case of the
following 3F2 identity (1.2) which holds true for n > −3

2

3F2

⎛

⎝ 1/2, 1, n + 3/2

3/2, n + 2
; 1

⎞

⎠ =
√

π
Γ(n + 2)
Γ(n + 3

2 ) 3F2

⎛

⎝ 1/2, 1/2,−n

1, 3/2
; 1

⎞

⎠ . (1.2)

In fact taking the particular value n = − 1
2 Equation (1.2) furnishes

3F2

⎛

⎝
1/2, 1, 1

3/2, 3/2
; 1

⎞

⎠ =
π

2 3F2

⎛

⎝
1/2, 1/2, 1/2

1, 3/2
; 1

⎞

⎠ . (1.3)

The left-hand side of (1.3) is evaluated in the first Ramanujan’s notebook: in fact using the
Whipple quadratic transformation type identity, see for instance [3, p. 190], given in [4, Entry 32,
Eq. (32.2), p. 288], which we express using the 3F2 notation and recalling that (1.4) holds true
for |x| ≤ 1:

3F2

⎛

⎝ 1/2, 1, 1

3/2, 3/2
;

4x

(1 + x)2

⎞

⎠ = (1 + x)
∞∑

n=0

(−x)n

(2n + 1)2
; (1.4)
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taking x = 1 in (1.4) we see that the left-hand side of (1.3) is exactly 2G which completes the
illustration of the Ramanujan approach to (1.1).

Finally, regarding formula (1.1), it is also worth mentioning the contribution of [25].
In Section 2 we also present (always starting from a suitable parametric integral) two rep-

resentations of G that are interrelated with Euler’s log-sine and log-cosine integrals, see [16,
Section 990] or the most recent [21, Section 2.4, pp. 64–65]:

∫ π
2

0

log(sin x)dx =
∫ π

2

0

log(cosx)dx = −π

2
log 2.

In Section 4, we present a further hypergeometric connection of G with the complete elliptic
integral of second kind, using its 2F1 representation

E(k) =
π

2 2F1

⎛

⎝ −1/2, 1/2

1
; k

⎞

⎠ . (1.5)

2 Catalan’s Constant from Complete Elliptic Integral of the First Kind

We recall that 3F2 and 4F3 are the hypergeometric generalized function, defined for |x| < 1 by
the power series

3F2

⎛

⎝ a1, a2, a3

b1, b2

; x

⎞

⎠ =
∞∑

k=0

(a1)k (a2)k (a3)k

(b1)k (b2)k

xk

k!
,

4F3

⎛

⎝ a1, a2, a3, a4

b1, b2, b3

; x

⎞

⎠ =
∞∑

k=0

(a1)k (a2)k (a3)k (a4)k

(b1)k (b2)k (b3)k

xk

k!
,

where (a)k is the standard notation for the Pochhammer symbol (increasing factorial):

(a)k =
Γ(a + k)

Γ(a)
= a(a + 1) · · · (a + k − 1).

It should be remembered that 3F2 converges at x = 1 whenever Re(b1 + b2 − a1 − a2 − a3) >

0 and 4F3 converges at x = 1 whenever Re(b1 + b2 + b3 − a1 − a2 − a3 − a4) > 0. See [24,
Section 2.2, p. 45].

The following Theorem 2.2 provides an integration formula which is related to Lemma 1
of [20], but here the result is obtained by means of elementary techniques.

Remark 2.1 Formula (2.1) as given in Theorem 2.2 below, is not found in the classical
repertories, for instance in [18, Sections 4.52–4.59, pp. 600–607] it does not appear, but since it
can be evaluated using Mathematica r© this means that it can be obtained using known formulas.
Our elementary approach, which is based on the use of differentiation under the integral sign,
gives us a rigorous proof of this identity.

Theorem 2.2 The following formula for |s| < 1 holds:

∫ 1

0

arcsin(sx)
x
√

1 − x2
dx =

π

2
s 3F2

⎛

⎝ 1/2, 1/2, 1/2

1, 3/2
; s2

⎞

⎠ . (2.1)

Proof Let

A(s) :=
∫ 1

0

arcsin(sx)
x
√

1 − x2
dx.
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Observe that, since

lim
x→0

arcsin(sx)
x

= s,

we have, being |s| < 1: ∣∣∣∣
arcsin(sx)
x
√

1 − x2

∣∣∣∣ ≤
1√

1 − x2
,

thus we can differentiate under the integral sign to reach

A′(s) =
∫ 1

0

dx√
(1 − x2)(1 − s2x2)

= K(s).

Then, observing that A(0) = 0 we infer

A(s) =
∫ s

0

K(k)dk. (2.2)

To end our proof, we simply need to integrate term by term (2.2) using the hypergeometric
series representation of the first kind complete elliptic integral K(k),

A(s) =
π

2

∫ s

0
2F1

⎛

⎝ 1/2, 1/2

1
; k2

⎞

⎠ dk

=
π

2

∫ s

0

∞∑

m=0

(1/2)m (1/2)m

(1)m

k2m

m!
dk

=
π

2

∞∑

m=0

(1/2)m (1/2)m

(1)m (2m + 1)
s2m+1

m!

=
π

2
s

∞∑

m=0

(1/2)m (1/2)m (1/2)m

(1)m (3/2)m

s2m

m!

where we used the identity
(1/2)m

(3/2)m

=
1

1 + 2m
. (2.3)

In this way we obtained an alternative proof of the Ramanujan’s formula (1.1): in fact
from (2.2) and [8, Entry 615.01, p. 274], we deduce that

A(1) =
π

2 3F2

⎛

⎝ 1/2, 1/2, 1/2

1, 3/2
; 1

⎞

⎠ =
∫ 1

0

arcsin x

x
√

1 − x2
dx = 2G. (2.4)

It is worth noting that the underlying integral representation for G

G =
1
2

∫ 1

0

arcsin t

t
√

1 − t2
dt

is also used in [7, p. 161]. Formula (1.1) stems from (2.1) taking the limit s → 1−. Identity (1.1)
is also obtained, using a different technique, by Borwein et al. [6, Section 3] when s = 0.

Following the same method, we are able to find two other known identities in a simple way.
Consider the parametric integral

C(s) :=
∫ 1

0

log
(
1 +

√
1 − s2x2

)
√

1 − x2
dx. (2.5)

We have that
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Theorem 2.3 For any |s| < 1,

C(s) =
π

2
log 2 − π

16
s2

4F3

⎛

⎝ 1, 1, 3/2, 3/2

2, 2, 2
; s2

⎞

⎠ . (2.6)

Proof Again, we differentiate with respect to s. Of course, this is admissible, and after some
computations, we arrive at the following

C ′(s) =
1
s

( ∫ 1

0

dx√
1 − x2

−
∫ 1

0

dx√
(1 − x2)(1 − s2x2)

)
=

1
s

(
π

2
− K(s)

)
. (2.7)

We integrate (2.7) by series. First we fix the easiest constant of integration observing that

C(0) =
∫ 1

0

log 2√
1 − x2

dx =
π

2
log 2.

Then, representing as before the complete elliptic integral of the first kind in terms of Gauss
hypergeometric series, we can write (2.7) as

C ′(s) = −π

2

∞∑

m=1

(1/2)2m
(m!)2

s2m−1. (2.8)

Thus, integrating (2.8) in [0, s], s < 1 we obtain

C(s) = C(0) − π

2

∞∑

m=1

(1/2)2m
(m!)2

s2m

2m
. (2.9)

In order to reach the formula (2.6) we use, of course, the former computation of C(0) and we
change index in the series at the right-hand side of (2.9) obtaining

∞∑

m=1

(1/2)2m
(m!)2

s2m

2m
=

s2

2

∞∑

n=0

(1/2)2n+1

((n + 1)!)2
s2n

(n + 1)
. (2.10)

Now using the identity, see [12, Eq. (5), p. 9]

(a)n+1 = a (a + 1)n

which, of course, for a = 1/2 reads as
(

1
2

)

n+1

=
1
2

(
3
2

)

n

,

Equation (2.10) can be written as
∞∑

m=1

(1/2)2m
(m!)2

s2m

2m
=

s2

8

∞∑

n=0

(3/2)2n
(n!)2(n + 1)3

s2n (2.11)

and, recalling the identity, which is an immediate consequence of the definition of Pochhammer’s
symbol,

n + 1 =
(2)n

(1)n
=

(2)n

n!
. (2.12)

Formula (2.6) follows from (2.12), (2.11), (2.10) and (2.9). �
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Remark 2.4 The particular value C(1) is indeed related to Catalan’s constant G. In fact, we
have

C(1) =
∫ 1

0

log
(
1 +

√
1 − x2

)
√

1 − x2
dx = 2G − π

2
log 2. (2.13)

We can achieve thus by changing the variable x = sin t, so that

C(1) =
∫ π

2

0

log(1 + cos t)dt (2.14)

and finally using Equation (12) of [19]. Notice that (2.13) can be evaluated by Mathematica r©.

Remark 2.5 Since it is clear that from its definition, the parametric integral (2.9) converges
for s → 1−; recalling (2.13) we have thus shown that

4F3

⎛

⎝ 1, 1, 3/2, 3/2

2, 2, 2
; 1

⎞

⎠ = 16 log 2 − 32
π

G. (2.15)

Formula (2.15) is a particular case, n = 1 therein, of a 4F3 formula given at [1, p. 819], here we
obtained it using a different method.

Now, consider the parametric integral:

D(s) :=
∫ 1

0

log
(
1 −√

1 − s2x2
)

√
1 − x2

dx (2.16)

which is closely related to the integral (2.5). Now, since

C(s) + D(s) = 2
(∫ 1

0

log s√
1 − x2

dx −
∫ 1

0

log x√
1 − x2

dx

)
= π log

s

2
(2.17)

integral D(s) is also evaluated in hypergeometric terms. As a matter of fact the same argument
used to obtain (2.7) leads to

D′(s) =
1
s

(
π

2
+ K(s)

)
. (2.18)

Formula (2.18) enables us to obtain directly the hypergeometric representation of D(s) without
using (2.17).

3 Applications of Theorem 2.3

Theorem 2.3 has three interesting consequences, that were pointed out by the anonymous
Referee, to which we are grateful.

3.1 Relation to the Ramanujan-like Series for 1/π

It turns out that the evaluation of the series presented in Remark 2.5, Equation (2.15) allows
us to calculate in a more easy way the hypergeometric 4F3(1) series

4F3

⎛

⎝ 1/2, 1/2, 1, 1

2, 2, 2
; 1

⎞

⎠ =
∞∑

n=0

(
2n
n

)2

16n(n + 1)3
= 16 log 2 +

48
π

− 32
G

π
− 16. (3.1)

Series (3.1) has recently found many applications in the evaluation of Ramanujan-like series
for 1/π involving harmonic numbers as presented in the recent articles: [9, Theorem 4.1], [11,
p. 636] and [10, Theorem 5.12]. In all the three papers the computation of (3.1) is due to
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very sophisticated methods, while using our identity (2.15) and some related summations we
derive (3.1) in a few steps. Notice that, as [9] also remarks, Mathematica r© is unable to evaluate
the series (3.1).

We therefore provide our calculation of (3.1). Rewriting (2.15) using the Pochhammer sym-
bol, and then simplifying, using the gamma function for the terms (3/2)n and the relation (2.12)
to express (2)n, we observe that (2.15) can be written as

16 log 2 − 32
π

G =
∞∑

n=0

4
π

(
Γ( 3

2 + n)
)2

(n!)2(n + 1)3
. (3.2)

Now we insert in (3.2) the nice identity connecting Γ( 3
2 + n) to the central binomial coeffi-

cient:

Γ
(

3
2

+ n

)
=

(2n + 1) n!
√

π

22n+1

(
2n

n

)

allowing to rewrite (3.2) and, so, (2.15) as:

16 log 2 − 32
π

G =
∞∑

n=0

(2n + 1)2

16n(n + 1)3

(
2n

n

)2

. (3.3)

Formula (3.3) indicates the connection with (3.1) simply by expanding (2n + 1)2:

16 log 2 − 32
π

G = 4
∞∑

n=0

n

16n(n + 1)2

(
2n

n

)2

+
∞∑

n=0

(
2n
n

)2

16n(n + 1)3
. (3.4)

Henceforth Formula (3.1) follows form (3.4) showing that
∞∑

n=0

4n

16n(n + 1)2

(
2n

n

)2

= 16 − 48
π

. (3.5)

Through the use of partial fraction decomposition we can write the left-hand side of (3.5) as
∞∑

n=0

4
(n + 1)16n

(
2n

n

)2

−
∞∑

n=0

4
(n + 1)216n

(
2n

n

)2

. (3.6)

To evaluate the first series in (3.6) we go backward expressing it as using the Gauss hypergeo-
metric 2F1. The first step is again in the representation of the central binomial coefficient

(
2n

n

)
=

22n
(

3
2

)
n

(2n + 1)n!
=

22n
(

1
2

)
n

n!
.

Notice that we used the relation (2.3). Now use again (2.12) in order to express (2)n in terms
of n + 1, thus we arrive at the evaluation

∞∑

n=0

4
(n + 1)16n

(
2n

n

)2

= 4
∞∑

n=0

(
1
2

)2

n

(2)n

1
n!

= 4 2F1

⎛

⎝ 1/2, 1/2

2
; 1

⎞

⎠ = 4
Γ(2)Γ(2 − 1

2 − 1
2 )

Γ(2 − 1
2 )Γ(2 − 1

2 )
=

16
π

.

Notice that in the last step we employed Gauss theorem to evaluate 2F1(1). The second series
in (3.6) is evaluated in [11, p. 653] as

64
π

− 16.

Thus (3.5) holds true and this implies the statement (3.1). We observe that the second series
in (3.6) can also be evaluated by an argument similar to the first.
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3.2 Family of Hypergeometric Identities

The identity (2.6) of Theorem 2.3 is a starting point for a large family of hypergeometric
identities. The idea is quite simple: multiply both sides of (2.6) in Theorem 2.3 by a given
function and then integrate over the interval [0, 1]. It is worth noting that Mathematica r© is
not able to recognize in closed form (3.7), (3.8), (3.9) below.

Theorem 3.1 The following summation formulas hold true:

4F3

⎛

⎝ 1, 1, 3/2, 3/2

2, 2, 3
; 1

⎞

⎠ = 8 + 32 log 2 − 64
G

π
− 32

π
, (3.7)

4F3

⎛

⎝
1, 1, 3/2, 3/2

2, 3, 3
; 1

⎞

⎠ = 96 + 64 log 2 − 128
G

π
− 320

π
, (3.8)

4F3

⎛

⎝ 1, 1, 3/2, 3/2

2, 2, 4
; 1

⎞

⎠ = 18 + 48 log 2 − 96
G

π
− 208

3 π
. (3.9)

Proof We start with (3.7). Multiplying by s both sides of (2.6) and integrating for s ∈ [0, 1],
at right-hand side we get, after changing variable s2 = σ:

π

4
log 2 − π

16

∫ 1

0

s3
4F3

⎛

⎝ 1, 1, 3/2, 3/2

2, 2, 2
; s2

⎞

⎠ ds

=
π

4
log 2 − π

32

∫ 1

0

σ4F3

⎛

⎝ 1, 1, 3/2, 3/2

2, 2, 2
; σ

⎞

⎠ dσ

=
π

4
log 2 − π

64 4F3

⎛

⎝ 1, 1, 3/2, 3/2

2, 2, 3
; 1

⎞

⎠ . (3.10)

Now, integrating the left-hand side of (2.6) in the relevant double integral (thus obtained the
order of integration) can be switched, and the closed-form evaluation for the resultant integral
requires some work, but is feasible in terms of elementary functions:

∫ 1

0

s

(∫ 1

0

log(1 +
√

1 − s2x2)√
1 − x2

dx

)
ds

=
∫ 1

0

1√
1 − x2

( ∫ 1

0

s log(1 +
√

1 − s2x2)ds

)
dx

=
∫ 1

0

1√
1 − x2

(
2 + x2 − 2

√
1 − x2

4x2
+

1
2

log(1 +
√

1 − x2)
)

dx

=
[
1
4

(
2 − 2

√
1 − x2

x
− arcsin x

)]1

0

+
1
2

∫ 1

0

log(1 +
√

1 − x2)√
1 − x2

dx

=
1
2
− π

8
+ G − π

4
log 2. (3.11)

But (3.10) and (3.11) represent the same real number, hence (3.7) follows.
For (3.8) and (3.9) the idea is the same: to get (3.8) multiplying both sides of (2.6) by s ln s
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the left-hand side of (2.6) provides, exchanging the order of integration:
∫ 1

0

s log s

( ∫ 1

0

log(1 +
√

1 − s2x2)√
1 − x2

dx

)
ds

=
∫ 1

0

(
x2 + 3

√
1 − x2 − 3 + 2 log 2
4x2

√
1 − x2

−
(
x2 + 2

)
log(

√
1 − x2 + 1)

4x2
√

1 − x2

)
dx

=
3π

8
+

π

8
log 2 − G

2
− 5

4
. (3.12)

At right-hand side of (2.6), after multiplication by s ln s we obtain, after changing the
variable s2 = σ and then integrating by part, looking for the primitive of the hypergeometric
function:

− 1
8
π log 2 − π

16

∫ 1

0

s3 log s 4F3

⎛

⎝ 1, 1, 3/2, 3/2

2, 2, 2
; s2

⎞

⎠ ds

= −1
8
π log 2 − π

64

∫ 1

0

σ log σ 4F3

⎛

⎝
1, 1, 3/2, 3/2

2, 2, 2
; σ

⎞

⎠ dσ

= −1
8
π log 2 − π

256 4F3

⎛

⎝ 1, 1, 3/2, 3/2

2, 3, 3
; 1

⎞

⎠ . (3.13)

Notice that, integrating by series we used the relation (3)n = n+2
2 (2)n . Identity (3.8) then

follows equating (3.12) and (3.13).
To prove (3.9) we can multiply by s3 both sides of (2.6) and repeat the argument, using,

when integrating the hypergeometric series, the Pochhammer identity

(4)n =
n + 3

3
(3)n =

n + 3
3

n + 2
2

(2)n. �

4 Catalan’s Constant from the Complete Elliptic Integral of the Second Kind

The parametric integral leading to the elliptic integral of the second kind is a slightly more
intricate; nevertheless, we have:

Theorem 4.1 The following formula for |s| < 1 holds:

∫ 1

0

arcsin(sx) + sx
√

1 − s2x2

2x
√

1 − x2
dx =

π

2
s 3F2

⎛

⎝ −1/2, 1/2, 1/2

1, 3/2
; s2

⎞

⎠ . (4.1)

Remark 4.2 Formula (4.1), unlike many of the previous formulas given in this article, has
not previously appeared in the literature.

Proof This time we put

B(s) =
∫ 1

0

arcsin(sx) + sx
√

1 − s2x2

2x
√

1 − x2
dx

in such a way

B′(s) =
∫ 1

0

√
1 − s2x2

1 − x2
dx = E(s).
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Then recalling that F (0) = 0, we arrive at

B(s) =
∫ s

0

E(k)dk =
π

2

∫ s

0

∞∑

m=0

(−1/2)m (1/2)m

(1)m

k2m

m!
dk, (4.2)

where we used the hypergeometric representation of E(k) (1.5). Our statement then follows
from the integration by series as in Theorem 2.2. �

Remark 4.3 The particular 3F2 specification and its relations to G and the complete elliptic
integral of second kind in the following formula (4.3), were also considered in [1, Eq. 20, p. 7].

Corollary 4.4

1
2

+ G =
π

2 3F2

⎛

⎝ −1/2, 1/2, 1/2

1, 3/2
; 1

⎞

⎠ . (4.3)

Proof From (4.2) and [8, Entry 615.01, p. 274], we know that

B(1) =
∫ 1

0

arcsin(x) + x
√

1 − x2

2x
√

1 − x2
dx =

1
2

+ G. (4.4)

Formula (4.3) stems from (4.1) taking the limit s → 1−. �

Conclusion We have investigated the relationships between Catalan’s constant and the

3F2 and 4F3 hypergeometric functions, Equations (2.4), (2.15) and (4.3), deriving them from
some parametric integrals. We believe that our approach can be used to find further identities
involving other math constants. Our approach is focused on investigation of the hypergeometric
nature of G, following what was first highlighted by Ramanujan, rather than following the
example of many recent contributions and searching for particular numerical series increasing
the speed of approximation of G.
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